
Databases 2011
Lectures 05 — 07

Timothy G. Griffin

Computer Laboratory
University of Cambridge, UK

Databases, Easter 2011

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 1 / 52

Lecture 05 : Functional Dependencies (FDs)

Outline
ER is for top-down and informal (but rigorous) design
FDs are used for bottom-up and formal design and analysis
update anomalies
Reasoning about Functional Dependencies
Heath’s rule

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 2 / 52

Update anomalies

Big Table

sid name college course part term_name
yy88 Yoni New Hall Algorithms I IA Easter
uu99 Uri King’s Algorithms I IA Easter
bb44 Bin New Hall Databases IB Lent
bb44 Bin New Hall Algorithms II IB Michaelmas
zz70 Zip Trinity Databases IB Lent
zz70 Zip Trinity Algorithms II IB Michaelmas

How can we tell if an insert record is consistent with current
records?
Can we record data about a course before students enroll?
Will we wipe out information about a college when last student
associated with the college is deleted?

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 3 / 52

Redundancy implies more locking ...

... at least for correct transactions!

Big Table

sid name college course part term_name
yy88 Yoni New Hall Algorithms I IA Easter
uu99 Uri King’s Algorithms I IA Easter
bb44 Bin New Hall Databases IB Lent
bb44 Bin New Hall Algorithms II IB Michaelmas
zz70 Zip Trinity Databases IB Lent
zz70 Zip Trinity Algorithms II IB Michaelmas

Change New Hall to Murray Edwards College
I Conceptually simple update
I May require locking entire table.

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 4 / 52

Redundancy is the root of (almost) all database evils

It may not be obvious, but redundancy is also the cause of update
anomalies.
By redundancy we do not mean that some values occur many
times in the database!

I A foreign key value may be have millions of copies!

But then, what do we mean?

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 5 / 52

Functional Dependency

Functional Dependency (FD)
Let R(X) be a relational schema and Y ⊆ X, Z ⊆ X be two attribute
sets. We say Y functionally determines Z, written Y→ Z, if for any two
tuples u and v in an instance of R(X) we have

u.Y = v .Y→ u.Z = v .Z.

We call Y→ Z a functional dependency.

A functional dependency is a semantic assertion. It represents a rule
that should always hold in any instance of schema R(X).

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 6 / 52

Example FDs

Big Table

sid name college course part term_name
yy88 Yoni New Hall Algorithms I IA Easter
uu99 Uri King’s Algorithms I IA Easter
bb44 Bin New Hall Databases IB Lent
bb44 Bin New Hall Algorithms II IB Michaelmas
zz70 Zip Trinity Databases IB Lent
zz70 Zip Trinity Algorithms II IB Michaelmas

sid→ name
sid→ college
course→ part
course→ term_name

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 7 / 52

Keys, revisited

Candidate Key
Let R(X) be a relational schema and Y ⊆ X. Y is a candidate key if

1 The FD Y→ X holds, and
2 for no proper subset Z ⊂ Y does Z→ X hold.

Prime and Non-prime attributes
An attribute A is prime for R(X) if it is a member of some candidate key
for R. Otherwise, A is non-prime.

Database redundancy roughly means the existence of non-key
functional dependencies!

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 8 / 52

Closure

By soundness and completeness

closure(F , X) = {A | F ` X→ A} = {A | X→ A ∈ F+}

Claim 2 (from previous lecture)
Y→W ∈ F+ if and only if W ⊆ closure(F , Y).

If we had an algorithm for closure(F , X), then we would have a (brute
force!) algorithm for enumerating F+:

F+

for every subset Y ⊆ atts(F)
I for every subset Z ⊆ closure(F , Y),

F output Y → Z

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 9 / 52

Attribute Closure Algorithm

Input : a set of FDs F and a set of attributes X.
Output : Y = closure(F , X)

1 Y := X
2 while there is some S→ T ∈ F with S ⊆ Y and T 6⊆ Y, then

Y := Y ∪ T.

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 10 / 52

An Example (UW1997, Exercise 3.6.1)

R(A, B,C,D) with F made up of the FDs

A,B → C
C → D
D → A

What is F+?

Brute force!
Let’s just consider all possible nonempty sets X — there are only 15...

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 11 / 52

Example (cont.)

F = {A,B → C, C → D, D → A}

For the single attributes we have

{A}+ = {A},
{B}+ = {B},
{C}+ = {A, C, D},

I {C} C→D
=⇒ {C, D} D→A

=⇒ {A, C, D}
{D}+ = {A, D}

I {D} D→A
=⇒ {A, D}

The only new dependency we get with a single attribute on the left is
C → A.

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 12 / 52

Example (cont.)

F = {A,B → C, C → D, D → A}

Now consider pairs of attributes.

{A, B}+ = {A, B, C, D},
I so A,B → D is a new dependency

{A, C}+ = {A, C, D},
I so A,C → D is a new dependency

{A, D}+ = {A, D},
I so nothing new.

{B, C}+ = {A, B, C, D},
I so B,C → A,D is a new dependency

{B, D}+ = {A, B, C, D},
I so B,D → A,C is a new dependency

{C, D}+ = {A, C, D},
I so C,D → A is a new dependency

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 13 / 52

Example (cont.)

F = {A,B → C, C → D, D → A}

For the triples of attributes:

{A, C, D}+ = {A, C, D},
{A, B, D}+ = {A, B, C, D},

I so A,B,D → C is a new dependency
{A, B, C}+ = {A, B, C, D},

I so A,B,C → D is a new dependency
{B, C, D}+ = {A, B, C, D},

I so B,C,D → A is a new dependency

And since {A, B, C, D}+ = {A, B, C, D}, we get no new
dependencies with four attributes.

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 14 / 52

Example (cont.)

We generated 11 new FDs:

C → A A,B → D
A,C → D B,C → A
B,C → D B,D → A
B,D → C C,D → A

A,B,C → D A,B,D → C
B,C,D → A

Can you see the Key?
{A, B}, {B, C}, and {B, D} are keys.

Note: this schema is already in 3NF! Why?

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 15 / 52

Semantic Closure

Notation

F |= Y→ Z

means that any database instance that that satisfies every FD of F ,
must also satisfy Y→ Z.

The semantic closure of F , denoted F+, is defined to be

F+ = {Y→ Z | Y ∪ Z ⊆ atts(F)and ∧ F |= Y→ Z}.

The membership problem is to determine if Y→ Z ∈ F+.

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 16 / 52

Reasoning about Functional Dependencies

We write F ` Y→ Z when Y→ Z can be derived from F via the
following rules.

Armstrong’s Axioms
Reflexivity If Z ⊆ Y, then F ` Y→ Z.

Augmentation If F ` Y→ Z then F ` Y,W→ Z,W.
Transitivity If F ` Y→ Z and F |= Z→W, then F ` Y→W.

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 17 / 52

Logical Closure (of a set of attributes)

Notation

closure(F , X) = {A | F ` X→ A}

Claim 1
If Y→W ∈ F and Y ⊆ closure(F , X), then W ⊆ closure(F , X).

Claim 2
Y→W ∈ F+ if and only if W ⊆ closure(F , Y).

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 18 / 52

Soundness and Completeness

Soundness

F ` f =⇒ f ∈ F+

Completeness

f ∈ F+ =⇒ F ` f

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 19 / 52

Proof of Completeness (soundness left as an exercise)

Show ¬(F ` f) =⇒ ¬(F |= f):

Suppose ¬(F ` Y→ Z) for R(X).
Let Y+ = closure(F , Y).
∃B ∈ Z, with B 6∈ Y+.
Construct an instance of R with just two records, u and v , that
agree on Y+ but not on X− Y+.
By construction, this instance does not satisfy Y→ Z.
But it does satisfy F ! Why?

I let S→ T be any FD in F , with u.[S] = v .[S].
I So S ⊆ Y+. and so T ⊆ Y+ by claim 1,
I and so u.[T] = v .[T]

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 20 / 52

Consequences of Armstrong’s Axioms

Union If F |= Y→ Z and F |= Y→W, then F |= Y→W,Z.
Pseudo-transitivity If F |= Y→ Z and F |= U,Z→W, then

F |= Y,U→W.
Decomposition If F |= Y→ Z and W ⊆ Z, then F |= Y→W.

Exercise : Prove these using Armstrong’s axioms!

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 21 / 52

Proof of the Union Rule

Suppose we have
F |= Y→ Z,
F |= Y→W.

By augmentation we have

F |= Y,Y→ Y,Z,

that is,
F |= Y→ Y,Z.

Also using augmentation we obtain

F |= Y,Z→W,Z.

Therefore, by transitivity we obtain

F |= Y→W,Z.

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 22 / 52

Example application of functional reasoning.

Heath’s Rule
Suppose R(A, B, C) is a relational schema with functional
dependency A→ B, then

R = πA,B(R) onA πA,C(R).

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 23 / 52

Proof of Heath’s Rule

We first show that R ⊆ πA,B(R) onA πA,C(R).
If u = (a, b, c) ∈ R, then u1 = (a, b) ∈ πA,B(R) and
u2 = (a, c) ∈ πA,C(R).
Since {(a, b)} onA {(a, c)} = {(a, b, c)} we know
u ∈ πA,B(R) onA πA,C(R).

In the other direction we must show R′ = πA,B(R) onA πA,C(R) ⊆ R.
If u = (a, b, c) ∈ R′, then there must exist tuples
u1 = (a, b) ∈ πA,B(R) and u2 = (a, c) ∈ πA,C(R).
This means that there must exist a u′ = (a, b′, c) ∈ R such that
u2 = πA,C({(a, b′, c)}).
However, the functional dependency tells us that b = b′, so
u = (a, b, c) ∈ R.

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 24 / 52

Closure Example

R(A, B,C,D,D,F) with
A,B → C
B,C → D
D → E
C,F → B

What is the closure of {A, B}?

{A, B} A,B→C
=⇒ {A, B, C}

B,C→D
=⇒ {A, B, C, D}
D→E
=⇒ {A, B, C, D, E}

So {A, B}+ = {A, B, C, D, E} and A,B → C,D,E .

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 25 / 52

Lecture 06 : Normal Forms

Outline
First Normal Form (1NF)
Second Normal Form (2NF)
3NF and BCNF
Multi-valued dependencies (MVDs)
Fourth Normal Form

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 26 / 52

First Normal Form (1NF)

We will assume every schema is in 1NF.

1NF
A schema R(A1 : S1, A2 : S2, · · · , An : Sn) is in First Normal Form
(1NF) if the domains S1 are elementary — their values are atomic.

name
Timothy George Griffin

=⇒

first_name middle_name last_name
Timothy George Griffin

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 27 / 52

Second Normal Form (2NF)

Second Normal Form (2CNF)
A relational schema R is in 2NF if for every functional dependency
X→ A either

A ∈ X, or
X is a superkey for R, or
A is a member of some key, or
X is not a proper subset of any key.

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 28 / 52

3NF and BCNF

Third Normal Form (3CNF)
A relational schema R is in 3NF if for every functional dependency
X→ A either

A ∈ X, or
X is a superkey for R, or
A is a member of some key.

Boyce-Codd Normal Form (BCNF)
A relational schema R is in BCNF if for every functional dependency
X→ A either

A ∈ X, or
X is a superkey for R.

Is something missing?

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 29 / 52

Another look at Heath’s Rule

Given R(Z, W, Y) with FDs F
If Z→W ∈ F+, the

R = πZ,W(R) on πZ,Y(R)

What about an implication in the other direction? That is, suppose we
have

R = πZ,W(R) on πZ,Y(R).

Q Can we conclude anything about FDs on R? In particular,
is it true that Z→W holds?

A No!

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 30 / 52

We just need one counter example ...

R = πA,B(R) on πA,C(R)

A B C
a b1 c1
a b2 c2
a b1 c2
a b2 c1

A B
a b1
a b2

A C
a c1
a c2

Clearly A→ B is not an FD of R.

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 31 / 52

A concrete example

course_name lecturer text
Databases Tim Ullman and Widom
Databases Fatima Date
Databases Tim Date
Databases Fatima Ullman and Widom

Assuming that texts and lecturers are assigned to courses
independently, then a better representation would in two tables:

course_name lecturer
Databases Tim
Databases Fatima

course_name text
Databases Ullman and Widom
Databases Date

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 32 / 52

Time for a definition! MVDs

Multivalued Dependencies (MVDs)
Let R(Z, W, Y) be a relational schema. A multivalued dependency,
denoted Z � W, holds if whenever t and u are two records that agree
on the attributes of Z, then there must be some tuple v such that

1 v agrees with both t and u on the attributes of Z,
2 v agrees with t on the attributes of W,
3 v agrees with u on the attributes of Y.

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 33 / 52

A few observations

Note 1
Every functional dependency is multivalued dependency,

(Z→W) =⇒ (Z � W).

To see this, just let v = u in the above definition.

Note 2
Let R(Z, W, Y) be a relational schema, then

(Z � W) ⇐⇒ (Z � Y),

by symmetry of the definition.

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 34 / 52

MVDs and lossless-join decompositions

Fun Fun Fact
Let R(Z, W, Y) be a relational schema. The decomposition R1(Z, W),
R2(Z, Y) is a lossless-join decomposition of R if and only if the MVD
Z � W holds.

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 35 / 52

Proof of Fun Fun Fact

Proof of (Z � W) =⇒ R = πZ,W(R) on πZ,Y(R)

Suppose Z � W.
We know (from proof of Heath’s rule) that R ⊆ πZ,W(R) on πZ,Y(R).
So we only need to show πZ,W(R) on πZ,Y(R) ⊆ R.
Suppose r ∈ πZ,W(R) on πZ,Y(R).
So there must be a t ∈ R and u ∈ R with
{r} = πZ,W({t}) on πZ,Y({u}).
In other words, there must be a t ∈ R and u ∈ R with t .Z = u.Z.
So the MVD tells us that then there must be some tuple v ∈ R
such that

1 v agrees with both t and u on the attributes of Z,
2 v agrees with t on the attributes of W,
3 v agrees with u on the attributes of Y.

This v must be the same as r , so r ∈ R.

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 36 / 52

Proof of Fun Fun Fact (cont.)

Proof of R = πZ,W(R) on πZ,Y(R) =⇒ (Z � W)

Suppose R = πZ,W(R) on πZ,Y(R).
Let t and u be any records in R with t .Z = u.Z.
Let v be defined by {v} = πZ,W({t}) on πZ,Y({u}) (and we know
v ∈ R by the assumption).
Note that by construction we have

1 v .Z = t .Z = u.Z,
2 v .W = t .W,
3 v .Y = u.Y.

Therefore, Z � W holds.

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 37 / 52

Fourth Normal Form

Trivial MVD
The MVD Z � W is trivial for relational schema R(Z, W, Y) if

1 Z ∩W 6= {}, or
2 Y = {}.

4NF
A relational schema R(Z, W, Y) is in 4NF if for every MVD Z � W
either

Z � W is a trivial MVD, or
Z is a superkey for R.

Note : 4NF ⊂ BCNF ⊂ 3NF ⊂ 2NF

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 38 / 52

Summary

We always want the lossless-join property. What are our options?

3NF BCNF 4NF
Preserves FDs Yes Maybe Maybe

Preserves MVDs Maybe Maybe Maybe
Eliminates FD-redundancy Maybe Yes Yes

Eliminates MVD-redundancy No No Yes

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 39 / 52

Inclusions

Clearly BCNF ⊆ 3NF ⊆ 2NF . These are proper inclusions:

In 2NF, but not 3NF
R(A, B, C), with F = {A→ B, B → C}.

In 3NF, but not BCNF
R(A, B, C), with F = {A,B → C, C → B}.

This is in 3NF since AB and AC are keys, so there are no
non-prime attributes
But not in BCNF since C is not a key and we have C → B.

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 40 / 52

The Plan

Given a relational schema R(X) with FDs F :
Reason about FDs

I Is F missing FDs that are logically implied by those in F?

Decompose each R(X) into smaller R1(X1), R2(X2), · · ·Rk (Xk),
where each Ri(Xi) is in the desired Normal Form.

Are some decompositions better than others?

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 41 / 52

Desired properties of any decomposition

Lossless-join decomposition
A decomposition of schema R(X) to S(Y ∪ Z) and T (Y ∪ (X− Z)) is a
lossless-join decomposition if for every database instances we have
R = S on T .

Dependency preserving decomposition
A decomposition of schema R(X) to S(Y ∪ Z) and T (Y ∪ (X− Z)) is
dependency preserving, if enforcing FDs on S and T individually has
the same effect as enforcing all FDs on S on T .

We will see that it is not always possible to achieve both of these goals.

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 42 / 52

Lecture 07 : Schema Decomposition

Outline
General Decomposition Method (GDM)
The lossless-join condition is guaranteed by GDM
The GDM does not always preserve dependencies!

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 43 / 52

General Decomposition Method (GDM)

GDM
1 Understand your FDs F (compute F+),
2 find R(X) = R(Z, W, Y) (sets Z, W and Y are disjoint) with FD

Z→W ∈ F+ violating a condition of desired NF,
3 split R into two tables R1(Z, W) and R2(Z, Y)
4 wash, rinse, repeat

Reminder
For Z→W, if we assume Z ∩W = {}, then the conditions are

1 Z is a superkey for R (2NF, 3NF, BCNF)
2 W is a subset of some key (2NF, 3NF)
3 Z is not a proper subset of any key (2NF)

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 44 / 52

The lossless-join condition is guaranteed by GDM

This method will produce a lossless-join decomposition because
of (repeated applications of) Heath’s Rule!
That is, each time we replace an S by S1 and S2, we will always
be able to recover S as S1 on S2.
Note that in GDM step 3, the FD Z→W may represent a key
constraint for R1.

But does the method always terminate? Please think about this

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 45 / 52

General Decomposition Method Revisited

GDM++

1 Understand your FDs and MVDs F (compute F+),
2 find R(X) = R(Z, W, Y) (sets Z, W and Y are disjoint) with either

FD Z→W ∈ F+ or MVD Z � W ∈ F+ violating a condition of
desired NF,

3 split R into two tables R1(Z, W) and R2(Z, Y)
4 wash, rinse, repeat

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 46 / 52

Return to Example — Decompose to BCNF

R(A, B,C,D)

F = {A,B → C, C → D, D → A}

Which FDs in F+ violate BCNF?
C → A
C → D
D → A

A,C → D
C,D → A

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 47 / 52

Return to Example — Decompose to BCNF

Decompose R(A, B,C,D) to BCNF
Use C → D to obtain

R1(C, D). This is in BCNF. Done.
R2(A, B, C) This is not in BCNF. Why? A,B and B,C are the only
keys, and C → A is a FD for R1. So use C → A to obtain

I R2.1(A, C). This is in BCNF. Done.
I R2.2(B, C). This is in BCNF. Done.

Exercise : Try starting with any of the other BCNF violations and see
where you end up.

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 48 / 52

The GDM does not always preserve dependencies!

R(A, B, C, D, E)

A,B → C
D,E → C

B → D

{A, B}+ = {A, B, C, D},
so A,B → C,D,
and {A, B, E} is a key.

{B, E}+ = {B, C, D, E} ,
so B,E → C,D,
and {A, B, E} is a key (again)

Let’s try for a BCNF decomposition ...

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 49 / 52

Decomposition 1

Decompose R(A, B, C, D, E) using A,B → C,D :
R1(A, B, C, D). Decompose this using B → D:

I R1.1(B, D). Done.
I R1.2(A, B, C). Done.

R2(A, B, E). Done.

But in this decomposition, how will we enforce this dependency?

D,E → C

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 50 / 52

Decomposition 2

Decompose R(A, B, C, D, E) using B,E → C,D:
R3(B, C, D, E). Decompose this using D,E → C

I R3.1(C, D, E). Done.
I R3.2(B, D, E). Decompose this using B → D:

F R3.2.1(B, D). Done.
F R3.2.2(B, E). Done.

R4(A, B, E). Done.

But in this decomposition, how will we enforce this dependency?

A,B → C

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 51 / 52

Summary

It always is possible to obtain BCNF that has the lossless-join
property (using GDM)

I But the result may not preserve all dependencies.
It is always possible to obtain 3NF that preserves dependencies
and has the lossless-join property.

I Using methods based on “minimal covers” (for example, see
EN2000).

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 52 / 52

	Lectures 05 : Functional Dependencies (FDs)
	Lecture 06 : Normal Forms
	Lecture 07 : Schema Decomposition

