
Middleware

Middleware

2

Distributed ApplicationsDistributed Applications

Operating System CommsOperating System Comms

NetworkNetwork

Introduction to Middleware I
• What is Middleware?

– Layer between OS and distributed applications
– Hides complexity and heterogeneity of distributed system
– Bridges gap between low-level OS communications and programming

language abstractions
– Provides common programming abstraction and infrastructure for

distributed applications
– Overview at: http://www.middleware.org

Distributed Applications

Middleware

Operating System Comms

(packets, bits, …)

(remote calls, object invocation,
messages, …)

(sockets, IP, TCP, UDP, …)

Network
Middleware

3

Introduction to Middleware II

• Middleware provides support for (some of):
– Naming, Location, Service discovery, Replication
– Protocol handling, Communication faults, QoS
– Synchronisation, Concurrency, Transactions, Storage
– Access control, Authentication

• Middleware dimensions:
– Request/Reply vs. Asynchronous Messaging
– Language-specific vs. Language-independent
– Proprietary vs. Standards-based
– Small-scale vs. Large-scale
– Tightly-coupled vs. Loosely-coupled components

Middleware

4

Outline

• Part I: Remote Procedure Call (RPC)
– Historic interest, but still ubiquitous

• Part II: Object-Oriented Middleware (OOM)
– Java RMI
– CORBA
– Reflective Middleware

• Part III: Message-Oriented Middleware (MOM)
– Java Message Service
– IBM MQSeries
– Web Services

• Part IV: Event-Based Middleware
– Cambridge Event Architecture
– Hermes

Middleware

5

Part I: Remote Procedure Call (RPC)

• Masks remote function calls as being local
• Client/server model
• Request/reply paradigm usually implemented with

message passing in RPC service
• Marshalling of function parameters and return value

Caller RPC Service RPC Service Remote
Function

call(…)

1) Marshal args
2) Generate ID
3) Start timer 4) Unmarshal

5) Record ID

6) Marshal
7) Set timer

8) Unmarshal
9) Acknowledge

fun(…)

message

Middleware

6

Properties of RPC

Language-level pattern of function call
• easy to understand for programmer

Synchronous request/reply interaction
• natural from a programming language point-of-view
• matches replies to requests
• built in matching of requests and replies

Distribution transparency (in the no-failure case)
• hides the complexity of a distributed system

Various reliability guarantees
• deals with some distributed systems aspects of failure

Middleware

7

Failure Modes of RPC

• Invocation semantics supported by RPC in the light of:
network and/or server congestion,
client, network and/or server failure

note DS independent failure modes
• RPC systems differ, many examples, local Cambridge thing was

Mayflower

Exactly once (RPC system retries a few times)
• Hard error return – some failure most likely

note that “exactly once” cannot be guaranteed

Maybe or at most once (RPC system tries once)
• Error return – programmer may retry

Middleware

8

Disadvantages of RPC
 Synchronous request/reply interaction

• tight coupling between client and server
• client may block for a long time if server loaded

leads to multi-threaded programming at client
• slow/failed clients may delay servers when replying

multi-threading essential at servers

 Distribution Transparency
• Not possible to mask all problems

 RPC paradigm is not object-oriented
• invoke functions on servers as opposed to methods on objects

fork(…)

join(…)

remote call

Middleware

9

Part II: Object-Oriented Middleware (OOM)
• Objects can be local or remote
• Object references can be local or remote
• Remote objects have visible remote interfaces
• Masks remote objects as being local using proxy objects
• Remote method invocation

object A

proxy
object B

OOM OOM

skeleton
object B

object B

local remote

object
request
broker

/
object

manager

object
request
broker

/
object

manager

Middleware

10

Properties of OOM

Support for object-oriented programming model
– objects, methods, interfaces, encapsulation, …
– exceptions (were also in some RPC systems e.g. Mayflower)

Synchronous request/reply interaction
– same as RPC

Location Transparency
– system (ORB) maps object references to locations

Services comprising multiple servers are easier to build with OOM
– RPC programming is in terms of server-interface (operation)
– RPC system looks up server address in a location service

Middleware

11

Java Remote Method Invocation (RMI)

• Distributed objects in Java

public interface PrintService extends Remote {
int print(Vector printJob) throws RemoteException;

}

• RMI compiler creates proxies and skeletons
• RMI registry used for interface lookup
• Entire system written in Java (single-language system;

other languages can be made to work with varying
amounts of pain)

Middleware

12

CORBA

• Common Object Request Broker Architecture
– Open standard by the OMG (Version 3.0)
– Language- and platform independent

• Object Request Broker (ORB)
– General Inter-ORB Protocol (GIOP) for communication
– Interoperable Object References (IOR) contain object location
– CORBA Interface Definition Language (IDL)

• Stubs (proxies) and skeletons created by IDL compiler
– Dynamic remote method invocation

• Interface Repository
– Querying existing remote interfaces

• Implementation Repository
– Activating remote objects on demand

Middleware

13

CORBA IDL

• Definition of language-independent remote interfaces
– Language mappings to C++, Java, Smalltalk, …
– Translation by IDL compiler

• Type system
– basic types: long (32 bit),

long long (64 bit), short,
float, char, boolean,
octet, any, …

– constructed types: struct, union, sequence, array, enum
– objects (common super type Object)

• Parameter passing
– in, out, inout
– basic & constructed types passed by value
– objects passed by reference

typedef sequence<string> Files;
interface PrintService : Server {

void print(in Files printJob);
};

Middleware

14

CORBA Services (selection)

• Naming Service
– Names  remote object references

• Trading Service
– Attributes (properties)  remote object references

• Persistent Object Service
– Implementation of persistent CORBA objects

• Transaction Service
– Making object invocation part of transactions

• Event Service and Notification Service
– In response to applications‘ need for asynchronous communication
– built above synchronous communication with push or pull options
– not an integrated programming model with general IDL messages

Middleware

15

Disadvantages of OOM

 Synchronous request/reply interaction only
• So CORBA oneway semantics added and Asynchronous Method

Invocation (AMI)
• But implementations may not be loosely coupled

 Distributed garbage collection
• Releasing memory for unused remote objects

 OOM rather static and heavy-weight
• Bad for ubiquitous systems and embedded devices

Middleware

16

OOM experience
Keynote address at Middleware 2009
Steve Vinoski
From Middleware Implementor to Middleware User
(There and back again)

Available from the course materials page

Middleware

17

Reflective Middleware

• Flexible middleware (OOM) for mobile and context-aware
applications – adaptation to context through monitoring
and substitution of components

• Interfaces for reflection
– Objects can inspect middleware behaviour

• Interfaces for customisability
– Dynamic reconfiguration depending on environment
– Different protocols, QoS, ...
– e.g. use different marshalling strategy over unreliable wireless link

Middleware

18

Part III: Message-Oriented Middleware (MOM)
Communication using messages
Messages stored in message queues
message servers decouple client and server
Various assumptions about message content

Client App.

local message
queues

Server App.

local message
queues

message
queues

Network Network Network

Message Servers

Middleware

19

Properties of MOM

Asynchronous interaction
– Client and server are only loosely coupled
– Messages are queued
– Good for application integration

Support for reliable delivery service
– Keep queues in persistent storage

Processing of messages by intermediate message server(s)
– May do filtering, transforming, logging, …
– Networks of message servers

Natural for database integration

Middleware

20

IBM WebSphere MQ

• One-to-one reliable message passing using queues
– Persistent and non-persistent messages
– Message priorities, message notification

• Queue Managers
– Responsible for queues
– Transfer messages from input to output queues
– Keep routing tables

• Message Channels
– Reliable connections between queue managers

• Messaging API: MQopen Open a queue

MQclose Close a queue

MQput Put message into opened queue

MQget Get message from local queue

Middleware

21

Java Message Service (JMS)

• API specification to access MOM implementations
• Two modes of operation *specified*:

– Point-to-point
• one-to-one communication using queues

– Publish/Subscribe
• cf. Event-Based Middleware

• JMS Server implements JMS API
• JMS Clients connect to JMS servers
• Java objects can be serialised to JMS messages
• A JMS interface has been provided for MQ
• pub/sub (one-to-many) - just a specification?

Middleware

22

Disadvantages of MOM

 Poor programming abstraction (but has evolved)
• Rather low-level
• Request/reply difficult to achieve, but can be done

Message formats originally unknown to middleware
• No type checking (JMS addresses this – implementation?)

 Queue abstraction only gives one-to-one communication
• Limits scalability (JMS pub/sub – implementation?)

Middleware

23

Web Services

• Use well-known web standards for distributed computing
Communication

• Message content expressed in XML
• Simple Object Access Protocol (SOAP)

– Lightweight protocol for sync/async communication

Service Description
• Web Services Description Language (WSDL)

– Interface description for web services

Service Discovery
• Universal Description Discovery and Integration (UDDI)

– Directory with web service description in WSDL

Middleware

24

Properties of Web Services

Language-independent and open standard

SOAP offers OOM and MOM-style communication:
• Synchronous request/reply like OOM
• Asynchronous messaging like MOM
• Supports internet transports (http, smtp, ...)
• Uses XML Schema for marshalling types to/from programming

language types

WSDL says how to use a web service

UDDI helps to find the right web service
• Exports SOAP API for access

Middleware

25

Disadvantages of Web Services

 Low-level abstraction
• leaves a lot to be implemented

 Interaction patterns have to be built
• one-to-one and request-reply provided
• one-to-many?
• still synchronous service invocation, rather than notification
• no nested/grouped invocations, transactions, ...

 No location transparency

Middleware

26

What we lack, so far

 General interaction patterns
• we have one-to-one and request-reply
• one-to-many? many to many?
• notification?
• dynamic joining and leaving?

 Location transparency
• anonymity of communicating entities

 Support for pervasive computing
• data values from sensors
• lightweight software

Middleware

27

Part IV: Event-Based Middleware a.k.a. Publish/Subscribe

• Publishers (advertise and) publish events (messages)
• Subscribers express interest in events with subscriptions
• Event Service notifies interested subscribers of published events
• Events can have arbitrary content (typed) or name/value pairs

Event Service

(event-broker

network)

Subscriber

Subscriber

Subscriber

Publisher

Publisher

Publisher

publish

publish

publish

subscribe

subscribe

subscribe

notify

notify

notify

Middleware

28

Topic-Based and Content-Based Pub/Sub

• Event Service matches events against subscriptions
• What do subscriptions look like?

Topic-Based Publish/Subscribe
– Publishers publish events belonging to a topic or subject
– Subscribers subscribe to a topic

subscribe(PrintJobFinishedTopic, …)

(Topic and) Content-Based Publish/Subscribe
– Publishers publish events belonging to topics and
– Subscribers provide a filter based on content of events
subscribe(type=printjobfinished, printer=‘aspen’, …)

Middleware

29

Properties of Publish/Subscribe

Asynchronous communication
• Publishers and subscribers are loosely coupled

Many-to-many interaction between pubs. and subs.
• Scalable scheme for large-scale systems
• Publishers do not need to know subscribers, and vice-versa
• Dynamic join and leave of pubs, subs, (brokers - see lecture DS-8)

(Topic and) Content-based pub/sub very expressive
• Filtered information delivered only to interested parties
• Efficient content-based routing through a broker network

Middleware

30

Composite Event Detection (CED)
Content-based pub/sub may not be expressive enough

Potentially thousands of event types (primitive events)
Subscribers interest: event patterns (define high-level events, ref DS-2)

Event Patterns
PrinterOutOfPaperEvent or PrinterOutOfTonerEvent

Composite Event Detectors (CED)
Subscribe to primitive events and publish composite events

Publisher

Publisher

Publisher

CED

CED

CED

Publisher

Subscriber

Subscriber

Middleware

31

Summary

• Middleware is an important abstraction for building
distributed systems

• Synchronous vs. asynchronous communication
• Scalability, many-to-many communication
• Language integration
• Ubiquitous systems, mobile systems

1. Remote Procedure Call
2. Object-Oriented Middleware
3. Message-Oriented Middleware
4. Event-Based Middleware

Middleware

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Disadvantages of RPC
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Part III: Message-Oriented Middleware (MOM)
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Composite Event Detection (CED)
	Slide Number 31

