
Motivation

In this part of the course we’re examining several 
methods of higher-level program analysis.

We have so far seen abstract interpretation and constraint-
based analysis, two general frameworks for formally 
specifying (and performing) analyses of programs.

Another alternative framework is inference-based analysis.



Inference-based analysis

Inference systems consist of sets of rules for 
determining program properties.

Typically such a property of an entire program 
depends recursively upon the properties of the 
program’s subexpressions; inference systems can 
directly express this relationship, and show how 

to recursively compute the property.



Inference-based analysis

Γ ! e : φ
• e is an expression (e.g. a complete program)

• ! is a set of assumptions about free variables of e

• " is a program property

An inference system specifies judgements:



Type systems

Consider the ML type system, for example.

This particular inference system specifies 
judgements about a well-typedness property:

Γ ! e : t
means “under the assumptions in !, the 

expression e has type t”.



Type systems

We will avoid the more complicated ML typing 
issues (see Types course for details) and just 

consider the expressions in the lambda calculus:

e ::= x | #x. e | e1 e2

Our program properties are types t:

t ::= $ | int | t1 % t2



Type systems

! is a set of type assumptions of the form

{ x1 : t1, ..., xn : tn }
where each identifier xi is assumed to have type ti.

![x : t]
We write

to mean ! with the additional assumption that x has type t 
(overriding any other assumption about x).



Type systems

In all inference systems, we use a set of rules to 
inductively define which judgements are valid.

In a type system, these are the typing rules.



Type systems

Γ[x : t] ! x : t
(Var)

Γ[x : t] ! e : t′

Γ ! λx.e : t → t′
(Lam)

Γ ! e1 : t → t
′ Γ ! e2 : t

Γ ! e1e2 : t′
(App)



t = ?

e = #x. #y. add (multiply 2 x) y

Type systems

! = { 2 : int, add : int % int % int, multiply : int % int % int }



t = ?t = int % int % int

e = #x. #y. add (multiply 2 x) y

Γ[x : int ][y : int ] ! add : int → int → int

...

Γ[x : int ][y : int ] ! multiply 2 x : int

Γ[x : int ][y : int ] ! add (multiply 2 x) : int → int Γ[x : int ][y : int ] ! y : int

Γ[x : int ][y : int ] ! add (multiply 2 x) y : int

Γ[x : int ] ! λy. add (multiply 2 x) y : int → int

Γ ! λx. λy. add (multiply 2 x) y : int → int → int

Type systems

! = { 2 : int, add : int % int % int, multiply : int % int % int }



Optimisation
In the absence of a compile-time type checker, all values 

must be tagged with their types and run-time checks must 
be performed to ensure types match appropriately.

If a type system has shown that the program is well-typed, 
execution can proceed safely without these tags and 

checks; if necessary, the final result of evaluation can be 
tagged with its inferred type.

Hence the final result of evaluation is identical, but less 
run-time computation is required to produce it.



Safety

({} ! e : t) ⇒ ([[e]] ∈ [[t]])
The safety condition for this inference system is

where   e   and   t   are the denotations of e and t 
respectively:   e   is the value obtained by evaluating e, 

and   t   is the set of all values of type t.

This condition asserts that the run-time behaviour of 
the program will agree with the type system’s prediction.
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Odds and evens

Type-checking is just one application of 
inference-based program analysis.

The properties do not have to be types; in 
particular, they can carry more (or completely 

different!) information than traditional types do.

We’ll consider a more program-analysis–related 
example: detecting odd and even numbers.



Odds and evens

This time, the program property " has the form

" ::= odd | even | "1 % "2



Odds and evens

Γ[x : φ] ! x : φ
(Var)

Γ[x : φ] ! e : φ′

Γ ! λx.e : φ → φ′
(Lam)

Γ ! e1 : φ → φ′ Γ ! e2 : φ

Γ ! e1e2 : φ′
(App)



" = ?

e = #x. #y. add (multiply 2 x) y

Odds and evens
! = { 2 : even, add : even % even % even,
                    multiply : even % odd % even }



" = ?" = odd % even % even

Γ[x : odd ][y : even] ! add : even → even → even

...

Γ[x : odd ][y : even] ! multiply 2 x : even

Γ[x : odd ][y : even] ! add (multiply 2 x) : even → even Γ[x : odd ][y : even] ! y : even

Γ[x : odd ][y : even] ! add (multiply 2 x) y : even

Γ[x : odd ] ! λy. add (multiply 2 x) y : even → even

Γ ! λx. λy. add (multiply 2 x) y : odd → even → even

e = #x. #y. add (multiply 2 x) y

Odds and evens
! = { 2 : even, add : even % even % even,
                    multiply : even % odd % even }



({} ! e : φ) ⇒ ([[e]] ∈ [[φ]])

Safety

The safety condition for this inference system is

  odd   = { z ∈ ! | z is odd },[      ][     ]

where   "   is the denotation of ":[  ][   ]

  "1 % "2   =   "1   %   "2  [     ][    ][     ][    ][               ][              ]

  even   = { z ∈ ! | z is even },[       ][      ]



Richer properties

Note that if we want to show a judgement like

Γ ! λx. λy. add (multiply 2 x) (multiply 3 y) : even → even → even

we need more than one assumption about multiply:

! = { ..., multiply : even % even % even,
            multiply : odd % even % even, ... }



Richer properties
This might be undesirable, and one alternative is 
to enrich our properties instead; in this case we 
could allow conjunction inside properties, so that 
our single assumption about multiply looks like:

multiply : even % even % even ∧
             even % odd % even ∧
             odd % even % even ∧
             odd % odd % odd

We would need to modify the inference system 
to handle these richer properties.



Summary

• Inference-based analysis is another useful framework

• Inference rules are used to produce judgements 
about programs and their properties

• Type systems are the best-known example

• Richer properties give more detailed information

• An inference system used for analysis has an 
associated safety condition


