
Q

Lecture Notes on

Denotational Semantics

Part II of the Computer Science Tripos 2010/11

Dr Marcelo Fiore
Cambridge University Computer Laboratory

c© A. M. Pitts, G. Winskel, M. Fiore

Contents

Notes ii

1 Introduction 1
1.1 Basic example of denotational semantics 2
1.2 Example:while-loops as fixed points 7
1.3 Exercises . 12

2 Least Fixed Points 13
2.1 Posets and monotone functions . 13

2.1.1 Posets . 13
2.1.2 Monotone functions . 16

2.2 Least elements and pre-fixed points 16
2.3 Cpo’s and continuous functions . 19

2.3.1 Domains . 19
2.3.2 Continuous functions . 26

2.4 Tarski’s fixed point theorem . 28
2.5 Exercises . 30

3 Constructions on Domains 31
3.1 Flat domains . 31
3.2 Products of domains . 32
3.3 Function domains . 35
3.4 Exercises . 39

4 Scott Induction 41
4.1 Chain-closed and admissible subsets 41
4.2 Examples . 42
4.3 Building chain-closed subsets .44

4.3.1 Basic relations . 44
4.3.2 Inverse image and substitution 45
4.3.3 Logical operations . 46

4.4 Exercises . 47

5 PCF 49
5.1 Terms and types . 49
5.2 Free variables, bound variables, and substitution 50
5.3 Typing . 51
5.4 Evaluation . 54
5.5 Contextual equivalence . 58
5.6 Denotational semantics . 60
5.7 Exercises . 62

i

6 Denotational Semantics of PCF 65
6.1 Denotation of types . 65
6.2 Denotation of terms . 66
6.3 Compositionality . 73
6.4 Soundness . 75
6.5 Exercises . 76

7 Relating Denotational and Operational Semantics 77
7.1 Formal approximation relations .77
7.2 Proof of the Fundamental Property of⊳ 80
7.3 Extensionality . 83
7.4 Exercises . 86

8 Full Abstraction 87
8.1 Failure of full abstraction . 87
8.2 PCF+por . 93
8.3 Fully abstract semantics for PCF 94
8.4 Exercises . 95

Notes

These notes are designed to accompany 8–10 lectures on Denotational Semantics for
Part II of the Cambridge University Computer Science Tripos. They are substantially
those of Andrew Pitts (who lectured the course from 1997 to 1999) with some
changes and additions by Glynn Winskel (who lectured the course from 2000 to
2007) and by Marcelo Fiore (who lectured the course from 2008). The material has
been drawn from several different sources, including the books mentioned below,
previous versions of this course, and similar courses at some other universities.

Recommended books

• Winskel, G. (1993). The Formal Semantics of Programming Languages.
MIT Press.

This is an excellent introduction to both the operational and denotational
semantics of programming languages. As far as this course isconcerned, the
relevant chapters are 5, 8, 9, 10 (Sections 1 and 2), and 11.

• Tennent, R. D. (1991).Semantics of Programming Languages. Prentice-
Hall.

Parts I and II are relevant to this course.

ii

Further reading

• Gunter, C. A. (1992).Semantics of Programming Languages. Structures and
Techniques. MIT Press.

This is a graduate-level text containing much material not covered in this
course. As far as this course is concerned, the relevant chapters are 1, 2, and
4–6.

Feedback

Please fill out the online lecture course feedback form.

Marcelo Fiore
Marcelo.Fiore@cl.cam.ac.uk

iii

iv

1

1 Introduction

Slide 1 gives a reminder of various approaches to giving formal semantics for
programming languages. The operational approach was introduced in the Part IB
course onSemantics of Programming Languagesand the axiomatic approach is
illustrated in the Part II course onSpecification and Verification I. This course
gives a brief introduction to some of the techniques of the denotational approach.
One of the aims of Denotational Semantics is to specify programming language
constructs in as abstract and implementation-independentway as possible: in this
way one may gain insight into the fundamental concepts underlying programming
languages, their inter-relationships, and (sometimes) new ways of realising those
concepts in language designs. Of course, it is crucial to verify that denotational
specifications of languages are implementable—in other words to relate denotational
semantics to operational semantics: we will illustrate howthis is done later in the
course.

Styles of formal semantics

Operational.

Meanings for program phrases defined in terms of the steps

of computation they can take during program execution.

Axiomatic.
Meanings for program phrases defined indirectly via the ax-

ioms and rules of some logic of program properties.

Denotational .

Concerned with giving mathematical models of programming

languages. Meanings for program phrases defined abstractly

as elements of some suitable mathematical structure.

Slide 1

2 1 INTRODUCTION

Characteristic features of a

denotational semantics

• Each phrase (= part of a program), P , is given a denotation,

[[P]] — a mathematical object representing the contribution of

P to the meaning of any complete program in which it occurs.

• The denotation of a phrase is determined just by the

denotations of its subphrases (one says that the semantics is

compositional).

Slide 2

1.1 Basic example of denotational semantics

Consider the basic programming language IMP− over arithmetic and boolean ex-
pressions with control structures given by assignment, sequencing, and conditionals
described on Slide 3.

1.1 Basic example of denotational semantics 3

Basic example of denotational semantics (I)

IMP− syntax

Arithmetic expressions

A ∈ Aexp ::= n | L | A + A | . . .
where n ranges over integers and

L over a specified set of locations L

Boolean expressions

B ∈ Bexp ::= true | false | A = A | . . .

| ¬B | . . .

Commands
C ∈ Comm ::= skip | L := A | C;C

| if B then C else C

Slide 3

A denotational semanticsfor a programming language is constructed by giving
a domain of interpretation to each of the program-phrase categories together with
semantic functions that compositionally describe the meaning of the phrase-forming
constructs. For IMP− this is done in Slides 4–10, and is easily implementable in
SML.

4 1 INTRODUCTION

Basic example of denotational semantics (II)

Semantic functions

A : Aexp → (State → Z)

B : Bexp → (State → B)

C : Comm → (State ⇀ State)

where

Z = { . . . ,−1, 0, 1, . . . }

B = { true, false }

State = (L → Z)

Slide 4

Basic example of denotational semantics (III)

Semantic function A

A[[n]] = λs ∈ State. n

A[[L]] = λs ∈ State. s(L)

A[[A1 + A2]] = λs ∈ State.A[[A1]](s) + A[[A2]](s)

Slide 5

1.1 Basic example of denotational semantics 5

Basic example of denotational semantics (IV)

Semantic function B

B[[true]] = λs ∈ State. true

B[[false]] = λs ∈ State. false

B[[A1 = A2]] = λs ∈ State. eq
(

A[[A1]](s),A[[A2]](s)
)

where eq(a, a′) =

{

true if a = a′

false if a 6= a′

Slide 6

Basic example of denotational semantics (V)

Semantic function C

[[skip]] = λs ∈ State. s

NB: From now on the names of semantic functions are omitted!

Slide 7

6 1 INTRODUCTION

A simple example of compositionality

Given partial functions [[C]], [[C ′]] : State ⇀ State and a

function [[B]] : State →{true, false}, we can define

[[if B then C else C ′]] =

λs ∈ State. if
(

[[B]](s), [[C]](s), [[C ′]](s)
)

where

if (b, x, x′) =

{

x if b = true

x′ if b = false

Slide 8

Basic example of denotational semantics (VI)

Semantic function C

[[L := A]] = λs ∈ State. λℓ ∈ L. if
(

ℓ = L, [[A]](s), s(ℓ)
)

Slide 9

1.2 Example:while-loops as fixed points 7

Denotational semantics of sequential composition

Denotation of sequential composition C;C ′ of two commands

[[C;C ′]] = [[C ′]] ◦ [[C]] = λs ∈ State. [[C ′]]
(

[[C]](s)
)

given by composition of the partial functions from states to states

[[C]], [[C ′]] : State ⇀ State which are the denotations of the

commands.

Cf. operational semantics of sequential composition:

C, s ⇓ s′ C′, s′ ⇓ s′′

C; C′, s ⇓ s′′
.

Slide 10

1.2 Example:while-loops as fixed points

The requirement ofcompositionalitymentioned on Slide 2 is quite a tough one.
It means that the collection of mathematical objects we use to give denotations to
program phases has to be sufficiently rich that it supports operations for modelling
all the phrase-forming constructs of the programming language in question. Some
phrase-forming constructs are easy to deal with, others less so. For example,
conditional expressions involving state-manipulating commands can be given a
denotational semantics in terms of a corresponding branching function applied
to the denotations of the immediate subexpressions: see Slide 8. Similarly, the
denotational semantics of the sequential composition of commands can be given by
the operation of composition of partial functions from states to states, as shown on
Slide 10.

We now proceed to consider the denotational semantics of thebasic program-
ming language IMP, obtained by extending IMP− with while-loops:

C ∈ Comm ::= . . . | while B do C

However, this looping construct is not so easy to explain compositionally!
The transition semantics of awhile-loop

〈while B do C, s〉 → 〈if B then C; (while B do C) else skip, s〉

8 1 INTRODUCTION

suggests that its denotation as a partial function from states to states should satisfy

(1) [[while B do C]] = [[if B then C; (while B do C) else skip]].

Note that this cannot be used directly to define[[while B do C]], since the right-
hand side contains as a subphrase the very phrase whose denotation we are trying
to define. Using the denotational semantics of sequential composition andif (and
using the fact that the denotation ofskip is the identity functionλs ∈ State.s),
(1) amounts to saying that[[while B do C]] should be a solution of thefixed point
equationgiven on Slide 11.

Fixed point property of

[[while B do C]]

[[while B do C]] = f[[B]],[[C]]([[while B do C]])

where, for each b : State →{true, false} and

c : State ⇀ State , we define

fb,c : (State ⇀ State) → (State ⇀ State)
as

fb,c = λw ∈ (State⇀State). λs ∈ State. if
(

b(s), w(c(s)), s
)

.

• Why does w = f[[B]],[[C]](w) have a solution?

• What if it has several solutions—which one do we take to be

[[while B do C]]?

Slide 11

Such fixed point equations arise very often in giving denotational semantics to
languages with recursive features. Beginning with Dana Scott’s pioneering work
in the late 60’s, a mathematical theory calleddomain theoryhas been developed to
provide a setting in which not only can we always find solutions for the fixed point
equations arising from denotational semantics, but also wecan pick out solutions
that are minimal in a suitable sense—and this turns out to ensure a good match
between denotational and operational semantics. The key idea is to consider a partial
order between the mathematical objects used as denotations—this partial order
expresses the fact that one object isapproximated by, or carries more information
than, or is more well-defined thananother one below it in the ordering. Then
the minimal solution of a fixpoint equation can be constructed as the limit of an
increasing chain of approximations to the solution. These ideas will be made

1.2 Example:while-loops as fixed points 9

mathematically precise and general in the next section; butfirst we illustrate how
they work out concretely for the particular problem on Slide11.

For definiteness, let us consider the particularwhile-loop

(2) while X > 0 do (Y := X ∗ Y ; X := X − 1)

whereX andY are two distinct integer storage locations (variables) andwhere the
set of locationsL is {X, Y }.

In this case we can just take a state to be an assignment[X 7→ x, Y 7→ y]
with x, y ∈ Z, recording the current contents of the locationsX andY respectively.
Thus,State = (L → Z).

We are trying to define the denotation of (2) as a partial function

w : State ⇀ State

that should be a solution to the fixed-point equation

w = f[[X>0]],[[Y :=X∗Y ;X:=X−1]](w)

on Slide 11.
For the particular boolean expressionB = (X > 0) and commandC =

(Y := X ∗ Y ; X := X − 1), the functionf[[B]],[[C]] coincides with the functionf
defined on Slide 12.

[[while X > 0 do (Y := X ∗ Y ; X := X − 1)]]

Let

State
def
= (L → Z) integer assignments to locations

D
def
= (State ⇀ State) partial functions on states

For [[while X > 0 do Y := X ∗ Y ; X := X − 1]] ∈ D we

seek a minimal solution to w = f(w), where f : D → D is

defined by:

f(w)
(

[X 7→ x, Y 7→ y]
)

=

{

[X 7→ x, Y 7→ y] if x ≤ 0

w
(

[X 7→ x − 1, Y 7→ x ∗ y]
)

if x > 0.

Slide 12

10 1 INTRODUCTION

D
def
= (State ⇀ State)

• Partial order ⊑ on D:

w ⊑ w′ iff for all s ∈ State , if w is defined at s then
so is w′ and moreover w(s) = w′(s).

iff the graph of w is included in the graph of w′.

• Least element ⊥ ∈ D w.r.t. ⊑:

⊥ = totally undefined partial function

= partial function with empty graph

(satisfies ⊥ ⊑ w, for all w ∈ D).

Slide 13

Consider the partial order,⊑, between the elements ofD = (State ⇀ State)
given on Slide 13. Note that⊑ does embody the kind of ‘information ordering’
mentioned above: ifw ⊑ w′, thenw′ agrees withw wherever the latter is defined,
but it may be defined at some other arguments as well. Note alsothatD contains
an element which is least with respect to this partial order:for the totally undefined
partial function, which we will write as⊥, satisfies⊥ ⊑ w for anyw ∈ D.

Starting with⊥, we apply the functionf over and over again to build up a
sequence of partial functionsw0, w1, w2, . . . :

{

w0
def
= ⊥

wn+1
def
= f(wn).

Using the definition off on Slide 12, one finds that

w1[X 7→ x, Y 7→ y] = f(⊥)[X 7→ x, Y 7→ y] =

{

[X 7→ x, Y 7→ y] if x ≤ 0

undefined ifx ≥ 1

w2[X 7→ x, Y 7→ y] = f(w1)[X 7→ x, Y 7→ y] =











[X 7→ x, Y 7→ y] if x ≤ 0

[X 7→ 0, Y 7→ y] if x = 1

undefined ifx ≥ 2

1.2 Example:while-loops as fixed points 11

w3[X 7→ x, Y 7→ y] = f(w2)[X 7→ x, Y 7→ y] =



















[X 7→ x, Y 7→ y] if x ≤ 0

[X 7→ 0, Y 7→ y] if x = 1

[X 7→ 0, Y 7→ 2 ∗ y] if x = 2

undefined ifx ≥ 3

w4[X 7→ x, Y 7→ y] = f(w3)[X 7→ x, Y 7→ y] =































[X 7→ x, Y 7→ y] if x ≤ 0

[X 7→ 0, Y 7→ y) if x = 1

[X 7→ 0, Y 7→ 2 ∗ y] if x = 2

[X 7→ 0, Y 7→ 6 ∗ y] if x = 3

undefined ifx ≥ 4

and in general

wn[X 7→ x, Y 7→ y] =











[X 7→ x, Y 7→ y] if x ≤ 0

[X 7→ 0, Y 7→ (!x) ∗ y] if 0 < x < n

undefined ifx ≥ n

where as usual,!x is the factorial ofx.
Thus we get an increasing sequence of partial functions

w0 ⊑ w1 ⊑ w2 ⊑ . . . ⊑ wn ⊑ . . .

defined on larger and larger sets of states(x, y) and agreeing where they are defined.
The union of all these partial functions is the elementw∞ ∈ D given by

w∞[X 7→ x, Y 7→ y] =

{

[X 7→ x, Y 7→ y] if x ≤ 0

[X 7→ 0, Y 7→ (!x) ∗ y] if x > 0.

Note thatw∞ is a fixed point of the functionf , since for all[X 7→ x, Y 7→ y] we
have

f(w∞)[X 7→ x, Y 7→ y] =

{

[X 7→ x, Y 7→ y] if x ≤ 0

w∞[X 7→ x − 1, Y 7→ x ∗ y] if x > 0
(by definition off)

=











[X 7→ x, Y 7→ y] if x ≤ 0

[X 7→ 0, Y 7→ 1 ∗ y] if x = 1

[X 7→ 0, Y 7→!(x − 1) ∗ x ∗ y] if x > 1

(by definition ofw∞)

= w∞[X 7→ x, Y 7→ y] .

In fact one can show thatw∞ is theleastfixed point off , in the sense that for all
w ∈ D

(3) w = f(w) ⇒ w∞ ⊑ w.

12 1 INTRODUCTION

This least fixed pointw∞ is what we take as the denotation of

while X > 0 do (Y := X ∗ Y ; X := X − 1).

Its construction is an instance of Tarski’s Fixed Point Theorem to be proved
in the next section. Note also thatw∞ is indeed the function from states to
states that we get from the structural operational semantics of the command
while X > 0 do (Y := X ∗ Y ; X := X − 1), as given in the Part IB course on
Semantics of Programming Languages.

1.3 Exercises

Exercise 1.3.1.Implement the denotational semantics of IMP− in SML.

Exercise 1.3.2.Consider the function

fb,c : (State ⇀ State) → (State ⇀ State)

defined on Slide 11.
(1) Show by induction onn that

fb,c
n(⊥) = λs ∈ State.











ck(s) if 0 ≤ k < n is such thatb(ci(s)) = true

for all 0 ≤ i < k andb(ck(s)) = false

undefined ifb(ci(s)) = true for all 0 ≤ i < n

(2) Letwb,c : State ⇀ State be the partial function defined as

wb,c
def
= λs ∈ State.











ck(s) if k ≥ 0 is such thatb(ci(s)) = true

for all 0 ≤ i < k andb(ck(s)) = false

undefined ifb(ci(s)) = true for all i ≥ 0

Show thatwb,c satisfies the fixed-point equation

wb,c = fb,c(wb,c) .

(3) Describe the functionfb,c for b = [[true]] = λs ∈ State.true andc = [[skip]] =
λs ∈ State.s. Which partial functions from states to states are fixed points of
this fb,c? What is its least fixed point (with respect to the⊑ ordering defined
above)? Does this least fixed point agree with the partial function from states to
states determined by the operational semantics ofwhile true do skip?

Exercise 1.3.3.Show that the relation⊑ defined on Slide 13 is a partial order with
least element⊥.

Exercise 1.3.4.Prove the statement (3). More generally, with the definitions of
Slide 13 and Exercise 1.3.2, prove that

w = fb,c(w) =⇒ wb,c ⊑ w

for all w ∈ (State ⇀ State).

13

2 Least Fixed Points

This section introduces a mathematical theory,domain theory, which amongst other
things provides a general framework for constructing the least fixed points used in
the denotational semantics of various programming language features. The theory
was introduced by Dana Scott.

2.1 Posets and monotone functions

Thesis

All domains of computation are

partial orders with a least element.

All computable functions are

mononotic.

Slide 14

2.1.1 Posets

Domain theory makes use of partially ordered sets satisfying certain completeness
properties. The definition of apartial order is recalled on Slide 15.D is called the
underlying setof the poset(D,⊑). Most of the time we will refer to posets just by
naming their underlying sets and use the same symbol⊑ to denote the partial order
in a variety of different posets.

14 2 LEAST FIXED POINTS

Partially ordered sets

A binary relation ⊑ on a set D is a partial order iff it is

reflexive : ∀d ∈ D. d ⊑ d

transitive : ∀d, d′, d′′ ∈ D. d ⊑ d′ ⊑ d′′ ⇒ d ⊑ d′′

anti-symmetric : ∀d, d′ ∈ D. d ⊑ d′ ⊑ d ⇒ d = d′.

Such a pair (D,⊑) is called a partially ordered set , or poset .

Slide 15

Example 2.1.1. The set(X ⇀ Y) of all partial functions from a setX to a setY
can be made into a poset, as indicated on Slide 16. It was this domain for the case
X = Y = State (some set of states) that we used for the denotation of commands
in Section 1.2.

2.1 Posets and monotone functions 15

Domain of partial functions, X ⇀ Y

Underlying set: all partial functions, f , with domain of definition

dom(f) ⊆ X and taking values in Y .

Partial order:
f ⊑ g iff dom(f) ⊆ dom(g) and

∀x ∈ dom(f). f(x) = g(x)

iff graph(f) ⊆ graph(g)

Slide 16

16 2 LEAST FIXED POINTS

2.1.2 Monotone functions

The notion of mapping between posets is given in Slide 17.

Monotonicity

• A function f : D → E between posets is monotone iff

∀d, d′ ∈ D. d ⊑ d′ ⇒ f(d) ⊑ f(d′).

Slide 17

Example 2.1.2. Given posetsD andE, for eache ∈ E it is easy to see that the
constant functionD → E with valuee, λd ∈ D . e, is monotone.

Example 2.1.3. When D is the domain of partial functions(State ⇀ State)
(cf. Slide 16), the functionfb,c : D → D defined on Slide 11 in connection with
the denotational semantics ofwhile-loops is a monotone function. We leave the
verification of this as an exercise.

2.2 Least elements and pre-fixed points

Definition 2.2.1. Suppose thatD is a poset and thatS is a subset ofD. An element
d ∈ S is theleastelement ofS if it satisfies

∀x ∈ S. d ⊑ x .

Note that because⊑ is anti-symmetric,S has at most one least element. Note
also that a poset may not have least element. For example,Z with its usual partial
order does not have a least element.

2.2 Least elements and pre-fixed points 17

A fixed pointfor a functionf : D → D is by definition an elementd ∈ D
satisfyingf(d) = d. If D is a poset, we can consider a weaker notion, ofpre-fixed
point, as defined on Slide 18.

Pre-fixed points

Let D be a poset and f : D → D be a function.

An element d ∈ D is a pre-fixed point of f if it satisfies

f(d) ⊑ d.

The least pre-fixed point of f , if it exists, will be written

fix (f)

It is thus (uniquely) specified by the two properties:

f(fix (f)) ⊑ fix (f)(lfp1)

∀d ∈ D. f(d) ⊑ d ⇒ fix (f) ⊑ d.(lfp2)

Slide 18

18 2 LEAST FIXED POINTS

Proof principle

Let D be a poset and let f : D → D be a function with a least

pre-fixed point fix (f) ∈ D.

For all x ∈ D, to prove that fix (f) ⊑ x it is enough to establish

that f(x) ⊑ x.

Slide 19

Proposition 2.2.2. SupposeD is a poset andf : D→D is a function possessing a
least pre-fixed point,fix (f), as defined on Slide18.

Providedf is monotone, fix (f) is in particular a fixed point forf (and hence
is the least element of the set of fixed points forf).

Proof. By definition,fix (f) satisfies property (lfp1) on Slide 18. Iff is monotone
(Slide 17) we can applyf to both sides of (lfp1) to conclude that

f(f(fix(f))) ⊑ f(fix (f)).

Then applying property (lfp2) withd = f(fix (f)), we get that

fix (f) ⊑ f(fix (f)).

Combining this with (lfp1) and the anti-symmetry property of the partial order⊑,
we getf(fix(f)) = fix (f), as required.

2.3 Cpo’s and continuous functions 19

2.3 Cpo’s and continuous functions

Thesis ⋆

All domains of computation are

complete partial orders with a least element.

All computable functions are

continuous.

Slide 20

2.3.1 Domains

Definition 2.3.1. (i) If it exists, we will write the least element of a posetD as
⊥D, or just⊥ whenD is understood from the context. Thus⊥ is uniquely
determined by the property:

∀d ∈ D. ⊥ ⊑ d.

The least element of a poset is sometimes called itsbottomelement.

(ii) A countable, increasingchain in a posetD is a sequence of elements ofD
satisfying

d0 ⊑ d1 ⊑ d2 ⊑ . . .

An upper boundfor the chain is anyd ∈ D satisfying∀n ∈ N. dn ⊑ d. If it
exists, theleast upper bound, or lub, of the chain will be written as

⊔

n≥0

dn.

20 2 LEAST FIXED POINTS

Thus by definition:

• ∀m ∈ N. dm ⊑
⊔

n≥0 dn.

• For anyd ∈ D, if ∀m ∈ N. dm ⊑ d, then
⊔

n≥0 dn ⊑ d.

Remark 2.3.2. The following points should be noted.

(i) We will not need to consider uncountable, or decreasing chains in a poset: so
a ‘chain’ will always mean a countable, increasing chain.

(ii) Like the least element of any subset of a poset, the lub ofa chain is unique if it
exists. (It does not have to exist: for example the chain0 ≤ 1 ≤ 2 ≤ . . . in N

has no upper bound, hence no lub.)

(iii) A least upper bound is sometimes called asupremum. Some other common
notations for

⊔

n≥0 dn are:

∞
⊔

n=0

dn and
⊔

{dn | n ≥ 0} .

(iv) The elements of a chain do not necessarily have to be distinct. In particular, we
say that a chaind0 ⊑ d1 ⊑ d2 ⊑ . . . is eventually constantif for someN ∈ N

it is the case that∀n ≥ N. dn = dN . Note that in this case
⊔

n≥0 dn = dN .

(v) If we discard any finite number of elements at the beginning of a chain, we do
not affect its set of upper bounds and hence do not change its lub:

⊔

n≥0

dn =
⊔

n≥0

dN+n, for anyN ∈ N.

2.3 Cpo’s and continuous functions 21

Cpo’s and domains

A chain complete poset , or cpo for short, is a poset (D,⊑) in

which all countable increasing chains d0 ⊑ d1 ⊑ d2 ⊑ . . . have

least upper bounds,
⊔

n≥0 dn:

∀m ≥ 0 . dm ⊑
⊔

n≥0

dn(lub1)

∀d ∈ D . (∀m ≥ 0 . dm ⊑ d) ⇒
⊔

n≥0

dn ⊑ d.(lub2)

A domain is a cpo that possesses a least element, ⊥:

∀d ∈ D .⊥ ⊑ d.

Slide 21

In this course we will be concerned with posets enjoying certain completeness
properties, as defined on Slide 21. It should be noted that theterm ‘domain’ is used
rather loosely in the literature on denotational semantics: there are many different
kinds of domain, enjoying various extra order-theoretic properties over and above
the rather minimal ones of chain-completeness and possession of a least element
that we need for this course.

Example 2.3.3. The set(X ⇀ Y) of all partial functions from a setX to a setY
can be made into a domain, as indicated on Slide 22. It was thisdomain for the case
X = Y = State (some set of states) that we used for the denotation of commands
in Section 1.2. Note that thef which is claimed to be the lub off0 ⊑ f1 ⊑ f2 ⊑ . . .
on Slide 22 is a well-defined partial function because thefn agree where they are
defined. We leave it as an exercise to check that thisf is indeed the least upper
bound off0 ⊑ f1 ⊑ f2 ⊑ . . . in the poset(X ⇀ Y ,⊑).

22 2 LEAST FIXED POINTS

Domain of partial functions, X ⇀ Y

Underlying set: all partial functions, f , with domain of definition

dom(f) ⊆ X and taking values in Y .

Partial order:
f ⊑ g iff dom(f) ⊆ dom(g) and

∀x ∈ dom(f). f(x) = g(x)

iff graph(f) ⊆ graph(g)

Lub of chain f0 ⊑ f1 ⊑ f2 ⊑ . . . is the partial function f with

dom(f) =
⋃

n≥0 dom(fn) and

f(x) =

{

fn(x) if x ∈ dom(fn), some n

undefined otherwise

Least element ⊥ is the totally undefined partial function.

Slide 22

Example 2.3.4. Any poset(D,⊑) whose underlying setD is finite is a cpo. For
in such a poset any chain is eventually constant and we noted in Remark 2.3.2(iv)
that such a chain always possesses a lub. Of course, a finite poset need not have
a least element, and hence need not be a domain—for example, consider the poset
with Hasse diagram

•

• •

(TheHasse diagramof a poset is the directed graph whose vertices are the elements
of the underlying set of the poset and in which there is an edgefrom vertexx to
vertexy iff x 6= y and∀z. (x ⊑ z & z ⊑ y) ⇒ (z = x ∨ z = y).)

Figure 1 shows two very simple, but infinite domains. Here aretwo examples
of posets that are not cpos.

Example 2.3.5. The set of natural numbersN = {0, 1, 2, . . .} equipped with the
usual partial order,≤, is not a cpo. For the increasing chain0 ≤ 1 ≤ 2 ≤ . . . has
no upper bound inN.

Example 2.3.6. Consider a modified version of the second example in Figure 1
in which we adjoin two different upper bounds,ω1 6= ω2, for N. In other words,

2.3 Cpo’s and continuous functions 23

The ‘flat natural numbers’, N⊥:

0 1 2 · · · n n + 1 · · ·

⊥

··· ···

The ‘vertical natural numbers’, Ω:

ω

n + 1

n

2

1

0

Figure 1: Two domains

24 2 LEAST FIXED POINTS

considerD
def
= N ∪ {ω1, ω2} with partial order⊑ defined by:

d ⊑ d′ def
⇔



















d, d′ ∈ N & d ≤ d′,

or d ∈ N & d′ ∈ {ω1, ω2},

or d = d′ = ω1,

or d = d′ = ω2.

Then the increasing chain0 ⊑ 1 ⊑ 2 ⊑ . . . in D has two upper bounds (ω1 and
ω2), but no least one (sinceω1 6⊑ ω2 andω2 6⊑ ω1). So(D,⊑) is not a cpo.

Some properties of lubs of chains

Let D be a cpo.

1. For d ∈ D,
⊔

n d = d.

2. For every chain d0 ⊑ d1 ⊑ . . . ⊑ dn ⊑ . . . in D,
⊔

n

dn =
⊔

n

dN+n

for all N ∈ N.

3. For every pair of chains d0 ⊑ d1 ⊑ . . . ⊑ dn ⊑ . . . and

e0 ⊑ e1 ⊑ . . . ⊑ en ⊑ . . . in D,

if dn ⊑ en for all n ∈ N then
⊔

n dn ⊑
⊔

n en.

Slide 23

2.3 Cpo’s and continuous functions 25

Diagonalising a double chain

Lemma. Let D be a cpo. Suppose that the doubly-indexed family

of elements dm,n ∈ D (m,n ≥ 0) satisfies

(†) m ≤ m′ & n ≤ n′ ⇒ dm,n ⊑ dm′,n′ .

Then
⊔

n≥0

d0,n ⊑
⊔

n≥0

d1,n ⊑
⊔

n≥0

d2,n ⊑ . . .

and
⊔

m≥0

dm,0 ⊑
⊔

m≥0

dm,1 ⊑
⊔

m≥0

dm,3 ⊑ . . .

Moreover

⊔

m≥0





⊔

n≥0

dm,n



 =
⊔

k≥0

dk,k =
⊔

n≥0





⊔

m≥0

dm,n



 .

Slide 24

Proof of the Lemma on Slide24. We make use of the defining properties of lubs of
chains—(lub1) and (lub2) on Slide 21. First note that ifm ≤ m′ then

dm,n ⊑ dm′,n by property (†) of thedm,n

⊑
⊔

n′≥0

dm′,n′ by (lub1)

for all n ≥ 0, and hence
⊔

n≥0 dm,n ⊑
⊔

n′≥0 dm′,n′ by (lub2). Thus we do indeed
get a chain of lubs

⊔

n≥0

d0,n ⊑
⊔

n≥0

d1,n ⊑
⊔

n≥0

d2,n ⊑ . . .

and can form its lub,
⊔

m≥0

⊔

n≥0 dm,n. Using property (lub1) twice we have

dk,k ⊑
⊔

n≥0

dk,n ⊑
⊔

m≥0

⊔

n≥0

dm,n

for eachk ≥ 0, and hence by (lub2)

(4)
⊔

k≥0

dk,k ⊑
⊔

m≥0

⊔

n≥0

dm,n.

26 2 LEAST FIXED POINTS

Conversely, for eachm, n ≥ 0, note that

dm,n ⊑ dmax{m,n},max{m,n} by property (†)

⊑
⊔

k≥0

dk,k by (lub1)

and hence applying (lub2) twice we have

(5)
⊔

m≥0

⊔

n≥0

dm,n ⊑
⊔

k≥0

dk,k.

Combining (4) and (5) with the anti-symmetry property of⊑ yields the desired
equality. We obtain the additional equality by the same argument but interchanging
the roles ofm andn.

2.3.2 Continuous functions

Continuity and strictness

• If D and E are cpo’s, the function f is continuous iff

1. it is monotone, and

2. it preserves lubs of chains, i.e. for all chains

d0 ⊑ d1 ⊑ . . . in D, it is the case that

f(
⊔

n≥0

dn) =
⊔

n≥0

f(dn) in E.

• If D and E have least elements, then the function f is strict

iff f(⊥) = ⊥.

Slide 25

Remark 2.3.7. Note that iff : D → E is monotone andd0 ⊑ d1 ⊑ d2 ⊑ . . . is
a chain inD, then applyingf we get a chainf(d0) ⊑ f(d1) ⊑ f(d2) ⊑ . . . in E.
Moreover, ifd is an upper bound of the first chain, thenf(d) is an upper bound of
the second and hence is greater than its lub. Hence iff : D → E is a monotone

2.3 Cpo’s and continuous functions 27

function between cpo’s, we always have

⊔

n≥0

f(dn) ⊑ f(
⊔

n≥0

dn)

Therefore (using the antisymmetry property of⊑), to check that a monotone
function f between cpo’s is continuous, it suffices to check for each chain
d0 ⊑ d1 ⊑ d2 ⊑ . . . in D that

f(
⊔

n≥0

dn) ⊑
⊔

n≥0

f(dn)

holds inE.

Example 2.3.8. Given cpo’sD andE, for eache ∈ E it is easy to see that the
constant functionD → E with valuee, λd ∈ D . e, is continuous.

Example 2.3.9. When D is the domain of partial functions(State ⇀ State)
(cf. Slide 22), the functionfb,c : D → D defined on Slide 11 in connection with
the denotational semantics ofwhile-loops is a continuous function. We leave the
verification of this as an exercise.

Example 2.3.10.Let Ω be the domain of vertical natural numbers, as defined in
Figure 1. Then the functionf : Ω → Ω defined by

{

f(n) = 0 (n ∈ N)

f(ω) = ω.

is monotone and strict, but it is not continuous because

f(
⊔

n≥0

n) = f(ω) = ω 6= 0 =
⊔

n≥0

0 =
⊔

n≥0

f(n).

28 2 LEAST FIXED POINTS

2.4 Tarski’s fixed point theorem

Tarski’s Fixed Point Theorem

Let f : D → D be a continuous function on a domain D. Then

• f possesses a least pre-fixed point, given by

fix (f) =
⊔

n≥0

fn(⊥).

• Moreover, fix (f) is a fixed point of f , i.e. satisfies

f
(

fix (f)
)

= fix (f), and hence is the least fixed point of f .

Slide 26

Slide 26 gives the key result about continuous functions on domains which
permits us to give denotational semantics of programs involving recursive features.
The notationfn(⊥) used on the slide is defined as follows:

(6)

{

f0(⊥)
def
= ⊥

fn+1(⊥)
def
= f(fn(⊥)).

Note that since∀d ∈ D. ⊥ ⊑ d, one hasf0(⊥) = ⊥ ⊑ f1(⊥); and by monotonicity
of f

fn(⊥) ⊑ fn+1(⊥) ⇒ fn+1(⊥) = f(fn(⊥)) ⊑ f(fn+1(⊥)) = fn+2(⊥).

Therefore, by induction onn ∈ N, it is the case that∀n ∈ N. fn(⊥) ⊑ fn+1(⊥).
In other words the elementsfn(⊥) do form a chain inD. So sinceD is a cpo, the
least upper bound used to definefix (f) on Slide 26 does make sense.

2.4 Tarski’s fixed point theorem 29

Proof of Tarski’s Fixed Point Theorem.First note that

f(fix (f)) = f(
⊔

n≥0

fn(⊥))

=
⊔

n≥0

f(fn(⊥)) by continuity off

=
⊔

n≥0

fn+1(⊥) by (6)

=
⊔

n≥0

fn(⊥) by Remark 2.3.2(v)

= fix (f).

So fix (f) is indeed a fixed point forf and hence in particular satisfies condition
(lfp1) on Slide 18. To verify the second condition (lfp2) needed for a least pre-fixed
point, suppose thatd ∈ D satisfiesf(d) ⊑ d. Then since⊥ is least inD

f0(⊥) = ⊥ ⊑ d

and

fn(⊥) ⊑ d ⇒ fn+1(⊥) = f(fn(⊥)) ⊑ f(d) monotonicity off

⊑ d by assumption ond.

Hence by induction onn ∈ N we have∀n ∈ N. fn(⊥) ⊑ d. Therefored is an
upper bound for the chain and hence lies above the least such,i.e.

fix (f) =
⊔

n≥0

fn(⊥) ⊑ d

as required for (lfp2).

Example 2.4.1.The functionf[[B]],[[C]] defined on Slide 11 is a continuous function
(Exercise 2.5.3) on the domain(State ⇀ State) (Slide 22). So we can apply the
Fixed Point Theorem and define[[while B do C]] to befix (f[[B]],[[C]]). In particular,
the method used to construct the partial functionw∞ at the end of Section 1.2 is an
instance of the method used in the proof of the Fixed Point Theorem to construct
least pre-fixed points.

30 2 LEAST FIXED POINTS

[[while B do C]]

[[while B do C]]

= fix (f[[B]],[[C]])

=
⊔

n≥0 f[[B]],[[C]]
n(⊥)

= λs ∈ State.














[[C]]k(s) if k ≥ 0 is such that [[B]]([[C]]k(s)) = false

and [[B]]([[C]]i(s)) = true for all 0 ≤ i < k

undefined if [[B]]([[C]]i(s)) = true for all i ≥ 0

Slide 27

2.5 Exercises

Exercise 2.5.1.Verify the claims implicit on Slide 22: that the relation⊑ defined
there is a partial order; thatf is indeed the lub of the chainf0 ⊑ f1 ⊑ f2 ⊑ . . . ;
and that the totally undefined partial function is the least element.

Exercise 2.5.2.Prove the claims in Slides 23 and 24.

Exercise 2.5.3.Verify the claim made in Example 2.3.9 thatfb,c is continuous.
When is it strict?

31

3 Constructions on Domains

In this section we give various ways of building domains and continuous functions,
concentrating on the ones that will be needed for a denotational semantics of the
programming language PCF studied in the second half of the course. Note that to
specify a cpo one mustdefinea set equipped with a binary relation and thenprove

(i) the relation is a partial order;

(ii) lubs exist for all chains in the partially ordered set.

Furthermore, for the cpo to be a domain, one just has to prove

(iii) there is a least element.

Note that since lubs of chains and least elements are unique if they exist, a cpo or
domain is completely determined by its underlying set and partial order. In what
follows we will give various recipes for constructing cpos and domains and leave as
an exercise the task of checking that properties (i), (ii), and (iii) do hold.

3.1 Flat domains

In order to model the PCF ground typesnat andbool , we will use the notion offlat
domaingiven on Slide 28.

Discrete cpo’s and flat domains

For any set X , the relation of equality

x ⊑ x′ def
⇔ x = x′ (x, x′ ∈ X)

makes (X,⊑) into a cpo, called the discrete cpo with underlying

set X .

Let X⊥
def
= X ∪ {⊥}, where ⊥ is some element not in X . Then

d ⊑ d′
def
⇔ (d = d′) ∨ (d = ⊥) (d, d′ ∈ X⊥)

makes (X⊥,⊑) into a domain (with least element ⊥), called the

flat domain determined by X .

Slide 28

32 3 CONSTRUCTIONS ON DOMAINS

The flat domain of natural numbers,N⊥, is pictured in Figure 1; the flat domain
of booleans,B⊥ looks like:

true false

⊥

The following instances of continuous functions involvingflat domains will also be
needed for the denotational semantics of PCF. We leave the proofs as exercises.

Proposition 3.1.1. Letf : X ⇀ Y be a partial function between two sets. Then

f⊥ : X⊥ → Y⊥

f⊥(d)
def
=











f(d) if d ∈ X andf is defined atd

⊥ if d ∈ X andf is not defined atd

⊥ if d = ⊥

defines a continuous function between the corresponding flatdomains.

3.2 Products of domains

Binary product of cpo’s and domains

The product of two cpo’s (D1,⊑1) and (D2,⊑2) has underlying

set

D1 × D2 = {(d1, d2) | d1 ∈ D1 & d2 ∈ D2}

and partial order ⊑ defined by

(d1, d2) ⊑ (d′1, d
′
2)

def
⇔ d1 ⊑1 d′1 & d2 ⊑2 d′2

Lubs of chains are calculated componentwise:
⊔

n≥0

(d1,n, d2,n) = (
⊔

i≥0

d1,i,
⊔

j≥0

d2,j).

If (D1,⊑1) and (D2,⊑2) are domains so is (D1 × D2,⊑)
and ⊥D1×D2

= (⊥D1
,⊥D2

).

Slide 29

3.2 Products of domains 33

Proposition 3.2.1 (Projections and pairing). Let D1 and D2 be cpo’s. The
projections

π1 : D1 × D2 → D1 π2 : D1 × D2 → D2

π1(d1, d2)
def
= d1 π2(d1, d2)

def
= d2

are continuous functions. Iff1 : D→D1 andf2 : D→D2 are continuous functions
from a cpoD, then

〈f1, f2〉 : D → D1 × D2

〈f1, f2〉(d)
def
= (f1(d), f2(d))

is continuous.

Proof. Continuity of these functions follows immediately from thecharacterisation
of lubs of chains inD1 × D2 given on Slide 29.

Proposition 3.2.2. For each domainD the function

if : B⊥ × (D × D) → D

if (x, (d, d′))
def
=











d if x = true

d′ if x = false

⊥D if x = ⊥

is continuous.

We will need the following generalised version of the product construction.

Definition 3.2.3 (Dependent products). Given a setI, suppose that for eachi ∈ I
we are given a cpo(Di,⊑i). Theproductof this whole family of cpo’s has

• underlying set equal to theI-fold cartesian product,
∏

i∈I Di, of the setsDi—
so it consists of all functionsp defined onI and such that the value ofp at each
i ∈ I is an elementp(i) ∈ Di of the cpoDi;

• partial order⊑ defined by

p ⊑ p′
def
⇔ ∀i ∈ I. p(i) ⊑i p′(i).

As for the binary product (which is the particular case whenI is a two-element set),
lubs in(

∏

i∈I Di , ⊑) can be calculated componentwise: ifp0 ⊑ p1 ⊑ p2 ⊑ . . . is
a chain in the product cpo, its lub is the function mapping each i ∈ I to the lub in
Di of the chainp0(i) ⊑ p1(i) ⊑ p2(i) ⊑ Thus

(
⊔

n≥0

pn)(i) =
⊔

n≥0

pn(i) (i ∈ I).

34 3 CONSTRUCTIONS ON DOMAINS

In particular, for eachi ∈ I theith projection function

πi :
∏

j∈I

Dj → Di

πi(p)
def
= p(i)

is continuous. If all theDi are domains, then so is their product—the least element
being the function mapping eachi ∈ I to the least element ofDi.

Continuous functions of two arguments

Proposition. Let D, E, F be cpo’s. A function

f : (D × E) → F is monotone if and only if it is monotone in

each argument separately:

∀d, d′ ∈ D, e ∈ E. d ⊑ d′ ⇒ f(d, e) ⊑ f(d′, e)

∀d ∈ D, e, e′ ∈ E. e ⊑ e′ ⇒ f(d, e) ⊑ f(d, e′).

Moreover, it is continuous if and only if it preserves lubs of chains

in each argument separately:

f(
⊔

m≥0

dm , e) =
⊔

m≥0

f(dm, e)

f(d ,
⊔

n≥0

en) =
⊔

n≥0

f(d, en).

Slide 30

Proof of the Proposition on Slide30. The ‘only if’ direction is straightforward; its
proof rests on the simple observations that ifd ⊑ d′ then (d, e) ⊑ (d′, e), and
(
⊔

m≥0 dm , e) =
⊔

m≥0(dm , e), as well as the companion facts for the right
argument. For the ‘if’ direction, suppose first thatf is monotone in each argument
separately. Then given(d, e) ⊑ (d′, e′) in D × E, by definition of the partial order
on the binary product we haved ⊑ d′ in D ande ⊑ e′ in E. Hence

f(d, e) ⊑ f(d′, e) by monotonicity in first argument

⊑ f(d′, e′) by monotonicity in second argument

and therefore by transitivity,f(d, e) ⊑ f(d′, e′), as required for monotonicity off .

3.3 Function domains 35

Now supposef is continuous in each argument separately. Then given a chain
(d0, e0) ⊑ (d1, e1) ⊑ (d2, e2) ⊑ . . . in the binary product, we have

f(
⊔

n≥0

(dn, en)) = f(
⊔

i≥0

di ,
⊔

j≥0

ej) (cf. Slide 29)

=
⊔

i≥0

f(di,
⊔

j≥0

ej) by continuity in first argument

=
⊔

i≥0





⊔

j≥0

f(di, ej)



 by continuity in second argument

=
⊔

n≥0

f(dn, en) by lemma on Slide 24

as required for continuity off .

3.3 Function domains

The set of continuous functions between two cpo’s/domains can be made into a
cpo/domain as shown on Slide 31. The terminology ‘exponential cpo/domain’ is
sometimes used instead of ‘function cpo/domain’.

Function cpo’s and domains

Given cpo’s (D,⊑D) and (E,⊑E), the function cpo

(D → E,⊑) has underlying set

D → E
def
= {f | f : D → E is a continuous function}

and partial order: f ⊑ f ′ def
⇔ ∀d ∈ D . f(d) ⊑E f ′(d).

Lubs of chains are calculated ‘argumentwise’ (using lubs in E):
⊔

n≥0

fn = λd ∈ D.
⊔

n≥0

fn(d) .

If E is a domain, then so is D → E and ⊥D→E(d) = ⊥E , all

d ∈ D.

Slide 31

36 3 CONSTRUCTIONS ON DOMAINS

Proof of Slide31. We should show that the lub of a chain of functions,
⊔

n≥0 fn, is
continuous. The proof uses the ‘interchange law’ of Slide 24]. Given a chain inD,

(
⊔

n≥0

fn)((
⊔

m≥0

dm)) =
⊔

n≥0

(fn(
⊔

m≥0

dm)) definition of
⊔

n≥0

fn

=
⊔

n≥0

(
⊔

m≥0

fn(dm)) continuity of eachfn

=
⊔

m≥0

(
⊔

n≥0

fn(dm)) interchange law

=
⊔

m≥0

((
⊔

n≥0

fn)(dm)) definition of
⊔

n≥0

fn.

Proposition 3.3.1(Evaluation and ‘Currying’). Given cpo’sD andE, the function

ev : (D → E) × D → E

ev(f, d)
def
= f(d)

is continuous. Given any continuous functionf : D′ ×D →E (with D′ a cpo), for
eachd′ ∈ D′ the functiond ∈ D 7→ f(d′, d) is continuous and hence determines
an element of the function cpoD → E that we denote bycur(f)(d′). Then

cur(f) : D′ → (D → E)

cur(f)(d′)
def
= λd ∈ D . f(d′, d)

is a continuous function.1

1This ‘Curried’ version off is named in honour of the logician H. B. Curry, a pioneer of
combinatory logic and lambda calculus.

3.3 Function domains 37

Proof. For continuity ofev note that

ev(
⊔

n≥0

(fn, dn)) = ev(
⊔

i≥0

fi ,
⊔

j≥0

dj) lubs in products are componenwise

= (
⊔

i≥0

fi) (
⊔

j≥0

dj) by definition ofev

=
⊔

i≥0

fi(
⊔

j≥0

dj) lubs in function cpo’s are argumentwise

=
⊔

i≥0

⊔

j≥0

fi(dj) by continuity of eachfi

=
⊔

n≥0

fn(dn) by the Lemma on Slide 24

=
⊔

n≥0

ev(fn, dn) by definition ofev .

The continuity of eachcur(f)(d′) and then ofcur(f) follows immediately from
the fact that lubs of chains inD1 × D2 can be calculated componentwise.

Continuity of composition

For cpo’s D,E,F , the composition function

◦ :
(

(E → F) × (D → E)
)

−→ (D → F)

defined by setting, for all f ∈ (D → E) and g ∈ (E → F),

g ◦ f = λd ∈ D. g
(

f(d)
)

is continuous.

Slide 32

38 3 CONSTRUCTIONS ON DOMAINS

Continuity of the fixpoint operator

Let D be a domain.

By Tarski’s Fixed Point Theorem we know that each

continuous function f ∈ (D → D) possesses a least

fixed point, fix (f) ∈ D.

Proposition. The function

fix : (D → D) → D

is continuous.

Slide 33

Proof of the Proposition on Slide33. We must first prove thatfix : (D → D) → D
is a monotone function. Supposef1 ⊑ f2 in the function domainD →D. We have
to provefix (f1) ⊑ fix (f2). But:

f1(fix (f2)) ⊑ f2(fix (f2)) sincef1 ⊑ f2

⊑ fix (f2) by (lfp1) for fix (f2).

So fix (f2) is a pre-fixed point forf1 and hence by (lfp2) (forfix (f1)) we have
fix (f1) ⊑ fix (f2), as required.

Turning now to the preservation of lubs of chains, supposef0 ⊑ f1 ⊑ f2 ⊑ . . .
in D → D. Recalling Remark 2.3.7, we just have to prove that

fix (
⊔

n≥0

fn) ⊑
⊔

n≥0

fix (fn)

and by the property (lfp2) of least pre-fixed points (see Slide 18), for this it suffices
to show that

⊔

n≥0 fix (fn) is a pre-fixed point for the function
⊔

n≥0 fn. This is the

3.4 Exercises 39

case because:

(
⊔

m≥0

fm)(
⊔

n≥0

fix (fn)) =
⊔

m≥0

fm(
⊔

n≥0

fix (fn)) function lubs are argumentwise

=
⊔

m≥0

⊔

n≥0

fm(fix (fn)) by continuity of eachfm

=
⊔

k≥0

fk(fix (fk)) by the Lemma on Slide 24

⊑
⊔

k≥0

fix (fk) by (lfp1) for eachfk.

3.4 Exercises

Exercise 3.4.1.Verify that the constructions given on Slide 29, in Definition 3.2.3,
and on Slides 31 and 28 do give cpo’s and domains (i.e. that properties (i), (ii) and
(ii) mentioned at the start of this section do hold in each case). Give the proofs of
Propositions 3.1.1 and 3.2.2.

Exercise 3.4.2. Let X and Y be sets andX⊥ and Y⊥ the corresponding flat
domains, as on Slide 28. Show that a functionf : X⊥ → Y⊥ is continuous if
and only if one of (a) or (b) holds:

(a) f is strict, i.e.f(⊥) = ⊥.

(b) f is constant, i.e.∀x ∈ X . f(x) = f(⊥).

Exercise 3.4.3.Let {⊤} be a one-element set and{⊤}⊥ the corresponding flat
domain. LetΩ be the domain of ‘vertical natural numbers’, pictured in Figure 1.
Show that the function domain(Ω →{⊤}⊥) is in bijection withΩ.

Exercise 3.4.4.Prove the Proposition on Slide 32.

40 3 CONSTRUCTIONS ON DOMAINS

41

4 Scott Induction

4.1 Chain-closed and admissible subsets

In Section 2 we saw that the least fixed point of a continuous functionf : D→D on a
domainD can be expressed as the lub of the chain obtained by repeatedly applying
f starting with the least element⊥ of D: fix (f) =

⊔

n≥0 fn(⊥) (cf. Slide 26).
This construction allows one to prove properties offix (f) by using Mathematical
Induction forn to show that eachfn(⊥) has the property,providedthe property in
question satisfies the condition shown on Slide 34. It is convenient to package up
this use of Mathematical Induction in a way that hides the explicit construction of
fix (f) as the lub of a chain. This is done on Slide 35. To see the validity of the
statement on that slide, note thatf0(⊥) = ⊥ ∈ S by theBase case; andfn(⊥) ∈ S
implies fn+1(⊥) = f(fn(⊥)) ∈ S by the Induction step. Hence by induction
on n, we have∀n ≥ 0 . fn(⊥) ∈ S. Therefore by the chain-closedness ofS,
fix (f) =

⊔

n≥0 fn(⊥) ∈ S, as required.

Chain-closed and admissible subsets

Let D be a cpo. A subset S ⊆ D is called chain-closed iff

for all chains d0 ⊑ d1 ⊑ d2 ⊑ . . . in D

(∀n ≥ 0 . dn ∈ S) ⇒
(

⊔

n≥0

dn

)

∈ S

If D is a domain, S ⊆ D is called admissible iff it is a

chain-closed subset of D and ⊥ ∈ S.

A property Φ(d) of elements d ∈ D is called chain-closed

(resp. admissible) iff {d ∈ D | Φ(d)} is a chain-closed

(resp. admissible) subset of D.

Slide 34

Note. The termsinclusive, or inductive, are often used as synonyms of ‘chain-
closed’.

Example 4.1.1. Consider the domainΩ of ‘vertical natural numbers’ pictured in
Figure 1. Then

• anyfinitesubset ofΩ is chain-closed;

42 4 SCOTT INDUCTION

• {0, 2, 4, 6, . . .} is not a chain-closed subset ofΩ;

• {0, 2, 4, 6, . . .} ∪ {ω} is a chain-closed (indeed, is an admissible) subset ofΩ.

Scott’s Fixed Point Induction Principle

Let f : D → D be a continuous function on a domain D.

For any admissible subset S ⊆ D, to prove that the least

fixed point of f is in S, i.e. that

fix (f) ∈ S ,

it suffices to prove

∀d ∈ D (d ∈ S ⇒ f(d) ∈ S) .

Slide 35

The difficulty with applying Scott’s Fixed Point Induction Principle in any
particular case usually lies in identifying an appropriateadmissible subsetS; i.e. in
finding a suitably strong ‘induction hypothesis’.

4.2 Examples

Example 4.2.1. Suppose thatD is a domain and thatf : (D × (D × D)) → D is
a continuous function. Letg : (D × D) → (D × D) be the continuous function
defined by

g(d1, d2)
def
= (f(d1, (d1, d2)), f(d1, (d2, d2))) (d1, d2 ∈ D).

Thenu1 = u2, where(u1, u2)
def
= fix (g). (Note thatg is continuous because we

can express it in terms of composition, projections and pairing and hence apply
Proposition 3.2.1 and Slide 32:g = 〈f ◦ 〈π1, 〈π1, π2〉〉, f ◦ 〈π1, 〈π2, π2〉〉〉.)

Proof. We have to show thatfix (g) ∈ ∆ where

∆
def
= {(d1, d2) ∈ D × D | d1 = d2}.

4.2 Examples 43

It is not hard to see that∆ is an admissible subset of the product domainD × D.
So by Scott’s Fixed Point Induction Principle, we just have to check that

∀(d1, d2) ∈ D × D ((d1, d2) ∈ ∆ ⇒ g(d1, d2) ∈ ∆)

or equivalently, that

∀(d1, d2) ∈ D × D (d1 = d2 ⇒ f(d1, d1, d2) = f(d1, d2, d2)),

which is clearly true.

The next example shows that Scott’s Induction Principle canbe useful for
proving (the denotational version of)partial correctnessassertions about programs,
i.e. assertions of the form ‘if the program terminates, thensuch-and-such a property
holds of the results’. By contrast, atotalcorrectness assertion would be ‘the program
does terminate and such-and-such a property holds of the results’. Because Scott
Induction can only be applied for propertiesΦ for which Φ(⊥) holds, it is not so
useful for proving total correctness.

Example 4.2.2. Let f : D → D be the continuous function defined on Slide 12
whose least fixed point is the denotation of the command

while X > 0 do (Y := X ∗ Y ; X := X − 1).

We will use Scott Induction to prove
(7)
∀x, y ≥ 0 .

fix (f)[X 7→ x, Y 7→ y] ↓ ⇒ fix (f)[X 7→ x, Y 7→ y] = [X 7→ 0, Y 7→ (!x) ∗ y]

where forw ∈ D =
(

(Z × Z) ⇀ (Z × Z)
)

we writew(x, y) ↓ to mean ‘the partial
functionw is defined at the state[X 7→ x, Y 7→ y]’.

Proof. Let

S
def
=











w ∈ D

∀x, y ≥ 0 .

w[X 7→ x, Y 7→ y] ↓

⇒ w[X 7→ x, Y 7→ y] = [X 7→ 0, Y 7→ (!x) ∗ y]











.

It is not hard to see thatS is admissible. Therefore, to prove (7), by Scott Induction
it suffices to check thatw ∈ S implies f(w) ∈ S, for all w ∈ D. So suppose
w ∈ S, thatx, y ≥ 0, and thatf(w)[X 7→ x, Y 7→ y] ↓. We have to show that
f(w)[X 7→ x, Y 7→ y] = [X 7→ 0, Y 7→ (!x)∗y]. We consider the two casesx = 0
andx > 0 separately.

If x = 0, then by definition off (see Slide 12)

f(w)[X 7→ x, Y 7→ y] = [X 7→ x, Y 7→ y] = [X 7→ 0, Y 7→ y]

= [X 7→ 0, Y 7→ 1 ∗ y] = [X 7→ 0, Y 7→ (!0) ∗ y]

= [X 7→ 0, Y 7→ (!x) ∗ y] .

44 4 SCOTT INDUCTION

On the other hand, ifx > 0, then by definition off

w[X 7→ x − 1, Y 7→ x ∗ y] = f(w)[X 7→ x, Y 7→ y] ↓ (by assumption)

and then sincew ∈ S andx − 1, x ∗ y ≥ 0, we must have

w[X 7→ x − 1, Y 7→ x ∗ y] = [X 7→ 0, Y 7→!(x − 1) ∗ (x ∗ y)]

and hence once again

f(w)[X 7→ x, Y 7→ y] = w[X 7→ x − 1, Y 7→ x ∗ y]

= [X 7→ 0, Y 7→!(x − 1) ∗ (x ∗ y)]

= [X 7→ 0, Y 7→ (!x) ∗ y] .

4.3 Building chain-closed subsets

The power of Scott induction depends on having a good stock ofchain-closed
subsets. Fortunately we are able to ensure that a good many subsets are chain-closed
by virtue of the way in which they are built up.

4.3.1 Basic relations

Let D be a cpo. The subsets

{(x, y) ∈ D × D | x ⊑ y} and{(x, y) ∈ D × D | x = y}

of D×D are chain-closed (Why?). The properties (or predicates)x ⊑ y andx = y
onD × D determine chain-closed sets.

4.3 Building chain-closed subsets 45

Example (I): Least pre-fixed point property

Let D be a domain and let f : D → D be a continuous function.

∀d ∈ D. f(d) ⊑ d =⇒ fix (f) ⊑ d

Proof by Scott induction.

Let d ∈ D be a pre-fixed point of f . Then,

x ∈↓(d) =⇒ x ⊑ d

=⇒ f(x) ⊑ f(d)

=⇒ f(x) ⊑ d

=⇒ f(x) ∈↓(d)

Hence,

fix (f) ∈↓(d) .

Slide 36

4.3.2 Inverse image and substitution

Let f : D → E be a continuous function between cposD andE. SupposeS is a
chain-closed subset ofE. Then the inverse image

f−1S = {x ∈ D | f(x) ∈ S}

is an chain-closed subset ofD (Why?).

Suppose the subsetS is defined by the propertyP onE i.e.

S = {y ∈ E | P (y)}.

Then

f−1S = {x ∈ D | P (f(x))}.

So, if a propertyP (y) onE determines a chain-closed subset ofE andf : D → E
is a continuous function, then the propertyP (f(x)) onD determines a chain-closed
subset ofD.

46 4 SCOTT INDUCTION

Example (II)

Let D be a domain and let f, g : D → D be continuous

functions such that f ◦ g ⊑ g ◦ f . Then,

f(⊥) ⊑ g(⊥) =⇒ fix (f) ⊑ fix (g) .

Proof by Scott induction.

Consider the admissible property Φ(x) ≡
(

f(x) ⊑ g(x)
)

of D.

Since

f(x) ⊑ g(x) ⇒ g(f(x)) ⊑ g(g(x)) ⇒ f(g(x)) ⊑ g(g(x))

we have that

f(fix (g)) ⊑ g(fix (g)) .

Slide 37

4.3.3 Logical operations

Let D be a cpo. LetS ⊆ D andT ⊆ D be chain-closed subsets ofD. Then

S ∪ T and S ∩ T

are chain-closed subsets (Why?). In terms of properties, ifP (x) andQ(x) determine
chain-closed subsets ofD, then so do

P (x) or Q(x), P (x) & Q(x).

If Si, i ∈ I, is a family of chain-closed subsets ofD indexed by a setI, then
⋂

i∈I Si is a chain-closed subset ofD (Why?).
Consequently, if a propertyP (x, y) determines a chain-closed subset ofD×E,

then the property∀x ∈ D. P (x, y) determines a chain-closed subset ofE. This is
because

{y ∈ E | ∀x ∈ D. P (x, y)} =
⋂

d∈D

{y ∈ E | P (d, y)}

=
⋂

d∈D

fd
−1{(x, y) ∈ D × E | P (x, y)}

4.4 Exercises 47

wherefd : E → D × E is the continuous function defined asfd(y) = (d, y) for
everyd ∈ D.

In fact, any property built-up as a universal quantificationover several variables
of conjunctions and disjunctions of basic properties of theform f(x1, · · · , xk) ⊑
g(x1, · · · , xl) or f(x1, · · · , xk) = g(x1, · · · , xl), wheref andg are continuous,
will determine a chain-closed subset of the product cpo appropriate to the non-
quantified variables.

Note, however, that infinite unions of chain-closed subsetsneed not be chain-
closed; finite subsets are always chain complete but arbitrary unions of them need
not be. Accordingly, we cannot in general build chain-closed subsets with existential
quantifications.

4.4 Exercises

Exercise 4.4.1.Answer all the “Why?”s above in the building of chain-closed
subsets.

Exercise 4.4.2.Give an example of a subsetS ⊆ D × D′ of a product cpo that is
not chain-closed, but which satisfies:

(a) for alld ∈ D, {d′ | (d, d′) ∈ S} is a chain-closed subset ofD′; and

(b) for all d′ ∈ D′, {d | (d, d′) ∈ S} is a chain-closed subset ofD.

[Hint: considerD = D′ = Ω, the cpo in Figure 1.]
(Compare this with the property of continuous functions given on Slide 30.)

48 4 SCOTT INDUCTION

49

5 PCF

The language PCF (‘Programming Computable Functions’) is asimple functional
programming language that has been used extensively as an example language in the
development of the theory of both denotational and operational semantics (and the
relationship between the two). Its syntax was introduced byDana Scottcirca 1969
as part of a ‘Logic of Computable Functions’1 and was studied as a programming
language in a highly influential paper by Plotkin (1977).

In this section we describe the syntax and operational semantics of the particular
version of PCF we use in these notes. In Section 6 we will see how to give it a
denotational semantics using domains and continuous function.

5.1 Terms and types

Thetypes, expressions, andtermsof the PCF language are defined on Slide 38.

PCF syntax

Types

τ ::= nat | bool | τ → τ

Expressions

M ::= 0 | succ(M) | pred(M)

| true | false | zero(M)

| x | if M then M else M

| fnx : τ .M | M M | fix(M)

where x ∈ V, an infinite set of variables.

Technicality : We identify expressions up to α-conversion of

bound variables (created by the fn expression-former): by

definition a PCF term is an α-equivalence class of expressions.

Slide 38

The intended meaning of the various syntactic forms is as follows.

• nat is the type of the natural numbers,0, 1, 2, 3, In PCF these are gen-
erated from0 by repeated application of the successor operation,succ(−),
whose intended meaning is to add1 to its argument. The predecessor op-
erationpred(−) subtracts1 from strictly positive natural numbers (and is
undefined at0).

1This logic was the stimulus for the development of the ML language and LCF system for
machine-assisted proofs by Milner, Gordonet al—see Paulson 1987; Scott’s original work
was eventually published as Scott 1993.

50 5 PCF

• bool is the type of booleans,true and false. The operationzero(−) tests
whether its argument is zero or strictly positive and returns true or false

accordingly. Theconditionalexpressionif M1 then M2 else M3 behaves
like eitherM2 orM3 depending upon whetherM1 evaluates totrue or false
respectively.

• A PCF variable,x, stands for an unknown expression. PCF is a pure func-
tional language—there is no state that changes during expression evaluation
and in particular variables are ‘identifiers’ standing for afixed expression,
rather than ‘program variables’ whose contents may get mutated during eval-
uation.

• τ → τ ′ is the type of (partial) functions taking a single argument of type τ
and (possibly) returning a result of typeτ ′. fnx : τ . M is the notation we
will use for function abstraction (i.e. lambda abstraction) in PCF; note that
the typeτ of the abstracted variablex is given explicitly. The application
of function M1 to argumentM2 is indicated byM1 M2. As usual, the
scope of a function abstraction extends as far to the right ofthe dot as
possible and function application associates to the left (i.e.M1 M2 M3 means
(M1 M2) M3, notM1 (M2 M3)).

• The expressionfix(M) indicates an elementx recursively definedby
x = M x. The lambda calculus equivalent isY M , whereY is a suitable
fixpoint combinator.

5.2 Free variables, bound variables, and substitution

PCF contains one variable-binding form: free occurrences of x in M become bound
in fnx : τ . M . The finite set offree variablesof an expressionM , fv(M), is
defined by induction on its structure, as follows:

fv(0) = fv(true) = fv(false)
def
= ∅

fv(succ(M)) = fv(pred(M)) = fv(zero(M)) = fv(fix(M))
def
= fv(M)

fv(if M then M ′ else M ′′)
def
= fv(M) ∪ fv(M ′) ∪ fv(M ′′)

fv(M M ′)
def
= fv(M) ∪ fv(M ′)

fv(x)
def
= {x}

fv(fnx : τ . M)
def
= {x′ ∈ fv(M) | x′ 6= x}.

One says thatM is closedif fv(M) = ∅ andopenotherwise.

5.3 Typing 51

As indicated on Slide 38, we will identifyα-convertible PCF expressions,
i.e. ones that differ only up to the names of their bound variables. Thus by definition,
a PCFterm is an equivalence class of PCF expressions for the equivalence relation
of α-conversion. However, we will always refer to a term via somerepresentative
expression, usually choosing one whose bound variables areall distinct from each
other and from any other variables in the context in which theterm is being used.
The operation ofsubstituting a termM for all free occurrences of a variablex in a
termM ′ will be written

M ′[M/x].

The operation is carried out by textual substitution of an expression representingM
for free occurrences ofx in an expression representingM ′ whose binding variables
are distinct from the free variables inM (thereby avoiding ‘capture’ of free variables
in M by binders inM ′).

5.3 Typing

PCF is a typed language: types are assigned to terms via the relation shown on
Slide 39 whose intended meaning is “if eachx ∈ dom(Γ) has typeΓ(x), thenM
has typeτ ”.

PCF typing relation, Γ ⊢ M : τ

• Γ is a type environment , i.e. a finite partial function mapping

variables to types (whose domain of definition is denoted

dom(Γ))

• M is a term

• τ is a type.

Relation is inductively defined by the axioms and rules in Figure 2.

Notation:

M : τ means M is closed and ∅ ⊢ M : τ holds.

PCFτ
def
= {M | M : τ}.

Slide 39

52 5 PCF

Γ ⊢ 0 : nat(:0)

Γ ⊢ M : nat

Γ ⊢ succ(M) : nat
(:succ)

Γ ⊢ M : nat

Γ ⊢ pred(M) : nat
(:pred)

Γ ⊢ M : nat

Γ ⊢ zero(M) : bool
(:zero)

Γ ⊢ b : bool (b = true, false)(:bool)

Γ ⊢ M1 : bool Γ ⊢ M2 : τ Γ ⊢ M3 : τ

Γ ⊢ if M1 then M2 else M3 : τ
(:if)

Γ ⊢ x : τ if x ∈ dom(Γ) & Γ(x) = τ(:var)

Γ[x 7→ τ] ⊢ M : τ ′

Γ ⊢ fnx : τ . M : τ → τ ′
if x /∈ dom(Γ)(:fn)

Γ ⊢ M1 : τ → τ ′ Γ ⊢ M2 : τ

Γ ⊢ M1 M2 : τ ′
(:app)

Γ ⊢ M : τ → τ

Γ ⊢ fix(M) : τ
(:fix)

In rule (:fn), Γ[x 7→ τ] denotes the type environment mapping x to τ and
otherwise acting like Γ.

Figure 2: Axioms and rules for PCF typing relation

5.3 Typing 53

Proposition 5.3.1.

(i) If Γ ⊢ M : τ holds, thenfv(M) ⊆ dom(Γ). If bothΓ ⊢ M : τ andΓ ⊢ M : τ ′

hold, thenτ = τ ′. In particular a closed term has at most one type.

(ii) If Γ ⊢ M : τ and Γ[x 7→ τ] ⊢ M ′ : τ ′ both hold, then so does
Γ ⊢ M ′[M/x] : τ ′.

Proof. These properties of the inductively defined typing relationare easily proved
by rule induction. The fact that a term has at most one type fora given assignment
of types to its free variables relies upon the fact that typesof bound variables are
given explicitly in function abstractions.

Example 5.3.2(Partial recursive functions in PCF). Although the PCF syntax is
rather terse, the combination of increment, decrement, test for zero, condition-
als, function abstraction and application, and fixpoint recursion makes it Turing
expressive—in the sense that all partial recursive functions1 can be coded. For ex-
ample, recall that the partial functionh : N×N ⇀N defined byprimitive recursion
from f : N ⇀ N andg : N × N × N ⇀ N satisfies that for allx, y ∈ N

{

h(x, 0) = f(x)

h(x, y + 1) = g(x, y, h(x, y)).

Thus if f has been coded in PCF by a termF : nat → nat and g by a term
G : nat → (nat → (nat → nat)), thenh can be coded by

H
def
= fix(fnh : nat → (nat → nat) . fnx : nat . fn y : nat .

if zero(y) then F x else G x (pred y) (h x (predy))).

Apart from primitive recursion, the other construction needed for defining partial
recursive functions isminimisation. For example, the partial functionm : N ⇀ N

defined fromk : N × N ⇀ N by minimisation satisfies that for allx ∈ N

m(x) = leasty ≥ 0 such thatk(x, y) = 0 and

∀z. 0 ≤ z < y ⇒ k(x, z) > 0.

This can also be expressed using fixpoints, although not so easily as in the
case of primitive recursion. For ifk has been coded in PCF by a term
K : nat → (nat → nat), then in fact m can be coded asfnx : nat . M ′ x0

where

M ′ def
= fix(fnm′ : nat → (nat → nat) . fnx : nat . fn y : nat .

if zero(K x y) then y else m′ x (succ y)).

1See the Part IB course onComputation Theory.

54 5 PCF

5.4 Evaluation

We give the operational semantics of PCF in terms of an inductively defined relation
of evaluation whose form is shown on Slide 40. As indicated there, the results of
evaluation are PCF terms of a particular form, calledvalues(and sometimes also
called ‘canonical forms’). The only values of typebool aretrue andfalse. The
values of typenat are unary representations of natural numbers,succn(0) (n ∈ N),
where

{

succ0(0)
def
= 0

succn+1(0)
def
= succ(succn(0)).

Values at function types, being function abstractionsfnx : τ . M , are more
‘intensional’ than those at the ground data types, since thebodyM is an unevaluated
PCF term. The axioms and rules for generating the evaluationrelation are given in
Figure 3.

PCF evaluation relation

takes the form

M ⇓τ V

where

• τ is a PCF type

• M,V ∈ PCFτ are closed PCF terms of type τ

• V is a value,

V ::= 0 | succ(V) | true | false | fnx : τ .M .

The evaluation relation is inductively defined by the axioms and

rules in Figure 3.

Slide 40

Proposition 5.4.1.Evaluation in PCF is deterministic: if bothM⇓τ V andM⇓τ V ′

hold, thenV = V ′.

Proof. By rule induction: one shows that

{(M, τ, V) | M ⇓τ V & ∀V ′ (M ⇓τ V ′ ⇒ V = V ′)}

is closed under the axioms and rules defining⇓. We omit the details.

5.4 Evaluation 55

V ⇓τ V (V a value of type τ)(⇓val)

M ⇓
nat

V

succ(M) ⇓
nat

succ(V)
(⇓succ)

M ⇓
nat

succ(V)

pred(M) ⇓nat V
(⇓pred)

M ⇓nat 0

zero(M) ⇓
bool

true
(⇓zero1)

M ⇓nat succ(V)

zero(M) ⇓bool false
(⇓zero2)

M1 ⇓bool true M2 ⇓τ V

if M1 then M2 else M3 ⇓τ V
(⇓if1)

M1 ⇓bool false M3 ⇓τ V

if M1 then M2 else M3 ⇓τ V
(⇓if2)

M1 ⇓τ→τ ′ fnx : τ . M ′
1 M ′

1[M2/x] ⇓τ ′ V

M1 M2 ⇓τ ′ V
(⇓cbn)

M fix(M) ⇓τ V

fix(M) ⇓τ V
(⇓fix)

Figure 3: Axioms and rules for PCF evaluation

56 5 PCF

Example 5.4.2.The proposition shows that every closed typeable term evaluates to
at most one value. Of course there are some typeable terms that do not evaluate to
anything. We writeM 6 ⇓τ iff M : τ and 6 ∃V. M ⇓τ V . Then for example

Ωτ
def
= fix(fnx : τ . x)

satisfiesΩτ 6 ⇓τ . (For if for someV there were a proof offix(fnx : τ . x) ⇓τ V ,
choose one of minimal height. This proof, call itP, must look like

fnx : τ . x ⇓ fnx : τ . x
(⇓val)

P ′

fix(fnx : τ . x) ⇓ V

(fnx : τ . x) (fix(fnx : τ . x)) ⇓ V
(⇓cbn)

fix(fnx : τ . x) ⇓ V
(⇓fix)

whereP ′ is a strictly shorter proof offix(fnx : τ . x) ⇓τ V , which contradicts the
minimality ofP.)

Remark 5.4.3. PCF evaluation can be defined in terms of a ‘one-step’ transition
relation. Let the relationM →τ M ′ (for M, M ′ ∈ PCFτ) be inductively defined
by the axioms and rules in Figure 4. Then one can show that for all τ and
M, V ∈ PCFτ with V a value

M ⇓τ V ⇔ M(→τ)∗V

where(→τ)∗ denotes the reflexive-transitive closure of the relation→τ .

5.4 Evaluation 57

M →nat M ′

op(M) →τ op(M ′)

(where op = succ,pred & τ = nat ,
or op = zero & τ = bool)

pred(succ(V)) →nat V (V a value of type nat)

zero(0) →bool true

zero(succ(V)) →bool false (V a value of type nat)

M1 →bool M ′
1

if M1 then M2 else M3 →τ if M ′
1 then M2 else M3

if true then M1 else M2 →τ M1

if false then M1 else M2 →τ M2

M1 →τ→τ ′ M ′
1

M1 M2 →τ ′ M ′
1 M2

(fnx : τ . M1) M2 →τ ′ M1[M2/x]

fix(M) →τ M fix(M)

Figure 4: Axioms and rules for PCF transition relation

58 5 PCF

5.5 Contextual equivalence

Contextual equivalence

Two phrases of a programming language are contextually

equivalent if any occurrences of the first phrase in a

complete program can be replaced by the second phrase

without affecting the observable results of executing the

program.

Slide 41

Slide 41 recalls (from the CST Part IB course onSemantics of Programming
Languages) the general notion of contextual equivalence of phrases ina program-
ming language. It is really a family of notions, parameterised by the particular
choices one takes for what constitutes a ‘program’ in the language and what are the
‘observable results’ of executing such programs. For PCF itis reasonable to take
the programs to be closed terms of typenat or bool and to observe the values that
result from evaluating such terms. This leads to the definition given on Slide 42.

5.5 Contextual equivalence 59

Contextual equivalence of PCF terms

Given PCF terms M1,M2, PCF type τ , and a type

environment Γ, the relation Γ ⊢ M1
∼=ctx M2 : τ

is defined to hold iff

• Both the typings Γ ⊢ M1 : τ and Γ ⊢ M2 : τ hold.

• For all PCF contexts C for which C[M1] and C[M2] are

closed terms of type γ, where γ = nat or γ = bool ,

and for all values V : γ,

C[M1] ⇓γ V ⇔ C[M2] ⇓γ V.

Slide 42

Definition 5.5.1 (Contexts). The notationC[M] used on Slide 42 indicates a PCF
term containing occurrences of a termM , and thenC[M ′] is the term that results
from replacing these occurrences byM ′. More precisely, thePCF contextsare
generated by the grammar for PCF expressions augmented by the symbol ‘−’
representing a place, or ‘hole’ that can be filled with a PCF term:

C ::= − | 0 | succ(C) | pred(C) | zero(C) | true | false

| if C then C else C | x | fnx : τ . C | C C | fix(C)

Given such a contextC,1 we writeC[M] for the PCF expression that results from
replacing all the occurrences of− in C by M . This form of substitution may well
involve the capture of free variables inM by binders inC. For example, ifC is
fnx : τ .−, thenC[x] is fnx : τ . x. Nevertheless it is possible to show that if
M andM ′ areα-convertible then so areC[M] andC[M ′]. Hence the operation
on PCF expressions sendingM to C[M] induces a well-defined operation on PCF
terms(= α-equivalence classes of expressions).

1It is common practice to writeC[−] instead ofC to indicate the symbol being used to
mark the ‘holes’ inC.

60 5 PCF

Notation 5.5.2. For closed PCF terms, we write

M1
∼=ctx M2 : τ

for ∅ ⊢ M1
∼=ctx M2 : τ .

Although∼=ctx is a natural notion of semantic equivalence for PCF given its
operational semantics, it is hard to work with, because of the universal quantification
over contexts that occurs in the definition.

5.6 Denotational semantics

We aim to give a denotational semantics to PCF that is compositional (cf. Slide 2)
and that matches its operational semantics. These requirements are made more
precise on Slide 43.

PCF denotational semantics — aims

• PCF types τ 7→ domains [[τ]].

• Closed PCF terms M : τ 7→ elements [[M]] ∈ [[τ]].

Denotations of open terms will be continuous functions.

• Compositionality .

In particular: [[M]] = [[M ′]] ⇒ [[C[M]]] = [[C[M ′]]].

• Soundness.

For any type τ , M ⇓τ V ⇒ [[M]] = [[V]].

• Adequacy .

For τ = bool or nat , [[M]] = [[V]] ∈ [[τ]] =⇒ M ⇓τ V .

Slide 43

Thesoundnessandadequacyproperties make precise the connection between
the operational and denotational semantics for which we areaiming. Note that the
adequacy property only involves the ‘ground’ datatypesnat andbool . One cannot
expect such a property to hold at function types because of the ‘intensional’ nature
of values at such types (mentioned above). Indeed such an adequacy property at
function types would contradict the compositionality and soundness properties we
want for[[−]], as the following example shows.

5.6 Denotational semantics 61

Example 5.6.1.Consider the following two PCF value terms of typenat → nat :

V
def
= fnx : nat . (fn y : nat . y) 0 and V ′ def

= fn x : nat . 0.

NowV 6 ⇓
nat→nat

V ′, since by (⇓val), V ⇓
nat→nat

V 6= V ′ and by Proposition 5.4.1
evaluation is deterministic. However, the soundness and compositionality proper-
ties of[[−]] imply that [[V]] = [[V ′]]. For using (⇓val) and (⇓cbn) we have

(fn y : nat . y) 0 ⇓
nat

0.

So by soundness[[(fn y : nat . y) 0]] = [[0]]. Therefore by compositionality for

C[−]
def
= fnx : nat .− we have

[[C[(fn y : nat . y) 0]]] = [[C[0]]]

i.e. [[V]] = [[V ′]].

As the theorem stated on Slide 44 shows, if we have a denotational semantics
of PCF satisfying the properties on Slide 43, we can use it to establish instances
of contextual equivalence by showing that terms have equal denotation. In many
cases this is an easier task than proving contextual equivalence directly from the
definition. The theorem on Slide 44 generalises to open terms: if the continuous
functions that are the denotations of two open terms (of the same type for some type
environment) are equal, then the terms are contextually equivalent.

Theorem. For all types τ and closed terms M1,M2 ∈ PCFτ ,

if [[M1]] and [[M2]] are equal elements of the domain [[τ]], then

M1
∼=ctx M2 : τ .

Proof.

C[M1] ⇓nat V ⇒ [[C[M1]]] = [[V]] (soundness)

⇒ [[C[M2]]] = [[V]] (compositionality

on [[M1]] = [[M2]])

⇒ C[M2] ⇓nat V (adequacy)

and symmetrically.

Slide 44

62 5 PCF

Proof principle

To prove

M1
∼=ctx M2 : τ

it suffices to establish

[[M1]] = [[M2]] in [[τ]]

? The proof principle is sound, but is it complete? That is,
is equality in the denotational model also a necessary
condition for contextual equivalence?

Slide 45

5.7 Exercises

Exercise 5.7.1.Carry out the suggested proof of Proposition 5.4.1.

Exercise 5.7.2.Recall that Church’s fixpoint combinator in the untyped lambda

calculus isY
def
= λf . (λx . f (x x)) (λx . f (x x)). Show that there are no PCF

typesτ1, τ2, τ3 so that the typing relation

∅ ⊢ fn f : τ1 . (fnx : τ2 . f (x x)) (fnx : τ2 . f (x x)) : τ3

is provable from the axioms and rules in Figure 2.

5.7 Exercises 63

Exercise 5.7.3.Define the following PCF terms:

plus
def
= fix(fn p : nat → (nat → nat) . fnx : nat . fn y : nat .

if zero(y) then x else succ(p xpred(y)))

times
def
= fix(fn t : nat → (nat → nat) . fnx : nat . fn y : nat .

if zero(y) then 0 else plus (t xpred(y)) x)

fact
def
= fix(fn f : nat → nat . fnx : nat .

if zero(x) then succ(0) else times x(f pred(x))).

Show by induction onn ∈ N that for allm ∈ N

plus succm(0) succn(0) ⇓nat succm+n(0)

times succm(0) succn(0) ⇓
nat

succm∗n(0)

fact succn(0) ⇓nat succ!n(0).

64 5 PCF

65

6 Denotational Semantics of PCF

We turn now to the task of showing that PCF has a denotational semantics with the
properties of compositionality, soundness, and adequacy.

Denotational semantics of PCF

To every typing judgement

Γ ⊢ M : τ

we associate a continuous function

[[Γ ⊢ M]] : [[Γ]] → [[τ]]

between domains.

Slide 46

6.1 Denotation of types

For each PCF typeτ , we define a domain[[τ]] by induction on the structure ofτ as
on Slide 47.

66 6 DENOTATIONAL SEMANTICS OF PCF

Denotational semantics of PCF types

[[nat]]
def
= N⊥ (flat domain)

[[bool]]
def
= B⊥ (flat domain)

[[τ → τ ′]]
def
= [[τ]] → [[τ ′]] (function domain).

where N = {0, 1, 2, . . . } and B = {true, false}.

Slide 47

6.2 Denotation of terms

For each PCF termM and type environmentΓ, recall from Proposition 5.3.1 that
there is at most one typeτ for which the typing relationΓ ⊢ M : τ is derivable
from the axioms and rules in Figure 2. We only give a denotational semantics to
such typeable terms. Specifically, given suchM andΓ, we will define a continuous
function between domains

(8) [[Γ ⊢ M]] : [[Γ]] → [[τ]]

whereτ is the type for whichΓ ⊢ M : τ holds, and where[[Γ]] is the following
dependent product domain (see Definition 3.2.3):

(9) [[Γ]]
def
=

∏

x∈dom(Γ)

[[Γ(x)]].

The elements of the domain (9) will be calledΓ-environments: they are func-
tions ρ mapping each variablex in the domain of definition ofΓ to an element
ρ(x) ∈ [[Γ(x)]] in the domain which is the denotation of the typeΓ(x) assigned tox
by the type environmentΓ.

6.2 Denotation of terms 67

Denotational semantics of PCF type environments

[[Γ]]
def
=

∏

x∈dom(Γ) [[Γ(x)]] (Γ-environments)

= the domain of partial functions ρ from variables

to domains such that dom(ρ) = dom(Γ) and

ρ(x) ∈ [[Γ(x)]] for all x ∈ dom(Γ)

Example:

1. For the empty type environment ∅,

[[∅]] = {⊥}

where ⊥ denotes the unique partial function with

dom(⊥) = ∅.

Slide 48

2. [[〈x 7→ τ〉]] =
(

{x } → [[τ]]
)

∼= [[τ]]

3.

[[〈x1 7→ τ1, . . . , xn 7→ τn〉]]

∼=
(

{x1 } → [[τ1]]
)

× . . . ×
(

{xn } → [[τn]]
)

∼= [[τ1]] × . . . × [[τn]]

Slide 49

68 6 DENOTATIONAL SEMANTICS OF PCF

The continuous function (8) is defined by induction on the structure ofM , or
equivalently, by induction on the derivation of the typing relationΓ ⊢ M : τ . The
definition is given on Slides 50–54, where we show the effect of each function on a
Γ-environment,ρ.

Denotational semantics of PCF terms, I

[[Γ ⊢ 0]](ρ)
def
= 0 ∈ [[nat]]

[[Γ ⊢ true]](ρ)
def
= true ∈ [[bool]]

[[Γ ⊢ false]](ρ)
def
= false ∈ [[bool]]

[[Γ ⊢ x]](ρ)
def
= ρ(x) ∈ [[Γ(x)]]

(

x ∈ dom(Γ)
)

Slide 50

6.2 Denotation of terms 69

Denotational semantics of PCF terms, II

[[Γ ⊢ succ(M)]](ρ)

def
=

{

[[Γ ⊢ M]](ρ) + 1 if [[Γ ⊢ M]](ρ) 6= ⊥

⊥ if [[Γ ⊢ M]](ρ) = ⊥

[[Γ ⊢ pred(M)]](ρ)

def
=

{

[[Γ ⊢ M]](ρ) − 1 if [[Γ ⊢ M]](ρ) > 0

⊥ if [[Γ ⊢ M]](ρ) = 0,⊥

[[Γ ⊢ zero(M)]](ρ)
def
=











true if [[Γ ⊢ M]](ρ) = 0

false if [[Γ ⊢ M]](ρ) > 0

⊥ if [[Γ ⊢ M]](ρ) = ⊥

Slide 51

Denotational semantics of PCF terms, III

[[Γ ⊢ if M1 then M2 else M3]](ρ)

def
=











[[Γ ⊢ M2]](ρ) if [[Γ ⊢ M1]](ρ) = true

[[Γ ⊢ M3]](ρ) if [[Γ ⊢ M1]](ρ) = false

⊥ if [[Γ ⊢ M1]](ρ) = ⊥

[[Γ ⊢ M1 M2]](ρ)
def
=

(

[[Γ ⊢ M1]](ρ)
)

([[Γ ⊢ M2]](ρ))

Slide 52

70 6 DENOTATIONAL SEMANTICS OF PCF

Denotational semantics of PCF terms, IV

[[Γ ⊢ fnx : τ .M]](ρ)

def
= λd ∈ [[τ]] . [[Γ[x 7→ τ] ⊢ M]](ρ[x 7→ d])

(

x /∈ dom(Γ)
)

NB: ρ[x 7→ d] ∈ [[Γ[x 7→ τ]]] is the function mapping x to d ∈ [[τ]]

and otherwise acting like ρ.

Slide 53

Denotational semantics of PCF terms, V

[[Γ ⊢ fix(M)]](ρ)
def
= fix ([[Γ ⊢ M]](ρ))

Recall that fix is the function assigning least fixed points to continuous

functions.

Slide 54

6.2 Denotation of terms 71

Denotational semantics of PCF

Proposition. For all typing judgements Γ ⊢ M : τ , the

denotation

[[Γ ⊢ M]] : [[Γ]] → [[τ]]

is a well-defined continous function.

Slide 55

[[Γ ⊢ M]] : [[Γ]] → [[τ]] is a well-defined continuous function because the base
cases of the definition (on Slide 50) are continuous functions and at each induction
step, in giving the denotation of a compound phrase in terms of the denotations of
its immediate subphrases, we make use of constructions preserving continuity—as
we now indicate.

0, true, and false: The denotation of these terms (Slide 50) are all functions
that are constantly equal to a particular value. We noted in Example 2.3.8 that such
functions are continuous.

variables: The denotation of a variable (Slide 50) is a projection function. We
noted in Definition 3.2.3 that such functions are continuous, because of the way
lubs are computed componentwise in dependent product domains.

succ, pred, and zero: We need to make use of the fact that composition of
functions preserves continuity—see the Proposition on Slide 32. We leave its proof
as a simple exercise. In particular, the denotation ofsucc(M) (Slide 51) is the
composition

s⊥ ◦ [[Γ ⊢ M]]

where by induction hypothesis[[Γ ⊢ M]] : [[Γ]] → N⊥ is a continuous function, and
wheres⊥ : N⊥ →N⊥ is the continuous function on the flat domainN⊥ induced, as

72 6 DENOTATIONAL SEMANTICS OF PCF

in Proposition 3.1.1, by the functions : N ⇀ N mapping eachn to n + 1.
Similarly

[[Γ ⊢ pred(M)]] = p⊥ ◦ [[Γ ⊢ M]] and[[Γ ⊢ zero(M)]] = z⊥ ◦ [[Γ ⊢ M]],

for suitable functionsp : N ⇀ N andz : N ⇀ B. (Only p is a properly partial
function, undefined at0; s andz are totally defined functions.)

conditional: By induction hypothesis we have continuous functions[[Γ ⊢ M1]] :
[[Γ]] → B⊥, [[Γ ⊢ M2]] : [[Γ]] → [[τ]], and [[Γ ⊢ M3]] : [[Γ]] → [[τ]]. Then
[[Γ ⊢ if M1 then M2 else M3]] is continuous because we can express the defini-
tion on Slide 52 in terms of composition, the pairing operation of Proposition 3.2.1,
and the continuous function: B⊥ × ([[τ]] × [[τ]]) → [[τ]] of Proposition 3.2.2:

[[Γ ⊢ if M1 then M2 else M3]] = if ◦ 〈[[Γ ⊢ M1]], 〈[[Γ ⊢ M2]], [[Γ ⊢ M3]]〉〉.

application: By induction hypothesis we have continuous functions[[Γ ⊢ M1]] :
[[Γ]] → ([[τ]] → [[τ ′]]) and[[Γ ⊢ M2]] : [[Γ]] → [[τ]]. Then[[Γ ⊢ M1 M2]] is continuous
because we can express the definition on Slide 52 in terms of composition, pairing,
and the evaluation functionev : ([[τ]]→[[τ ′]])×[[τ]]→[[τ ′]] that we proved continuous
in Proposition 3.3.1:

[[Γ ⊢ M1 M2]] = ev ◦ 〈[[Γ ⊢ M1]], [[Γ ⊢ M2]]〉.

function abstraction: By induction hypothesis we have a continuous function
[[Γ[x 7→ τ] ⊢ M]] : [[Γ[x 7→ τ]]]→ [[τ ′]] with x /∈ dom(Γ). Note that eachΓ[x 7→ τ]-
environment,ρ′ ∈ [[Γ[x 7→ τ]]], can be uniquely expressed asρ[x 7→ d], whereρ is
the restriction of the functionρ′ to dom(Γ) and whered = ρ′(x); furthermore the
partial order respects this decomposition:ρ1[x 7→ d1] ⊑ ρ2[x 7→ d2] in [[Γ[x 7→ τ]]]
iff ρ1 ⊑ ρ2 in [[Γ]] andd1 ⊑ d2 in [[τ]]. Thus we can identify[[Γ[x 7→ τ]]] with
the binary product domain[[Γ]] × [[τ]]. So we can apply the ‘Currying’ operation of
Proposition 3.3.1 to obtain a continuous function

cur([[Γ[x 7→ τ] ⊢ M]]) : [[Γ]] → ([[τ]] → [[τ ′]])=[[τ → τ ′]].

But this is precisely the function used to define[[Γ ⊢ fnx : τ . M]] on Slide 53.

fixpoints: By induction hypothesis we have a continuous function[[Γ ⊢ M]] :
[[Γ]]→[[τ→τ]]. Now [[τ→τ]] is the function domain[[τ]]→[[τ]] and from the definition
on Slide 53 we have that[[Γ ⊢ fix(M)]] = fix ◦ [[Γ ⊢ M]] is the composition with
the functionfix : ([[τ]] → [[τ]]) → [[τ]] assigning least fixpoints, which we proved
continuous in the Proposition on Slide 33.

6.3 Compositionality 73

Denotations of closed terms

If M ∈ PCFτ , then by definition ∅ ⊢ M : τ holds, so we get

[[∅ ⊢ M]] : [[∅]] → [[τ]].

When Γ = ∅, the only Γ-environment is the totally undefined

partial function—call it ⊥.

So in this case [[Γ]] is a one-element domain, {⊥}. Continuous

functions f : {⊥}→ D are in bijection with elements f(⊥) ∈ D, and

in particular we can identify the denotation of closed PCF terms with

elements of the domain denoting their type:

[[M]]
def
= [[∅ ⊢ M]](⊥) ∈ [[τ]] (M ∈ PCFτ)

Slide 56

6.3 Compositionality

The fact that the denotational semantics of PCF terms iscompositional—i.e. that
the denotation of a compound term is a function of the denotations of its immediate
subterms—is part and parcel of the definition of[[Γ ⊢ M]] by induction on the
structure ofM . So in particular, each of the ways of constructing terms in PCF
respects equality of denotations: this is summarised in Figure 5. Then the property
of closed terms stated on Slide 43,viz.

[[M]] = [[M ′]] ⇒ [[C[M]]] = [[C[M ′]]]

follows from this by induction on the structure of the context C[−]. More generally,
for open terms we have

Proposition 6.3.1. Suppose

[[Γ ⊢ M]] = [[Γ ⊢ M ′]] : [[Γ]] → [[τ]]

and thatC[−] is a PCF context such thatΓ′ ⊢ C[M] : τ ′ andΓ′ ⊢ C[M ′] : τ ′ hold
for some some typeτ ′ and some type environmentΓ′. Then

[[Γ′ ⊢ C[M]]] = [[Γ′ ⊢ C[M ′]]] : [[Γ′]] → [[τ ′]].

74 6 DENOTATIONAL SEMANTICS OF PCF

• If [[Γ ⊢ M]] = [[Γ ⊢ M ′]] : [[Γ]] → [[nat]], then

[[Γ ⊢ op(M)]] = [[Γ ⊢ op(M ′)]] : [[Γ]] → [[τ]]

(where op = succ,pred and τ = nat , or op = zero and τ = bool).

• If [[Γ ⊢ M1]] = [[Γ ⊢ M ′
1]] : [[Γ]] → [[bool]], [[Γ ⊢ M2]] = [[Γ ⊢ M ′

2]] :
[[Γ]] → [[τ]], and [[Γ ⊢ M3]] = [[Γ ⊢ M ′

3]] : [[Γ]] → [[τ]], then

[[Γ ⊢ if M1 then M2 else M3]] = [[Γ ⊢ if M ′
1 then M ′

2 else M ′
3]] : [[Γ]] → [[τ]].

• If [[Γ ⊢ M1]] = [[Γ ⊢ M ′
1]] : [[Γ]] → [[τ → τ ′]] and [[Γ ⊢ M2]] = [[Γ ⊢ M ′

2]] :
[[Γ]] → [[τ]], then

[[Γ ⊢ M1 M2]] = [[Γ ⊢ M ′
1 M ′

2]] : [[Γ]] → [[τ ′]].

• If [[Γ[x 7→ τ] ⊢ M]] = [[Γ[x 7→ τ] ⊢ M ′]] : [[Γ[x 7→ τ]]] → [[τ ′]], then

[[Γ ⊢ fnx : τ . M]] = [[Γ ⊢ fnx : τ . M ′]] : [[Γ]] → [[τ → τ ′]].

• If [[Γ ⊢ M]] = [[Γ ⊢ M ′]] : [[Γ]] → [[τ → τ]], then

[[Γ ⊢ fix(M)]] = [[Γ ⊢ fix(M ′)]] : [[Γ]] → [[τ]].

Figure 5: Compositionality properties of [[−]]

6.4 Soundness 75

Substitution property of [[−]]

Proposition. Suppose

Γ ⊢ M : τ

Γ[x 7→ τ] ⊢ M ′ : τ ′

(so that by Proposition 5.3.1(ii) we also have

Γ ⊢ M ′[M/x] : τ ′). Then for all ρ ∈ [[Γ]]

[[Γ ⊢ M ′[M/x]]](ρ) =

[[Γ[x 7→ τ] ⊢ M ′]](ρ[x 7→ [[Γ ⊢ M]]]).

In particular when Γ = ∅, [[x 7→ τ ⊢ M ′]] : [[τ]] → [[τ ′]] and

[[M ′[M/x]]] = [[x 7→ τ ⊢ M ′]]([[M]])

Slide 57

The substitution property stated on Slide 57 gives another aspect of the compo-
sitional nature of the denotational semantics of PCF. It canbe proved by induction
on the structure of the termM ′.

6.4 Soundness

The second of the aims mentioned on Slide 43 is to show that if aclosed PCF term
M evaluates to a valueV in the operational semantics, thenM andV have the same
denotation.

Theorem 6.4.1.For all PCF typesτ and all closed termsM, V ∈ PCFτ with V a
value, ifM ⇓τ V is derivable from the axioms and rules in Figure3 then[[M]] and
[[V]] are equal elements of the domain[[τ]].

Proof. One uses Rule Induction for the inductively defined relation⇓. Specifically,
defining

Φ(M, τ, V)
def
⇔ [[M]] = [[V]] ∈ [[τ]]

one shows that the propertyΦ(M, τ, V) is closed under the axioms and rules in
Figure 3. We give the argument for rules (⇓cbn) and (⇓fix), and leave the others as
easy exercises.

76 6 DENOTATIONAL SEMANTICS OF PCF

Case (⇓cbn). Suppose

[[M1]] = [[fnx : τ . M ′
1]] ∈ [[τ → τ ′]](10)

[[M ′
1[M2/x]]] = [[V]] ∈ [[τ ′]].(11)

We have to prove that[[M1 M2]] = [[V]] ∈ [[τ ′]]. But

[[M1 M2]] = [[M1]]([[M2]]) by Slide 52

= [[fnx : τ . M ′
1]]([[M2]]) by (10)

= (λd ∈ [[τ]] . [[x 7→ τ ⊢ M ′
1]](d))([[M2]]) by Slide 53

= [[x 7→ τ ⊢ M ′
1]]([[M2]])

= [[M ′
1[M2/x]]] by Slide 57

= [[V]] by (11).

Case (⇓fix). Suppose

(12) [[M fix(M)]] = [[V]] ∈ [[τ]].

We have to prove that[[fix(M)]] = [[V]] ∈ [[τ]]. But

[[fix(M)]] = fix ([[M]]) by Slide 53

= [[M]](fix([[M]])) by fixed point property offix

= [[M]] [[fix(M)]] by Slide 53

= [[M fix(M)]] by Slide 52

= [[V]] by (12).

We have now established two of the three properties of the denotational
semantics of PCF stated on Slide 43 (and which in particular are needed to use
denotational equality to prove PCF contextual equivalences). The third property,
adequacy, is not so easy to prove as are the first two. We postpone the proof until
we have introduced a useful principle of induction tailoredto reasoning about least
fixed points. This is the subject of the next section.

6.5 Exercises

Exercise 6.5.1.Prove the Proposition on Slide 57.

Exercise 6.5.2.Defining Ωτ
def
= fix(fnx : τ . x), show that[[Ωτ]] is the least

element⊥ of the domain[[τ]]. Deduce that[[fnx : τ . Ωτ]] = [[Ωτ→τ]].

77

7 Relating Denotational and Operational Semantics

We have already seen (in Section 6.4) that the denotational semantics of PCF given
in Section 6 issoundfor the operational semantics, in the sense defined on Slide 43.
Here we prove the property ofadequacydefined on that slide. So we have to prove
for any closed PCF termsM andV of typeτ = nat or bool with V a value, that

[[M]] = [[V]] ⇒ M ⇓τ V.

Perhaps surprisingly, this is not easy to prove. We will employ a method due to
Plotkin (although not quite the one used in his original paper on PCF, Plotkin 1977)
and Mulmuley (1987) making use of the following notion of ‘formal approximation’
relations.

Adequacy

For any closed PCF terms M and V of ground type

γ ∈ {nat , bool} with V a value

[[M]] = [[V]] ∈ [[γ]] =⇒ M ⇓γ V .

NB. Adequacy does not hold at function types:

[[fn x : τ. (fn y : τ. y)x]] = [[fn x : τ. x]] : [[τ]] → [[τ]]

but

fn x : τ. (fn y : τ. y)x 6 ⇓τ→τ fn x : τ. x

Slide 58

7.1 Formal approximation relations

We define a certain family of binary relations

⊳τ ⊆ [[τ]] × PCFτ

indexed by the PCF types,τ . Thus each⊳τ relates elements of the domain[[τ]] to
closed PCF terms of typeτ . We use infix notation and writed ⊳τ M instead of
(d, M) ∈ ⊳τ . The definition of these relations⊳τ proceedsby induction on the

78 7 RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS

structure of the typeτ and is given on Slide 59. (Read the definition in conjunction
with the definition of[[τ]] given on Slide 47.)

The key property of the relations⊳τ is that they are respected by the various
syntax-forming operations of the PCF language. This is summed up by the
Proposition on Slide 60 which makes use of the following terminology.

Definition 7.1.1. For each typing environmentΓ (= a finite partial function from
variables to PCF types), aΓ-substitutionσ is a function mapping each variable
x ∈ dom(Γ) to a closed PCF termσ(x) of typeΓ(x). Recall from Section 6.2 that
a Γ-environmentρ is a function mapping each variablex ∈ dom(Γ) to an element
ρ(x) of the domain[[Γ(x)]]. We define

ρ ⊳Γ σ
def
⇔ ∀x ∈ dom(Γ) . ρ(x) ⊳Γ(x) σ(x).

Definition of d ⊳τ M (d ∈ [[τ]],M ∈ PCFτ)

d ⊳nat M
def
⇔ (d ∈ N ⇒ M ⇓nat succd(0))

d ⊳bool M
def
⇔ (d = true ⇒ M ⇓bool true)

& (d = false ⇒ M ⇓bool false)

d ⊳τ→τ ′ M
def
⇔ ∀e,N (e ⊳τ N ⇒ d(e) ⊳τ ′ M N)

Slide 59

7.1 Formal approximation relations 79

Fundamental property of the relations ⊳τ

Proposition. If Γ ⊢ M : τ is a valid PCF typing, then for all

Γ-environments ρ and all Γ-substitutions σ

ρ ⊳Γ σ ⇒ [[Γ ⊢ M]](ρ) ⊳τ M [σ]

• ρ ⊳Γ σ means that ρ(x) ⊳Γ(x) σ(x) holds for each

x ∈ dom(Γ).

• M [σ] is the PCF term resulting from the simultaneous substitution

of σ(x) for x in M , each x ∈ dom(Γ).

Slide 60

Note that the Fundamental Property of⊳τ given on Slide 60 specialises in case
Γ = ∅ to give

[[M]] ⊳τ M

for all typesτ and all closed PCF termsM : τ . (Here we are using the notation for
denotations of closed terms introduced on Slide 56.) Using this, we can complete
the proof of the adequacy property, as shown on Slide 61.

80 7 RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS

Proof of [[M]] = [[V]] ⇒ M ⇓τ V (τ = nat , bool)

Case τ = nat .

V = succn(0) for some n ∈ N and hence

[[M]] = [[succn(0)]]

⇒ n = [[M]] ⊳τ M by Fundamental Property (Slide 60)

⇒ M ⇓ succn(0) by definition of ⊳nat

Case τ = bool is similar.

Slide 61

7.2 Proof of the Fundamental Property of⊳

To prove the Proposition on Slide 60 we need the following properties of the formal
approximation relations.

Lemma 7.2.1.

(i) ⊥ ⊳τ M holds for allM ∈ PCFτ .

(ii) For eachM ∈ PCFτ , {d | d ⊳τ M} is a chain-closed subset of the domain
[[τ]]. Hence by (i), it is also an admissible subset (cf. Slide34).

(iii) If d2 ⊑ d1, d1 ⊳τ M1, and∀V (M1 ⇓τ V ⇒ M2 ⇓τ V), thend2 ⊳τ M2.

Proof. Each of these properties follows easily by induction on the structure ofτ ,
using the definitions of⊳τ and of the evaluation relation⇓τ .

Proof of the Proposition on Slide60 [NON-EXAMINABLE] . We use Rule In-
duction for the inductively defined typing relationΓ ⊢ M : τ . Define

Φ(Γ, M, τ)
def
⇔ Γ ⊢ M : τ & ∀ρ, σ (ρ ⊳Γ σ ⇒ [[Γ ⊢ M]](ρ) ⊳τ M [σ])

Then it suffices to show thatΦ is closed under the axioms and rules in Figure 2
inductively defining the typing relation.

7.2 Proof of the Fundamental Property of⊳ 81

Case (:0). Φ(Γ, 0, nat) holds because0 ⊳nat 0.

Case (:succ). We have to prove thatΦ(Γ, M, nat) impliesΦ(Γ, succ(M), nat).
But this follows from the easily verified fact that

d ⊳nat M ⇒ s⊥(d) ⊳nat succ(M)

wheres⊥ : N⊥ →N⊥ is the continuous function used in Section 6.2 to describe the
denotation of successor terms,succ(M).

Cases (:pred) and (:zero) are similar to the previous case.

Case (:bool). Φ(Γ, true, bool) holds becausetrue ⊳bool true. Similarly for
Φ(Γ, false, bool).

Case (:if). It suffices to show that ifd1 ⊳bool M1, d2 ⊳τ M2, andd3 ⊳τ M3,
then

(13) if (d1, (d2, d3)) ⊳τ if M1 then M2 else M3

whereif is the continuous function: B⊥ × ([[τ]] × [[τ]]) → [[τ]] of Proposition 3.2.2
that was used in Section 6.2 to describe the denotation of conditional terms. If
d1 = ⊥ ∈ B⊥, thenif (d1, (d2, d3)) = ⊥ and (13) holds by Lemma 7.2.1(i). So we
may assumed1 6= ⊥, in which case eitherd1 = true or d1 = false. We consider
the cased1 = true; the argument for the other case is similar.

Since true = d1 ⊳bool M1, by the definition of⊳bool (Slide 59) we have
M1 ⇓bool true. It follows from rule (⇓if1) in Figure 3 that

∀V (M2 ⇓τ V ⇒ if M1 then M2 else M3 ⇓τ V).

So Lemma 7.2.1(iii) applied tod2 ⊳τ M2 yields that

d2 ⊳τ if M1 then M2 else M3

and then sinced2 = if (true, (d2, d3)) = if (d1, (d2, d3)), we get (13), as required.

Case (:var). Φ(Γ, x, Γ(x)) holds because ifρ ⊳Γ σ, then for allx ∈ dom(Γ) we

have[[Γ ⊢ x]](ρ)
def
= ρ(x) ⊳Γ(x) σ(x)

def
= x[σ].

Case (:fn). SupposeΦ(Γ[x 7→ τ], M, τ ′) andρ ⊳Γ σ hold. We have to show that
[[Γ ⊢ fn x : τ . M]](ρ) ⊳τ→τ ′ (fnx : τ . M)[σ], i.e. thatd ⊳τ N implies

(14) [[Γ ⊢ fn x : τ . M]](ρ)(d) ⊳τ ′ ((fnx : τ . M)[σ])N.

82 7 RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS

From Slide 53 we have

(15) [[Γ ⊢ fn x : τ . M]](ρ)(d) = [[Γ[x 7→ τ] ⊢ M]](ρ[x 7→ d]).

Since(fnx : τ . M)[σ] = fnx : τ . M [σ] and(M [σ])[N/x] = M [σ[x 7→ N]], by
rule (⇓cbn) in Figure 3 we have

(16) ∀V (M [σ[x 7→ N]] ⇓τ ′ V ⇒ ((fnx : τ . M)[σ])N ⇓τ ′ V).

Sinceρ ⊳Γ σ and d ⊳τ N , we haveρ[x 7→ d] ⊳Γ[x7→τ] σ[x 7→ N]; so by
Φ(Γ[x 7→ τ], M, τ ′) we have

[[Γ[x 7→ τ] ⊢ M]](ρ[x 7→ d]) ⊳τ ′ M [σ[x 7→ N]].

Then (14) follows from this by applying Lemma 7.2.1(iii) to (15) and (16).

Case (:app). It suffices to show that ifd1 ⊳τ→τ ′ M1 and d2 ⊳τ M2, then
d1(d2) ⊳τ ′ M1 M2. But this follows immediately from the definition of⊳τ→τ ′ .

Case (:fix). SupposeΦ(Γ, M, τ → τ) holds. For anyρ ⊳Γ σ, we have to prove
that

(17) [[Γ ⊢ fix(M)]](ρ) ⊳τ fix(M)[σ].

Referring to Slide 53, we have[[Γ ⊢ fix(M)]](ρ) = fix (f), wheref
def
= [[Γ ⊢

M]](ρ). By Lemma 7.2.1(ii)

S
def
= {d | d ⊳τ fix(M)[σ]}

is an admissible subset of the domain[[τ]]. So by Scott’s Fixed Point Induction
Principle (Slide 35) to prove (17) it suffices to prove

∀d ∈ [[τ]] (d ∈ S ⇒ f(d) ∈ S).

Now sinceρ ⊳Γ σ, by Φ(Γ, M, τ → τ) and by definition off we havef ⊳τ→τ

M [σ]. So if d ∈ S, i.e.d ⊳τ fix(M)[σ], then by definition of⊳τ→τ , it is the case
that

(18) f(d) ⊳τ (M [σ])(fix(M)[σ]).

Rule (⇓fix) in Figure 3 implies

(19) ∀V ((M [σ])(fix(M)[σ]) ⇓τ V ⇒ fix(M)[σ] ⇓τ V).

Then applying Lemma 7.2.1(iii) to (18) and (19) yieldsf(d) ⊳τ fix(M)[σ],
i.e.f(d) ∈ S, as required.

7.3 Extensionality 83

7.3 Extensionality

Recall the notion of contextual equivalence of PCF terms from Slide 42. The
contextual preorderis the one-sided version of this relation defined on Slide 62.
Clearly

Γ ⊢ M1
∼=ctx M2 : τ ⇔ (Γ ⊢ M1 ≤ctx M2 : τ & Γ ⊢ M2 ≤ctx M1 : τ).

As usual we writeM1 ≤ctx M2 : τ for ∅ ⊢ M1 ≤ctx M2 : τ in caseM1 andM2

are closed terms.
The formal approximation relations⊳τ actually characterise the PCF contextual

preorder between closed terms, in the sense shown on Slide 63.

Contextual preorder between PCF terms

Given PCF terms M1,M2, PCF type τ , and a type environment

Γ, the relation Γ ⊢ M1 ≤ctx M2 : τ is defined to hold iff

• Both the typings Γ ⊢ M1 : τ and Γ ⊢ M2 : τ hold.

• For all PCF contexts C for which C[M1] and C[M2] are

closed terms of type γ, where γ = nat or γ = bool ,

and for all values V : γ,

C[M1] ⇓γ V ⇒ C[M2] ⇓γ V.

Slide 62

84 7 RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS

Contextual preorder from formal approximation

Proposition. For all PCF types τ and all closed terms

M1,M2 ∈ PCFτ

M1 ≤ctx M2 : τ ⇔ [[M1]] ⊳τ M2.

Slide 63

Proof of the Proposition on Slide63. It is not hard to prove that for closed terms
M1, M2 ∈ PCFτ , M1 ≤ctx M2 : τ holds if and only if for allM ∈ PCFτ→bool

M M1 ⇓bool true ⇒ M M2 ⇓bool true.

Now if [[M1]] ⊳τ M2, then for anyM ∈ PCFτ→bool since by the Fundamental
Property of⊳ we have[[M]] ⊳τ→bool M , the definition of⊳τ→bool implies that

(20) [[M M1]] = [[M]]([[M1]]) ⊳bool M M2.

So if M M1 ⇓bool true, then [[M M1]] = true (by the Soundness property) and
hence by definition of⊳bool from (20) we getM M2 ⇓bool true. Thus using the
characterisation of≤ctx mentioned above, we haveM1 ≤ctx M2 : τ .

This establishes the right-to-left implication on Slide 63. For the converse, it is
enough to prove

(21) (d ⊳τ M1 & M1 ≤ctx M2 : τ) ⇒ d ⊳τ M2.

For then ifM1 ≤ctx M2 : τ , since[[M1]] ⊳τ M1 (by the Fundamental Property),
(21) implies[[M1]] ⊳τ M2. Property (21) follows by induction on the structure of
the typeτ , using the following easily verified properties of≤ctx:

7.3 Extensionality 85

• If τ = nat or bool , thenM1 ≤ctx M2 : τ implies

∀V : τ (M1 ⇓τ V ⇒ M2 ⇓τ V).

• If M1 ≤ctx M2 : τ → τ ′, thenM1 M ≤ctx M2 M : τ ′, for all M : τ .

The bi-implication on Slide 63 allows us to transfer the extensionality properties
enjoyed by the domain partial orders⊑ to the contextual preorder, as shown on
Slide 64. (These kind of properties of PCF were first proved byMilner 1977, First
Context Lemma, page 6.)

Extensionality properties of ≤ctx

For τ = bool or nat , M1 ≤ctx M2 : τ holds if and only if

∀V : τ (M1 ⇓τ V ⇒ M2 ⇓τ V).

At a function type τ → τ ′, M1 ≤ctx M2 : τ → τ ′ holds if and

only if

∀M : τ (M1 M ≤ctx M2 M : τ ′).

Slide 64

Proof of the properties on Slide64. The ‘only if’ directions are easy consequences
of the definition of≤ctx.

For the ‘if’ direction in caseτ = bool or nat , we have

[[M1]] = [[V]] ⇒ M1 ⇓τ V by the adequacy property

⇒ M2 ⇓τ V by assumption

and hence[[M1]] ⊳τ M2 by definition of⊳ at these ground types. Now apply the
Proposition on Slide 63.

86 7 RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS

For the ‘if’ direction in case of a function typeτ → τ ′, we have

d ⊳τ M ⇒ [[M1]](d) ⊳τ ′ M1 M since[[M1]] ⊳τ M1

⇒ [[M1]](d) ⊳τ ′ M2 M by (21), sinceM1 M ≤ctx M2 M : τ ′

by assumption

and hence[[M1]] ⊳τ→τ ′ M2 by definition of⊳ at typeτ → τ ′. So once again we
can apply the Proposition on Slide 63 to get the desired conclusion.

7.4 Exercises

Exercise 7.4.1.For any PCF typeτ and any closed termsM1, M2 ∈ PCFτ , show
that

(22) ∀V : τ (M1 ⇓τ V ⇔ M2 ⇓τ V) ⇒ M1
∼=ctx M2 : τ.

[Hint: combine the Proposition on Slide 63 with Lemma 7.2.1(iii).]

Exercise 7.4.2. Use (22) to show thatβ-conversion is valid up to contextual
equivalence in PCF, in the sense that for allfnx : τ . M1 ∈ PCFτ→τ ′ and
M2 ∈ PCFτ

(fnx : τ . M1) M2
∼=ctx M1[M2/x] : τ ′.

Exercise 7.4.3. Is the converse of (22) valid at all types? [Hint: recall the
extensionality property of≤ctx at function types (Slide 64) and consider the terms
fix(fn f : (nat→nat) . f) andfnx : nat .fix(fnx′ : nat . x′) of typenat→nat .]

87

8 Full Abstraction

8.1 Failure of full abstraction

As we saw on Slide 44, the adequacy property implies that contextual equivalence
of two PCF terms can be proved by showing that they have equal denotations:
[[M1]] = [[M2]] ∈ [[τ]] ⇒ M1

∼=ctx M2 : τ . Unfortunately the converse is
false: there are contextually equivalence PCF terms with unequal denotations.

Proof principle

For all types τ and closed terms M1,M2 ∈ PCFτ ,

[[M1]] = [[M2]] in [[τ]] =⇒ M1
∼=ctx M2 : τ .

Hence, to prove

M1
∼=ctx M2 : τ

it suffices to establish

[[M1]] = [[M2]] in [[τ]] .

Slide 65

88 8 FULL ABSTRACTION

Full abstraction

A denotational model is said to be fully abstract whenever denota-

tional equality characterises contextual equivalence.

◮ The domain model of PCF is not fully abstract.

In other words, there are contextually equivalent PCF terms

with different denotations.

Slide 66

In general one says that a denotational semantics isfully abstractif contextual
equivalence coincides with equality of denotation. Thus the denotational semantics
of PCF using domains and continuous functions fails to be fully abstract. The classic
example demonstrating this failure is due to Plotkin (1977)and involves theparallel-
or function shown on Slide 67.

8.1 Failure of full abstraction 89

Parallel-or function

is the continuous function por : B⊥ → (B⊥ → B⊥) defined by

por true false ⊥

true true true true

false true false ⊥

⊥ true ⊥ ⊥

Slide 67

Contrastpor with the ‘sequential-or’ function shown on Slide 68. Both
functions give the usual boolean ‘or’ function when restricted to {true, false},
but differ in their behaviour at arguments involving the element⊥ denoting ‘non-
termination’. Note thatpor(d1, d2) = true if eitherof d1 or d2 is true, even if the
other argument is⊥; whereasorelse(d1, d2) = true impliesd1 6= ⊥.

90 8 FULL ABSTRACTION

Left sequential-or function

The function orelse : B⊥ → (B⊥ → B⊥) defined by

orelse true false ⊥

true true true true

false true false ⊥

⊥ ⊥ ⊥ ⊥

is the denotation of the PCF term

fnx : bool . fn x′ : bool . if x then true else x′

of type bool → (bool → bool).

Slide 68

As noted on Slide 68,orelse can be defined in PCF, in the sense that there is
a closed PCF termM : bool → (bool → bool) with [[M]] = orelse. This term
M tests whether its first argument istrue or false (and so diverges if that first
argument diverges), in the first case returningtrue (leaving the second argument
untouched) and in the second case returning the second argument. By contrast, for
por we have the Proposition stated on Slide 69. We will not give the proof of this
proposition here. Plotkin (1977) proves it via an ‘ActivityLemma’, but there are
alternative approaches using ‘stable’ continuous functions (Gunter 1992, p 181), or
using ‘sequential logical relations’ (Sieber 1992). The key idea is that evaluation in
PCF proceedssequentially. So whateverP is, evaluation ofP M1 M2 must at some
point involve full evaluation of eitherM1 or M2 (P cannot ignore its arguments
if it is to returntrue in some cases andfalse in others); whereas an algorithm to
computepor at a pair of arguments must compute the values of those arguments ‘in
parallel’ in case one diverges whilst the other yields the value true.

One can exploit the undefinability ofpor in PCF to manufacture a pair of
contextually equivalent closed terms in PCF with unequal denotations. Such a pair
is given on Slide 70.

8.1 Failure of full abstraction 91

Undefinability of parallel-or

Proposition. There is no closed PCF term

P : bool → (bool → bool)

satisfying

[[P]] = por : B⊥ → (B⊥ → B⊥) .

Slide 69

Parallel-or test functions

For i = 1, 2 define

Ti
def
= fn f : bool → (bool → bool) .

if (f true Ω) then

if (f Ω true) then

if (f false false) then Ω else Bi

else Ω

else Ω

where B1
def
= true, B2

def
= false,

and Ω
def
= fix(fn x : bool . x).

Slide 70

92 8 FULL ABSTRACTION

Failure of full abstraction

Proposition.

T1
∼=ctx T2 : (bool → (bool → bool)) → bool

[[T1]] 6= [[T2]] ∈ (B⊥ → (B⊥ → B⊥)) → B⊥

Slide 71

Proof of the Proposition on slide71. From the definition ofpor on Slide 67 and the
definition of[[−]] in Section 6.2, it is not hard to see that

[[Ti]](por) =

{

true if i = 1

false if i = 2.

Thus[[T1]](por) 6= [[T2]](por) and therefore[[T1]] 6= [[T2]].
To see thatT1

∼=ctx T2 : (bool→(bool→bool))→bool we use the extensionality
results on Slide 64. Thus we have to show for allM : bool → (bool → bool) and
V ∈ {true, false} that

(23) T1 M ⇓bool V ⇔ T2 M ⇓bool V.

But the definition ofTi is such thatTi M ⇓bool V only holds if

M trueΩ ⇓bool true, M Ω true ⇓bool true, M false false ⇓bool false.

By the soundness property of Slide 43 this means that

[[M]](true)(⊥) = true, [[M]](⊥)(true) = true, [[M]](false)(false) = false.

(Recall from Exercise 6.5.2 that[[Ω]] = ⊥.) It follows in that case that the
continuous function[[M]] : (B⊥×B⊥)→B⊥ coincides withpor (see Exercise 8.4.1).
But this is impossible, by the Proposition on Slide 69. Therefore (23) is trivially
satisfied for allM , and thusT1 andT2 are indeed contextually equivalent.

8.2 PCF+por 93

8.2 PCF+por

The failure of full abstraction for the denotational semantics of PCF can be repaired
by extending PCF with extra terms for those elements of the domain-theoretic model
that are not definable in the language as originally given. Wehave seen thatpor is
one such element ‘missing’ from PCF, and one of the remarkable results in (Plotkin
1977) is that this is the only thing we need add to PCF to obtainfull abstraction.
This is stated without proof on Slides 72 and 73.

PCF+por

Expressions M ::= · · · | por(M,M)

Typing
Γ ⊢ M1 : bool Γ ⊢ M2 : bool

Γ ⊢ por(M1,M2) : bool

Evaluation

M1 ⇓bool true

por(M1,M2) ⇓bool true

M2 ⇓bool true

por(M1,M2) ⇓bool true

M1 ⇓bool false M2 ⇓bool false

por(M1,M2) ⇓bool false

Slide 72

94 8 FULL ABSTRACTION

Plotkin’s full abstraction result

The denotational semantics of PCF+por terms is given by

extending the definition on Slides 50–54 with the clause

[[Γ ⊢ por(M1,M2)]](ρ)
def
=

por([[Γ ⊢ M1]](ρ))([[Γ ⊢ M2]](ρ))

where por : B⊥ → (B⊥ → B⊥) is as on Slide 67.

This denotational semantics is fully abstract for contextual

equivalence of PCF+por terms:

Γ ⊢ M1
∼=ctx M2 : τ ⇔ [[Γ ⊢ M1]] = [[Γ ⊢ M2]].

Slide 73

8.3 Fully abstract semantics for PCF

The evaluation of PCF terms involves a form of ‘sequentiality’ which is not reflected
in the denotational semantics of PCF using domains and continuous functions: the
continuous functionpor does not denote any PCF term and this results in a mis-
match between denotational equality and contextual equivalence. But what precisely
does ‘sequentiality’ mean in general? Can we characterise it in an abstract way,
independent of the particular syntax of PCF terms, and hencegive a more refined
form of denotational semantics thatis fully abstract for contextual equivalence for
PCF (and for other types of language besides the simple, purefunctional language
PCF)? These questions have motivated the development much domain theory and
denotational semantics since the appearance of (Plotkin 1977): see the survey by
Ong (1995), for example.

It is only recently that definitive answers have emerged evenfor such an
apparently simple language as PCF. O’Hearn and Riecke (1995) construct a fully
abstract model of PCF by using certain kinds of ‘logical relation’ to repair the
deficiencies of the standard model we have described here. Although this does
provide a solution, it does not seem to give much insight intothe nature of sequential
computation. By contrast, Abramsky, Jagadeesan, and Malacaria (2000) and Hyland
and Ong (2000) solve the problem by introducing what appearsto be a radically
different approach to giving semantics to programming languages (not just PCF),

8.4 Exercises 95

based upon certain kinds of two-player game: see (Abramsky 1997) and (Hyland
1997) for introductions to this ‘game semantics’.

Finally, a negative result by Loader should be mentioned. Note that the material
in Section 8.1 does not depend upon the presence of numbers and arithmetic in
PCF. Let PCF2 denote the fragment of PCF only involvingbool and the function
types formed from it,true, false, conditionals, variables, function abstraction and
application, and a divergent termΩbool : bool . SinceB⊥ is a finite domain and
since the function domain formed from finite domains is againfinite, the domain
associated to each PCF2 type is finite.1 The domain model is adequate for PCF2

and hence there are only finitely many different PCF2 terms of each type, up to
contextual equivalence. Given these finiteness properties, and the terribly simple
nature of the language, one might hope that the following questions are decidable
(uniformly in the PCF2 typeτ):

• Which elements of[[τ]] are definable by PCF2 terms?

• When are two PCF2 of typeτ contextually equivalent?

Quite remarkably Loader (2001) shows that these are recursively undecidable
questions.

8.4 Exercises

Exercise 8.4.1.Suppose that a monotonic functionp : (B⊥ × B⊥) → B⊥ satisfies

p(true,⊥) = true, p(⊥, true) = true, and p(false, false) = false.

Show thatp coincides with the parallel-or function on Slide 67 in the sense that
p(d1, d2) = por(d1)(d2), for all d1, d2 ∈ B⊥.

Exercise 8.4.2.Show that even though there are two evaluation rules on Slide72
with conclusionpor(M1, M2) ⇓bool true, nevertheless the evaluation relation for
PCF+por is still deterministic (in the sense of Proposition5.4.1).

Exercise 8.4.3.Give the axioms and rules for an inductively defined transition
relation for PCF+por. This should take the form of a binary relation M → M ′

between closed PCF+por terms. It should satisfy

M ⇓ V ⇔ M →∗ V

(where→∗ is the reflexive-transitive closure of→).

1A further simplification arises from the fact that if the domainsD andD′ are finite, then
they contain no non-trivial chains and hence the continuousfunctionsD → D′ are just the
monotone functions.

96 REFERENCES

References

Abramsky, S. (1997). Semantics of interaction: An introduction to game seman-
tics. In A. M. Pitts and P. Dybjer (Eds.),Semantics and Logics of Computa-
tion, Publications of the Newton Institute, pp. 1–31. CambridgeUniversity
Press.

Abramsky, S., R. Jagadeesan, and P. Malacaria (2000). Full abstraction for PCF.
Information and Computation 163, 409–470.

Fiore, M., A. Jung, E. Moggi, P. O’Hearn, J. Riecke, G. Rosolini, and
I. Stark (1996). Domains and denotational semantics: History, accomplish-
ments and open problems.Bulletin of EATCS, 59, 227–256.

Gunter, C. A. (1992).Semantics of Programming Languages: Structures and
Techniques. Foundations of Computing. MIT Press.

Hyland, J. M. E. (1997). Game semantics. In A. M. Pitts and P. Dybjer (Eds.),
Semantics and Logics of Computation, Publications of the Newton Institute,
pp. 131–184. Cambridge University Press.

Hyland, J. M. E. and C.-H. L. Ong (2000). On full abstraction for PCF.
Information and Computation 163, 285–408.

Loader, R. (2001). Finitary PCF is not decidable.Theoretical Computer Sci-
ence 266, 341–364.

Milner, R. (1977). Fully abstract models of typed lambda-calculi. Theoretical
Computer Science 4, 1–22.

Mulmuley, K. (1987).Full Abstraction and Semantic Equivalence. MIT Press.

O’Hearn, P. W. and J. G. Riecke (1995). Kripke logical relations and PCF.
Information and Computation 120, 107–116.

Ong, C.-H. L. (1995). Correspondence between operational and denotational
semantics. In S. Abramsky, D. Gabbay, and T. S. E. Maibaum (Eds.),
Handbook of Logic in Computer Science, Vol 4, pp. 269–356. Oxford
University Press.

Paulson, L. C. (1987).Logic and Computation. Cambridge University Press.

Pitts, A. M. (1996). Relational properties of domains.Information and Compu-
tation 127, 66–90.

Plotkin, G. D. (1977). LCF considered as a programming language.Theoretical
Computer Science 5, 223–255.

Scott, D. S. (1993). A type-theoretical alternative to ISWIM, CUCH, OWHY.
Theoretical Computer Science 121, 411–440.

Sieber, K. (1992). Reasoning about sequential functions via logical relations. In
M. P. Fourman, P. T. Johnstone, and A. M. Pitts (Eds.),Applications of Cat-
egories in Computer Science, Proceedings LMS Symposium, Durham, UK,

REFERENCES 97

1991, Volume 177 ofLMS Lecture Note Series, pp. 258–269. Cambridge
University Press.

Tennent, R. D. (1991).Semantics of Programming Languages. Prentice Hall
International (UK) Ltd.

Winskel, G. (1993).The Formal Semantics of Programming Languages. Foun-
dations of Computing. Cambridge, Massachusetts: The MIT Press.

98 REFERENCES

