Data-flow analysis

Discovering information about how data (i.e. variables and
their values) may move through a program.




Motivation

Programs may contain

® code which gets executed but which has no useful
effect on the program’s overall result;

® occurrences of variables being used before they are
defined; and

® many variables which need to be allocated registers
and/or memory locations for compilation.

The concept of variable liveness is useful in
dealing with all three of these situations.




L iveness

Liveness is a data-flow property of variables:
“Is the value of this variable needed?” (cf. dead code)

—

int £f(int x, int vy) {
int z = x * vy;
- |

R

n
/1




l iveness

At each instruction, each variable in the program
is either live or dead.

We therefore usually consider liveness from an

instruction’s perspective: each instruction (or node of the
flowgraph) has an associated set of live variables.

live(n) ={ s, t, %,y }




Semantic vs. syntactic

There are two kinds of variable liveness:

® Semantic liveness

® Syntactic liveness




Semantic vs. syntactic

A variable x is semantically live at a node n if there is
some execution sequence starting at n whose (externally
observable) behaviour can be affected by changing the

value of x.

int x =y * z; xLIVE

N\

return X;




Semantic vs. syntactic

A variable x is semantically live at a node n if there is
some execution sequence starting at n whose (externally
observable) behaviour can be affected by changing the

value of x.

int x = vy * z; xDEAD

return Xx;




Semantic vs. syntactic

Semantic liveness is concerned with
the execution behaviour of the program.

This is undecidable in general.
(e.g. Control flow may depend upon arithmetic.)




Semantic vs. syntactic

A variable is syntactically live at a node if there is a
path to the exit of the flowgraph along which its
value may be used before it is redefined.

Syntactic liveness is concerned with properties of
the syntactic structure of the program.

Of course, this is decidable.

So what’s the difference!?




Semantic vs. syntactic

int € = x * vy; t DEAD
L ((x+1) *(x+1) == y) |
T 1;

LT (x*x + 2*x + 1 1= v) |
T 22

}

return T;

Semantically: one of the conditions will be true, so on
every execution path t is redefined before it is returned.

The value assigned by the first instruction is never used.




Semantic vs. syntactic

:MUL t, X,V

ADD t32,x, #1
MUL t33,t32,t32
E t33,v,1labl

IMUL t34,x,X
MUL, t35,x, #2
:ADD t30,t34,t35
ADD t37,t30, #1




Semantic vs. syntactic

-
MUL £, %X,V

ADD t32,x,#1
MUL t33,t32,t32
CMPNE t33,y

\4

-
MUL t34,x,Xx

MUL t35,x%,#2
ADD t36,t34,t35
ADD t37,t306,#1
CMPEQ t37,vy

\4

' MOV resl, t ’

On this path through the
flowgraph, t is not
redefined before it’s

used, so t is syntactically

live at the first
Instruction.

Note that this path never
actually occurs during
execution.




Semantic vs. syntactic

S0, as we've seen before, syntactic liveness
is a computable approximation of
semantic liveness.




Semantic vs. syntactic

program variables

semantically
dead at n




Semantic vs. syntactic

’ : .Y
y N\
2 syntactically live
at n




Semantic vs. syntactic

sem-live(n) C syn-live(n)

Using syntactic methods, we
safely overestimate liveness.




Live variable analysis

LVA is a backwards data-flow analysis: usage information
from future instructions must be propagated backwards
through the program to discover which variables are live.

—~

int f£f(int x, 1nt vy) {

int z = x * y;
. AMR

11N

j D

/7 \




Live variable analysis

Variable liveness flows (backwards) through
the program in a continuous stream.

Each instruction has an effect on the
liveness information as it flows past.




Live variable analysis

An instruction makes a variable live
when it references (uses) it.




Live variable analysis

§ {b,ce f}

a = b * c¢; REFERENCEDb,c

§{e,f}

d = e + 1; REFERENCE e

§{f}

print f; REFERENCE £

§{}




Live variable analysis

An instruction makes a variable dead
when it defines (assigns to) it.




Live variable analysis

U
7;  DEFINE a

Q

"
~—

Q
——

N AN AN | A

|_\
|_\
o

DEFINE b

1a,b ]

13; DEFINE c

()

{a,b,c}




Live variable analysis

We can devise functions ref(n) and def(n)
which give the sets of variables referenced
and defined by the instruction at node n.

ref( x ref(print x)={x}
def( x def( print x)={ }

X + y)={xV}
x + y)={x}




Live variable analysis

As liveness flows backwards past an instruction, we
want to modify the liveness information by adding any
variables which it references (they become live) and
removing any which it defines (they become dead).

§{X,y} §{y}

print x  — {x} X = 3

§{y}




Live variable analysis

If an instruction both references and defines
variables, we must remove the defined variables
before adding the referenced ones.

§{X,Y,Z}
def( x

X = X + vy

ref( x
§{X,Z}




Live variable analysis

So, if we consider in-live(n) and out-live(n),
the sets of variables which are live
immediately before and immediately after
a node, the following equation must hold:

in-live(n) = (Out-lz’ve(n) \ def(n)) U ref (n)




Live variable analysis
in-live(n) = (Out-lz’ve(n) \ def(n)) U ref (n)

§ in-live(n) =

n:'x
{x,v,2}

§ out-live(n) ={ x, z }

def(n) =1 x } ref(n) = { %,y }




Live variable analysis

So we know how to calculate in-live(n) from
the values of def(n), ref(n) and out-live(n).
But how do we calculate out-live(n)?

§ in-live(n) = (out-live(n) \ def(n)) U ref(n)

§ out-live(n) = ?




Live variable analysis

In straight-line code each node has a unique
successor, and the variables live at the exit of a
node are exactly those variables live at the
entry of its successor.




Live variable analysis




Live variable analysis

In general, however, each node has an arbitrary

number of successors, and the variables live at

the exit of a node are exactly those variables
live at the entry of any of its successors.




Live variable analysis




Live variable analysis

So the following equation must also hold:

out-live(n) = U in-live(s)

sesucc(n)




Data-flow equations

These are the data-flow equations for live variable
analysis, and together they tell us everything we
need to know about how to propagate liveness

information through a program.

in-live(n) = (out-lz’ve(n) \ def(n)) U ref (n)

out-live(n) = U in-live(s)

sesucc(n)




Data-flow equations

Each is expressed in terms of the other, so we can
combine them to create one overall liveness equation.

U live(s) | \ def(n) | Uref(n)

sesucc(n)




Algorithm

We now have a formal description of liveness, but we
need an actual algorithm in order to do the analysis.




Algorithm

“Doing the analysis” consists of computing a value
live(n) for each node n in a flowgraph such that the
liveness data-flow equations are satisfied.

A simple way to solve the data-flow equations is to
adopt an iterative strategy.




Algorlthm




Algorlthm




Algorithm

for 1 =1 to n do live[1i] := {}
while (live[] changes) do
for 1 = 1 to n do

live [s]) \def(i)) U ref (1)
(1)




Algorithm

This algorithm is guaranteed to terminate since there
are a finite number of variables in each program and
the effect of one iteration is monotonic.

Furthermore, although any solution to the data-flow
equations is safe, this algorithm is guaranteed to give

the smallest (and therefore most precise) solution.

(See the Knaster-Tarski theorem if you're interested.)




Algorithm

Implementation notes:

® |f the program has n variables, we can implement

each element of 1ive[ ] as an n-bit value, with
each bit representing the liveness of one variable.

® We can store liveness once per basic block and
recompute inside a block when necessary. In this
case, given a basic block n of instructions iy, ..., ik:

live(n) = ( U live(s)) \ def (ix) Uref(ig) -\ def(21) U ref (i1)
(n)

SEsucc




Safety of analysis

® Syntactic liveness safely overapproximates semantic
liveness.

® The usual problem occurs in the presence of address-
taken variables (cf. labels, procedures): ambiguous
definitions and references. For safety we must

® overestimate ambiguous references (assume all
address-taken variables are referenced) and

® underestimate ambiguous definitions (assume no
variables are defined); this increases the size of the
smallest solution.




Safety of analysis

MOV
MOV
MOV




Summary

Data-flow analysis collects information about how
data moves through a program

Variable liveness is a data-flow property

Live variable analysis (LVA) is a backwards data-flow
analysis for determining variable liveness

LVA may be expressed as a pair of complementary
data-flow equations, which can be combined

A simple iterative algorithm can be used to find the
smallest solution to the LVA data-flow equations






