Motivation

In this part of the course we're examining several
methods of higher-level program analysis.

We have so far seen abstract interpretation and constraint-
based analysis, two general frameworks for formally

specifying (and performing) analyses of programs.

Another alternative framework is inference-based analysis.

Inference-based analysis

Inference systems consist of sets of rules for
determining program properties.

Typically such a property of an entire program
depends recursively upon the properties of the
program’s subexpressions; inference systems can
directly express this relationship, and show how

to recursively compute the property.

Inference-based analysis

An inference system specifies judgements:

I'—e: @

® ¢ is an expression (e.g.a complete program)
® [is a set of assumptions about free variables of e

® ¢ is a program property

Type systems

Consider the ML type system, for example.

This particular inference system specifies
judgements about a well-typbedness property:

['Fe:t

means “under the assumptions in [, the
expression e has type t”.

Type systems

We will avoid the more complicated ML typing
issues (see Types course for details) and just
consider the expressions in the lambda calculus:

e:=x|Ax.e|el e

Our program properties are types t:

tx=X|int|t — t

Type systems

[is a set of type assumptions of the form

{x1:t, .y Xn :tn }

where each identifier x; is assumed to have type t.

We write

[[x :t]

to mean [with the additional assumption that x has type t
(overriding any other assumption about x).

Type systems

In all inference systems, we use a set of rules to
inductively define which judgements are valid.

In a type system, these are the typing rules.

Type systems

Dlx:t|Fa:t (VAR)

Dlx:tlFe:t

I'FAxe:t —t (LAM)

I'Fey:t—t T'hey:t
F|_61€22t/

(APP)

Type systems

[={2:int,add :int = int = int, multiply :int = int — int }
e = Ax. \y. add (multiply 2 x) y

t="

Type systems

[={2:int,add :int = int = int, multiply :int = int — int }
e = Ax. \y. add (multiply 2 x) y

t =int - int > int

Uz : int]ly : int] - add : int — int — int Tlz : int]ly : int] = multiply 2 x : int

Uiz : int]ly : int] = add (multiply 2 x) : int — int Ul : int]ly : int] -y : int
LClz @ int]ly : int] - add (multiply 2 x) y : int

L[z : int] F Ay. add (multiply 2 x) y : int — int

['F Az. \y. add (multiply 2 x) y : int — int — int

Optimisation

In the absence of a compile-time type checker; all values
must be tagged with their types and run-time checks must
be performed to ensure types match appropriately.

If a type system has shown that the program is well-typed,
execution can proceed safely without these tags and
checks; if necessary, the final result of evaluation can be
tagged with its inferred type.

Hence the final result of evaluation is identical, but less
run-time computation is required to produce it.

Safety

The safety condition for this inference system is

(U Fext)= (le] € [t])

where [[e] and [t]| are the denotations of e and t
respectively: [e] is the value obtained by evaluating e,
and [t] is the set of all values of type t.

This condition asserts that the run-time behaviour of
the program will agree with the type system’s prediction.

Odds and evens

Type-checking is just one application of
inference-based program analysis.

The properties do not have to be types;in
particular, they can carry more (or completely
different!) information than traditional types do.

We'll consider a more program-analysis—related
example: detecting odd and even numbers.

Odds and evens

This time, the program property ¢ has the form

b = odd | even | 1 = 2

Odds and evens

Dlx:olFx: ¢ (VAR)

Ulx:olFe:

TFoae o og (LAM

F|‘€12¢—>¢/ F|‘€22¢
I'Fejeq : @

(APP)

Odds and evens

[={2:even,add :even — even — even,
multiply : even — odd — even }

e = Ax. \y. add (multiply 2 x) y
b=

Odds and evens

[={2:even,add :even — even — even,
multiply : even — odd — even }

e = Ax. \y. add (multiply 2 x) y

® = odd — even — even

[z : odd]ly : even] - add : even — even — even D[z : odd][y : even] b multiply 2 x : even

[z : odd]ly : even] - add (multiply 2 x) : even — even [z : odd]|y : even] -y : even

[lz : odd]|y : even] - add (multiply 2 x) y : even

|z : odd] = Ay. add (multiply 2 x) y : even — even

['F Az. A\y. add (multiply 2 x) y : odd — even — even

Safety

The safety condition for this inference system is

(1 Fe:9) = (le] € o))

where [@] is the denotation of &:
[odd]={z€ 7z |zis odd },

[even] ={z€ Z | zis even },

[©1 = $21=[1] — [Pa]

Richer properties

Note that if we want to show a judgement like

['F Ax. \y. add (multiply 2 x) (multiply 3 y) : even — even — even

we need more than one assumption about multiply:

[={ .., multiply : even = even — even,
multiply : odd = even — even, ...}

Richer properties

This might be undesirable, and one alternative is
to enrich our properties instead; in this case we
could allow conjunction inside properties, so that
our single assumption about multiply looks like:

multiply : even = even — even A
even — odd — even A
odd — even — even A
odd — odd — odd

We would need to modify the inference system
to handle these richer properties.

Summary

Inference-based analysis is another useful framework

Inference rules are used to produce judgements
about programs and their properties

Type systems are the best-known example
Richer properties give more detailed information

An inference system used for analysis has an
associated safety condition

