
Storage

Storage

2

Storage services
Consider various computing environments and scenarios

Professional, academic, commercial, home – based on traditional wired networks

Mobile users with computing devices – may be internet-connected and/or using wireless/ad.hoc

Pervasive/active environments – sensor networks’ logs/databases - wired and wireless networks

Some scenarios
(consider domain architecture, naming, location, authentication, authorisation, communication)

1. Single domain behind firewall – local files served by network-based file service
plus accessing remote files and services.

1. Digital libraries, copyright, professional societies, publishers: scientific archive.
issues: persistence of data through technology change; persistence of scientific archive; provenance

who guarantees long term persistence?

1. Internet-based, cooperative P2P file-storage

1. GRID/cloud: storage for e-science applications

1. Commercial data centres

Storage

3

Examples of requirements for storage

Traditional environments
• program/document storage and development. Loading and running programs.

Run-time data access and storage.

• application services (local and remote) need storage. Databases, CAD, versioning systems (SVN),
email, newsgroups, naming directories, applications for download.

Mobile users
• detached operation: copy, disconnect, remote-work, reconnect, synchronise files – conflicts?
• access to files from remote locations – secure connection to home domain
• or use an internet-based service to place files close to where they will be used?

Peer-to-Peer (P2P)
• use spare capacity across the Internet for file storage, backup/archive (increasingly bogus?)

e.g. Ocean Store from Berkeley, built on Planet Lab.
• Cooperative model e.g. music and film “sharing”

Storage for e-science (grid -> cloud computing)
• e.g. petabytes of astronomic or genomic data and storage for computations on such data
• e.g. public data such as EHRs (security/trust is critical)

Storage

4

File structure, media types, indexing and retrieval,

Should a storage service provide support for structure representation, indexing and retrieval?

e.g. web pages are composite documents, containing links to images.
Should general file services support structured files, as opposed to the byte-sequence abstraction?
Aim to avoid storing multiple copies of large image objects.
Issue: persistence of objects linked to – “40% of URLs fail after 2 years”.

e.g. Cooperative work / versions e.g. SVN, records structure above the basic file abstraction
- aids synchronisation of updates and retrieval of any version.

e.g. Video/film stores, and content-delivery networks, deal in unstructured files but partition
into blocks for transmission, editing, and reassembly.

e.g. Large collections e.g. photographs, e.g. videos of “my day” for memory-loss patients,
e.g. Audits of professional caring (NHS, SS) or business activities, process for suspicious

or dangerous behaviour. Determine patterns that may imply fraud.
e.g. Logs of sensor data recording traffic, pollution, building projects (tunnels, ...)

The data is analysed statistically to extract behaviour in context
– to determine which factors are significant

Should we use a database if we need to capture structure? e.g. for data mining?
We may only need to know external links

Storage

5

Storage services from first principles
First consider a professional, network-based environment in a single domain

network

C CC

S SS

C Client of storage services

S Storage services,
--- indicates optional component

1. (thin) clients have no local storage. System provides shared storage servers.
e.g. early V system at Stanford, e.g. network computers

2. Clients have local storage. There are no dedicated storage services.
would need e.g. Unix mount to achieve a shared filing system

3. Clients have local storage and there are also shared storage servers.
Client discs used for?

Private desktop e.g. Xerox, Apple Mac, Windows
system files for bootstrapping
cached files – first-class copy is in shared service
temporary files not backed up by sys-admin

Storage

6

Storage service functionality
• open or closed? Is it bound into a single OS file system model e.g. pathname format

• how is functionality distributed?
where is directory service for pathname resolution and access control?
existence control / garbage collection? (reachability is via the directory graph)
concurrency control? (based on knowledge (state) of what is open and mode)

• level of interface?
- remote block server

e.g. early RVD (remote virtual disc)
client system may do block allocation within an allocated partition (for minimal
overhead at server) or server does allocation
e.g. current video servers distribute blocks to achieve low latency

- remote, UID-named files. Interactions may involve whole files or parts of files.
server does block allocation – server overhead.

- remote path-named files bound into a single OS naming scheme

• caching and replication
is the service responsible for managing, or assisting with
- multiple cached copies of a file at different clients?
- replicas of a file (replicated by servers for reliability)?

Storage

7

Storage service architectures
a) Closed storage architecture (single OS accesses storage service (SS))

private interface

arbitrary byte sequence
or block range

(not disc addresses of blocks)

b) Open storage architecture

file
storage
service

client application

directory service (DS)

file storage service

OS interface

clients
of OS-A

clients
of OS-B

DS-A DS-B
email DBMS

persistent
programming

language

applications

file storage service
public interface

Storage

needs location
metadata – block
numbers to disc
addresses

needs metadata
for access control

8

Remote SS interface at file storage (byte-sequence) level
SFID = system file identifier

user level
OS

If the SS is stateless it does not support open at its interface
and holds no info on files in use.
Pathname resolution is still required, to obtain the SSID (hard link) of the file.

remote storage service

directory service handle
block

SFID cache

open (pathname, mode) read (handle, byte-range)
handle
(small integer
or SFID)

bytes

SFID
of file

OK - opened

Storage

metadata and
directory reads
for pathname
resolution,
then: blocks containing

byte-range

9

Operations in remote storage service interface
SFID create

read (SFID, byte-range) assumes interaction at byte-sequence level
write (SFID, byte-range) as above, rather than whole file
delete (SFID) ?
lock (SFID) ?
unlock (SFID) ? ? are design decisions
open (SFID) ?
close (SFID) ?

Does the service hold state?

• NO – specified as stateless
- simple crash recovery
- can’t help with concurrency control
- can’t help with cache management

• YES – interface supports open/close, records who has files open and access mode
- server crash recovery – needs to interact with clients to rebuild its state
- support for concurrency control by client OSs

exclusive/shared locks better than single-writer/multiple-reader
- support for cache management if clients store whole-file copies locally

can notify holders of copies when a new version is written
otherwise high traffic from clients requesting status of cached items

Storage

10

Existence control and garbage collection
A file should stay in existence for as long as it is reachable

from the root of the directory naming graph

• Lost object problem SFID create (...)
server allocates metadata in persistent store
either: server crash

or: reply (SFID) reaches client’s main memory only
client crash

on server or client restart, client repeats create (...) and gets a new SFID

• Storage service at file level can’t help – doesn’t see naming graphs

• A directory service can do existence control for its own objects.
Multiple instances of the DS would have to cooperate to traverse the graph.
This would work for a closed architecture and for a single OS’s files within an open architecture.

• What about - objects shared across systems e.g. video clip in document?
- objects not stored in directories?

• Consider a touch operation provided by the storage service. All its clients i.e. services, not users,
must traverse their naming graphs and touch all their files periodically.
Untouched files are deleted (archived).

Storage

11

An early case study: The Cambridge File Server (CFS)

Developed as part of the Cambridge Distributed Computing System (CDCS) in the late 1970s
CDCS was used as the Lab’s research environment throughout the 1980s.

http://www.research.microsoft.com/NeedhamBook/cmds.pdf

Andrew Birrell and Roger Needham “A Universal File Server”
IEEE Trans SE 6 (5), pp 450-453, May 1980

CFS design features:
- open architecture, many OS clients e.g. Tripos, CAP, research file systems
- minimal support for structure without enforcing path-naming
- some operations with transactional semantics to avoid lost objects
- no delete operation (!)
- garbage collection run from any processor bank machine

Storage

12

CFS basic concepts

CFS provides
two primitive types: byte and UID

(PUID = persistent UID, TUID = transient UID for open objects)
two abstractions: file – an uninterpreted sequence of bytes

named persistently by a PUID with a random component
index – a sequence of PUIDs, itself named by a PUID

Index – used by CFS’s clients to mirror their directory structures.
all index operations are transactional (failure-atomic – all-or-nothing)

• Existence control
indexes form a general naming graph starting from a specific root index
objects are preserved while they are reachable from the root
- reference counts are used, recording the number of times a PUID is preserved in an index
- an asynchronous garbage collector is used to detect cyclic structures

• Concurrency control – just MRSW

Storage

13

some CFS operations
file operations:

PUID  create-file (index-PUID, entry, ...) % must store new PUID in existing index
% transaction avoids lost object problem

TUID  open-file (PUID, read/write) % TUID = temporary UID for open file
data  read (TUID, offset, amount)
done  write (TUID, offset, amount, data)
done  close-file (TUID)
NOTE – no delete-file operation, garbage collection instead

index operations:
The index operations are used by OS clients to mirror the directory operations they offer their users.

PUID  create-index (index-PUID, entry) % must store new PUID in existing index
% transaction avoids lost object problem

TUID  open-index (PUID, read/write) % TUID = temporary UID for open index
done  close-index (TUID)
done  preserve (index-PUID, entry, object-PUID) % put a link to an object in an index
PUID  retrieve (index-PUID, entry) % extract a link from an index
done  delete-entry (index-PUID, entry) % remove a link from an index
NOTE – no delete-index operation, garbage collection instead

Storage

	Storage
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Storage services from first principles
	Slide Number 6
	Storage service architectures
	Remote SS interface at file storage (byte-sequence) level
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13

