Optimising Compilers
Computer Science Tripos Part Il - Lent 2007

Tom Stuart

A non-optimising compiler

character stream

lexing

token stream

parsing

parse tree

translation

intermediate code

code generation

target code

An optimising compiler

character stream

‘ token stream \

optimisation parse tree

optimisation intermediate code decompilation

optimisation target code

Optimisation

(really “amelioration™!)

Good humans write simple, maintainable, general code.

Compilers should then remove unused generality,
and hence hopefully make the code:

® Smaller
® [aster

® Cheaper (e.g. lower power consumption)

Optimisation

Analysis
+
Transformation

Analysis + Transformation

® Transformation does something dangerous.

® Analysis determines whether it’s sdfe.

Analysis + Transformation

® An analysis shows that your program has
some property...

® ..and the transformation is designed to be
safe for all programs with that property...

® ...so it’s safe to do the transformation.

Analysis + Transformation

1nt main (void)

{

return 42;

}

int f(int x)
{

return x * 2;

}

Analysis + Transformation

1nt main (void)

{

return 42;

}

Analysis + Transformation

1nt main (void)

{

return £ (21);

}

int f(int x)
{

return x * 2;

}

Analysis + Transformation

1nt main (void)

{

return £ (21);

}

Analysis + Transformation

Analysis + Transformation

Analysis + Transformation

while (1 <= k*2) {
k k — 1;
1 1+ 1;

}

Analysis + Transformation

Stack-oriented code

11load O
Gilcad 1

1add

1load Z

Giload 3
ladd
1mul

Cire curn

3-address code

MOV [£32, arqgl
£t33,arg”
t34,t32,

£33, arg3
t36,argi
DD t37,t35, T
L resl,t34, t

T I'M

C into 3-address code

t fact (1n-

)

C into 3-address code

NTRY fact
MOV t32, arg
CMPEQ v32
SUB argl,

CALL fac
MUL resl,
¥ X BE
MOV resl,
':X- i

v32

t32, resl

#1

Flowgraphs

® A graph representation of a program

® Each node stores 3-address instruction(s)

® Each edge represents (potential) control flow:

pred(n)

succ(n)

(n',n) € edges(G)}
(n,n') € edges(G)}

Flowgraphs

ENTRY fact

MOV t32,argl

CMPEQ t32, #0

SUB argl,t32, #1

v
IMOV resl,#l' CALL fact

MUL resl,t32,resl

v
IEXIT '

Basic blocks

A maximal sequence of instructions ny, ..., nk which have

® exactly one predecessor (except possibly for ny)

® exactly one successor (except possibly for ng)

CALL fact

SUB argl,t32, #1

MUL resl,t32,resl

ENTRY fact

CMPEQ t32, #0

MOV t32,argl

)
Y
9
e,
0O
R
v
S
af

Basic blocks

'ENTRY fact
MOV t32Z,argl

CMPEQ t32, #0
——

i
) v . SUB argl,t32,#1
MOV resl, #1 CALL fact

EXIT MUL resl, t32,resl
S —— EXIT

—

Basic blocks

| ENTRY fact |

MOV t32,argl
CMPEQ t32, #0

—

, v
v SUB argl, t32, #1

‘MOV resl,#l\ CALL fact

MUL resl,t32,resl

—

>| EXIT ‘4

Basic blocks

A basic block doesn’t contain any interesting control flow.

Basic blocks

Reduce time and space requirements
for analysis algorithms

by calculating and storing data flow information

once per block

(and recomputing within a block if required)

instead of

once per instruction.

Basic blocks

Basic blocks

?

Basic blocks

Types of analysis

(and hence optimisation)

Scope:
® Within basic blocks (“local” / “peephole™)
® Between basic blocks (“global” / “intra-procedural™)

® c.g. live variable analysis, available expressions

® Whole program (“inter-procedural’)

® c.g.unreachable-procedure elimination

Peephole optimisation

t33 rO t32

replace

t32,arqgl,

t33 r0, t32

Types of analysis

(and hence optimisation)

Type of information:

® Control flow

® Discovering control structure (basic blocks,
loops, calls between procedures)

® Data flow

® Discovering data flow structure (variable uses,
expression evaluation)

Finding basic blocks

|. Find all the instructions which are leaders:
® the first instruction is a leader;
® the target of any branch is a leader;and

® any instruction immediately following a
branch is a leader.

2. For each leader, its basic block consists of
itself and all instructions up to the next leader.

Finding basic blocks

MOV

CMPE

ENTRY
32 ,arg.

Q

fa

v3

SUB argl,

CAII

fac:

MUJ resl,

X1

=

-

ct

2,#0,1labl
v32 #1

e

t32, resl

MOV resl, #1

EX1

=

-

Flndlng basic blocks

Summary

Structure of an optimising compiler

Why optimise!

Optimisation = Analysis + Transformation
3-address code

Flowgraphs

Basic blocks

Types of analysis

Locating basic blocks

