
UNIVERSITY OF
CAMBRIDGE
Computer Laboratory

Computer Science Tripos Part II

Optimising Compilers (Parts B C D)

http://www.cl.cam.ac.uk/Teaching/1011/OptComp/

Alan Mycroft am@cl.cam.ac.uk

2010–2011 (Michaelmas Term)

http://www.cl.cam.ac.uk/Teaching/1011/OptComp/
mailto:am@cl.cam.ac.uk

Part B: Higher-Level Optimisations

This second part of the course concerns itself with more modern optimisation techniques than
the first part. A simplistic view is that the first part concerned classical optimisations for
imperative languages and this part concerns mainly optimisations for functional languages
but this somewhat misrepresents the situation. For example even if we perform some of the
optimisations (like strictness optimisations) detailed here on a functional language, we may
still wish to perform flowgraph-based optimisations like register allocation afterwards. The
view I would like to get across is that the optimisations in this part tend to be interprocedural
ones and these can often be seen with least clutter in a functional language. So a more correct
view is that this part deals with analyses and optimisations at a higher level than that which is
easily represented in a flowgraph. Indeed they tend to be phrased in terms of the original (or
possibly canonicalised) syntax of the programming language, so that flowgraph-like concepts
are not easily available (whether we want them to be or not!).

As a final remark aimed at discouraging the view that the techniques detailed here ‘are
only suited to functional languages’, one should note that for example ‘abstract interpretation’
is a very general framework for analysis of programs written in any paradigm and it is only
the instantiation of it to strictness analysis given here which causes it to be specialised to
programs written in a functional paradigm. Similarly ‘rule-based program property inference’
can be seen as a framework which can be specialised into type checking and inference systems
(the subject of another CST Part II course) in addition to the techniques given here.

One must remark however, that the research communities for dataflow analyses and
higher-level program analyses have not always communicate sufficiently for unified theory
and notation to have developed.

We start by looking at classical intra-procedural optimisations which are typically done
at the syntax tree level. Note that these can be seen as code motion transformations (see
Section 6).

10 Algebraic Identities

One form of transformation which is is not really covered here is the (rather boring) purely
algebraic tree-to-tree transformation such as e+0 −→ e or (e+n)+m −→ e+(n+m) which
usually hold universally (without the need to do analysis to ensure their validity, although
neither need hold in floating point arithmetic!). A more programming-oriented rule with a
trivial analysis might be transforming

let x = e in if e’ then ... x ... else e’’

in a lazy language to

if e’ then let x = e in ... x ... else e’’

when e’ and e’’ do not contain x. The flavour of transformations which concern us are those
for which a non-trivial (i.e. not purely syntactic) property is required to be shown by analysis
to validate the transformation.

18

10.1 Strength Reduction

A slightly more exciting example is that of strength reduction. Strength reduction generally
refers to replacing some expensive operator with some cheaper one. A trivial example given by
an simple algebraic identity such as 2∗e −→ let x = e in x + x. It is more interesting/useful
to do this in a loop.

First find loop induction variables, those whose only assignment in the loop is i := i⊕c for
some operator ⊕ and some constant5 c. Now find other variables j, whose only assignment
in the loop is j := c2 ⊕ c1 ⊗ i, where x ⊗ (y ⊕ z) = (x ⊗ y) ⊕ (x ⊗ z) and c1, c2 are constants
(we assume this assignment to j is before the update to i to make the following explanation
simpler).

The optimisation is to move the assignment j := c2 ⊕ c1 ⊗ i to the entry to the loop6, and
add an end-of-loop-body assignment j := j ⊕ (c1 ⊗ c). Now that we know the relation of i to
j we can, for example, change any loop-termination test using i to one using j and therefore
sometimes eliminate i entirely. For example, assume int v[100]; and ints to be 4 bytes
wide on a byte addressed machine. Let is write &&v for the byte address of the first element
of array v, noting it is a constant, and consider

for (i=0; i<100; i++) v[i] = 0;

Although this code is sometimes optimal, many machines need to calculate the physical byte
address &&v + 4 ∗ i separately from the store instruction, so the code is really

for (i=0; i<100; i++) { p = &&v + 4*i; Store4ZerobytesAt(p); }

Strength reduction gives:

for ((i=0, p=&&v); i<100; (i++, p+=4)) Store4ZerobytesAt(p);

and rewriting the loop termination test gives

for ((i=0, p=&&v); p<&&v+400; (i++, p+=4)) Store4ZerobytesAt(p);

Dropping the i (now no longer used) gives, and re-expressing in proper C gives

int *p;

for (p=&v[0]; p<&v[100]; p++) *p = 0;

which is often (depends on exact hardware) the optimal code, and is perhaps the code that
the C-hackers of you might have been tempted to write. Let me discourage you—this latter
code may save a few bytes on your current hardware/compiler, but because of pointer-use,
is much harder to analyse—suppose your shiny new machine has 64-bit operations, then the
loop as originally written can (pretty simply, but beyond these notes) be transformed to be
a loop of 50 64-bit stores, but most compilers will give up on the ‘clever C programmer’
solution.

I have listed strength reduction in this tree-oriented-optimisation section. In many ways
it is easier to perform on the flowgraph, but only if loop structure has been preserved as
annotations to the flowgraph (recovering this is non-trivial—see the Decompilation section).

5Although I have written ‘constant’ here I really only need “expression not affected by execution of (invariant
in) the loop”.

6If i is seen to be assigned a constant on entry to the loop then the RHS is simplifies to constant.

19

11 Abstract Interpretation

In this course there is only time to give the briefest of introductions to abstract interpretation.
We observe that to justify why (−1515)× 37 is negative there are two explanations. One

is that (−1515) × 37 = −56055 which is negative. Another is that −1515 is negative, 37 is
positive and ‘negative × positive is negative’ from school algebra. We formalise this as a table

⊗ (−) (0) (+)

(−) (+) (0) (−)
(0) (0) (0) (0)
(+) (−) (0) (+)

Here there are two calculation routes: one is to calculate in the real world (according to the
standard interpretation of operators (e.g. × means multiply) on the standard space of values)
and then to determine the whether the property we desire holds; the alternative is to abstract
to an abstract space of values and to compute using abstract interpretations of operators (e.g.
× means ⊗) and to determine whether the property holds there. Note that the abstract
interpretation can be seen as a ‘toy-town’ world which models certain aspects, but in general
not all, of reality (the standard interpretation).

When applying this idea to programs undecidability will in general mean that answers
cannot be precise, but we wish them to be safe in that “if a property is exhibited in the
abstract interpretation then the corresponding real property holds”. (Note that this means
we cannot use logical negation on such properties.) We can illustrate this on the above rule-
of-signs example by considering (−1515) + 37: real-world calculation yields −1478 which is
clearly negative, but the abstract operator ⊕ on signs can only safely be written

⊕ (−) (0) (+)

(−) (−) (−) (?)
(0) (−) (0) (+)
(+) (?) (+) (+)

where (?) represents an additional abstract value conveying no knowledge (the always-true
property), since the sign of the sum of a positive and a negative integer depends on their
relative magnitudes, and our abstraction has discarded that information. Abstract addition
⊕ operates on (?) by (?) ⊕ x = (?) = x ⊕ (?) — an unknown quantity may be either positive
or negative, so the sign of its sum with any other value is also unknown. Thus we find that,
writing abs for the abstraction from concrete (real-world) to abstract values we have

abs((−1515) + 37) = abs(−1478) = (−), but
abs(−1515) ⊕ abs(37) = (−) ⊕ (+) = (?).

Safety is represented by the fact that (−) ⊆ (?), i.e. the values predicted by the abstract
interpretation (here everything) include the property corresponding to concrete computation
(here {z ∈ ZZ | z < 0}).

Note that we may extend the above operators to accept (?) as an input, yielding the
definitions

⊗ (−) (0) (+) (?)

(−) (+) (0) (−) (?)
(0) (0) (0) (0) (0)
(+) (−) (0) (+) (?)
(?) (?) (0) (?) (?)

⊕ (−) (0) (+) (?)

(−) (−) (−) (?) (?)
(0) (−) (0) (+) (?)
(+) (?) (+) (+) (?)
(?) (?) (?) (?) (?)

20

and hence allowing us to compose these operations arbitrarily; for example,

(abs(−1515) ⊗ abs(37)) ⊕ abs(42) = ((−) ⊗ (+)) ⊕ (+) = (?), or
(abs(−1515) ⊕ abs(37)) ⊗ abs(0) = ((−) ⊕ (+)) ⊗ (0) = (0).

Similar tricks abound elsewhere e.g. ‘casting out nines’ (e.g. 123456789 divides by 9
because 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45 does, 45 because 4+5 does).

One point worth noting, because it turns up in programming equivalents, is that two
different syntactic forms which have the same standard meaning may have differing abstract
meanings. An example for the rule-of-signs is (x + 1)× (x− 3) + 4 which gives (?) when x =
(−) whereas (x × x) + (−2 × x) + 1 gives (+).

Abstract interpretation has been used to exhibit properties such as live variable sets,
available expression sets, types etc. as abstract values whose computation can be seen as
pre-evaluating the user’s program but using non-standard (i.e. abstract) operators during the
computation. For this purpose it is useful to ensure the abstract computation is finite, e.g.
by choosing finite sets for abstract value domains.

12 Strictness analysis

This is an example of abstract interpretation which specialises the general framework to de-
termining when a function in a lazy functional language is strict in a given formal parameter
(i.e. the actual parameter will necessarily have been evaluated whenever the function returns).
The associated optimisation is to use call-by-value (eager evaluation) to implement the pa-
rameter passing mechanism for the parameter. This is faster (because call-by-value is closer to
current hardware than the suspend-resume of lazy evaluation) and it can also reduce asymp-
totic space consumption (essentially because of tail-recursion effects). Note also that strict
parameters can be evaluated in parallel with each other (and with the body of the function
about to be called!) whereas lazy evaluation is highly sequential.

In these notes we will not consider full lazy evaluation, but a simple language of recur-
sion equations; eager evaluation is here call-by-value (CBV—evaluate argument once before
calling the function); lazy evaluation corresponds to call-by-need (CBN—pass the argument
unevaluated and evaluate on its first use (if there is one) and re-use this value on subsequent
uses—argument is evaluated 0 or 1 times). In a language free of side-effects CBN is seman-
tically indistinguishable (but possibly distinguishable by time complexity of execution) from
call-by-name (evaluate a parameter each time it is required by the function body—evaluates
the argument 0,1,2,. . . times).

The running example we take is

plus(x,y) = cond(x=0,y,plus(x-1,y+1)).

To illustrate the extra space use of CBN over CBV we can see that

plus(3,4) 7→ cond(3=0,4,plus(3-1,4+1))

7→ plus(3-1,4+1)

7→ plus(2-1,4+1+1)

7→ plus(1-1,4+1+1+1)

7→ 4+1+1+1

7→ 5+1+1

21

7→ 6+1

7→ 7.

The language we consider here is that of recursion equations:

F1(x1, . . . , xk1
) = e1

· · · = · · ·

Fn(x1, . . . , xkn
) = en

where e is given by the syntax

e ::= xi | Ai(e1, . . . , eri
) | Fi(e1, . . . eki

)

where the Ai are a set of symbols representing built-in (predefined) function (of arity ri).
The technique is also applicable to the full λ-calculus but the current formulation incorpo-
rates recursion naturally and also avoids difficulties with the choice of associated strictness
optimisations for higher-order situations.

We now interpret the Ai with standard and abstract interpretations (ai and a
♯
i respec-

tively) and deduce standard and abstract interpretations for the Fi (fi and f
♯
i respectively).

Let D = ZZ⊥(= ZZ ∪ {⊥}) be the space of integer values (for terminating computations
of expressions e) augmented with a value ⊥ (to represent non-termination). The standard
interpretation of a function Ai (of arity ri) is a value ai ∈ Dri → D. For example

+(⊥, y) = ⊥

+(x,⊥) = ⊥

+(x, y) = x +ZZ y otherwise

cond(⊥, x, y) = ⊥

cond(0, x, y) = y

cond(p, x, y) = x otherwise

(Here, and elsewhere, we treat 0 as the false value for cond and any non-0 value as true, as
in C.)

We can now formally define the notion that a function A (of arity r) with semantics
a ∈ Dr → D is strict in its ith parameter (recall earlier we said that this was if the parameter
had necessarily been evaluated whenever the function returns). This happens precisely when

(∀d1, . . . , di−1, di+1, . . . , dr ∈ D) a(d1, . . . , di−1,⊥, di+1, . . . , dr) = ⊥.

We now let D♯ = 2
def
= {0, 1} be the space of abstract values and proceed to define an a

♯
i

for each ai. The value ‘0’ represents the property ‘guaranteed looping’ whereas the value ‘1’
represents ‘possible termination’.

Given such an a ∈ Dr → D we define a♯ : 2r → 2 by

a♯(x1, . . . , xr) = 0 if (∀d1, . . . , dr ∈ D s.t. (xi = 0 ⇒ di = ⊥)) a(d1, . . . , dr) = ⊥

= 1 otherwise.

22

This gives the strictness function a
♯
i which provides the strictness interpretation for each

Ai. Note the equivalent characterisation (to which we shall return when we consider the
relationship of f ♯ to f)

a♯(x1, . . . , xr) = 0 ⇔ (∀d1, . . . , dr ∈ D s.t. (xi = 0 ⇒ di = ⊥)) a(d1, . . . , dr) = ⊥

For example we find

+♯(x, y) = x ∧ y

cond ♯(p, x, y) = p ∧ (x ∨ y)

We build a table into our analyser giving the strictness function for each built-in function.

Strictness functions generalise the above notion of “being strict in an argument”. For a
given built-in function a, we have that a is strict in its ith argument iff

a♯(1, . . . , 1, 0, 1, . . . , 1) = 0

(where the ‘0’ is in the ith argument position). However strictness functions carry more
information which is useful for determining the strictness property of one (user) function in
terms of the functions which it uses. For example consider

let f1(x,y,z) = if x then y else z

let f2(x,y,z) = if x then y else 42

let g1(x,y) = f1(x,y,y+1)

let g2(x,y) = f2(x,y,y+1)

Both f1 and f2 are strict in x and nothing else—which would mean that the strictness of g1
and g2 would be similarly deduced identical—whereas their strictness functions differ

f1♯(x, y, z) = x ∧ (y ∨ z)

f2♯(x, y, z) = x

and this fact enables us (see below) to deduce that g1 is strict in x and y while g2 is merely
strict in x. This difference between the strictness behaviour of f1 and f2 can also be expressed
as the fact that f1 (unlike f2) is jointly strict in y and z (i.e. (∀x ∈ D)f(x,⊥,⊥) = ⊥) in
addition to being strict in x.

Now we need to define strictness functions for user-defined functions. The most exact way
to calculate these would be to calculate them as we did for base functions: thus

f(x,y) = if tautology(x) then y else 42

would yield

f ♮(x, y) = x ∧ y

assuming that tautology was strict. (Note use of f ♮ in the above—we reserve the name f ♯

for the following alternative.) Unfortunately this is undecidable in general and we seek a
decidable alternative (see the corresponding discussion on semantic and syntactic liveness).

23

To this end we define the f
♯
i not directly but instead in terms of the same composition

and recursion from the a
♯
i as that which defines the Fi in terms of the Ai. Formally this can

be seen as: the fi are the solution of the equations

F1(x1, . . . , xk1
) = e1

· · · = · · ·

Fn(x1, . . . , xkn
) = en

when the Ai are interpreted as the ai whereas the f
♯
i are the solutions when the Ai are

interpreted as the a
♯
i.

Safety of strictness can be characterised by the following: given user defined function F

(of arity k) with standard semantics f : Dk → D and strictness function f ♯ : 2k → 2 by

f ♯(x1, . . . , xk) = 0 ⇒ (∀d1, . . . , dk ∈ D s.t. (xi = 0 ⇒ di = ⊥)) f(d1, . . . , dk) = ⊥

Note the equivalent condition for the Ai had ⇒ strengthened to ⇔—this corresponds to
the information lost by composing the abstract functions instead of abstracting the standard
composition. An alternative characterisation of safety is that f ♮(~x) ≤ f ♯(~x).

Returning to our running example

plus(x,y) = cond(x=0,y,plus(x-1,y+1)).

we derive equation

plus♯(x, y) = cond ♯(eq♯(x, 0♯), y, plus♯(sub1 ♯(x), add1 ♯(y)). (1)

Simplifying with built-ins

eq♯(x, y) = x ∧ y

0♯ = 1

add1 ♯(x) = x

sub1 ♯(x) = x

gives
plus♯(x, y) = x ∧ (y ∨ plus♯(x, y)).

Of the six possible solutions (functions in 2×2 → 2 which do not include negation—negation
corresponds to ‘halt iff argument does not halt’)

{λ(x, y).0, λ(x, y).x ∧ y, λ(x, y).x, λ(f, y).y, λ(x, y).x ∨ y, λ(x, y).1}

we find that only λ(x, y).x and λ(x, y).x∧ y satisfy equation (1) and we choose the latter for
the usual reasons—all solutions are safe and this one permits most strictness optimisations.

Mathematically we seek the least fixpoint of the equations for plus♯ and algorithmically
we can solve any such set of equations (using f#[i] to represent f

♯
i , and writing e

♯
i to mean

ei with the Fj and Aj replaced with f
♯
j and a

♯
j) by:

for i=1 to n do f#[i] := λ~x.0
while (f#[] changes) do

for i=1 to n do

f#[i] := λ~x.e
♯
i.

24

Note the similarity to solving dataflow equations—the only difference is the use of functional
dataflow values. Implementation is well served by an efficient representation of such boolean
functions. ROBDDs7 are a rational choice in that they are a fairly compact representation
with function equality (for the convergence test) being represented by simple pointer equality.

For plus♯ we get the iteration sequence λ(x.y).0 (initial), λ(x, y).x ∧ y (first iteration),
λ(x, y).x ∧ y (second iteration, halt as converged).

Since we can now see that plus♯(0, 1) = plus♯(1, 0) = 0 we can deduce that plus is strict
in x and in y.

We now turn to strictness optimisation. Recall we suppose our language requires each
parameter to be passed as if using CBN. As indicated earlier any parameter shown to be
strict can be implemented using CBV. For a thunk-based implementation of CBN this means
that we continue to pass a closure λ().e for any actual parameter e not shown to be strict
and evaluate this on first use inside the body; whereas for a parameter shown to be strict, we
evaluate e before the call by passing it using CBV and then merely use the value in the body.

13 Constraint-based analysis

In Constraint-based analysis, the approach taken is that of walking the program emitting
constraints (typically, but not exclusively) on the sets of values which variables or expressions
may take. These sets are related together by constraints. For example if x is constrained to
be an even integer then it follows that x + 1 is constrained to be an odd integer.

Rather than look at numeric problems, we choose as an example analysis the idea of
Control-Flow Analysis (CFA, technically 0-CFA for those looking further in the literature);
this attempts to calculate the set of functions callable at every call site.

13.1 Constraint Systems and their Solution

This is a non-examinable section, here to provide a bit of background.

Many program analyses can be seen as solving a system of constraints. For example in
LVA, the constraints were that a “set of live variables at one program point is equal to some
(monotonic) function applied to the sets of live variables at other program points”. Boundary
conditions were supplied by entry and/or exit nodes. I used the “other lecturer did it” tech-
nique (here ‘semantics’) to claim that such sets of such constraints have a minimal solution.
Another example is Hindley-Milner type checking—we annotate every expression with a type
ti, e.g. (et1

1 et2
2)t3 and then walk the program graph emitting constraints representing the need

for consistency between neighbouring expressions. The term above would emit the constraint
t1 = (t2 → t3) and then recursively emit constraints for e1 and e2. We can then solve these
constraints (now using unification) and the least solution (substituting types to as few ti as
possible) corresponds to ascribing all expressions their most-general type.

In the CFA analysis below, the constraints are inequations, but they again have the
property that a minimal solution can be reached by initially assuming that all sets αi are
empty, then for each constraint α ⊇ φ (note we exploit that the LHS is always a flow variable)
which fails to hold, we update α to be φ and loop until all equations hold.

7 ROBBD means Reduced Ordered Binary Decision Diagram, but often OBDD or BDD is used to refer to
the same concept.

25

One exercise to think of solving inequation systems is to consider how, given a relation R,
its transitive closure T may be obtained. This can be expressed as constraints:

R ⊆ T

{(x, y)} ⊆ T ∧ {(y, z)} ⊆ R =⇒ {(x, z)} ⊆ T

14 Control-flow analysis (for λ-terms)

This is not to be confused with the simpler intraprocedural reachability analysis on flow
graphs, but rather generalises call graphs. Given a program P the aim is to calculate, for
each expression e, the set of primitive values (here integer constants and λ-abstractions) which
can result from e during the evaluation of P . (This can be seen as a higher-level technique
to improve the resolution of the approximation “assume an indirect call may invoke any
procedure whose address is taken” which we used in calculating the call graph.)

We take the following language for concrete study (where we consider c to range over a
set of (integer) constants and x to range over a set of variables):

e ::= x | c | λx.e | e1e2 | let x = e1 in e2.

Programs P are just terms in e with no free variables. For this lecture we will consider the
program, P , given by

let id = λx.x in id id 7

We now need a notion of program point (generalisation of label) which we can use to refer-
ence uniquely a given expression in context. This is important because the same expression
may occur twice in a program but we wish it to be treated separately. Thus we label the
nodes of the syntax tree of the above program uniquely with their occurrences in the tree
(formally sequences of integers representing the route from the root to the given node, but
here convenient integers). This gives

(let id10 = (λx20.x21)22 in ((id30 id31)32 733)34)1.

The space of flow values F for this program is

{(λx20.x21)22, 733}

which again in principle require the labelling to ensure uniqueness. Now associate a flow
variable with each program point, i.e.

α1, α10, α20, α21, α22, α30, α31, α32, α33, α34.

In principle we wish to associate, with each flow variable αi associated with expression ei, the
subset of the flow values which it yields during evaluation of P . Unfortunately again this is
undecidable in general and moreover can depend on the evaluation strategy (CBV/CBN). We
have seen this problem before and, as before, we give an formulation to get safe approximations
(here possibly over-estimates) for the αi.

8 Moreover these solutions are safe with respect to
any evaluation strategy for P (this itself is a source of some imprecision!).

We get constraints on the αi determined by the program structure (the following con-
straints are in addition to the ones recursively generated by the subterms e, e1, e2 and e3):

8 The above is the normal formulation, but you might prefer to think in dataflow terms. αi represents
possible-values(i) and the equations below are dataflow equations.

26

• for a term xi we get the constraint αi ⊇ αj where xj is the associated binding (via
let xj = · · · or λxj . · · ·);

• for a term ci we get the constraint αi ⊇ {ci};

• for a term (λxj .ek)i we get the constraint αi ⊇ {(λxj .ek)i};

• for a term (ej
1e

k
2)

i we get the compound constraint (αk 7→ αi) ⊇ αj ;

• for a term (let xl = e
j
1 in ek

2)
i we get the constraints αi ⊇ αk and αl ⊇ αj ;

• for a term (if e
j
1 then ek

2 else el
3)

i we get the constraints αi ⊇ αk and αi ⊇ αl.

Here (γ 7→ δ) ⊇ β represents the fact that the flow variable β (corresponding to the informa-
tion stored for the function to be applied) must include the information that, when provided
an argument contained within the argument specification γ, it yields results contained within
the result specification δ. (Of course δ may actually be larger because of other calls.) Formally
(γ 7→ δ) ⊇ β is shorthand for the compound constraint that (i.e. is satisfied when)

whenever β ⊇ {(λxq.er)p} we have αq ⊇ γ ∧ δ ⊇ αr.

You may prefer instead to to see this directly as “applications generate an implication”:

• for a term (ej
1e

k
2)

i we get the constraint implication

αj ⊇ {(λxq.er)p} =⇒ αq ⊇ αk ∧ αi ⊇ αr.

Now note this implication can also be written as two implications

αj ⊇ {(λxq.er)p} =⇒ αq ⊇ αk

αj ⊇ {(λxq.er)p} =⇒ αi ⊇ αr

Now, if you know about Prolog/logic programming then you can see that expression forms as
generating clauses defining the predicate symbol ⊇. Most expressions generate simple ‘always
true’ clauses such as αi ⊇ {ci}, whereas the application form generates two implicational
clauses:

αq ⊇ αk ⇐= αj ⊇ {(λxq.er)p}

αi ⊇ αr ⇐= αj ⊇ {(λxq.er)p}

Compare the two forms respectively with the two clauses

app([],X,X).

app([A|L],M,[A|N]) :- app(L,M,N).

which constitutes the Prolog definition of append.

As noted in Section 13.1 the constraint set generated by walking a program has a unique
least solution.

27

The above program P gives the following constraints, which we should see as dataflow
inequations:

α1 ⊇ α34 let result
α10 ⊇ α22 let binding
α22 ⊇ {(λx20.x21)22} λ-abstraction
α21 ⊇ α20 x use
α33 ⊇ {733} constant 7
α30 ⊇ α10 id use

α31 7→ α32 ⊇ α30 application-32
α31 ⊇ α10 id use

α33 7→ α34 ⊇ α32 application-34

Again all solutions are safe, but the least solution is

α1 = α34 = α32 = α21 = α20 = {(λx20.x21)22, 733}

α30 = α31 = α10 = α22 = {(λx20.x21)22}

α33 = {733}

You may verify that this solution is safe, but note that is imprecise because (λx20.x21)22 ∈ α1

whereas the program always evaluates to 733. The reason for this imprecision is that we
have only a single flow variable available for the expression which forms the body of each λ-
abstraction. This has the effect that possible results from one call are conflated with possible
results from another. There are various enhancements to reduce this which we sketch in the
next paragraph (but which are rather out of the scope of this course).

The analysis given above is a monovariant analysis in which one property (here a single
set-valued flow variable) is associated with a given term. As we saw above, it led to some
imprecision in that P above was seen as possibly returning {7, λx.x} whereas the evaluation
of P results in 7. There are two ways to improve the precision. One is to consider a poly-
variant approaching in which multiple calls to a single procedure are seen as calling separate
procedures with identical bodies. An alternative is a polymorphic approach in which the
values which flow variables may take are enriched so that a (differently) specialised version
can be used at each use. One can view the former as somewhat akin to the ML treatment of
overloading where we see (letting ∧ represent the choice between the two types possessed by
the + function)

op + : int*int->int ∧ real*real->real

and the latter can be similarly be seen as comparable to the ML typing of

fn x=>x : ∀α.α->α.

This is an active research area and the ultimately ‘best’ treatment is unclear.

15 Class Hierarchy Analysis

I might say something more about this in lectures, but formally this section (at least for
2006/07) is just a pointer for those of you who want to know more about optimising object-
oriented programs. Dean et al. [3] “ Optimization of Object-Oriented Programs Using Static
Class Hierarchy Analysis” is the original source. Ryder [4] “Dimensions of Precision in Ref-
erence Analysis of Object-Oriented Programming Languages” gives a retrospective.

28

16 Inference-based program analysis

This is a general technique in which an inference system specifies judgements of the form

Γ ⊢ e : φ

where φ is a program property and Γ is a set of assumptions about free variables of e. One
standard example (covered in more detail in the CST Part II ‘Types’ course) is the ML type
system. Although the properties are here types and thus are not directly typical of program
optimisation (the associated optimisation consists of removing types of values, evaluating in a
typeless manner, and attaching the inferred type to the computed typeless result; non-typable
programs are rejected) it is worth considering this as an archetype. For current purposes ML
expressions e can here be seen as the λ-calculus:

e ::= x | λx.e | e1e2

and (assuming α to range over type variables) types t of the syntax

t ::= α | int | t → t′.

Now let Γ be a set of assumptions of the form {x1 : t1, . . . , xn : tn} which assume types ti for
free variables xi; and write Γ[x : t] for Γ with any assumption about x removed and with x : t

additionally assumed. We then have inference rules:

(VAR)
Γ[x : t] ⊢ x : t

(LAM)
Γ[x : t] ⊢ e : t′

Γ ⊢ λx.e : t → t′

(APP)
Γ ⊢ e1 : t → t′ Γ ⊢ e2 : t

Γ ⊢ e1e2 : t′
.

Safety: the type-safety of the ML inference system is clearly not part of this course, but its
formulation clearly relates to that for other analyses. It is usually specified by the soundness
condition:

({} ⊢ e : t) ⇒ ([[e]] ∈ [[t]])

where [[e]] represents the result of evaluating e (its denotation) and [[t]] represents the set of
values which have type t. Note that (because of {}) the safety statement only applies to
closed programs (those with no free variables) but its inductive proof in general requires one
to consider programs with free variables.

The following gives a more program-analysis–related example; here properties have the
form

φ ::= odd | even | φ → φ′.

We would then have rules:

(VAR)
Γ[x : φ] ⊢ x : φ

(LAM)
Γ[x : φ] ⊢ e : φ′

Γ ⊢ λx.e : φ → φ′

(APP)
Γ ⊢ e1 : φ → φ′ Γ ⊢ e2 : φ

Γ ⊢ e1e2 : φ′
.

29

Under the assumptions

Γ = {2 : even, + : even → even → even, × : even → odd → even}

we could then show

Γ ⊢ λx.λy.2 × x + y : odd → even → even.

but note that showing

Γ′ ⊢ λx.λy.2 × x + 3 × y : even → even → even.

would require Γ′ to have two assumptions for × or a single assumption of a more elaborate
property, involving conjunction, such as:

× : even → even → even ∧
even → odd → even ∧
odd → even → even ∧
odd → odd → odd .

Exercise: Construct a system for odd and even which can show that

Γ ⊢ (λf.f(1) + f(2))(λx.x) : odd

for some Γ.

17 Effect systems

This is an example of inference-based program analysis. The particular example we give
concerns an effect system for analysis of communication possibilities of systems.

The idea is that we have a language such as the following

e ::= x | λx.e | e1e2 | ξ?x.e | ξ!e1.e2 | if e1 then e2 else e3.

which is the λ-calculus augmented with expressions ξ?x.e which reads an int from a channel ξ

and binds the result to x before resulting in the value of e (which may contain x) and ξ!e1.e2

which evaluates e1 (which must be an int) and writes its value to channel ξ before resulting
in the value of e2. Under the ML type-checking regime, side effects of reads and writes would
be ignored by having rules such as:

(READ)
Γ[x : int] ⊢ e : t

Γ ⊢ ξ?x.e : t

(WRITE)
Γ ⊢ e1 : int Γ ⊢ e2 : t

Γ ⊢ ξ!e1.e2 : t
.

For the purpose of this example, we suppose the problem is to determine which channels
may be read or written during evaluation of a closed term P . These are the effects of P . Here
we take the effects, ranged over by F , to be subsets of

{Wξ, Rξ | ξ a channel}.

30

The problem with the natural formulation is that a program like

ξ!1.λx.ζ!2.x

has an immediate effect of writing to ξ but also a latent effect of writing to ζ via the resulting
λ-abstraction.

We can incorporate this notion of effect into an inference system by using judgements of
the form

Γ ⊢ e : t, F

whose meaning is that when e is evaluated then its result has type t and whose immediate
effects are a subset (this represents safety) of F . To account for latent effects of a λ-abstraction
we need to augment the type system to

t ::= int | t
F
→ t′.

Letting one(f) = {f} represent the singleton effect, the inference rules are then

(VAR)
Γ[x : t] ⊢ x : t, ∅

(READ)
Γ[x : int] ⊢ e : t, F

Γ ⊢ ξ?x.e : t, one(Rξ) ∪ F

(WRITE)
Γ ⊢ e1 : int , F Γ ⊢ e2 : t, F ′

Γ ⊢ ξ!e1.e2 : t, F ∪ one(Wξ) ∪ F ′

(LAM)
Γ[x : t] ⊢ e : t′, F

Γ ⊢ λx.e : t
F
→ t′, ∅

(APP)
Γ ⊢ e1 : t

F ′′

→ t′, F Γ ⊢ e2 : t, F ′

Γ ⊢ e1e2 : t′, F ∪ F ′ ∪ F ′′
.

Note that by changing the space of effects into a more structured set of values (and by
changing the understanding of the ∅, one and ∪ constants and operators on effects e.g. using
sequences with ∪ being append) we could have captured more information such as temporal
ordering since

ξ?x.ζ!(x + 1).42 : int , {Rξ} ∪ {Wζ}

and
ζ!7.ξ?x, 42 : int , {Wζ} ∪ {Rξ}.

Similarly one can extend the system to allow transmitting and receiving more complex types
than int over channels.

One additional point is that care needs to be taken about allowing an expression with
fewer effects to be used in a context which requires more. This is an example of subtyping
although the example below only shows the subtype relation acting on the effect parts. The
obvious rule for if-then-else is:

(COND)
Γ ⊢ e1 : int , F Γ ⊢ e2 : t, F ′ Γ ⊢ e3 : t, F ′′

Γ ⊢ if e1 then e2 else e3 : t, F ∪ F ′ ∪ F ′′
.

However, this means that

if x then λx.ξ!3.x + 1 else λx.x + 2

31

is ill-typed (the types of e2 and e3 mismatch because their latent effects differ). Thus we tend
to need an additional rule which, for the purposes of this course can be given by

(SUB)
Γ ⊢ e : t

F ′

→ t′, F

Γ ⊢ e : t
F ′′

→ t′, F
(provided F ′ ⊆ F ′′)

Safety can then similarly approached to that of the ML type system where semantic
function [[e]] is adjusted to yield a pair (v, f) where v is a resulting value and f the actual
(immediate) effects obtained during evaluation. The safety criterion is then stated:

({} ⊢ e : t, F) ⇒ (v ∈ [[t]] ∧ f ⊆ F where (v, f) = [[e]])

18 Points-to and alias analysis

Consider an MP3 player containing code:

for (channel = 0; channel < 2; channel++)

process_audio(channel);

or even

process_audio_left();

process_audio_right();

These calls can only be parallelised (useful for multi-core CPUs) if neither call writes to a
memory location read or written by the other.

So, we want to know (at compile time) what locations a procedure might write to or read
from at run time.

For simple variables, even including address-taken variables, this is moderately easy (we
have done similar things in “ambiguous ref” in LVA and “ambiguous kill” in Avail), but note
that multi-level pointers int a, *b=&a, **c=&b; make the problem more complicated here.

So, given a pointer value, we are interested in finding a (finite) description of what locations
it might point to – or, given a procedure, a description of what locations it might read from
or write to. If two such descriptions have empty intersection then we can parallelise.

To deal with new() we will adopt the crude idea that all allocations done at a single
program point may alias, but allocations done at two different points cannot:

for (i=1; i<2; i++)

{ t = new();

if (i==1) a=t; else b=t;

}

c = new();

d = new();

We see a and b as possibly aliasing (as they both point to the new on line 2, while c and d

cannot alias with a, b or each other. A similar effect would occur in

for (...)

{ p = cons(a,p);

p = cons(b,p);

}

32

Where we know that p points to a new from line 2, which points to a new from line 3, which
points to a new from line 2

Another approximation which we will make is to have a single points-to summary that
says (e.g.) p may point to c or d, but definitely nothing else. We could record this information
on a per-statement level which would be more accurate, but instead choose to hold this
information once (per-procedure). Hence in

p = &c;

*p = 3;

p = &d;

q = &e;

we will assume that the indirect write may update c or d but not e.
Strategy:

• do a “points-to” analysis which associates each variable with (a description of) a set of
locations.

• can now just say “x and y may alias if their results from points-to analysis is not
provably disjoint”.

Alias analysis techniques can become very expensive for large programs “alias analysis is
undecidable in theory and intractable in practice”. Simpler techniques tend to say “I don’t
know” too often.

We will present Andersen’s O(n3) algorithm, at least in part because the constraint-solving
is identical to 0-CFA! Note that we only consider the intra-procedural situation.

First assume programs have been written in 3-address code and with all pointer-typed
operations being of the form

x := newℓ ℓ is a program point (label)
x := null optional, can see as variant of new
x := &y only in C-like languages, also like new variant
x := y copy
x := ∗y field access of object
∗x := y field access of object

Note that pointer arithmetic is not considered. Also, note that while new can be seen as
allocating a record, we only provide operations to read and write all fields at once. This
means that fields are conflated, i.e. we analyse x.f = e and x.g = e as identical – and
equivalent to ∗x = e. It is possible to consider so-called ‘field-sensitive’ analyses (not in this
course though, so use google if you want to know more).

18.1 Anderson’s analysis in detail

Define a set of abstract values

V = Var ∪ {newℓ | ℓ ∈ Prog} ∪ {null}

As said before, we treat all allocations at a given program point as indistinguishable.
Now consider the points-to relation. Here we see this a function pt(x) : V → P(V). As

said before, we keep one pt per procedure (intra-procedural analysis).

33

Each line in the program generates zero of more constraints on pt :

⊢ x := &y : y ∈ pt(x) ⊢ x := null : null ∈ pt(x)

⊢ x := newℓ : newℓ ∈ pt(x) ⊢ x := y : pt(y) ⊆ pt(x)

z ∈ pt(y)

⊢ x := ∗y : pt(z) ⊆ pt(x)

z ∈ pt(x)

⊢ ∗x := y : pt(y) ⊆ pt(z)

Note that the first three rules are essentially identical.

The above rules all deal with atomic assignments. The next question to consider is control-
flow. Our previous analyses (e.g. LVA) have all been flow-sensitive, e.g. we treat

x = 1; print x; y = 2; print y;

and

x = 1; y =2 ; print x; print y

differently (as required when allocating registers to x and y). However, Andersen’s algorithm
is flow-insensitive, we simply look at the set of statements in the program and not at their
order or their position in the syntax tree. This is faster, but loses precision. Flow-insensitive
means property inference rules are essentially of the form (here C is a command, and S is a
set of constraints):

(ASS)
⊢ e := e′ : 〈as above〉

(SEQ)
⊢ C : S ⊢ C ′ : S′

⊢ C;C ′ : S ∪ S′

(COND)
⊢ C : S ⊢ C ′ : S′

⊢ if e then C else C ′ : S ∪ S′

(WHILE)
⊢ C : S

⊢ while e do C : S

The safety property A program analysis on its own never useful – we want to be able
to use it for transformations, and hence need to know what the analysis guarantees about
run-time execution.

Given pt solving the constraints generated by Andersen’s algorithm then we have that

• at all program points during execution, the value of pointer variable x is always in the
description pt(x). For null and &z this is clear, for newℓ this means that x points to a
memory cell allocated there.

Hence (alias analysis, and its uses):

• If pt(x) ∩ pt(y) is empty, then x and y cannot point to the same location, hence it is
safe to (e.g.) swap the order of n=*x; *y=m, or even to run them in parallel.

34

Epilogue for Part B

You might care to reflect that program analyses and type systems have much in common.
Both attempt to determine whether a given property of a program holds (in the case of
type systems, this is typically that the application of an operator is type-safe). The main
difference is the use to which analysis results are put—for type systems failure to guarantee
type correctness causes the program to be rejected whereas for program analysis failure to
show a result causes less efficient code to be generated.

35

Part C: Instruction Scheduling

19 Introduction

In this part we instruction scheduling for a processor architecture of complexity typical of
the mid-1980’s. Good examples would be the MIPS R-2000 or SPARC implementations of
this period. Both have simple 5-stage pipelines (IF,RF,EX,MEM,WB) with feed-forwarding
and both have delayed branches and delayed loads. One difference is that the MIPS had
no interlocks on delayed loads (therefore requiring the compiler writer, in general, to insert
NOP’s to ensure correct operation) whereas the SPARC has interlocks which cause pipeline
stalls when a later instruction refers to an operand which is not yet available. In both cases
faster execution (in one case by removing NOP’s and in the other by avoiding stalls) is often
possible by re-ordering the (target) instructions essentially within each basic block.

Of course there are now more sophisticated architectures: many processors have multiple
dispatch into multiple pipelines. Functional units (e.g. floating point multipliers) may be
scheduled separately by the pipeline to allow the pipeline to continue while they complete.
They may be also duplicated. Intel Pentium architecture goes as far as re-scheduling instruc-
tion sequences dynamically, to some extent making instruction scheduling at compile time
rather redundant. However, the ideas presented here are an intellectually satisfactory basis
for compile-time scheduling for all architectures; moreover, even if all scheduling were to be
done dynamically in hardware, someone (now hardware designers) still has to understand
scheduling principles!

The data structure we operate upon is a graph of basic blocks, each consisting of a
sequence of target instructions obtained from blow-by-blow expansion of the abstract 3-address
intermediate code we saw in Part A of this course. Scheduling algorithms usually operate
within a basic block and adjust if necessary at basic block boundaries—see later.

The objective of scheduling is to minimise the number of pipeline stalls (or the number
of inserted NOP’s on the MIPS). Sadly the problem of such optimal scheduling is often NP-
complete and so we have to fall back on heuristics for life-size code. These notes present the
O(n2) algorithm due to Gibbons and Muchnick [5].

Observe that two instructions may be permuted if neither writes to a register read or
written by the other. We define a graph (actually a DAG), whose nodes are instructions
within a basic block. Place an edge from instruction a to instruction b if a occurs before b in
the original instruction sequence and if a and b cannot be permuted. Now observe that the
any of the minimal elements of this DAG (normally drawn at the top in diagrammatic form)
can be validly scheduled to execute first and after removing such a scheduled instruction from
the graph any of the new minimal elements can be scheduled second and so on. In general
any topological sort of this DAG gives a valid scheduling sequence. Some are better than
others and to achieve non-NP-complete complexity we cannot in general search freely, so
the current O(n2) algorithm makes the choice of the next-to-schedule instruction locally, by
choosing among the minimal elements with the static scheduling heuristics

• choose an instruction which does not conflict with the previous emitted instruction

• choose an instruction which is most likely to conflict if first of a pair (e.g. ld.w over
add)

36

• choose an instruction which is as far as possible (over the longest path) from a graph-
maximal instruction—the ones which can be validly be scheduled as the last of the basic
block.

On the MIPS or SPARC the first heuristic can never harm. The second tries to get instructions
which can provoke stalls out of the way in the hope that another instruction can be scheduled
between a pair which cause a stall when juxtaposed. The third has similar aims—given two
independent streams of instructions we should save some of each stream for inserting between
stall-pairs of the other.

So, given a basic block

• construct the scheduling DAG as above; doing this by scanning backwards through the
block and adding edges when dependencies arise works in O(n2)

• initialise the candidate list to the minimal elements of the DAG

• while the candidate list is non-empty

– emit an instruction satisfying the static scheduling heuristics (for the first iteration
the ‘previous instruction’ with which we must avoid dependencies is any of the final
instructions of predecessor basic blocks which have been generated so far.

– if no instruction satisfies the heuristics then either emit NOP (MIPS) or emit an
instruction satisfying merely the final two static scheduling heuristics (SPARC).

– remove the instruction from the DAG and insert the newly minimal elements into
the candidate list.

On completion the basic block has been scheduled.

One little point which must be taken into account on non-interlocked hardware (e.g. MIPS)
is that if any of the successor blocks of the just-scheduled block has already been generated
then the first instruction of one of them might fail to satisfy timing constraints with respect
to the final instruction of the newly generated block. In this case a NOP must be appended.

20 Antagonism of register allocation and instruction schedul-
ing

Register allocation by colouring results attempts to minimise the number of store locations
or registers used by a program. As such we would not be surprised to find that the generated
code for

x := a; y := b;

were to be

ld.w a,r0

st.w r0,x

ld.w b,r0

st.w r0,y

37

This code takes 6 cycles9 to complete (on the SPARC there is an interlock delay between each
load and store, on the MIPS a NOP must be inserted). According to the scheduling theory de-
veloped above, each instruction depends on its predecessor (def-def or def-use conflicts inhibit
all permutations) this is the only valid execution sequence. However if the register allocator
had allocated r1 for the temporary copying y to b, the code could have been scheduled as

ld.w a,r0

ld.w b,r1

st.w r0,x

st.w r1,y

which then executes in only 4 cycles.
For some time there was no very satisfactory theory as to how to resolve this (it is related

to the ‘phase-order problem’ in which we would like to defer optimisation decisions until we
know how later phases will behave on the results passed to them). The CRAIG system [1]
is one exception, and 2002 saw Touati’s thesis [8] “Register Pressure in Instruction Level
Parallelism” which addresses a related issue.

One rather ad hoc solution is to allocate temporary registers cyclically instead of re-using
them at the earliest possible opportunity. In the context of register allocation by colouring
this can be seen as attempting to select a register distinct from all others allocated in the
same basic block when all other constraints and desires (recall the MOV preference graph)
have been taken into account.

This problem also poses dynamic scheduling problems in pipelines for corresponding 80x86
instruction sequences which need to reuse registers as much as possible because their limited
number. Processors such as the Intel Pentium achieve effective dynamic rescheduling by
having a larger register set in the computational engine than the 8-register based (ax,bx,cd
etc.) instruction set registers and dynamically ‘recolouring’ live-ranges of such registers with
the larger register set. This then achieves a similar effect to the above example in which the
r0-r1 pair replaces the single r0, but without the need to tie up another user register.

9Here I am counting time in pipeline step cycles, from start of the first ld.w instruction to the start of the
instruction following the final st.w instruction.

38

Part D: Decompilation and Reverse
Engineering

This final lecture considers the topic of decompilation, the inverse process to compilation
whereby assembler (or binary object) files are mapped into one of the source files which could
compile to the given assembler or binary object source.

Note in particular that compilation is a many-to-one process—a compiler may well ignore
variable names and even compile x<=9 and x<10 into the same code. Therefore we are picking
a representative program.

There are three issues which I want to address:

• The ethics of decompilation;

• Control structure reconstruction; and

• Variable and type reconstruction.

You will often see the phrase reverse engineering to cover the wider topic of attempting
to extract higher-level data (even documentation) from lower-level representations (such as
programs). Our view is that decompilation is a special case of reverse engineering. A site
dedicated to reverse engineering is:

http://www.reengineer.org/

Legality/Ethics

Reverse engineering of a software product is normally forbidden by the licence terms which
a purchaser agrees to, for example on shrink-wrap or at installation. However, legislation
(varying from jurisdiction to jurisdiction) often permits decompilation for very specific pur-
poses. For example the EU 1991 Software Directive (a world-leader at the time) allows the
reproduction and translation of the form of program code, without the consent of the owner,
only for the purpose of achieving the interoperability of the program with some other pro-
gram, and only if this reverse engineering is indispensable for this purpose. Newer legislation
is being enacted, for example the US Digital Millennium Copyright Act which came into force
in October 2000 has a “Reverse Engineering” provision which

“. . . permits circumvention, and the development of technological means for such
circumvention, by a person who has lawfully obtained a right to use a copy of
a computer program for the sole purpose of identifying and analyzing elements
of the program necessary to achieve interoperability with other programs, to the
extent that such acts are permitted under copyright law.”

Note that the law changes with time and jurisdiction, so do it where/when it is legal! Note
also that copyright legislation covers “translations” of copyrighted text, which will certainly
include decompilations even if permitted by contract or by overriding law such as the above.

A good source of information is the Decompilation Page [9] on the web

http://www.program-transformation.org/Transform/DeCompilation

in particular the “Legality Of Decompilation” link in the introduction.

39

http://www.reengineer.org/
http://www.program-transformation.org/Transform/DeCompilation
http://www.program-transformation.org/Transform/LegalityOfDecompilation

Control Structure Reconstruction

Extracting the flowgraph from an assembler program is easy. The trick is then to match
intervals of the flowgraph with higher-level control structures, e.g. loops, if-the-else. Note that
non-trivial compilation techniques like loop unrolling will need more aggressive techniques to
undo. Cifuentes and her group have worked on many issues around this topic. See Cifuentes’
PhD [10] for much more detail. In particular pages 123–130 are mirrored on the course web
site

http://www.cl.cam.ac.uk/Teaching/current/OptComp/

Variable and Type Reconstruction

This is trickier than one might first think, because of register allocation (and even CSE). A
given machine register might contain, at various times, multiple user-variables and tempo-
raries. Worse still these may have different types. Consider

f(int *x) { return x[1] + 2; }

where a single register is used to hold x, a pointer, and the result from the function, an
integer. Decompilation to

f(int r0) { r0 = r0+4; r0 = *(int *)r0; r0 = r0 + 2; return r0; }

is hardly clear. Mycroft uses transformation to SSA form to undo register colouring and then
type inference to identify possible types for each SSA variable. See [11] via the course web
site

http://www.cl.cam.ac.uk/Teaching/current/OptComp/

A Research Project

One potentially interesting future PhD topic is to extend the notion of decompilation to
hardware, so that we can decompile (say) structural descriptions of a circuit in VHDL or
Verilog into behavioural descriptions (and yes, there are companies with legacy structural
descriptions which they would dearly like to have in more readable/modifiable form!).

40

http://www.cl.cam.ac.uk/Teaching/current/OptComp/
http://www.cl.cam.ac.uk/Teaching/current/OptComp/

References

[1] T. Brasier, P. Sweany, S. Beaty and S. Carr. “CRAIG: A Practical Framework for
Combining Instruction Scheduling and Register Assignment”. Proceedings of the 1995
International Conference on Parallel Architectures and Compiler Techniques (PACT
95), Limassol, Cyprus, June 1995. URL ftp://cs.mtu.edu/pub/carr/craig.ps.gz

[2] Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N. and Zadeck, F.W. “Efficiently
computing static single assignment form and the control dependence graph”. ACM
Transactions on Programming Languages and Systems, 13(4):451-490, October 1991.

[3] Dean, J., Grove, D. and Chambers, C.”, “Optimization of Object-Oriented Programs Us-
ing Static Class Hierarchy Analysis”. Proc. ECOOP’95, Springer-Verlag LNCS vol. 952,
1995.
URL http://citeseer.ist.psu.edu/89815.html

[4] Ryder, B.G. “Dimensions of Precision in Reference Analysis of Object-Oriented Pro-
gramming Languages” Proc. CC’03, Springer-Verlag LNCS vol. 2622, 2003.
URL http://www.prolangs.rutgers.edu/refs/docs/cc03.pdf

[5] P. B. Gibbons and S. S. Muchnick, “Efficient Instruction Scheduling for a Pipelined
Architecture”. ACM SIGPLAN 86 Symposium on Compiler Construction, June 1986,
pp. 11-16.

[6] J. Hennessy and T. Gross, “Postpass Code Optimisation of Pipeline Constraints”. ACM
Transactions on Programming Languages and Systems, July 1983, pp. 422-448.

[7] Johnson, N.E. and Mycroft, A. “Combined Code Motion and Register Allocation using
the Value State Dependence Graph”. Proc. CC’03, Springer-Verlag LNCS vol. 2622,
2003.
URL http://www.cl.cam.ac.uk/users/am/papers/cc03.ps.gz

[8] Sid-Ahmed-Ali Touati, “Register Pressure in Instruction Level Parallelism”. PhD thesis,
University of Versailles, 2002.
URL http://www.prism.uvsq.fr/∼touati/thesis.html

[9] Cifuentes, C. et al. “The decompilation page”.
URL http://www.program-transformation.org/Transform/DeCompilation

[10] Cifuentes, C. “Reverse compilation techniques”. PhD thesis, University of Queensland,
1994.
URL http://www.itee.uq.edu.au/∼cristina/dcc.html

URL http://www.itee.uq.edu.au/∼cristina/dcc/decompilation thesis.ps.gz

[11] Mycroft, A. Type-Based Decompilation. Lecture Notes in Computer Science: Proc.
ESOP’99, Springer-Verlag LNCS vol. 1576: 208–223, 1999.
URL http://www.cl.cam.ac.uk/users/am/papers/esop99.ps.gz

[More sample papers for parts A and B need to be inserted to make this a proper bibliography.]

41

ftp://cs.mtu.edu/pub/carr/craig.ps.gz
http://citeseer.ist.psu.edu/89815.html
http://www.prolangs.rutgers.edu/refs/docs/cc03.pdf
http://www.cl.cam.ac.uk/users/am/papers/cc03.ps.gz
http://www.prism.uvsq.fr/~touati/thesis.html
http://www.program-transformation.org/Transform/DeCompilation
http://www.itee.uq.edu.au/~cristina/dcc.html
http://www.itee.uq.edu.au/~cristina/dcc/decompilation_thesis.ps.gz
http://www.cl.cam.ac.uk/users/am/papers/esop99.ps.gz

	Introduction
	Forms of analysis
	Simple example: unreachable-code elimination
	Simple example: unreachable-procedure elimination

	Live Variable Analysis---LVA
	Available expressions
	Uses of LVA
	Register allocation by colouring
	Non-orthogonal instructions and procedure calling standards
	Global variables and register allocation

	Uses of AVAIL
	Code Motion
	Static Single Assignment Form
	The Phase-Order Problem
	Gratuitous Advertisement (non-examinable)

	Compiling for Multi-core
	Algebraic Identities
	Strength Reduction

	Abstract Interpretation
	Strictness analysis
	Constraint-based analysis
	Constraint Systems and their Solution

	Control-flow analysis (for lambda-terms)
	Class Hierarchy Analysis
	Inference-based program analysis
	Effect systems
	Points-to and alias analysis
	Anderson's analysis in detail

	Introduction
	Antagonism of register allocation and instruction scheduling

