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Background

Current Internet routing protocols exhibit several types of anomalies
that can reduce network reliability and increase operational costs.

A very incomplete list of problems:
BGP No convergence guarantees [KRE00, GR01, MGWR02],

wedgies [GH05]. Excessive table growth in backbone
(see current work on Locator/ID separation in the RRG,
for example [FFML09]).

IGPs The lack of options has resulted in some large networks
using BGP as an IGP (see Chapter 5 of [ZB03] and
Chapter 3 of [WMS05]).

RR and AD Recent work has illustrated some pitfalls of Route
Redistribution (RR) and Administrative Distance
(AD) [LXZ07, LXP+08, LXZ08].

We will return to these issues later in the term.
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How did we get here?

Internet protocols have evolved in a culture of ‘rough consensus
and running code’ — pivotal to the success of the Internet due to
the emphasis on interoperability.
This has worked fairly well for data-transport and
application-oriented protocols (IPv4, TCP, FTP, DNS, HTTP, ...)
Then why are routing protocols so broken?

T. Griffin (cl.cam.ac.uk) An Algebraic Approach to Internet Routing Lectures 01 — 04T.G.Griffin c©2010 4 / 64



Why are routing protocols so broken?

Routing protocols tend not to run on a user’s end system, but
rather on specialized devices (routers) buried deep within a
network’s infrastructure.
The router market has been dominated by a few large companies
— an environment that encourages proprietary extensions and the
development of de facto standards.
The expedient hack usually wins.
And finally, let’s face it — routing is hard to get right.
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What is to be done?

Central Thesis
The culture of the Internet has confounded two things that should be
clearly distinguished — what problem is being solved and how it is
being solved algorithmically.

Your challenge
Think of yourself broadly as a Computer Scientist, not narrowly as
a “networking person” ...
Remember that the Internet did not come out of the established
networking community! (See John Day’s wonderful book [Day08].)
Why do we think the next generation network will??
Routing research should be about more than just understanding
the accidental complexity associated with artifacts pooped out by
vendors.
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Shortest paths example, (N∞, min, +)
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The adjacency matrix

A =



1 2 3 4 5

1 ∞ 2 1 6 ∞
2 2 ∞ 5 ∞ 4
3 1 5 ∞ 4 3
4 6 ∞ 4 ∞ ∞
5 ∞ 4 3 ∞ ∞


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Shortest paths example, (N∞, min, +)

1
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5 42
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Bold arrows indicate the
shortest-path tree rooted at 1.

The routing matrix

R =



1 2 3 4 5

1 0 2 1 5 4
2 2 0 3 7 4
3 1 3 0 4 3
4 5 7 4 0 7
5 4 4 3 7 0


Matrix R solves this global
optimality problem:

R(i , j) = min
p∈P(i, j)

w(p),

where P(i , j) is the set of all paths
from i to j .
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Widest paths example, (N∞, max, min)

1

2

3

4

5

2

1 3

6 4

5 4

Bold arrows indicate the
widest-path tree rooted at 1.

The routing matrix

R =



1 2 3 4 5

1 ∞ 4 4 6 4
2 4 ∞ 5 4 4
3 4 5 ∞ 4 4
4 6 4 4 ∞ 4
5 4 4 4 4 ∞


Matrix R solves this global
optimality problem:

R(i , j) = max
p∈P(i, j)

w(p),

where w(p) is now the minimal
edge weight in p.
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Strange example, (2{a, b, c}, ∪, ∩)

1

2

3

4

5

{a}

{b c} {b}

{a b} {b}

{a b c} {c}

We want a Matrix R to solve this
global optimality problem:

R(i , j) =
⋃

p∈P(i, j)

w(p),

where w(p) is now the intersection
of all edge weights in p.

For x ∈ {a, b, c}, interpret x ∈ R(i , j) to mean that there is at least
one path from i to j with x in every arc weight along the path.
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Strange example, (2{a, b, c}, ∪, ∩)

The matrix R

1 2 3 4 5

1 {a b c} {a b c} {a b c} {a b} {b c}
2 {a b c} {a b c} {a b c} {a b} {b c}
3 {a b c} {a b c} {a b c} {a b} {b c}
4 {a b} {a b} {a b} {a b c} {b}
5 {b c} {b c} {b c} {b} {a b c}


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Another strange example, (2{a, b, c}, ∩, ∪)

1

2

3

4

5

{a}

{b c} {b}

{a b} {b}

{a b c} {c}

We want matrix R to solve this
global optimality problem:

R(i , j) =
⋂

p∈P(i, j)

w(p),

where w(p) is now the union of all
edge weights in p.

For x ∈ {a, b, c}, interpret x ∈ R(i , j) to mean that every path from i
to j has at least one arc with weight containing x .
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Another strange example, (2{a, b, c}, ∩, ∪)

The matrix R

1 2 3 4 5

1 {} {} {b} {b} {}
2 {} {} {b} {b} {}
3 {b} {b} {} {b} {b}
4 {b} {b} {b} {} {b}
5 {} {} {b} {b} {}


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These structures are examples of Semirings

See [Car79, GM84, GM08]

name S ⊕, ⊗ 0 1 possible routing use

sp N∞ min + ∞ 0 minimum-weight routing
bw N∞ max min 0 ∞ greatest-capacity routing
rel [0, 1] max × 0 1 most-reliable routing
use {0, 1} max min 0 1 usable-path routing

2W ∪ ∩ {} W shared link attributes?
2W ∩ ∪ W {} shared path attributes?

A wee bit of notation!
Symbol Interpretation
N Natural numbers (starting with zero)
N∞ Natural numbers, plus infinity
0 Identity for ⊕
1 Identity for ⊗
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Recomended Reading
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What algebraic properties are associated with global
optimality?

Distributivity

L.D : a⊗ (b ⊕ c) = (a⊗ b)⊕ (a⊗ c),
R.D : (a⊕ b)⊗ c = (a⊗ c)⊕ (b ⊗ c).

What is this in sp = (N∞, min, +)?

L.DIST : a + (b min c) = (a + b) min (a + c),
R.DIST : (a min b) + c = (a + c) min (b + c).
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Local Optimality?

Say that R is a left-locally optimal solution when

R = (A⊗ R)⊕ I.

That is, for i 6= j we have

R(i , j) =
⊕
q∈V

A(i , q)⊗ R(q, j)

where N(i) = {q | (i , q) ∈ E} is the set of neighbors of i .

In other words, R(i , j) is the best possible value given the values
R(q, j), for all neighbors q of i .
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Oh, don’t forget Right Local Optimality....

Say that R is a right-locally optimal solution when

R = (R⊗ A)⊕ I.

That is, for i 6= j we have

R(i , j) =
⊕
q∈V

R(i , q)⊗ A(q, j)

In other words, R(i , j) is the best possible value given the values
R(q, j), for all in-neighbors q of destination j .
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With Distributivity

A is an adjacency matrix over semiring S.

For Semirings, the following two problems are essentially the same —
locally optimal solutions are globally optimal solutions.

Global Optimality Local Optimality
Find R such that Find R such that

R(i , j) =
⊕∑

p∈P(i, j)

w(p) R = (A⊗ R)⊕ I
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Without Distributivity

When ⊗ does not distribute over ⊕, the following two problems are
distinct.

Global Optimality Local Optimality
Find R such that Find R such that

R(i , j) =
⊕∑

p∈P(i, j)

w(p) R = (A⊗ R)⊕ I

Global Optimality
This has been studied, for example [LT91b, LT91a] in the context of
circuit layout. See Chapter 5 of [BT10]. This approach does not play
well with (loop-free) hop-by-hop forwarding!

Local Optimality
At a very high level, this is the type of problem that BGP attempts to
solve!!
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Semigroups

Definition (Semigroup)
A semigroup (S, ⊕) is a non-empty set S with a binary operation such
that

ASSOCIATIVE : a⊕ (b ⊕ c) = (a⊕ b)⊕ c

S ⊕ where
N∞ min
N∞ max
N∞ +
2W ∪
2W ∩
S∗ ◦ (abc ◦ de = abcde)
S left (a left b = a)
S right (a right b = b)
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Special Elements

Definition
α ∈ S is an identity if for all
a ∈ S

a = α⊕ a = a⊕ α

A semigroup is a monoid if it
has an identity.
ω is an annihilator if for all
a ∈ S

ω = ω ⊕ a = a⊕ ω

S ⊕ α ω

N∞ min ∞ 0
N∞ max 0 ∞
N∞ + 0 ∞
2W ∪ {} W
2W ∩ W {}
S∗ ◦ ε
S left
S right
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Important Properties

Definition (Some Important Semigroup Properties)

COMMUTATIVE : a⊕ b = b ⊕ a
SELECTIVE : a⊕ b ∈ {a, b}

IDEMPOTENT : a⊕ a = a

S ⊕ COMMUTATIVE SELECTIVE IDEMPOTENT

N∞ min ? ? ?
N∞ max ? ? ?
N∞ + ?

2W ∪ ? ?

2W ∩ ? ?
S∗ ◦
S left ? ?
S right ? ?
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Order Relations

We are interested in order relations ≤⊆ S × S

Definition (Important Order Properties)

REFLEXIVE : a ≤ a

TRANSITIVE : a ≤ b ∧ b ≤ c → a ≤ c

ANTISYMMETRIC : a ≤ b ∧ b ≤ a → a = b

TOTAL : a ≤ b ∨ b ≤ a

partial preference total
pre-order order order order

REFLEXIVE ? ? ? ?
TRANSITIVE ? ? ? ?

ANTISYMMETRIC ? ?
TOTAL ? ?
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Canonical Pre-order of a Commutative Semigroup

Suppose ⊕ is commutative.

Definition (Canonical pre-orders)

a ER
⊕ b ≡ ∃c ∈ S : b = a⊕ c

a EL
⊕ b ≡ ∃c ∈ S : a = b ⊕ c

Lemma (Sanity check)
Associativity of ⊕ implies that these relations are transitive.

Proof.
Note that a ER

⊕ b means ∃c1 ∈ S : b = a⊕ c1, and b ER
⊕ c means

∃c2 ∈ S : c = b ⊕ c2. Letting c3 = c1 ⊕ c2 we have
c = b ⊕ c2 = (a⊕ c1)⊕ c2 = a⊕ (c1 ⊕ c2) = a⊕ c3. That is,
∃c3 ∈ S : c = a⊕ c3, so a ER

⊕ c. The proof for EL
⊕ is similar.
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Canonically Ordered Semigroup

Definition (Canonically Ordered Semigroup)

A commutative semigroup (S, ⊕) is canonically ordered when a ER
⊕ c

and a EL
⊕ c are partial orders.

Definition (Groups)

A monoid is a group if for every a ∈ S there exists a a−1 ∈ S such that
a⊕ a−1 = a−1 ⊕ a = α.
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Canonically Ordered Semigroups vs. Groups

Lemma (THE BIG DIVIDE)
Only a trivial group is canonically ordered.

Proof.
If a, b ∈ S, then a = α⊕ ⊕ a = (b ⊕ b−1)⊕ a = b ⊕ (b−1 ⊕ a) = b ⊕ c,
for c = b−1 ⊕ a, so a EL

⊕ b. In a similar way, b ER
⊕ a. Therefore

a = b.
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Natural Orders
Definition (Natural orders)
Let (S, ⊕) be a semigroup.

a ≤L
⊕ b ≡ a = a⊕ b

a ≤R
⊕ b ≡ b = a⊕ b

Lemma
If ⊕ is commutative and idempotent, then a ED

⊕ b ⇐⇒ a ≤D
⊕ b, for

D ∈ {R, L}.

Proof.

a ER
⊕ b ⇐⇒ b = a⊕ c = (a⊕ a)⊕ c = a⊕ (a⊕ c)

= a⊕ b ⇐⇒ a ≤R
⊕ b

a EL
⊕ b ⇐⇒ a = b ⊕ c = (b ⊕ b)⊕ c = b ⊕ (b ⊕ c)

= b ⊕ a = a⊕ b ⇐⇒ a ≤L
⊕ b
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Special elements and natural orders

Lemma (Natural Bounds)

If α exists, then for all a, a ≤L
⊕ α and α ≤R

⊕ a
If ω exists, then for all a, ω ≤L

⊕ a and a ≤R
⊕ ω

If α and ω exist, then S is bounded.

ω ≤L
⊕ a ≤L

⊕ α

α ≤R
⊕ a ≤R

⊕ ω

Remark (Thanks to Iljitsch van Beijnum)
Note that this means for (min, +) we have

0 ≤L
min a ≤L

min ∞
∞ ≤R

min a ≤R
min 0

and still say that this is bounded, even though one might argue with the
terminology!
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Examples of special elements

S ⊕ α ω ≤L
⊕ ≤R

⊕
N ∪ {∞} min ∞ 0 ≤ ≥
N ∪ {∞} max 0 ∞ ≥ ≤
P(W ) ∪ {} W ⊇ ⊆
P(W ) ∩ W {} ⊆ ⊇
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Property Management

Lemma
Let D ∈ {R, L}.

1 IDEMPOTENT((S, ⊕)) ⇐⇒ REFLEXIVE((S, ≤D
⊕))

2 COMMUTATIVE((S, ⊕)) =⇒ ANTISYMMETRIC((S, ≤D
⊕))

3 SELECTIVE((S, ⊕)) ⇐⇒ TOTAL((S, ≤D
⊕))

Proof.
1 a ≤D

⊕ a ⇐⇒ a = a⊕ a,
2 a ≤L

⊕ b ∧ b ≤L
⊕ a ⇐⇒ a = a⊕ b ∧ b = b ⊕ a =⇒ a = b

3 a = a⊕ b ∨ b = a⊕ b ⇐⇒ a ≤L
⊕ b ∨ b ≤L

⊕ a
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Semirings

(S, ⊕, ⊗, 0, 1) is a semiring when

(S, ⊕, 0) is a commutative monoid
(S, ⊗, 1) is a monoid
0 is an annihilator for ⊗

and distributivity holds,

LD : a⊗ (b ⊕ c) = (a⊗ b)⊕ (a⊗ c)
RD : (a⊕ b)⊗ c = (a⊗ c)⊕ (b ⊗ c)

T. Griffin (cl.cam.ac.uk) An Algebraic Approach to Internet Routing Lectures 01 — 04T.G.Griffin c©2010 34 / 64



Encoding path problems

(S, ⊕, ⊗, 0, 1) a semiring
G = (V , E) a directed graph
w ∈ E → S a weight function

Path weight
The weight of a path p = i1, i2, i3, · · · , ik is

w(p) = w(i1, i2)⊗ w(i2, i3)⊗ · · · ⊗ w(ik−1, ik ).

The empty path is given the weight 1.

Adjacency matrix A

A(i , j) =


w(i , j) if (i , j) ∈ E ,

0 otherwise
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The general problem of finding globally optimal paths

Given an adjacency matrix A, find R such that for all i , j ∈ V

R(i , j) =
⊕

p∈P(i, j)

w(p)

How can we solve this problem?
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Powers and closure
(S, ⊕, ⊗, 0, 1) a semiring

Powers, ak

a0 = 1
ak+1 = a ⊗ ak

Closure, a∗

a(k) = a0 ⊕ a1 ⊕ a2 ⊕ · · · ⊕ ak

a∗ = a0 ⊕ a1 ⊕ a2 ⊕ · · · ⊕ ak ⊕ · · ·

Definition (q stability)

If there exists a q such that a(q) = a(q+1), then a is q-stable. Therefore,
a∗ = a(q), assuming ⊕ is idempotent.

Fact 1
If 1 is an annihiltor for ⊕, then every a ∈ S is 0-stable!
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Lift semiring to matrices

(S, ⊕, ⊗, 0, 1) a semiring
Define the semiring of n× n-matrices over S : (Mn(S), ⊕, ⊗, J, I)

⊕ and ⊗
(A⊕ B)(i , j) = A(i , j)⊕ B(i , j)

(A⊗ B)(i , j) =
⊕

1≤q≤n

A(i , q)⊗ B(q, j)

J and I

J(i , j) = 0

I(i , j) =


1 (if i = j)

0 (otherwise)
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Mn(S) is a semiring!

Check (left) distribution

A⊗ (B⊕ C) = (A⊗ B)⊕ (A⊗ C)

(A⊗ (B⊕ C))(i , j)
=

⊕
1≤q≤n

A(i , q)⊗ (B⊕ C)(q, j)

=
⊕

1≤q≤n

A(i , q)⊗ (B(q, j)⊕ C(q, j))

=
⊕

1≤q≤n

(A(i , q)⊗ B(q, j))⊕ (A(i , q)⊗ C(q, j))

= (
⊕

1≤q≤n

A(i , q)⊗ B(q, j))⊕ (
⊕

1≤q≤n

A(i , q)⊗ C(q, j))

= ((A⊗ B)⊕ (A⊗ C))(i , j)
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On the matrix semiring

Matrix powers, Ak

A0 = I

Ak+1 = A⊗ Ak

Closure, A∗

A(k) = I⊕ A1 ⊕ A2 ⊕ · · · ⊕ Ak

A∗ = I⊕ A1 ⊕ A2 ⊕ · · · ⊕ Ak ⊕ · · ·

Note: A∗ might not exist (sum may not converge)
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Fact 2

If S is 0-stable, then Mn(S) is (n − 1)-stable. That is,

A∗ = A(n−1) = I⊕ A1 ⊕ A2 ⊕ · · · ⊕ An−1
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Computing optimal paths

Let P(i , j) be the set of paths from i to j .
Let Pk (i , j) be the set of paths from i to j with exactly k arcs.
Let P(k)(i , j) be the set of paths from i to j with at most k arcs.

Theorem

(1) Ak (i , j) =
⊕

p∈Pk (i, j)

w(p)

(2) A(k+1)(i , j) =
⊕

p∈P(k)(i, j)

w(p)

(3) A(∗)(i , j) =
⊕

p∈P(i, j)

w(p)
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Proof of (1)

By induction on k . Base Case: k = 0.

P0(i , i) = {ε},

so A0(i , i) = I(i , i) = 1 = w(ε).

And i 6= j implies P0(i , j) = {}. By convention⊕
p∈{}

w(p) = 0 = I(i , j).

T. Griffin (cl.cam.ac.uk) An Algebraic Approach to Internet Routing Lectures 01 — 04T.G.Griffin c©2010 43 / 64



Proof of (1)

Induction step.

Ak+1(i , j) = (A⊗ Ak )(i , j)

=
⊕

1≤q≤n

A(i , q)⊗ Ak (q, j)

=
⊕

1≤q≤n

A(i , q)⊗ (
⊕

p∈Pk (q, j)

w(p))

=
⊕

1≤q≤n

⊕
p∈Pk (q, j)

A(i , q)⊗ w(p)

=
⊕

(i, q)∈E

⊕
p∈Pk (q,j)

w(i , q)⊗ w(p)

=
⊕

p∈Pk+1(i, j)

w(p)
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Semirings have other applications in Networking

Network calculus [BT01]. For
analyzing performance guarantees
in networks. Traffic flows are
subject to constraints imposed by
the system components :

link capacity
traffic shapers (leaky buckets)
congestion control
background traffic

Algebraic means of expressing and
analyzing these constraints starts
with the min-plus semiring.
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Direct Product of Semigroups

Let (S,⊕S) and (T ,⊕T ) be semigroups.

Definition (Direct product semigroup)
The direct product is denoted (S,⊕S)× (T ,⊕T ) = (S × T ,⊕), where
⊕ = ⊕S ×⊕T is defined as

(s1, t1)⊕ (s2, t2) = (s1 ⊕S s2, t1 ⊕T t2).
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Lexicographic Product of Semigroups

Definition (Lexicographic product semigroup (from [Gur08]))
Suppose S is commutative idempotent semigroup and T be a monoid.
The lexicographic product is denoted (S,⊕S) ~× (T ,⊕T ) = (S × T ,⊕),
where ~⊕ = ⊕S ~×⊕T is defined as

(s1, t1)~⊕(s2, t2) =


(s1 ⊕S s2, t1 ⊕T t2) s1 = s1 ⊕S s2 = s2

(s1 ⊕S s2, t1) s1 = s1 ⊕S s2 6= s2

(s1 ⊕S s2, t2) s1 6= s1 ⊕S s2 = s2

(s1 ⊕S s2, 0T ) otherwise.
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Lexicographic Semiring

(S, ⊕S, ⊗S) ~× (T , ⊕T , ⊗T ) = (S × T , ⊕S ~×⊕T , ⊗S ×⊗T )

Theorem ([Sai70, GG07, Gur08])

LD(S ~× T ) ⇐⇒ LD(S) ∧ LD(T ) ∧ (LC(S) ∨ LK(T ))

Where
Property Definition
LD ∀a, b, c : c ⊗ (a⊕ b) = (c ⊗ a)⊕ (c ⊗ b)
LC ∀a, b, c : c ⊗ a = c ⊗ b =⇒ a = b
LK ∀a, b, c : c ⊗ a = c ⊗ b
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Return to examples

name LD LC LK

sp Yes Yes No
bw Yes No No

So we have
LD(sp ~× bw)

Is something wrong here? Is it really true that LC(sp)? What about
elements such as (∞, 17) or (21, 0)? How can this be fixed?
Note that

¬(LD(bw ~× sp))
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sp ~× bw

sp ~× bw

Let (S, ⊕, ⊗, 0, 1) = sp ~× bw.

sp = (N∞, min, +, ∞, 0)
bw = (N∞, max, min, 0, ∞)

sp ~× bw = (N∞ × N∞, min ~×max, +×min, (∞, 0), (0, ∞))

(17, 10)⊕ (21, 100) = (17, 10)
(17, 10)⊕ (17, 100) = (17, 100)
(17, 10)⊗ (21, 100) = (38, 10)
(17, 10)⊗ (17, 100) = (34, 10)
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Sample instance for sp ~× bw

1

2

3

4

5

(6, 70)

(5, 70) (6, 20)(2, 50)

(8, 90)

(1, 50)

(1, 10)
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The adjacency matrix



1 2 3 4 5

1 (∞, 0) (2, 50) (8, 90) (6, 70) (∞, 0)
2 (2, 50) (∞, 0) (5, 70) (∞, 0) (6, 20)
3 (8, 90) (5, 70) (∞, 0) (1, 50) (1, 10)
4 (6, 70) (∞, 0) (1, 50) (∞, 0) (∞, 0)
5 (∞, 0) (6, 20) (1, 10) (∞, 0) (∞, 0)


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Shortest-path DAG rooted at 1

1

2

3

4

5(8, 90) (1, 10)

(6, 20)

(1, 50)

(5, 70)

(6, 70)

(2, 50)
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Shortest-path DAG rooted at 3

1

2

3

4

5

(6, 20)

(8, 90) (1, 10)

(1, 50)

(5, 70)

(6, 70)

(2, 50)
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Shortest-path DAG rooted at 5

1

2

3

4

5

(6, 70)

(8, 90)

(5, 70) (6, 20)(2, 50)

(1, 10)

(1, 50)
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The routing matrix



1 2 3 4 5

1 (0, ∞) (2, 50) (7, 50) (6, 70) (8, 20)
2 (2, 50) (0, ∞) (5, 70) (6, 50) (6, 20)
3 (7, 50) (5, 70) (0, ∞) (1, 50) (1, 10)
4 (6, 70) (6, 50) (1, 50) (0, ∞) (2, 10)
5 (8, 20) (6, 20) (1, 10) (2, 10) (0, ∞)


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