
Motivation
The operations and control structures of imperative
languages are strongly influenced by the way most

real computer hardware works.

This makes imperative languages relatively easy to
compile, but (arguably) less expressive; many people

use functional languages, but these are harder to
compile into efficient imperative machine code.

Strictness optimisation can help to improve the
efficiency of compiled functional code.

Call-by-value evaluation

e2 ⇓ v2 e1[v2/x] ⇓ v1

(λx.e1) e2 ⇓ v1

Strict (“eager”) functional languages (e.g. ML)
use a call-by-value evaluation strategy:

• Efficient in space and time, but

• might evaluate more arguments than necessary.

Call-by-name evaluation

e1[e2/x] ⇓ v

(λx.e1) e2 ⇓ v

Non-strict (“lazy”) functional languages (e.g. Haskell)
use a call-by-name evaluation strategy:

• Only evaluates arguments when necessary, but

• copies (and redundantly re-evaluates) arguments.

Call-by-need evaluation

One simple optimisation is to use call-by-need
evaluation instead of call-by-name.

If the language has no side-effects, duplicated
instances of an argument can be shared, evaluated
once if required, and the resulting value reused.

This avoids recomputation and is better than call-by-
name, but is still more expensive than call-by-value.

Call-by-need evaluation

Using call-by-value:

plus(x,y) = if x=0 then y else plus(x-1,y+1)

plus(3,4) ! if 3=0 then 4 else plus(3-1,4+1)

! plus(2,5)

! plus(1,6)

! plus(0,7)

! 7

Call-by-need evaluation

Using call-by-need:

plus(x,y) = if x=0 then y else plus(x-1,y+1)

plus(3,4) ! if 3=0 then 4 else plus(3-1,4+1)

! plus(3-1,4+1)

! plus(2-1,4+1+1)

! plus(1-1,4+1+1+1)

! 4+1+1+1

! 5+1+1

! 6+1

! 7

Replacing CBN with CBV

So why not just replace call-by-name with call-by-value?

Because, while replacing call-by-name with call-by-need
never changes the semantics of the original program (in
the absence of side-effects), replacing CBN with CBV

does.

In particular, the program’s termination behaviour changes.

Replacing CBN with CBV
Assume we have some nonterminating expression, !.

• Using CBN, the expression (!x. 42) ! will
evaluate to 42.

• But using CBV, evaluation of (!x. 42) ! will
not terminate: ! gets evaluated first, even
though its value is not needed here.

We should therefore try to use call-by-value wherever
possible, but not when it will affect the termination

behaviour of a program.

Neededness

Intuitively, it will be safe to use CBV in place of CBN
whenever an argument is definitely going to be evaluated.

We say that an argument is needed by a function if the
function will always evaluate it.

• !x,y. x+y needs both its arguments.

• !x,y. x+1 needs only its first argument.

• !x,y. 42 needs neither of its arguments.

Neededness

These needed arguments can safely be passed by value:
if their evaluation causes nontermination, this will just

happen sooner rather than later.

Neededness

In fact, neededness is too conservative:

!x,y,z. if x then y else !

This function might not evaluate y, so only x is needed.

But actually it’s still safe to pass y by value: if y doesn’t
get evaluated then the function doesn’t terminate
anyway, so it doesn’t matter if eagerly evaluating y

causes nontermination.

Strictness
What we really want is a more refined notion:

It is safe to pass an argument by value when
the function fails to terminate whenever the

argument fails to terminate.

When this more general statement holds, we
say the function is strict in that argument.

!x,y,z. if x then y else !
is strict in x and strict in y.

Strictness

If we can develop an analysis that discovers which
functions are strict in which arguments, we can
use that information to selectively replace CBN
with CBV and obtain a more efficient program.

Strictness analysis

We can perform strictness analysis by
abstract interpretation.

First, we must define a concrete world of
programs and values.

We will use the simple language of recursion
equations, and only consider integer values.

Recursion equations

F1(x1, . . . , xk1
) = e1

· · · = · · ·

Fn(x1, . . . , xkn
) = en

e ::= xi | Ai(e1, . . . , eri
) | Fi(e1, . . . eki

)

where each Ai is a symbol representing a built-in
(predefined) function of arity ri.

Recursion equations

For our earlier example,

plus(x,y) = if x=0 then y else plus(x-1,y+1)

we can write the recursion equation

plus(x, y) = cond(eq(x, 0), y, plus(sub1 (x), add1 (y)))

where cond, eq, 0, sub1 and add1 are built-in functions.

Standard interpretation

We must have some representation of
nontermination in our concrete domain.

As values we will consider the integer results of
terminating computations, ", and a single extra value

to represent nonterminating computations: ⊥.

Our concrete domain D is therefore "⊥ = " ∪ { ⊥ }.

Standard interpretation

Each built-in function needs a standard interpretation.

We will interpret each Ai as a function ai on values in D:

cond(⊥, x, y) = ⊥

cond(0, x, y) = y

cond(p, x, y) = x otherwise

eq(⊥, y) = ⊥

eq(x,⊥) = ⊥

eq(x, y) = x =Z y otherwise

Standard interpretation

The standard interpretation fi of a user-defined function Fi
is constructed from the built-in functions by composition

and recursion according to its defining equation.

plus(x, y) = cond(eq(x, 0), y, plus(sub1 (x), add1 (y)))

Abstract interpretation

Our abstraction must capture the properties we’re
interested in, while discarding enough detail to make

analysis computationally feasible.

Strictness is all about termination behaviour, and in
fact this is all we care about: does evaluation of an
expression definitely not terminate (as with !), or
may it eventually terminate and return a result?

Our abstract domain D# is therefore { 0, 1 }.

Abstract interpretation

For each built-in function Ai we need a corresponding
strictness function ai

— this provides the strictness
interpretation for Ai.

Whereas the standard interpretation of each built-in is
a function on concrete values from D, the strictness
interpretation of each will be a function on abstract

values from D# (i.e. 0 and 1).

Abstract interpretation

A formal relationship exists between the standard and
abstract interpretations of each built-in function; the

mathematical details are in the lecture notes.

Informally, we use the same technique as for
multiplication and addition of integers in the last lecture:
we define the abstract operations using what we know

about the behaviour of the concrete operations.

Abstract interpretation

x y eq#(x,y)

0 0 0

0 1 0

1 0 0

1 1 1

Abstract interpretation
p x y cond#(p,x,y)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Abstract interpretation

These functions may be expressed more compactly as
boolean expressions, treating 0 and 1 from D# as false

and true respectively.

We can use Karnaugh maps (from IA DigElec) to turn
each truth table into a simple boolean expression.

Abstract interpretation

cond# 0, 0 0, 1 1, 1 1, 0

0 0 0 0 0

1 0 1 1 1

x, y

p

p ∧ y p ∧ x
cond#(p, x, y) = (p ∧ y) ∨ (p ∧ x) = p ∧ (x ∨ y)

x ∧ y

Abstract interpretation

eq#(x, y) = x ∧ y

eq# 0 1

0 0 0

1 0 1
x

y

Strictness analysis

So far, we have set up

• a concrete domain, D, equipped with

• a standard interpretation ai of each built-in Ai, and

• a standard interpretation fi of each user-defined Fi;

• and an abstract domain, D#, equipped with

• an abstract interpretation ai
of each built-in Ai.

Strictness analysis

The point of this analysis is to discover the
missing piece: what is the strictness function fi#

corresponding to each user-defined Fi?

These strictness functions will show us exactly
how each Fi is strict with respect to each of its

arguments — and that’s the information that tells
us where we can replace lazy, CBN-style

parameter passing with eager CBV.

Strictness analysis

But recall that the recursion equations show us how
to build up each user-defined function, by composition

and recursion, from all the built-in functions:

plus(x, y) = cond(eq(x, 0), y, plus(sub1 (x), add1 (y)))

So we can build up the fi# from the ai
in the same way:

plus!(x, y) = cond !(eq!(x, 0!), y, plus!(sub1 !(x), add1 !(y)))

Strictness analysis

We already know all the other strictness functions:

plus!(x, y) = cond !(eq!(x, 0!), y, plus!(sub1 !(x), add1 !(y)))

cond !(p, x, y) = p ∧ (x ∨ y)

eq!(x, y) = x ∧ y

0! = 1

sub1 !(x) = x

add1 !(x) = x

So we can use these to simplify the expression for plus#.

Strictness analysis

plus!(x, y) = cond !(eq!(x, 0!), y, plus!(sub1 !(x), add1 !(y)))

= eq!(x, 0!) ∧ (y ∨ plus!(sub1 !(x), add1 !(y)))

= eq!(x, 1) ∧ (y ∨ plus!(x, y))

= x ∧ 1 ∧ (y ∨ plus!(x, y))

= x ∧ (y ∨ plus!(x, y))

plus!(x, y) = cond !(eq!(x, 0!), y, plus!(sub1 !(x), add1 !(y)))

= eq!(x, 0!) ∧ (y ∨ plus!(sub1 !(x), add1 !(y)))

= eq!(x, 1) ∧ (y ∨ plus!(x, y))

= x ∧ 1 ∧ (y ∨ plus!(x, y))

= x ∧ (y ∨ plus!(x, y))

plus!(x, y) = cond !(eq!(x, 0!), y, plus!(sub1 !(x), add1 !(y)))

= eq!(x, 0!) ∧ (y ∨ plus!(sub1 !(x), add1 !(y)))

= eq!(x, 1) ∧ (y ∨ plus!(x, y))

= x ∧ 1 ∧ (y ∨ plus!(x, y))

= x ∧ (y ∨ plus!(x, y))

plus!(x, y) = cond !(eq!(x, 0!), y, plus!(sub1 !(x), add1 !(y)))

= eq!(x, 0!) ∧ (y ∨ plus!(sub1 !(x), add1 !(y)))

= eq!(x, 1) ∧ (y ∨ plus!(x, y))

= x ∧ 1 ∧ (y ∨ plus!(x, y))

= x ∧ (y ∨ plus!(x, y))

plus!(x, y) = cond !(eq!(x, 0!), y, plus!(sub1 !(x), add1 !(y)))

= eq!(x, 0!) ∧ (y ∨ plus!(sub1 !(x), add1 !(y)))

= eq!(x, 1) ∧ (y ∨ plus!(x, y))

= x ∧ 1 ∧ (y ∨ plus!(x, y))

= x ∧ (y ∨ plus!(x, y))

Strictness analysis

plus!(x, y) = x ∧ (y ∨ plus!(x, y))

This is a recursive definition, and so unfortunately
doesn’t provide us with the strictness function directly.

We want a definition of plus# which satisfies this
equation — actually we want the least fixed point of this
equation, which (as ever!) we can compute iteratively.

Algorithm

for i = 1 to n do f#[i] := !x.0
while (f#[] changes) do
 for i = 1 to n do

 f#[i] := !x.ei
#

ei
means “ei (from the recursion equations) with each Aj
replaced with aj

and each Fj replaced with f#[j]”.

Algorithm

We have only one user-defined function, plus, and so
only one recursion equation:

plus(x, y) = cond(eq(x, 0), y, plus(sub1 (x), add1 (y)))

We initialise the corresponding element of our f#[]
array to contain the always-0 strictness function of

the appropriate arity:

f#[1] := !x,y. 0

Algorithm

On the first iteration, we calculate e1
#:

• The recursion equations say
e1 = cond(eq(x, 0), y, plus(sub1(x), add1(y)))

• The current contents of f#[] say f1# is !x,y. 0

• So:

e1
= cond#(eq#(x, 0#), y, (!x,y. 0) (sub1#(x), add1#(y)))

Algorithm
e1

= cond#(eq#(x, 0#), y, (!x,y. 0) (sub1#(x), add1#(y)))

e1
= cond#(eq#(x, 0#), y, 0)

Simplifying:

Using definitions of cond#, eq# and 0#:

e1
= (x ∧ 1) ∧ (y ∨ 0)

Simplifying again:

e1
= x ∧ y

Algorithm

So, at the end of the first iteration,

f#[1] := !x,y. x ∧ y

Algorithm

On the second iteration, we recalculate e1
#:

• The recursion equations still say
e1 = cond(eq(x, 0), y, plus(sub1(x), add1(y)))

• The current contents of f#[] say f1# is !x,y. x ∧ y

• So:

e1
= cond#(eq#(x, 0#), y, (!x,y. x ∧ y) (sub1#(x), add1#(y)))

Algorithm
e1

= cond#(eq#(x, 0#), y, (!x,y. x ∧ y) (sub1#(x), add1#(y)))

e1
= cond#(eq#(x, 0#), y, sub1#(x) ∧ add1#(y))

Simplifying:

Using definitions of cond#, eq#, 0#, sub1# and add1#:

e1
= (x ∧ 1) ∧ (y ∨ (x ∧ y))

Simplifying again:

e1
= x ∧ y

Algorithm

So, at the end of the second iteration,

f#[1] := !x,y. x ∧ y

This is the same result as last time, so we stop.

Algorithm

plus#(x, y) = x ∧ y

Optimisation

So now, finally, we can see that

plus#(1, 0) = 1 ∧ 0 = 0

plus#(0, 1) = 0 ∧ 1 = 0

and

which means our concrete plus function is strict in
its first argument and strict in its second argument:
we may always safely use CBV when passing either.

Summary

• Functional languages can use CBV or CBN evaluation

• CBV is more efficient but can only be used in place
of CBN if termination behaviour is unaffected

• Strictness shows dependencies of termination

• Abstract interpretation may be used to perform
strictness analysis of user-defined functions

• The resulting strictness functions tell us when it is
safe to use CBV in place of CBN

