
Motivation

In this part of the course we’re examining several
methods of higher-level program analysis.

We have so far seen abstract interpretation and constraint-
based analysis, two general frameworks for formally
specifying (and performing) analyses of programs.

Another alternative framework is inference-based analysis.

Inference-based analysis

Inference systems consist of sets of rules for
determining program properties.

Typically such a property of an entire program
depends recursively upon the properties of the
program’s subexpressions; inference systems can
directly express this relationship, and show how

to recursively compute the property.

Inference-based analysis

Γ ! e : φ
• e is an expression (e.g. a complete program)

• ! is a set of assumptions about free variables of e

• " is a program property

An inference system specifies judgements:

Type systems

Consider the ML type system, for example.

This particular inference system specifies
judgements about a well-typedness property:

Γ ! e : t
means “under the assumptions in !, the

expression e has type t”.

Type systems

We will avoid the more complicated ML typing
issues (see Types course for details) and just

consider the expressions in the lambda calculus:

e ::= x | #x. e | e1 e2

Our program properties are types t:

t ::= $ | int | t1 % t2

Type systems

! is a set of type assumptions of the form

{ x1 : t1, ..., xn : tn }
where each identifier xi is assumed to have type ti.

![x : t]
We write

to mean ! with the additional assumption that x has type t
(overriding any other assumption about x).

Type systems

In all inference systems, we use a set of rules to
inductively define which judgements are valid.

In a type system, these are the typing rules.

Type systems

Γ[x : t] ! x : t
(Var)

Γ[x : t] ! e : t′

Γ ! λx.e : t → t′
(Lam)

Γ ! e1 : t → t
′ Γ ! e2 : t

Γ ! e1e2 : t′
(App)

t = ?

e = #x. #y. add (multiply 2 x) y

Type systems

! = { 2 : int, add : int % int % int, multiply : int % int % int }

t = ?t = int % int % int

e = #x. #y. add (multiply 2 x) y

Γ[x : int][y : int] ! add : int → int → int

...

Γ[x : int][y : int] ! multiply 2 x : int

Γ[x : int][y : int] ! add (multiply 2 x) : int → int Γ[x : int][y : int] ! y : int

Γ[x : int][y : int] ! add (multiply 2 x) y : int

Γ[x : int] ! λy. add (multiply 2 x) y : int → int

Γ ! λx. λy. add (multiply 2 x) y : int → int → int

Type systems

! = { 2 : int, add : int % int % int, multiply : int % int % int }

Optimisation
In the absence of a compile-time type checker, all values

must be tagged with their types and run-time checks must
be performed to ensure types match appropriately.

If a type system has shown that the program is well-typed,
execution can proceed safely without these tags and

checks; if necessary, the final result of evaluation can be
tagged with its inferred type.

Hence the final result of evaluation is identical, but less
run-time computation is required to produce it.

Safety

({} ! e : t) ⇒ ([[e]] ∈ [[t]])
The safety condition for this inference system is

where e and t are the denotations of e and t
respectively: e is the value obtained by evaluating e,

and t is the set of all values of type t.

This condition asserts that the run-time behaviour of
the program will agree with the type system’s prediction.

[][] [][]
[][]

[][]

Odds and evens

Type-checking is just one application of
inference-based program analysis.

The properties do not have to be types; in
particular, they can carry more (or completely

different!) information than traditional types do.

We’ll consider a more program-analysis–related
example: detecting odd and even numbers.

Odds and evens

This time, the program property " has the form

" ::= odd | even | "1 % "2

Odds and evens

Γ[x : φ] ! x : φ
(Var)

Γ[x : φ] ! e : φ′

Γ ! λx.e : φ → φ′
(Lam)

Γ ! e1 : φ → φ′ Γ ! e2 : φ

Γ ! e1e2 : φ′
(App)

" = ?

e = #x. #y. add (multiply 2 x) y

Odds and evens
! = { 2 : even, add : even % even % even,
 multiply : even % odd % even }

" = ?" = odd % even % even

Γ[x : odd][y : even] ! add : even → even → even

...

Γ[x : odd][y : even] ! multiply 2 x : even

Γ[x : odd][y : even] ! add (multiply 2 x) : even → even Γ[x : odd][y : even] ! y : even

Γ[x : odd][y : even] ! add (multiply 2 x) y : even

Γ[x : odd] ! λy. add (multiply 2 x) y : even → even

Γ ! λx. λy. add (multiply 2 x) y : odd → even → even

e = #x. #y. add (multiply 2 x) y

Odds and evens
! = { 2 : even, add : even % even % even,
 multiply : even % odd % even }

({} ! e : φ) ⇒ ([[e]] ∈ [[φ]])

Safety

The safety condition for this inference system is

 odd = { z ∈ ! | z is odd },[][]

where " is the denotation of ":[][]

 "1 % "2 = "1 % "2 [][][][][][]

 even = { z ∈ ! | z is even },[][]

Richer properties

Note that if we want to show a judgement like

Γ ! λx. λy. add (multiply 2 x) (multiply 3 y) : even → even → even

we need more than one assumption about multiply:

! = { ..., multiply : even % even % even,
 multiply : odd % even % even, ... }

Richer properties
This might be undesirable, and one alternative is
to enrich our properties instead; in this case we
could allow conjunction inside properties, so that
our single assumption about multiply looks like:

multiply : even % even % even ∧
 even % odd % even ∧
 odd % even % even ∧
 odd % odd % odd

We would need to modify the inference system
to handle these richer properties.

Summary

• Inference-based analysis is another useful framework

• Inference rules are used to produce judgements
about programs and their properties

• Type systems are the best-known example

• Richer properties give more detailed information

• An inference system used for analysis has an
associated safety condition

