
Denotational Semantics

8–12 lectures for Part II CST 2010/11

Marcelo Fiore

Course web page:

http://www.cl.cam.ac.uk/teaching/1011/DenotSem/

1



Lecture 1

Introduction

2



What is this course about?

• General area.

Formal methods: Mathematical techniques for the

specification, development, and verification of software

and hardware systems.

• Specific area.

Formal semantics: Mathematical theories for ascribing

meanings to computer languages.

3



Why do we care?

• Rigour.

. . . specification of programming languages

. . . justification of program transformations

• Insight.

. . . generalisations of notions computability

. . . higher-order functions

. . . data structures

4



• Feedback into language design.

. . . continuations

. . . monads

• Reasoning principles.

. . . Scott induction

. . . Logical relations

. . . Co-induction

5



Styles of formal semantics

Operational.

Meanings for program phrases defined in terms of the steps

of computation they can take during program execution.

Axiomatic.
Meanings for program phrases defined indirectly via the ax-

ioms and rules of some logic of program properties.

Denotational.

Concerned with giving mathematical models of programming

languages. Meanings for program phrases defined abstractly

as elements of some suitable mathematical structure.

6



Basic idea of denotational semantics

Syntax
[[−]]
−→ Semantics

Recursive program 7→ Partial recursive function

Boolean circuit 7→ Boolean function

P 7→ [[P ]]

Concerns:

• Abstract models (i.e. implementation/machine independent).

 Lectures 2, 3 and 4.

• Compositionality.

 Lectures 5 and 6.

• Relationship to computation (e.g. operational semantics).

 Lectures 7 and 8.

7



Characteristic features of a

denotational semantics

• Each phrase (= part of a program), P , is given a denotation,

[[P ]] — a mathematical object representing the contribution of

P to the meaning of any complete program in which it occurs.

• The denotation of a phrase is determined just by the

denotations of its subphrases (one says that the semantics is

compositional).

8



Basic example of denotational semantics (I)

IMP− syntax

Arithmetic expressions

A ∈ Aexp ::= n | L | A + A | . . .

where n ranges over integers and

L over a specified set of locations L

Boolean expressions

B ∈ Bexp ::= true | false | A = A | . . .

| ¬B | . . .

Commands
C ∈ Comm ::= skip | L := A | C; C

| if B then C else C

9



Basic example of denotational semantics (II)

Semantic functions

A : Aexp → (State → Z)

B : Bexp → (State → B)

C : Comm → (State ⇀ State)

where

Z = { . . . ,−1, 0, 1, . . . }

B = { true, false }

State = (L → Z)

10



Basic example of denotational semantics (III)

Semantic function A

A[[n]] = λs ∈ State. n

A[[L]] = λs ∈ State. s(L)

A[[A1 + A2]] = λs ∈ State.A[[A1]](s) + A[[A2]](s)

11



Basic example of denotational semantics (IV)

Semantic function B

B[[true]] = λs ∈ State. true

B[[false]] = λs ∈ State. false

B[[A1 = A2]] = λs ∈ State. eq
(

A[[A1]](s),A[[A2]](s)
)

where eq(a, a′) =

{

true if a = a′

false if a 6= a′

12



Basic example of denotational semantics (V)

Semantic function C

[[skip]] = λs ∈ State. s

NB: From now on the names of semantic functions are omitted!

13



A simple example of compositionality

Given partial functions [[C]], [[C ′]] : State ⇀ State and a

function [[B]] : State →{true, false}, we can define

[[if B then C else C ′]] =

λs ∈ State. if
(

[[B]](s), [[C]](s), [[C ′]](s)
)

where

if (b, x, x′) =

{

x if b = true

x′ if b = false

14



Basic example of denotational semantics (VI)

Semantic function C

[[L := A]] = λs ∈ State. λℓ ∈ L. if
(

ℓ = L, [[A]](s), s(ℓ)
)

15



Denotational semantics of sequential composition

Denotation of sequential composition C; C ′ of two commands

[[C; C ′]] = [[C ′]] ◦ [[C]] = λs ∈ State. [[C ′]]
(

[[C]](s)
)

given by composition of the partial functions from states to states

[[C]], [[C ′]] : State ⇀ State which are the denotations of the

commands.

Cf. operational semantics of sequential composition:

C, s ⇓ s′ C ′, s′ ⇓ s′′

C;C ′, s ⇓ s′′
.

16



Fixed point property of

[[while B do C]]

[[while B do C]] = f[[B]],[[C]]([[while B do C]])

where, for each b : State →{true, false} and

c : State ⇀ State , we define

fb,c : (State ⇀ State) → (State ⇀ State)
as

fb,c = λw ∈ (State⇀State). λs ∈ State. if
(

b(s), w(c(s)), s
)

.

• Why does w = f[[B]],[[C]](w) have a solution?

• What if it has several solutions—which one do we take to be

[[while B do C]]?

17



Approximating [[while B do C]]

f[[B]],[[C]]
n(⊥)

= λs ∈ State.














[[C]]k(s) if ∃ 0 ≤ k < n. [[B]]([[C]]k(s)) = false

and ∀ 0 ≤ i < k. [[B]]([[C]]i(s)) = true

↑ if ∀ 0 ≤ i < n. [[B]]([[C]]i(s)) = true

18



D
def
= (State ⇀ State)

• Partial order ⊑ on D:

w ⊑ w′ iff for all s ∈ State , if w is defined at s then
so is w′ and moreover w(s) = w′(s).

iff the graph of w is included in the graph of w′.

• Least element ⊥ ∈ D w.r.t. ⊑:

⊥ = totally undefined partial function

= partial function with empty graph

(satisfies ⊥ ⊑ w, for all w ∈ D).

19


