
Complexity Theory 1

Complexity Theory

Lecture 12

Anuj Dawar

University of Cambridge Computer Laboratory

Easter Term 2011

http://www.cl.cam.ac.uk/teaching/1011/Complexity/

Anuj Dawar May 25, 2011

Complexity Theory 2

Complexity Classes

We have established the following inclusions among complexity

classes:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP

Showing that a problem is NP-complete or PSPACE-complete, we

often say that we have proved it intractable.

While this is not strictly correct, a proof of completeness for these

classes does tell us that the problem is structurally difficult.

Similarly, we say that PSPACE-complete problems are harder than

NP-complete ones, even if the running time is not higher.

Anuj Dawar May 25, 2011

Complexity Theory 3

Logarithmic Space Reductions

We write

A ≤L B

if there is a reduction f of A to B that is computable by a

deterministic Turing machine using O(log n) workspace (with a

read-only input tape and write-only output tape).

Note: We can compose ≤L reductions. So,

if A ≤L B and B ≤L C then A ≤L C

Anuj Dawar May 25, 2011

Complexity Theory 4

NP-complete Problems

Analysing carefully the reductions we constructed in our proofs of

NP-completeness, we can see that SAT and the various other

NP-complete problems are actually complete under ≤L reductions.

Thus, if SAT ≤L A for some problem in L then not only P = NP

but also L = NP.

Anuj Dawar May 25, 2011

Complexity Theory 5

P-complete Problems

It makes little sense to talk of complete problems for the class P

with respect to polynomial time reducibility ≤P .

There are problems that are complete for P with respect to

logarithmic space reductions ≤L.

One example is CVP—the circuit value problem.

• If CVP ∈ L then L = P.

• If CVP ∈ NL then NL = P.

Anuj Dawar May 25, 2011

Complexity Theory 6

Provable Intractability

Our aim now is to show that there are languages (or, equivalently,

decision problems) that we can prove are not in P.

This is done by showing that, for every reasonable function f , there

is a language that is not in TIME(f(n)).

The proof is based on the diagonal method, as in the proof of the

undecidability of the halting problem.

Anuj Dawar May 25, 2011

Complexity Theory 7

Constructible Functions

A complexity class such as TIME(f(n)) can be very unnatural, if

f(n) is.

We restrict our bounding functions f(n) to be proper functions:

Definition

A function f : IN → IN is constructible if:

• f is non-decreasing, i.e. f(n + 1) ≥ f(n) for all n; and

• there is a deterministic machine M which, on any input of

length n, replaces the input with the string 0f(n), and M runs

in time O(n + f(n)) and uses O(f(n)) work space.

Anuj Dawar May 25, 2011

Complexity Theory 8

Examples

All of the following functions are constructible:

• ⌈log n⌉;

• n2;

• n;

• 2n.

If f and g are constructible functions, then so are

f + g, f · g, 2f and f(g) (this last, provided that f(n) > n).

Anuj Dawar May 25, 2011

Complexity Theory 9

Using Constructible Functions

NTIME(f(n)) can be defined as the class of those languages L

accepted by a nondeterministic Turing machine M , such that for

every x ∈ L, there is an accepting computation of M on x of

length at most O(f(n)).

If f is a constructible function then any language in NTIME(f(n))

is accepted by a machine for which all computations are of length

at most O(f(n)).

Also, given a Turing machine M and a constructible function f , we

can define a machine that simulates M for f(n) steps.

Anuj Dawar May 25, 2011

Complexity Theory 10

Inclusions

The inclusions we proved between complexity classes:

• NTIME(f(n)) ⊆ SPACE(f(n));

• NSPACE(f(n)) ⊆ TIME(klog n+f(n));

• NSPACE(f(n)) ⊆ SPACE(f(n)2)

really only work for constructible functions f .

The inclusions are established by showing that a deterministic

machine can simulate a nondeterministic machine M for f(n) steps.

For this, we have to be able to compute f within the required

bounds.

Anuj Dawar May 25, 2011

Complexity Theory 11

Time Hierarchy Theorem

For any constructible function f , with f(n) ≥ n, define the

f -bounded halting language to be:

Hf = {[M], x | M accepts x in f(|x|) steps}

where [M] is a description of M in some fixed encoding scheme.

Then, we can show

Hf ∈ TIME(f(n)3) and Hf 6∈ TIME(f(⌊n/2⌋))

Time Hierarchy Theorem

For any constructible function f(n) ≥ n, TIME(f(n)) is properly

contained in TIME(f(2n + 1)3).

Anuj Dawar May 25, 2011

Complexity Theory 12

Strong Hierarchy Theorems

For any constructible function f(n) ≥ n, TIME(f(n)) is properly

contained in TIME(f(n)(log f(n))).

Space Hierarchy Theorem

For any pair of constructible functions f and g, with f = O(g) and

g 6= O(f), there is a language in SPACE(g(n)) that is not in

SPACE(f(n)).

Similar results can be established for nondeterministic time and

space classes.

Anuj Dawar May 25, 2011

Complexity Theory 13

Consequences

• For each k, TIME(nk) 6= P.

• P 6= EXP.

• L 6= PSPACE.

• Any language that is EXP-complete is not in P.

• There are no problems in P that are complete under linear time

reductions.

Anuj Dawar May 25, 2011

Complexity Theory 14

The End

Please provide feedback:

https://camtools.cam.ac.uk/direct/eval-evaluation/4681

Anuj Dawar May 25, 2011

