
PERL(1) PerlProgrammers Reference Guide PERL(1)

NAME
perl − Practical Extraction and Report Language

SYNOPSIS
perl [−sTtuUWX] [−hv] [−V[:configvar]]

[−cw] [−d[t][:debugger]] [−D[number/list]]
[−pna] [−Fpattern] [−l[octal]] [−0[octal/hexadecimal]]
[−Idir] [−m[−]module] [−M [−]’module...’] [−f] [−C [number/list]] [−P]
[−S] [−x[dir]] [−i[extension]]
[−e ’command’] [−−] [programfile] [argument]...

If you’re new to Perl, you should start with perlintro, which is a general intro for beginners and provides
some background to help you navigate the rest of Perl’s extensive documentation.

For ease of access, the Perl manual has been split up into several sections.

Overview

perl Perl overview (this section)
perlintro Perl introduction for beginners
perltoc Perl documentation table of contents

Tutorials

perlreftut Perl references short introduction
perldsc Perl data structures intro
perllol Perl data structures: arrays of arrays

perlrequick Perl regular expressions quick start
perlretut Perl regular expressions tutorial

perlboot Perl OO tutorial for beginners
perltoot Perl OO tutorial, part 1
perltooc Perl OO tutorial, part 2
perlbot Perl OO tricks and examples

perlstyle Perl style guide

perlcheat Perl cheat sheet
perltrap Perl traps for the unwary
perldebtut Perl debugging tutorial

perlfaq Perl frequently asked questions
perlfaq1 General Questions About Perl
perlfaq2 Obtaining and Learning about Perl
perlfaq3 Programming Tools
perlfaq4 Data Manipulation
perlfaq5 Files and Formats
perlfaq6 Regexes
perlfaq7 Perl Language Issues
perlfaq8 System Interaction
perlfaq9 Networking

Reference Manual

perl v5.10.0 2007-12-18 1

PERL(1) PerlProgrammers Reference Guide PERL(1)

perlsyn Perl syntax
perldata Perl data structures
perlop Perl operators and precedence
perlsub Perl subroutines
perlfunc Perl built−in functions

perlopentut Perl open() tutorial
perlpacktut Perl pack() and unpack() tutorial

perlpod Perl plain old documentation
perlpodspec Perl plain old documentation format specification
perlrun Perl execution and options
perldiag Perl diagnostic messages
perllexwarn Perl warnings and their control
perldebug Perl debugging
perlvar Perl predefined variables
perlre Perl regular expressions, the rest of the story
perlrebackslash Perl regular expression backslash sequences
perlrecharclass Perl regular expression character classes
perlreref Perl regular expressions quick reference
perlref Perl references, the rest of the story
perlform Perl formats
perlobj Perl objects
perltie Perl objects hidden behind simple variables

perldbmfilter Perl DBM filters

perlipc Perl interprocess communication
perlfork Perl fork() information
perlnumber Perl number semantics

perlthrtut Perl threads tutorial
perlothrtut Old Perl threads tutorial

perlport Perl portability guide
perllocale Perl locale support
perluniintro Perl Unicode introduction
perlunicode Perl Unicode support
perlunifaq Perl Unicode FAQ
perlunitut Perl Unicode tutorial
perlebcdic Considerations for running Perl on EBCDIC platforms

perlsec Perl security

perlmod Perl modules: how they work
perlmodlib Perl modules: how to write and use
perlmodstyle Perl modules: how to write modules with style
perlmodinstall Perl modules: how to install from CPAN
perlnewmod Perl modules: preparing a new module for distribution
perlpragma Perl modules: writing a user pragma

perlutil utilities packaged with the Perl distribution

perlcompile Perl compiler suite intro

perlfilter Perl source filters

perlglossary Perl Glossary

2 2007-12-18 perlv5.10.0

PERL(1) PerlProgrammers Reference Guide PERL(1)

Internals and C Language Interface

perlembed Perl ways to embed perl in your C or C++ application
perldebguts Perl debugging guts and tips
perlxstut Perl XS tutorial
perlxs Perl XS application programming interface
perlclib Internal replacements for standard C library functions
perlguts Perl internal functions for those doing extensions
perlcall Perl calling conventions from C
perlreapi Perl regular expression plugin interface
perlreguts Perl regular expression engine internals

perlapi Perl API listing (autogenerated)
perlintern Perl internal functions (autogenerated)
perliol C API for Perl's implementation of IO in Layers
perlapio Perl internal IO abstraction interface

perlhack Perl hackers guide

Miscellaneous

perlbook Perl book information
perlcommunity Perl community information
perltodo Perl things to do

perldoc Look up Perl documentation in Pod format

perlhist Perl history records
perldelta Perl changes since previous version
perl595delta Perl changes in version 5.9.5
perl594delta Perl changes in version 5.9.4
perl593delta Perl changes in version 5.9.3
perl592delta Perl changes in version 5.9.2
perl591delta Perl changes in version 5.9.1
perl590delta Perl changes in version 5.9.0
perl588delta Perl changes in version 5.8.8
perl587delta Perl changes in version 5.8.7
perl586delta Perl changes in version 5.8.6
perl585delta Perl changes in version 5.8.5
perl584delta Perl changes in version 5.8.4
perl583delta Perl changes in version 5.8.3
perl582delta Perl changes in version 5.8.2
perl581delta Perl changes in version 5.8.1
perl58delta Perl changes in version 5.8.0
perl573delta Perl changes in version 5.7.3
perl572delta Perl changes in version 5.7.2
perl571delta Perl changes in version 5.7.1
perl570delta Perl changes in version 5.7.0
perl561delta Perl changes in version 5.6.1
perl56delta Perl changes in version 5.6
perl5005delta Perl changes in version 5.005
perl5004delta Perl changes in version 5.004

perlartistic Perl Artistic License
perlgpl GNU General Public License

perl v5.10.0 2007-12-18 3

PERL(1) PerlProgrammers Reference Guide PERL(1)

Language-Specific

perlcn Perl for Simplified Chinese (in EUC−CN)
perljp Perl for Japanese (in EUC−JP)
perlko Perl for Korean (in EUC−KR)
perltw Perl for Traditional Chinese (in Big5)

Platform-Specific

perlaix Perl notes for AIX
perlamiga Perl notes for AmigaOS
perlapollo Perl notes for Apollo DomainOS
perlbeos Perl notes for BeOS
perlbs2000 Perl notes for POSIX−BC BS2000
perlce Perl notes for WinCE
perlcygwin Perl notes for Cygwin
perldgux Perl notes for DG/UX
perldos Perl notes for DOS
perlepoc Perl notes for EPOC
perlfreebsd Perl notes for FreeBSD
perlhpux Perl notes for HP−UX
perlhurd Perl notes for Hurd
perlirix Perl notes for Irix
perllinux Perl notes for Linux
perlmachten Perl notes for Power MachTen
perlmacos Perl notes for Mac OS (Classic)
perlmacosx Perl notes for Mac OS X
perlmint Perl notes for MiNT
perlmpeix Perl notes for MPE/iX
perlnetware Perl notes for NetWare
perlopenbsd Perl notes for OpenBSD
perlos2 Perl notes for OS/2
perlos390 Perl notes for OS/390
perlos400 Perl notes for OS/400
perlplan9 Perl notes for Plan 9
perlqnx Perl notes for QNX
perlriscos Perl notes for RISC OS
perlsolaris Perl notes for Solaris
perlsymbian Perl notes for Symbian
perltru64 Perl notes for Tru64
perluts Perl notes for UTS
perlvmesa Perl notes for VM/ESA
perlvms Perl notes for VMS
perlvos Perl notes for Stratus VOS
perlwin32 Perl notes for Windows

By default, the manpages listed above are installed in the/usr/local/man/directory.

Extensive additional documentation for Perl modules is available. Thedefault configuration for perl will
place this additional documentation in the/usr/local/lib/perl5/man directory (or else in theman
subdirectory of the Perl library directory).Some of this additional documentation is distributed standard
with Perl, but you’ll also find documentation for third-party modules there.

You should be able to view Perl’s documentation with yourman(1) program by including the proper
directories in the appropriate start-up files, or in theMANPATH environment variable. To find out where the
configuration has installed the manpages, type:

perl −V:man.dir

If the directories have a common stem, such as/usr/local/man/man1and /usr/local/man/man3, you need
only to add that stem (/usr/local/man) to your man(1) configuration files or yourMANPATH environment
variable. If they do not share a stem, you’ll have to add both stems.

If that doesn’t work for some reason, you can still use the suppliedperldoc script to view module

4 2007-12-18 perlv5.10.0

PERL(1) PerlProgrammers Reference Guide PERL(1)

information. You might also look into getting a replacement man program.

If something strange has gone wrong with your program and you’re not sure where you should look for
help, try the−w switch first. It will often point out exactly where the trouble is.

DESCRIPTION
Perl is a language optimized for scanning arbitrary text files, extracting information from those text files,
and printing reports based on that information.It’s also a good language for many system management
tasks. Thelanguage is intended to be practical (easy to use, efficient, complete) rather than beautiful (tiny,
elegant, minimal).

Perl combines (in the author’s opinion, anyway) some of the best features of C,sed, awk, and sh, so people
familiar with those languages should have little difficulty with it. (Language historians will also note some
vestiges ofcsh, Pascal, and even BASIC-PLUS.) Expressionsyntax corresponds closely to C expression
syntax. Unlike most Unix utilities, Perl does not arbitrarily limit the size of your data— if you’ve got the
memory, Perl can slurp in your whole file as a single string. Recursion is of unlimited depth. And the
tables used by hashes (sometimes called ‘‘associative arrays’’) grow as necessary to prevent degraded
performance. Perlcan use sophisticated pattern matching techniques to scan large amounts of data quickly.
Although optimized for scanning text, Perl can also deal with binary data, and can make dbm files look like
hashes. SetuidPerl scripts are safer than C programs through a dataflow tracing mechanism that prevents
many stupid security holes.

If you have a problem that would ordinarily usesedor awk or sh, but it exceeds their capabilities or must
run a little faster, and you don’t want to write the silly thing in C, then Perl may be for you. There are also
translators to turn yoursedandawk scripts into Perl scripts.

But wait, there’s more...

Begun in 1993 (see perlhist), Perl version 5 is nearly a complete rewrite that provides the following
additional benefits:

• modularity and reusability using innumerable modules

Described in perlmod, perlmodlib, and perlmodinstall.

• embeddable and extensible

Described in perlembed, perlxstut, perlxs, perlcall, perlguts, and xsubpp.

• roll-your-own magic variables (including multiple simultaneousDBM implementations)

Described in perltie and AnyDBM_File.

• subroutines can now be overridden, autoloaded, and prototyped

Described in perlsub.

• arbitrarily nested data structures and anonymous functions

Described in perlreftut, perlref, perldsc, and perllol.

• object-oriented programming

Described in perlobj, perlboot, perltoot, perltooc, and perlbot.

• support for light-weight processes (threads)

Described in perlthrtut and threads.

• support for Unicode, internationalization, and localization

Described in perluniintro, perllocale and Locale::Maketext.

• lexical scoping

Described in perlsub.

• regular expression enhancements

Described in perlre, with additional examples in perlop.

• enhanced debugger and interactive Perl environment, with integrated editor support

Described in perldebtut, perldebug and perldebguts.

perl v5.10.0 2007-12-18 5

PERL(1) PerlProgrammers Reference Guide PERL(1)

• POSIX1003.1 compliant library

Described inPOSIX.

Okay, that’sdefinitelyenough hype.

AV A ILABILITY
Perl is available for most operating systems, including virtually all Unix-like platforms. See‘‘ Supported
Platforms’’ in perlport for a listing.

ENVIRONMENT
See perlrun.

AUTHOR
Larry Wall <larry@wall.org>, with the help of oodles of other folks.

If your Perl success stories and testimonials may be of help to others who wish to advocate the use of Perl
in their applications, or if you wish to simply express your gratitude to Larry and the Perl developers,
please write to perl−thanks@perl.org .

FILES
"@INC" locations of perl libraries

SEE ALSO
a2p awk to perl translator
s2p sed to perl translator

http://www.perl.org/ the Perl homepage
http://www.perl.com/ Perl articles (O'Reilly)
http://www.cpan.org/ the Comprehensive Perl Archive
http://www.pm.org/ the Perl Mongers

DIAGNOSTICS
Theuse warnings pragma (and the−w switch) produces some lovely diagnostics.

See perldiag for explanations of all Perl’s diagnostics. Theuse diagnostics pragma automatically
turns Perl’s normally terse warnings and errors into these longer forms.

Compilation errors will tell you the line number of the error, with an indication of the next token or token
type that was to be examined. (Ina script passed to Perl via−eswitches, each−e is counted as one line.)

Setuid scripts have additional constraints that can produce error messages such as ‘‘Insecure dependency’’.
See perlsec.

Did we mention that you should definitely consider using the−w switch?

BUGS
The−w switch is not mandatory.

Perl is at the mercy of your machine’s definitions of various operations such as type casting,atof(), and
floating-point output withsprintf().

If your stdio requires a seek or eof between reads and writes on a particular stream, so does Perl.(This
doesn’t apply tosysread()andsyswrite().)

While none of the built-in data types have any arbitrary size limits (apart from memory size), there are still
a few arbitrary limits: a giv en variable name may not be longer than 251 characters.Line numbers
displayed by diagnostics are internally stored as short integers, so they are limited to a maximum of 65535
(higher numbers usually being affected by wraparound).

You may mail your bug reports (be sure to include full configuration information as output by the myconfig
program in the perl source tree, or byperl −V) to perlbug@perl.org . If you’ve succeeded in compiling
perl, theperlbug script in theutils/ subdirectory can be used to help mail in a bug report.

Perl actually stands for Pathologically Eclectic Rubbish Lister, but don’t tell anyone I said that.

NOTES
The Perl motto is ‘‘There’s more than one way to do it.’’ D ivining how many more is left as an exercise to
the reader.

The three principal virtues of a programmer are Laziness, Impatience, and Hubris. See the Camel Book for

6 2007-12-18 perlv5.10.0

PERL(1) PerlProgrammers Reference Guide PERL(1)

why.

perl v5.10.0 2007-12-18 7

PERLSYN(1) PerlProgrammers Reference Guide PERLSYN(1)

NAME
perlsyn − Perl syntax

DESCRIPTION
A Perl program consists of a sequence of declarations and statements which run from the top to the bottom.
Loops, subroutines and other control structures allow you to jump around within the code.

Perl is afree-form language, you can format and indent it however you like. Whitespacemostly serves to
separate tokens, unlike languages like Python where it is an important part of the syntax.

Many of Perl’s syntactic elements areoptional. Rather than requiring you to put parentheses around every
function call and declare every variable, you can often leave such explicit elements off and Perl will figure
out what you meant. This is known asDo What I Mean, abbreviatedDWIM . It allows programmers to be
lazy and to code in a style with which they are comfortable.

Perl borr ows syntax and concepts from many languages: awk, sed, C, Bourne Shell, Smalltalk, Lisp and
ev en English. Other languages have borrowed syntax from Perl, particularly its regular expression
extensions. Soif you have programmed in another language you will see familiar pieces in Perl.They
often work the same, but see perltrap for information about how they differ.

Declarations

The only things you need to declare in Perl are report formats and subroutines (and sometimes not even
subroutines). Avariable holds the undefined value (undef) until it has been assigned a defined value,
which is anything other thanundef . When used as a number, undef is treated as0; when used as a
string, it is treated as the empty string,"" ; and when used as a reference that isn’t being assigned to, it is
treated as an error. If you enable warnings, you’ll be notified of an uninitialized value whenever you treat
undef as a string or a number. Well, usually. Boolean contexts, such as:

my $a;
if ($a) {}

are exempt from warnings (because they care about truth rather than definedness). Operators such as++,
−−, +=, −=, and .= , that operate on undefined left values such as:

my $a;
$a++;

are also always exempt from such warnings.

A declaration can be put anywhere a statement can, but has no effect on the execution of the primary
sequence of statements— declarations all take effect at compile time.Typically all the declarations are put
at the beginning or the end of the script.However, if you’re using lexically-scoped private variables created
with my() , you’ll have to make sure your format or subroutine definition is within the same block scope as
the my if you expect to be able to access those private variables.

Declaring a subroutine allows a subroutine name to be used as if it were a list operator from that point
forward in the program.You can declare a subroutine without defining it by sayingsub name , thus:

sub myname;
$me = myname $0 or die "can't get myname";

Note thatmyname()functions as a list operator, not as a unary operator; so be careful to useor instead of
|| in this case.However, if you were to declare the subroutine assub myname ($) , then myname
would function as a unary operator, so eitheror or || would work.

Subroutines declarations can also be loaded up with therequire statement or both loaded and imported
into your namespace with ause statement. Seeperlmod for details on this.

A statement sequence may contain declarations of lexically-scoped variables, but apart from declaring a
variable name, the declaration acts like an ordinary statement, and is elaborated within the sequence of
statements as if it were an ordinary statement. That means it actually has both compile-time and run-time
effects.

8 2007-12-18 perlv5.10.0

PERLSYN(1) PerlProgrammers Reference Guide PERLSYN(1)

Comments

Te xt from a"#" character until the end of the line is a comment, and is ignored.Exceptions include"#"
inside a string or regular expression.

Simple Statements

The only kind of simple statement is an expression evaluated for its side effects. Every simple statement
must be terminated with a semicolon, unless it is the final statement in a block, in which case the semicolon
is optional. (A semicolon is still encouraged if the block takes up more than one line, because you may
ev entually add another line.) Note that there are some operators like eval {} anddo {} that look like
compound statements, but aren’t (they’re just TERMs in an expression), and thus need an explicit
termination if used as the last item in a statement.

Tr uth and Falsehood

The number 0, the strings'0' and'' , the empty list() , and undef are all false in a boolean context. All
other values are true.Negation of a true value by! or not returns a special false value. Whenevaluated
as a string it is treated as'' , but as a number, it is treated as 0.

Statement Modifiers

Any simple statement may optionally be followed by aSINGLE modifier, just before the terminating
semicolon (or block ending). The possible modifiers are:

if EXPR
unless EXPR
while EXPR
until EXPR
foreach LIST

The EXPRfollowing the modifier is referred to as the ‘‘condition’’. Its truth or falsehood determines how
the modifier will behave.

if executes the statement onceif and only if the condition is true.unless is the opposite, it executes the
statementunlessthe condition is true (i.e., if the condition is false).

print "Basset hounds got long ears" if length $ear >= 10;
go_outside() and play() unless $is_raining;

The foreach modifier is an iterator: it executes the statement once for each item in theLIST (with $_
aliased to each item in turn).

print "Hello $_!\n" foreach qw(world Dolly nurse);

while repeats the statementwhile the condition is true.until does the opposite, it repeats the statement
until the condition is true (or while the condition is false):

Both of these count from 0 to 10.
print $i++ while $i <= 10;
print $j++ until $j > 10;

The while and until modifiers have the usual "while loop" semantics (conditional evaluated first),
except when applied to ado−BLOCK (or to the deprecateddo−SUBROUTINE statement), in which case
the block executes once before the conditional is evaluated. Thisis so that you can write loops like:

do {
$line = <STDIN>;
...

} u ntil $line eq ".\n";

See ‘‘do’’ in perlfunc. Notealso that the loop control statements described later willNOT work in this
construct, because modifiers don’t take loop labels.Sorry. You can always put another block inside of it
(for next) or around it (forlast) to do that sort of thing.For next , just double the braces:

perl v5.10.0 2007-12-18 9

PERLSYN(1) PerlProgrammers Reference Guide PERLSYN(1)

do {{
next if $x == $y;
do s omething here

}} until $x++ > $z;

For last , you have to be more elaborate:

LOOP: {
do {

last if $x = $y**2;
do s omething here

} w hile $x++ <= $z;
}

NOTE: The behaviour of amy statement modified with a statement modifier conditional or loop construct
(e.g. my $x if ...) is undefined. The value of themy variable may beundef , any previously
assigned value, or possibly anything else.Don’t rely on it. Future versions of perl might do something
different from the version of perl you try it out on. Here be dragons.

Compound Statements

In Perl, a sequence of statements that defines a scope is called a block.Sometimes a block is delimited by
the file containing it (in the case of a required file, or the program as a whole), and sometimes a block is
delimited by the extent of a string (in the case of an eval).

But generally, a block is delimited by curly brackets, also known as braces.We will call this syntactic
construct aBLOCK.

The following compound statements may be used to control flow:

if (EXPR) BLOCK
if (EXPR) BLOCK else BLOCK
if (EXPR) BLOCK elsif (EXPR) BLOCK ... else BLOCK
LABEL while (EXPR) BLOCK
LABEL while (EXPR) BLOCK continue BLOCK
LABEL until (EXPR) BLOCK
LABEL until (EXPR) BLOCK continue BLOCK
LABEL for (EXPR; EXPR; EXPR) BLOCK
LABEL foreach VAR (LIST) BLOCK
LABEL foreach VAR (LIST) BLOCK continue BLOCK
LABEL BLOCK continue BLOCK

Note that, unlike C and Pascal, these are defined in terms of BLOCKs, not statements.This means that the
curly brackets arerequired−−no dangling statements allowed. If you want to write conditionals without
curly brackets there are several other ways to do it. The following all do the same thing:

if (!open(FOO)) { die "Can't open $FOO: $!"; }
die "Can't open $FOO: $!" unless open(FOO);
open(FOO) or die "Can't open $FOO: $!"; # FOO or bust!
open(FOO) ? 'hi mom' : die "Can't open $FOO: $!";

a b it exotic, that last one

The if statement is straightforward. BecauseBLOCKs are always bounded by curly brackets, there is
never any ambiguity about whichif anelse goes with. If you useunless in place ofif , the sense of
the test is reversed.

Thewhile statement executes the block as long as the expression is true.Theuntil statement executes
the block as long as the expression is false. TheLABEL is optional, and if present, consists of an identifier
followed by a colon.The LABEL identifies the loop for the loop control statementsnext , last , and
redo . If the LABEL is omitted, the loop control statement refers to the innermost enclosing loop.This
may include dynamically looking back your call-stack at run time to find theLABEL . Such desperate
behavior triggers a warning if you use theuse warnings pragma or the−w flag.

If there is acontinue BLOCK, it is always executed just before the conditional is about to be evaluated
again. Thusit can be used to increment a loop variable, even when the loop has been continued via the
next statement.

10 2007-12-18 perl v5.10.0

PERLSYN(1) PerlProgrammers Reference Guide PERLSYN(1)

Loop Control

Thenext command starts the next iteration of the loop:

LINE: while (<STDIN>) {
next LINE if /ˆ#/; # discard comments
...

}

The last command immediately exits the loop in question.The continue block, if any, is not
executed:

LINE: while (<STDIN>) {
last LINE if /ˆ$/; # exit when done with header
...

}

The redo command restarts the loop block without evaluating the conditional again. Thecontinue
block, if any, is not executed. Thiscommand is normally used by programs that want to lie to themselves
about what was just input.

For example, when processing a file like /etc/termcap. If your input lines might end in backslashes to
indicate continuation, you want to skip ahead and get the next record.

while (<>) {
chomp;
if (s/\\$//) {

$_ .= <>;
redo unless eof();

}
now process $_

}

which is Perl short-hand for the more explicitly written version:

LINE: while (defined($line = <ARGV>)) {
chomp($line);
if ($line =˜ s/\\$//) {

$line .= <ARGV>;
redo LINE unless eof(); # not eof(ARGV)!

}
now process $line

}

Note that if there were acontinue block on the above code, it would get executed only on lines
discarded by the regex (since redo skips the continue block). A continue block is often used to reset line
counters or?pat? one-time matches:

i nspired by :1,$g/fred/s//WILMA/
while (<>) {

?(fred)? && s//WILMA $1 WILMA/;
?(barney)? && s//BETTY $1 BETTY/;
?(homer)? && s//MARGE $1 MARGE/;

} c ontinue {
print "$ARGV $.: $_";
close ARGV if eof(); # r eset $.
reset if eof(); # reset ?pat?

}

If the word while is replaced by the word until , the sense of the test is reversed, but the conditional is
still tested before the first iteration.

The loop control statements don’t work in anif or unless , since they aren’t loops. You can double the
braces to make them such, though.

perl v5.10.0 2007-12-18 11

PERLSYN(1) PerlProgrammers Reference Guide PERLSYN(1)

if (/pattern/) {{
last if /fred/;
next if /barney/; # same effect as "last", but doesn't document as well
do s omething here

}}

This is caused by the fact that a block by itself acts as a loop that executes once, see ‘‘Basic BLOCKs’’.

The form while/if BLOCK BLOCK , available in Perl 4, is no longer available. Replaceany
occurrence ofif BLOCK by if (do BLOCK) .

For L oops

Perl’s C−stylefor loop works like the correspondingwhile loop; that means that this:

for ($i = 1; $i < 10; $i++) {
...

}

is the same as this:

$i = 1;
while ($i < 10) {

...
} c ontinue {

$i++;
}

There is one minor difference: if variables are declared withmy in the initialization section of thefor , the
lexical scope of those variables is exactly thefor loop (the body of the loop and the control sections).

Besides the normal array index looping,for can lend itself to many other interesting applications.Here’s
one that avoids the problem you get into if you explicitly test for end-of-file on an interactive file descriptor
causing your program to appear to hang.

$on_a_tty = −t STDIN && −t STDOUT;
sub prompt { print "yes? " if $on_a_tty }
for (prompt(); <STDIN>; prompt()) {

do s omething
}

Using readline (or the operator form,<EXPR>) as the conditional of afor loop is shorthand for the
following. Thisbehaviour is the same as awhile loop conditional.

for (prompt(); defined($_ = <STDIN>); prompt()) {
do s omething

}

Foreach Loops

The foreach loop iterates over a normal list value and sets the variableVAR to be each element of the list
in turn. If the variable is preceded with the keyword my, then it is lexically scoped, and is therefore visible
only within the loop. Otherwise, the variable is implicitly local to the loop and regains its former value
upon exiting the loop. If the variable was previously declared withmy, it uses that variable instead of the
global one, but it’s still localized to the loop. This implicit localisation occursonly in a foreach loop.

The foreach keyword is actually a synonym for thefor keyword, so you can useforeach for
readability orfor for brevity. (Or because the Bourne shell is more familiar to you thancsh, so writing
for comes more naturally.) If VAR is omitted,$_ is set to each value.

If any element ofLIST is an lvalue, you can modify it by modifyingVAR inside the loop.Conversely, if any
element ofLIST is NOT an lvalue, any attempt to modify that element will fail. In other words, the
foreach loop index variable is an implicit alias for each item in the list that you’re looping over.

If any part of LIST is an array, foreach will get very confused if you add or remove elements within the
loop body, for example withsplice . So don’t do that.

foreach probably won’t do what you expect ifVAR is a tied or other special variable. Don’t do that

12 2007-12-18 perl v5.10.0

PERLSYN(1) PerlProgrammers Reference Guide PERLSYN(1)

either.

Examples:

for (@ary) { s/foo/bar/ }

for my $elem (@elements) {
$elem *= 2;

}

for $count (10,9,8,7,6,5,4,3,2,1,'BOOM') {
print $count, "\n"; sleep(1);

}

for (1..15) { print "Merry Christmas\n"; }

foreach $item (split(/:[\\\n:]*/, $ENV{TERMCAP})) {
print "Item: $item\n";

}

Here’s how a C programmer might code up a particular algorithm in Perl:

for (my $i = 0; $i < @ary1; $i++) {
for (my $j = 0; $j < @ary2; $j++) {

if ($ary1[$i] > $ary2[$j]) {
last; # can't go to outer :−(

}
$ary1[$i] += $ary2[$j];

}
t his is where that last takes me

}

Whereas here’s how a Perl programmer more comfortable with the idiom might do it:

OUTER: for my $wid (@ary1) {
INNER: for my $jet (@ary2) {

next OUTER if $wid > $jet;
$wid += $jet;

}
}

See how much easier this is?It’s cleaner, safer, and faster. It’s cleaner because it’s less noisy. It’s safer
because if code gets added between the inner and outer loops later on, the new code won’t be accidentally
executed. Thenext explicitly iterates the other loop rather than merely terminating the inner one.And
it’s faster because Perl executes aforeach statement more rapidly than it would the equivalent for loop.

Basic BLOCKs

A BLOCK by itself (labeled or not) is semantically equivalent to a loop that executes once. Thus you can
use any of the loop control statements in it to leave or restart the block. (Note that this isNOT true in
eval{} , sub{} , or contrary to popular beliefdo{} blocks, which doNOT count as loops.)The
continue block is optional.

TheBLOCK construct can be used to emulate case structures.

SWITCH: {
if (/ˆabc/) { $abc = 1; last SWITCH; }
if (/ˆdef/) { $def = 1; last SWITCH; }
if (/ˆxyz/) { $xyz = 1; last SWITCH; }
$nothing = 1;

}

Such constructs are quite frequently used, because older versions of Perl had no official switch statement.

perl v5.10.0 2007-12-18 13

PERLSYN(1) PerlProgrammers Reference Guide PERLSYN(1)

Switch statements

Starting from Perl 5.10, you can say

use feature "switch";

which enables a switch feature that is closely based on the Perl 6 proposal.

The keywords given and when are analogous toswitch and case in other languages, so the code
above could be written as

given($_) {
when (/ˆabc/) { $abc = 1; }
when (/ˆdef/) { $def = 1; }
when (/ˆxyz/) { $xyz = 1; }
default { $nothing = 1; }

}

This construct is very flexible and powerful. For example:

use feature ":5.10";
given($foo) {

when (undef) {
say '$foo is undefined';

}

when ("foo") {
say '$foo is the string "foo"';

}

when ([1,3,5,7,9]) {
say '$foo is an odd digit';
continue; # Fall through

}

when ($_ < 100) {
say '$foo is numerically less than 100';

}

when (\&complicated_check) {
say 'complicated_check($foo) is true';

}

default {
die q(I don't know what to do with $foo);

}
}

given(EXPR) will assign the value ofEXPR to $_ within the lexical scope of the block, so it’s similar to

do { my $_ = EXPR; ... }

except that the block is automatically broken out of by a successfulwhen or an explicitbreak .

Most of the power comes from implicit smart matching:

when($foo)

is exactly equivalent to

when($_ ˜˜ $foo)

In factwhen(EXPR) is treated as an implicit smart match most of the time. The exceptions are that when
EXPR is:

o asubroutine or method call

o a regular expression match, i.e./REGEX/ or $foo =˜ /REGEX/ , or a neg ated regular expression
match$foo !˜ /REGEX/ .

14 2007-12-18 perl v5.10.0

PERLSYN(1) PerlProgrammers Reference Guide PERLSYN(1)

o acomparison such as$_ < 10 or $x eq "abc" (or of course$_ ˜˜ $c)

o defined(...) , exists(...) , or eof(...)

o A negated expression!(...) or not (...) , or a logical exclusive-or (...) xor (...) .

then the value ofEXPR is used directly as a boolean. Furthermore:

o If EXPR is ... && ... or ... and ... , the test is applied recursively to both arguments. Ifboth
arguments pass the test, then the argument is treated as boolean.

o If EXPR is ... || ... or ... or ... , the test is applied recursively to the first argument.

These rules look complicated, but usually they will do what you want. For example you could write:

when (/ˆ\d+$/ && $_ < 75) { ... }

Another useful shortcut is that, if you use a literal array or hash as the argument towhen, it is turned into a
reference. Sogiven(@foo) is the same asgiven(\@foo) , for example.

default behaves exactly likewhen(1 == 1) , which is to say that it always matches.

See ‘‘Smart matching in detail’’ f or more information on smart matching.

Breaking out

You can use thebreak keyword to break out of the enclosinggiven block. Every when block is
implicitly ended with abreak .

Fall-through

You can use thecontinue keyword to fall through from one case to the next:

given($foo) {
when (/x/) { say '$foo contains an x'; continue }
when (/y/) { say '$foo contains a y' }
default { say '$foo contains neither an x nor a y' }

}

Switching in a loop

Instead of usinggiven() , you can use aforeach() loop. For example, here’s one way to count how
many times a particular string occurs in an array:

my $count = 0;
for (@array) {

when ("foo") { ++$count }
}
print "\@array contains $count copies of 'foo'\n";

On exit from thewhen block, there is an implicitnext . You can override that with an explicit last if
you’re only interested in the first match.

This doesn’t work if you explicitly specify a loop variable, as infor $item (@array) . You have to
use the default variable$_ . (You can usefor my $_ (@array) .)

Smart matching in detail

The behaviour of a smart match depends on what type of thing its arguments are. It is always commutative,
i.e. $a ˜˜ $b behaves the same as$b ˜˜ $a . The behaviour is determined by the following table: the
first row that applies, in either order, determines the match behaviour.

$a $b Type of Match Implied Matching Code
====== ===== ===================== =============
(overloading trumps everything)

Code[+] Code[+] referential equality $a == $b
Any Code[+] scalar sub truth $b−>($a)

Hash Hash hash keys identical [sort keys %$a]˜˜[sort keys %$b]
Hash Array hash slice existence grep {exists $a−>{$_}} @$b
Hash Regex hash key grep grep /$b/, keys %$a

perl v5.10.0 2007-12-18 15

PERLSYN(1) PerlProgrammers Reference Guide PERLSYN(1)

Hash Any hash entry existence exists $a−>{$b}

Array Array arrays are identical[*]
Array Regex array grep grep /$b/, @$a
Array Num array contains number grep $_ == $b, @$a
Array Any array contains string grep $_ eq $b, @$a

Any undef undefined !defined $a
Any Regex pattern match $a =˜ /$b/
Code() Code() results are equal $a−>() eq $b−>()
Any Code() simple closure truth $b−>() # ignoring $a
Num numish[!] numeric equality $a == $b
Any Str string equality $a eq $b
Any Num numeric equality $a == $b

Any Any string equality $a eq $b

+ − t his must be a code reference whose prototype (if present) is not ""
(subs with a "" prototype are dealt with by the 'Code()' entry lower down)

* − t hat is, each element matches the element of same index in the other
array. If a circular reference is found, we fall back to referential
equality.

! − e ither a real number, or a string that looks like a number

The ‘‘matching code’’ doesn’t represent thereal matching code, of course: it’s just there to explain the
intended meaning. Unlikegrep , the smart match operator will short-circuit whenever it can.

Custom matching via overloading

You can change the way that an object is matched by overloading thẽ ˜ operator. This trumps the usual
smart match semantics. See overload.

Differences from Perl 6

The Perl 5 smart match andgiven /when constructs are not absolutely identical to their Perl 6 analogues.
The most visible difference is that, in Perl 5, parentheses are required around the argument togiven()
andwhen() . Parentheses in Perl 6 are always optional in a control construct such asif() , while() , or
when() ; they can’t be made optional in Perl 5 without a great deal of potential confusion, because Perl 5
would parse the expression

given $foo {
...

}

as though the argument togiven were an element of the hash%foo , interpreting the braces as hash-
element syntax.

The table of smart matches is not identical to that proposed by the Perl 6 specification, mainly due to the
differences between Perl 6’s and Perl 5’s data models.

In Perl 6,when() will always do an implicit smart match with its argument, whilst it is convenient in Perl
5 to suppress this implicit smart match in certain situations, as documented above. (The difference is largely
because Perl 5 does not, even internally, hav ea boolean type.)

Goto

Although not for the faint of heart, Perl does support agoto statement. Thereare three forms:
goto −LABEL, goto −EXPR, andgoto −&NAME. A loop’s LABEL is not actually a valid target for a
goto ; it’s just the name of the loop.

Thegoto −LABEL form finds the statement labeled withLABEL and resumes execution there. It may not
be used to go into any construct that requires initialization, such as a subroutine or aforeach loop. It
also can’t be used to go into a construct that is optimized away. It can be used to go almost anywhere else
within the dynamic scope, including out of subroutines, but it’s usually better to use some other construct

16 2007-12-18 perl v5.10.0

PERLSYN(1) PerlProgrammers Reference Guide PERLSYN(1)

such aslast or die . The author of Perl has never felt the need to use this form ofgoto (in Perl, that
is — Cis another matter).

The goto −EXPR form expects a label name, whose scope will be resolved dynamically. This allows for
computed goto s per FORTRAN, but isn’t necessarily recommended if you’re optimizing for
maintainability:

goto(("FOO", "BAR", "GLARCH")[$i]);

The goto −&NAME form is highly magical, and substitutes a call to the named subroutine for the
currently running subroutine.This is used byAUTOLOAD() subroutines that wish to load another
subroutine and then pretend that the other subroutine had been called in the first place (except that any
modifications to@_in the current subroutine are propagated to the other subroutine.)After thegoto , not
ev en caller() will be able to tell that this routine was called first.

In almost all cases like this, it’s usually a far, far better idea to use the structured control flow mechanisms
of next , last , or redo instead of resorting to agoto . For certain applications, the catch and throw pair
of eval{} anddie() for exception processing can also be a prudent approach.

PODs: Embedded Documentation

Perl has a mechanism for intermixing documentation with source code.While it’s expecting the beginning
of a new statement, if the compiler encounters a line that begins with an equal sign and a word, like this

=head1 Here There Be Pods!

Then that text and all remaining text up through and including a line beginning with=cut will be ignored.
The format of the intervening text is described in perlpod.

This allows you to intermix your source code and your documentation text freely, as in

=item snazzle($)

The snazzle() function will behave in the most spectacular
form that you can possibly imagine, not even excepting
cybernetic pyrotechnics.

=cut back to the compiler, nuff of this pod stuff!

sub snazzle($) {
my $thingie = shift;
.........

}

Note that pod translators should look at only paragraphs beginning with a pod directive (it makes parsing
easier), whereas the compiler actually knows to look for pod escapes even in the middle of a paragraph.
This means that the following secret stuff will be ignored by both the compiler and the translators.

$a=3;
=secret stuff

warn "Neither POD nor CODE!?"
=cut back
print "got $a\n";

You probably shouldn’t rely upon thewarn() being podded out forever. Not all pod translators are well-
behaved in this regard, and perhaps the compiler will become pickier.

One may also use pod directives to quickly comment out a section of code.

Plain Old Comments (Not!)

Perl can process line directives, much like the C preprocessor. Using this, one can control Perl’s idea of
filenames and line numbers in error or warning messages (especially for strings that are processed with
eval()). Thesyntax for this mechanism is the same as for most C preprocessors: it matches the regular
expression

perl v5.10.0 2007-12-18 17

PERLSYN(1) PerlProgrammers Reference Guide PERLSYN(1)

example: '# line 42 "new_filename.plx"'
/ˆ\# \s*

line \s+ (\d+) \s*
(?:\s("?)([ˆ"]+)\2)? \s*

$/x

with $1 being the line number for the next line, and$3 being the optional filename (specified with or
without quotes).

There is a fairly obvious gotcha included with the line directive: Debuggers and profilers will only show the
last source line to appear at a particular line number in a given file. Careshould be taken not to cause line
number collisions in code you’d like to debug later.

Here are some examples that you should be able to type into your command shell:

% perl
l ine 200 "bzzzt"
t he `#' on the previous line must be the first char on line
die 'foo';
_ _END_ _
foo at bzzzt line 201.

% perl
l ine 200 "bzzzt"
eval qq[\n#line 2001 ""\ndie 'foo']; print $@;
_ _END_ _
foo at − line 2001.

% perl
eval qq[\n#line 200 "foo bar"\ndie 'foo']; print $@;
_ _END_ _
foo at foo bar line 200.

% perl
l ine 345 "goop"
eval "\n#line " . _ _LINE_ _ . ' "' . _ _FILE_ _ ."\"\ndie 'foo'";
print $@;
_ _END_ _
foo at goop line 345.

18 2007-12-18 perl v5.10.0

PERLDAT A(1) PerlProgrammers Reference Guide PERLDAT A(1)

NAME
perldata − Perl data types

DESCRIPTION
Variable names

Perl has three built-in data types: scalars, arrays of scalars, and associative arrays of scalars, known as
‘‘ hashes’’. A scalar is a single string (of any size, limited only by the available memory), number, or a
reference to something (which will be discussed in perlref).Normal arrays are ordered lists of scalars
indexed by number, starting with 0. Hashes are unordered collections of scalar values indexed by their
associated string key.

Values are usually referred to by name, or through a named reference. The first character of the name tells
you to what sort of data structure it refers.The rest of the name tells you the particular value to which it
refers. Usuallythis name is a singleidentifier, that is, a string beginning with a letter or underscore, and
containing letters, underscores, and digits. In some cases, it may be a chain of identifiers, separated by::
(or by the slightly archaic'); all but the last are interpreted as names of packages, to locate the namespace
in which to look up the final identifier (see ‘‘Packages’’ i n perlmod for details).It’s possible to substitute
for a simple identifier, an expression that produces a reference to the value at runtime. This is described in
more detail below and in perlref.

Perl also has its own built-in variables whose names don’t follow these rules.They hav estrange names so
they don’t accidentally collide with one of your normal variables. Stringsthat match parenthesized parts of
a regular expression are saved under names containing only digits after the$ (see perlop and perlre).In
addition, several special variables that provide windows into the inner working of Perl have names
containing punctuation characters and control characters. These are documented in perlvar.

Scalar values are always named with ’$’, even when referring to a scalar that is part of an array or a hash.
The ’$’ symbol works semantically like the English word ‘‘the’’ in that it indicates a single value is
expected.

$days # the simple scalar value "days"
$days[28] # the 29th element of array @days
$days{'Feb'} # the 'Feb' value from hash %days
$#days # the last index of array @days

Entire arrays (and slices of arrays and hashes) are denoted by ’@’, which works much like the word
‘‘ these’’ or ‘ ‘those’’ does in English, in that it indicates multiple values are expected.

@days # ($days[0], $days[1],... $days[n])
@days[3,4,5] # same as ($days[3],$days[4],$days[5])
@days{'a','c'} # same as ($days{'a'},$days{'c'})

Entire hashes are denoted by ’%’:

%days # (key1, val1, key2, val2 ...)

In addition, subroutines are named with an initial ’&’, though this is optional when unambiguous, just as
the word ‘‘do’’ is often redundant in English. Symbol table entries can be named with an initial ’*’, but
you don’t really care about that yet (if ever :−).

Every variable type has its own namespace, as do several non-variable identifiers. This means that you can,
without fear of conflict, use the same name for a scalar variable, an array, or a hash — or, for that matter, for
a filehandle, a directory handle, a subroutine name, a format name, or a label. This means that$foo and
@foo are two different variables. Italso means that$foo[1] is a part of@foo, not a part of$foo . This
may seem a bit weird, but that’s okay, because it is weird.

Because variable references always start with ’$’, ’@’, or ’%’, the ‘‘reserved’’ words aren’t in fact reserved
with respect to variable names.They are reserved with respect to labels and filehandles, however, which
don’t hav ean initial special character. You can’t hav ea filehandle named ‘‘log’ ’, for instance.Hint: you
could say open(LOG,'logfile') rather than open(log,'logfile') . Using uppercase
filehandles also improves readability and protects you from conflict with future reserved words. Caseis
significant−−‘‘FOO’’ , ‘‘Foo’’, and ‘‘foo’ ’ are all different names. Names that start with a letter or
underscore may also contain digits and underscores.

It is possible to replace such an alphanumeric name with an expression that returns a reference to the
appropriate type.For a description of this, see perlref.

perl v5.10.0 2007-12-18 19

PERLDAT A(1) PerlProgrammers Reference Guide PERLDAT A(1)

Names that start with a digit may contain only more digits.Names that do not start with a letter,
underscore, digit or a caret (i.e.a control character) are limited to one character, e.g., $%or $$. (Most of
these one character names have a predefined significance to Perl.For instance,$$ is the current process
id.)

Context

The interpretation of operations and values in Perl sometimes depends on the requirements of the context
around the operation or value. Thereare two major contexts: list and scalar. Certain operations return list
values in contexts wanting a list, and scalar values otherwise.If this is true of an operation it will be
mentioned in the documentation for that operation.In other words, Perl overloads certain operations based
on whether the expected return value is singular or plural.Some words in English work this way, like
‘‘ fish’’ and ‘‘sheep’’.

In a reciprocal fashion, an operation provides either a scalar or a list context to each of its arguments. For
example, if you say

int(<STDIN>)

the integer operation provides scalar context for the <> operator, which responds by reading one line from
STDIN and passing it back to the integer operation, which will then find the integer value of that line and
return that. If, on the other hand, you say

sort(<STDIN>)

then the sort operation provides list context for <>, which will proceed to read every line available up to the
end of file, and pass that list of lines back to the sort routine, which will then sort those lines and return
them as a list to whatever the context of the sort was.

Assignment is a little bit special in that it uses its left argument to determine the context for the right
argument. Assignmentto a scalar evaluates the right-hand side in scalar context, while assignment to an
array or hash evaluates the righthand side in list context. Assignmentto a list (or slice, which is just a list
anyway) also evaluates the righthand side in list context.

When you use theuse warnings pragma or Perl’s −w command-line option, you may see warnings
about useless uses of constants or functions in ‘‘void context’’. Void context just means the value has been
discarded, such as a statement containing only"fred"; or getpwuid(0); . It still counts as scalar
context for functions that care whether or not they’re being called in list context.

User-defined subroutines may choose to care whether they are being called in a void, scalar, or list context.
Most subroutines do not need to bother, though. That’s because both scalars and lists are automatically
interpolated into lists. See ‘‘wantarray’’ in perlfunc for how you would dynamically discern your function’s
calling context.

Scalar values

All data in Perl is a scalar, an array of scalars, or a hash of scalars.A scalar may contain one single value in
any of three different flavors: a number, a string, or a reference. In general, conversion from one form to
another is transparent.Although a scalar may not directly hold multiple values, it may contain a reference
to an array or hash which in turn contains multiple values.

Scalars aren’t necessarily one thing or another. There’s no place to declare a scalar variable to be of type
‘‘ string’’, type ‘‘number’’, type ‘‘reference’’, or anything else.Because of the automatic conversion of
scalars, operations that return scalars don’t need to care (and in fact, cannot care) whether their caller is
looking for a string, a number, or a reference. Perlis a contextually polymorphic language whose scalars
can be strings, numbers, or references (which includes objects). Although strings and numbers are
considered pretty much the same thing for nearly all purposes, references are strongly-typed, uncastable
pointers with builtin reference-counting and destructor invocation.

A scalar value is interpreted asTRUE in the Boolean sense if it is not the null string or the number 0 (or its
string equivalent, ‘‘0’ ’). The Boolean context is just a special kind of scalar context where no conversion to
a string or a number is ever performed.

There are actually two varieties of null strings (sometimes referred to as ‘‘empty’’ strings), a defined one
and an undefined one.The defined version is just a string of length zero, such as"" . The undefined
version is the value that indicates that there is no real value for something, such as when there was an error,
or at end of file, or when you refer to an uninitialized variable or element of an array or hash. Although in

20 2007-12-18 perl v5.10.0

PERLDAT A(1) PerlProgrammers Reference Guide PERLDAT A(1)

early versions of Perl, an undefined scalar could become defined when first used in a place expecting a
defined value, this no longer happens except for rare cases of autovivification as explained in perlref.You
can use thedefined()operator to determine whether a scalar value is defined (this has no meaning on arrays
or hashes), and theundef()operator to produce an undefined value.

To find out whether a given string is a valid non-zero number, it’s sometimes enough to test it against both
numeric 0 and also lexical ‘‘0’ ’ (although this will cause noises if warnings are on).That’s because strings
that aren’t numbers count as 0, just as they do in awk:

if ($str == 0 && $str ne "0") {
warn "That doesn't look like a number";

}

That method may be best because otherwise you won’t treat IEEE notations like NaN or Infinity
properly. At other times, you might prefer to determine whether string data can be used numerically by
calling thePOSIX::strtod()function or by inspecting your string with a regular expression (as documented
in perlre).

warn "has nondigits" if /\D/;
warn "not a natural number" unless /ˆ\d+$/; # r ejects −3
warn "not an integer" unless /ˆ−?\d+$/; # r ejects +3
warn "not an integer" unless /ˆ[+−]?\d+$/;
warn "not a decimal number" unless /ˆ−?\d+\.?\d*$/; # r ejects .2
warn "not a decimal number" unless /ˆ−?(?:\d+(?:\.\d*)?|\.\d+)$/;
warn "not a C float"

unless /ˆ([+−]?)(?=\d|\.\d)\d*(\.\d*)?([Ee]([+−]?\d+))?$/;

The length of an array is a scalar value. You may find the length of array@days by evaluating$#days ,
as in csh. Howev er, this isn’t the length of the array; it’s the subscript of the last element, which is a
different value since there is ordinarily a 0th element.Assigning to$#days actually changes the length of
the array. Shortening an array this way destroys intervening values. Lengtheningan array that was
previously shortened does not recover values that were in those elements. (It used to do so in Perl 4, but we
had to break this to make sure destructors were called when expected.)

You can also gain some minuscule measure of efficiency by pre-extending an array that is going to get big.
You can also extend an array by assigning to an element that is off the end of the array. You can truncate an
array down to nothing by assigning the null list () to it. The following are equivalent:

@whatever = ();
$#whatever = −1;

If you evaluate an array in scalar context, it returns the length of the array. (Note that this is not true of
lists, which return the last value, like the C comma operator, nor of built-in functions, which return
whatever they feel like returning.) Thefollowing is always true:

scalar(@whatever) == $#whatever − $[+ 1;

Version 5 of Perl changed the semantics of$[: files that don’t set the value of$[no longer need to worry
about whether another file changed its value. (Inother words, use of$[is deprecated.) So in general you
can assume that

scalar(@whatever) == $#whatever + 1;

Some programmers choose to use an explicit conversion so as to leave nothing to doubt:

$element_count = scalar(@whatever);

If you evaluate a hash in scalar context, it returns false if the hash is empty. If there are any key/value pairs,
it returns true; more precisely, the value returned is a string consisting of the number of used buckets and
the number of allocated buckets, separated by a slash.This is pretty much useful only to find out whether
Perl’s internal hashing algorithm is performing poorly on your data set.For example, you stick 10,000
things in a hash, but evaluating %HASHin scalar context reveals "1/16" , which means only one out of
sixteen buckets has been touched, and presumably contains all 10,000 of your items. This isn’t supposed to
happen. Ifa tied hash is evaluated in scalar context, a fatal error will result, since this bucket usage
information is currently not available for tied hashes.

You can preallocate space for a hash by assigning to thekeys() function. Thisrounds up the allocated
buckets to the next power of two:

perl v5.10.0 2007-12-18 21

PERLDAT A(1) PerlProgrammers Reference Guide PERLDAT A(1)

keys(%users) = 1000; # allocate 1024 buckets

Scalar value constructors

Numeric literals are specified in any of the following floating point or integer formats:

12345
12345.67
.23E−10 # a v ery small number
3.14_15_92 # a v ery important number
4_294_967_296 # underscore for legibility
0xff # hex
0xdead_beef # more hex
0377 # octal (only numbers, begins with 0)
0b011011 # binary

You are allowed to use underscores (underbars) in numeric literals between digits for legibility. You could,
for example, group binary digits by threes (as for a Unix-style mode argument such as 0b110_100_100) or
by fours (to represent nibbles, as in 0b1010_0110) or in other groups.

String literals are usually delimited by either single or double quotes.They work much like quotes in the
standard Unix shells: double-quoted string literals are subject to backslash and variable substitution; single-
quoted strings are not (except for\' and \\). The usual C−style backslash rules apply for making
characters such as newline, tab, etc., as well as some more exotic forms. See ‘‘Quote and Quote-like
Operators’’ in perlop for a list.

Hexadecimal, octal, or binary, representations in string literals (e.g. ’0xff’) are not automatically converted
to their integer representation.Thehex()andoct() functions make these conversions for you. See ‘‘hex’’ i n
perlfunc and ‘‘oct’’ in perlfunc for more details.

You can also embed newlines directly in your strings, i.e., they can end on a different line than they begin.
This is nice, but if you forget your trailing quote, the error will not be reported until Perl finds another line
containing the quote character, which may be much further on in the script.Variable substitution inside
strings is limited to scalar variables, arrays, and array or hash slices.(In other words, names beginning with
$ or @, followed by an optional bracketed expression as a subscript.) The following code segment prints
out ‘‘The price is$100 .’’

$Price = '$100'; # not interpolated
print "The price is $Price.\n"; # i nterpolated

There is no double interpolation in Perl, so the$100 is left as is.

By default floating point numbers substituted inside strings use the dot (‘‘.’’) as the decimal separator. If
use locale is in effect, andPOSIX::setlocale()has been called, the character used for the decimal
separator is affected by theLC_NUMERIC locale. Seeperllocale andPOSIX.

As in some shells, you can enclose the variable name in braces to disambiguate it from following
alphanumerics (and underscores).You must also do this when interpolating a variable into a string to
separate the variable name from a following double-colon or an apostrophe, since these would be otherwise
treated as a package separator:

$who = "Larry";
print PASSWD "${who}::0:0:Superuser:/:/bin/perl\n";
print "We use ${who}speak when ${who}'s here.\n";

Without the braces, Perl would have looked for a$whospeak , a$who::0 , and a$who's variable. The
last two would be the$0 and the$s variables in the (presumably) non-existent packagewho.

In fact, an identifier within such curlies is forced to be a string, as is any simple identifier within a hash
subscript. Neitherneed quoting.Our earlier example,$days{'Feb'} can be written as$days{Feb}
and the quotes will be assumed automatically. But anything more complicated in the subscript will be
interpreted as an expression. Thismeans for example that$version{2.0}++ is equivalent to
$version{2}++ , not to$version{'2.0'}++ .

Version Strings

Note: Version Strings (v−strings) have been deprecated.They will be removed in some future release after
Perl 5.8.1. The marginal benefits of v−strings were greatly outweighed by the potential for Surprise and

22 2007-12-18 perl v5.10.0

PERLDAT A(1) PerlProgrammers Reference Guide PERLDAT A(1)

Confusion.

A l iteral of the formv1.20.300.4000 is parsed as a string composed of characters with the specified
ordinals. Thisform, known as v−strings, provides an alternative, more readable way to construct strings,
rather than use the somewhat less readable interpolation form"\x{1}\x{14}\x{12c}\x{fa0}" .
This is useful for representing Unicode strings, and for comparing version ‘‘numbers’’ using the string
comparison operators,cmp, gt , lt etc. If there are two or more dots in the literal, the leadingv may be
omitted.

print v9786; # prints SMILEY, "\x{263a}"
print v102.111.111; # prints "foo"
print 102.111.111; # s ame

Such literals are accepted by bothrequire and use for doing a version check. Note that using the
v−strings for IPv4 addresses is not portable unless you also use theinet_aton()/inet_ntoa()routines of the
Socket package.

Note that since Perl 5.8.1 the single-number v−strings (like v65) are not v−strings before the=> operator
(which is usually used to separate a hash key from a hash value), instead they are interpreted as literal
strings (’v65’). They were v−strings from Perl 5.6.0 to Perl 5.8.0, but that caused more confusion and
breakage than good. Multi-number v−strings like v65.66 and 65.66.67 continue to be v−strings
always.

Special Literals

The special literals __FILE_ _, _ _LINE_ _, and __PACKAGE_ _ represent the current filename, line
number, and package name at that point in your program.They may be used only as separate tokens; they
will not be interpolated into strings. If there is no current package (due to an emptypackage; directive),
_ _PA CKAGE_ _is the undefined value.

The two control characters ˆD and ˆZ, and the tokens __END_ _and __DAT A_ _ may be used to indicate
the logical end of the script before the actual end of file. Any following text is ignored.

Te xt after __DAT A_ _ but may be read via the filehandlePACKNAME::DATA, wherePACKNAMEis the
package that was current when the __DAT A_ _ token was encountered. The filehandle is left open pointing
to the contents after __DAT A_ _. It is the program’s responsibility toclose DATA when it is done
reading from it.For compatibility with older scripts written before __DAT A_ _ was introduced, __END_ _
behaves like __DAT A_ _ in the top level script (but not in files loaded withrequire or do) and leaves the
remaining contents of the file accessible viamain::DATA .

See SelfLoader for more description of __DAT A_ _, and an example of its use.Note that you cannot read
from the DATA filehandle in aBEGIN block: theBEGIN block is executed as soon as it is seen (during
compilation), at which point the corresponding _ _DAT A_ _ (or __END_ _)token has not yet been seen.

Barewords

A word that has no other interpretation in the grammar will be treated as if it were a quoted string.These
are known as ‘‘barewords’’. As with filehandles and labels, a bareword that consists entirely of lowercase
letters risks conflict with future reserved words, and if you use theuse warnings pragma or the−w
switch, Perl will warn you about any such words. Somepeople may wish to outlaw barewords entirely. If
you say

use strict 'subs';

then any bareword that would NOT be interpreted as a subroutine call produces a compile-time error
instead. Therestriction lasts to the end of the enclosing block.An inner block may countermand this by
sayingno strict 'subs' .

Array Joining Delimiter

Arrays and slices are interpolated into double-quoted strings by joining the elements with the delimiter
specified in the$" variable ($LIST_SEPARATORif ‘‘use English;’’ is specified), space by default. The
following are equivalent:

$temp = join($", @ARGV);
system "echo $temp";

system "echo @ARGV";

perl v5.10.0 2007-12-18 23

PERLDAT A(1) PerlProgrammers Reference Guide PERLDAT A(1)

Within search patterns (which also undergo double-quotish substitution) there is an unfortunate ambiguity:
Is /$foo[bar]/ to be interpreted as/${foo}[bar]/ (where [bar] is a character class for the
regular expression) or as/${foo[bar]}/ (where [bar] is the subscript to array@foo)? If @foo
doesn’t otherwise exist, then it’s obviously a character class.If @foo exists, Perl takes a good guess about
[bar] , and is almost always right. If it does guess wrong, or if you’re just plain paranoid, you can force
the correct interpretation with curly braces as above.

If you’re looking for the information on how to use here-documents, which used to be here, that’s been
moved to ‘‘Quote and Quote-like Operators’’ in perlop.

List value constructors

List values are denoted by separating individual values by commas (and enclosing the list in parentheses
where precedence requires it):

(LIST)

In a context not requiring a list value, the value of what appears to be a list literal is simply the value of the
final element, as with the C comma operator. For example,

@foo = ('cc', '−E', $bar);

assigns the entire list value to array@foo, but

$foo = ('cc', '−E', $bar);

assigns the value of variable$bar to the scalar variable$foo . Note that the value of an actual array in
scalar context is the length of the array; the following assigns the value 3 to$foo:

@foo = ('cc', '−E', $bar);
$foo = @foo; # $foo gets 3

You may have an optional comma before the closing parenthesis of a list literal, so that you can say:

@foo = (
1,
2,
3,

);

To use a here-document to assign an array, one line per element, you might use an approach like this:

@sauces = <<End_Lines =˜ m/(\S.*\S)/g;
normal tomato
spicy tomato
green chile
pesto
white wine

End_Lines

LISTs do automatic interpolation of sublists. That is, when aLIST is evaluated, each element of the list is
evaluated in list context, and the resulting list value is interpolated intoLIST just as if each individual
element were a member ofLIST. Thus arrays and hashes lose their identity in a LIST— the list

(@foo,@bar,&SomeSub,%glarch)

contains all the elements of@foo followed by all the elements of@bar, followed by all the elements
returned by the subroutine named SomeSub called in list context, followed by the key/value pairs of
%glarch . To make a list reference that doesNOT interpolate, see perlref.

The null list is represented by (). Interpolating it in a list has no effect. Thus((),(),()) is equivalent to ().
Similarly, interpolating an array with no elements is the same as if no array had been interpolated at that
point.

This interpolation combines with the facts that the opening and closing parentheses are optional (except
when necessary for precedence) and lists may end with an optional comma to mean that multiple commas
within lists are legal syntax. The list1,,3 is a concatenation of two lists,1, and3, the first of which ends
with that optional comma.1,,3 is (1,),(3) is 1,3 (And similarly for 1,,,3 is (1,),(,),3 is
1,3 and so on.) Not that we’d advise you to use this obfuscation.

24 2007-12-18 perl v5.10.0

PERLDAT A(1) PerlProgrammers Reference Guide PERLDAT A(1)

A l ist value may also be subscripted like a normal array. You must put the list in parentheses to avoid
ambiguity. For example:

Stat returns list value.
$time = (stat($file))[8];

SYNTAX ERROR HERE.
$time = stat($file)[8]; # OOPS, FORGOT PARENTHESES

Find a hex digit.
$hexdigit = ('a','b','c','d','e','f')[$digit−10];

A " reverse comma operator".
return (pop(@foo),pop(@foo))[0];

Lists may be assigned to only when each element of the list is itself legal to assign to:

($a, $b, $c) = (1, 2, 3);

($map{'red'}, $map{'blue'}, $map{'green'}) = (0x00f, 0x0f0, 0xf00);

An exception to this is that you may assign toundef in a list. This is useful for throwing away some of
the return values of a function:

($dev, $ino, undef, undef, $uid, $gid) = stat($file);

List assignment in scalar context returns the number of elements produced by the expression on the right
side of the assignment:

$x = (($foo,$bar) = (3,2,1)); # s et $x to 3, not 2
$x = (($foo,$bar) = f()); # s et $x to f()'s return count

This is handy when you want to do a list assignment in a Boolean context, because most list functions
return a null list when finished, which when assigned produces a 0, which is interpreted asFALSE.

It’s also the source of a useful idiom for executing a function or performing an operation in list context and
then counting the number of return values, by assigning to an empty list and then using that assignment in
scalar context. For example, this code:

$count = () = $string =˜ /\d+/g;

will place into$count the number of digit groups found in$string . This happens because the pattern
match is in list context (since it is being assigned to the empty list), and will therefore return a list of all
matching parts of the string. The list assignment in scalar context will translate that into the number of
elements (here, the number of times the pattern matched) and assign that to$count . Note that simply
using

$count = $string =˜ /\d+/g;

would not have worked, since a pattern match in scalar context will only return true or false, rather than a
count of matches.

The final element of a list assignment may be an array or a hash:

($a, $b, @rest) = split;
my($a, $b, %rest) = @_;

You can actually put an array or hash anywhere in the list, but the first one in the list will soak up all the
values, and anything after it will become undefined. This may be useful in amy()or local().

A hash can be initialized using a literal list holding pairs of items to be interpreted as a key and a value:

s ame as map assignment above
%map = ('red',0x00f,'blue',0x0f0,'green',0xf00);

While literal lists and named arrays are often interchangeable, that’s not the case for hashes. Just because
you can subscript a list value like a normal array does not mean that you can subscript a list value as a hash.
Likewise, hashes included as parts of other lists (including parameters lists and return lists from functions)
always flatten out into key/value pairs. That’s why it’s good to use references sometimes.

It is often more readable to use the=> operator between key/value pairs.The=> operator is mostly just a

perl v5.10.0 2007-12-18 25

PERLDAT A(1) PerlProgrammers Reference Guide PERLDAT A(1)

more visually distinctive synonym for a comma, but it also arranges for its left-hand operand to be
interpreted as a string— if i t’s a bareword that would be a legal simple identifier (=> doesn’t quote
compound identifiers, that contain double colons). This makes it nice for initializing hashes:

%map = (
red => 0x00f,
blue => 0x0f0,
green => 0xf00,

);

or for initializing hash references to be used as records:

$rec = {
witch => 'Mable the Merciless',
cat => 'Fluffy the Ferocious',
date => '10/31/1776',

};

or for using call-by-named-parameter to complicated functions:

$field = $query−>radio_group(
name => 'group_name',
values => ['eenie','meenie','minie'],
default => 'meenie',
linebreak => 'true',
labels => \%labels

);

Note that just because a hash is initialized in that order doesn’t mean that it comes out in that order. See
‘‘ sort’’ in perlfunc for examples of how to arrange for an output ordering.

Subscripts

An array is subscripted by specifying a dollar sign ($), then the name of the array (without the leading@),
then the subscript inside square brackets. For example:

@myarray = (5, 50, 500, 5000);
print "Element Number 2 is", $myarray[2], "\n";

The array indices start with 0. A negative subscript retrieves its value from the end. In our example,
$myarray[−1] would have been 5000, and$myarray[−2] would have been 500.

Hash subscripts are similar, only instead of square brackets curly brackets are used. For example:

%scientists =
(

"Newton" => "Isaac",
"Einstein" => "Albert",
"Darwin" => "Charles",
"Feynman" => "Richard",

);

print "Darwin's First Name is ", $scientists{"Darwin"}, "\n";

Slices

A common way to access an array or a hash is one scalar element at a time.You can also subscript a list to
get a single element from it.

$whoami = $ENV{"USER"}; # one element from the hash
$parent = $ISA[0]; # one element from the array
$dir = (getpwnam("daemon"))[7]; # likewise, but with list

A slice accesses several elements of a list, an array, or a hash simultaneously using a list of subscripts.It’s
more convenient than writing out the individual elements as a list of separate scalar values.

26 2007-12-18 perl v5.10.0

PERLDAT A(1) PerlProgrammers Reference Guide PERLDAT A(1)

($him, $her) = @folks[0,−1]; # array slice
@them = @folks[0 .. 3]; # array slice
($who, $home) = @ENV{"USER", "HOME"}; # hash slice
($uid, $dir) = (getpwnam("daemon"))[2,7]; # list slice

Since you can assign to a list of variables, you can also assign to an array or hash slice.

@days[3..5] = qw/Wed Thu Fri/;
@colors{'red','blue','green'}

= (0xff0000, 0x0000ff, 0x00ff00);
@folks[0, −1] = @folks[−1, 0];

The previous assignments are exactly equivalent to

($days[3], $days[4], $days[5]) = qw/Wed Thu Fri/;
($colors{'red'}, $colors{'blue'}, $colors{'green'})

= (0xff0000, 0x0000ff, 0x00ff00);
($folks[0], $folks[−1]) = ($folks[−1], $folks[0]);

Since changing a slice changes the original array or hash that it’s slicing, a foreach construct will alter
some — orev en all — of the values of the array or hash.

foreach (@array[4 .. 10]) { s/peter/paul/ }

foreach (@hash{qw[key1 key2]}) {
s/ˆ\s+//; # trim leading whitespace
s/\s+$//; # trim trailing whitespace
s/(\w+)/\u\L$1/g; # "titlecase" words

}

A slice of an empty list is still an empty list. Thus:

@a = ()[1,0]; # @a has no elements
@b = (@a)[0,1]; # @b has no elements
@c = (0,1)[2,3]; # @c has no elements

But:

@a = (1)[1,0]; # @a has two elements
@b = (1,undef)[1,0,2]; # @b has three elements

This makes it easy to write loops that terminate when a null list is returned:

while (($home, $user) = (getpwent)[7,0]) {
printf "%−8s %s\n", $user, $home;

}

As noted earlier in this document, the scalar sense of list assignment is the number of elements on the right-
hand side of the assignment.The null list contains no elements, so when the password file is exhausted, the
result is 0, not 2.

If you’re confused about why you use an ’@’ there on a hash slice instead of a ’%’, think of it like this.
The type of bracket (square or curly) governs whether it’s an array or a hash being looked at. On the other
hand, the leading symbol (’$’ or ’@’) on the array or hash indicates whether you are getting back a singular
value (a scalar) or a plural one (a list).

Typeglobs and Filehandles

Perl uses an internal type called atypeglobto hold an entire symbol table entry. The type prefix of a
typeglob is a* , because it represents all types. This used to be the preferred way to pass arrays and hashes
by reference into a function, but now that we have real references, this is seldom needed.

The main use of typeglobs in modern Perl is create symbol table aliases. This assignment:

*this = *that;

makes$this an alias for$that , @this an alias for@that , %this an alias for%that , &this an alias
for &that, etc. Much safer is to use a reference. This:

perl v5.10.0 2007-12-18 27

PERLDAT A(1) PerlProgrammers Reference Guide PERLDAT A(1)

local *Here::blue = \$There::green;

temporarily makes$Here::blue an alias for$There::green , but doesn’t make@Here::blue an
alias for @There::green , or %Here::blue an alias for%There::green , etc. See‘‘ Symbol
Tables’’ in perlmod for more examples of this. Strange though this may seem, this is the basis for the
whole module import/export system.

Another use for typeglobs is to pass filehandles into a function or to create new filehandles. Ifyou need to
use a typeglob to save away a filehandle, do it this way:

$fh = *STDOUT;

or perhaps as a real reference, like this:

$fh = *STDOUT;

See perlsub for examples of using these as indirect filehandles in functions.

Typeglobs are also a way to create a local filehandle using thelocal() operator. These last until their block
is exited, but may be passed back.For example:

sub newopen {
my $path = shift;
local *FH; # not my!
open (FH, $path) or return undef;
return *FH;

}
$fh = newopen('/etc/passwd');

Now that we have the *foo{THING} notation, typeglobs aren’t used as much for filehandle
manipulations, although they’re still needed to pass brand new file and directory handles into or out of
functions. That’s because*HANDLE{IO} only works if HANDLE has already been used as a handle.In
other words, *FH must be used to create new symbol table entries;*foo{THING} cannot. Whenin
doubt, use*FH.

All functions that are capable of creating filehandles (open(), opendir(), pipe(), socketpair(), sysopen(),
socket(), and accept()) automatically create an anonymous filehandle if the handle passed to them is an
uninitialized scalar variable. This allows the constructs such asopen(my $fh, ...) and
open(local $fh,...) to be used to create filehandles that will conveniently be closed automatically
when the scope ends, provided there are no other references to them. This largely eliminates the need for
typeglobs when opening filehandles that must be passed around, as in the following example:

sub myopen {
open my $fh, "@_"

or die "Can't open '@_': $!";
return $fh;

}

{
my $f = myopen("</etc/motd");
print <$f>;
$f i mplicitly closed here

}

Note that if an initialized scalar variable is used instead the result is different: my $fh='zzz';
open($fh, ...) is equivalent toopen(*{'zzz'}, ...) . use strict 'refs' forbids such
practice.

Another way to create anonymous filehandles is with the Symbol module or with the IO::Handle module
and its ilk. These modules have the advantage of not hiding different types of the same name during the
local(). See the bottom of ‘‘open()’’ i n perlfunc for an example.

SEE ALSO
See perlvar for a description of Perl’s built-in variables and a discussion of legal variable names.See
perlref, perlsub, and ‘‘Symbol Tables’’ in perlmod for more discussion on typeglobs and the
*foo{THING} syntax.

28 2007-12-18 perl v5.10.0

PERLOP(1) PerlProgrammers Reference Guide PERLOP(1)

NAME
perlop − Perl operators and precedence

DESCRIPTION
Operator Precedence and Associativity

Operator precedence and associativity work in Perl more or less like they do in mathematics.

Operator precedencemeans some operators are evaluated before others.For example, in2 + 4 * 5 , the
multiplication has higher precedence so4 * 5 is evaluated first yielding2 + 20 == 2 2 and not6 *
5 == 30.

Operator associativitydefines what happens if a sequence of the same operators is used one after another:
whether the evaluator will evaluate the left operations first or the right.For example, in8 − 4 − 2,
subtraction is left associative so Perl evaluates the expression left to right.8 − 4 is evaluated first making
the expression4 − 2 == 2 and not8 − 2 == 6 .

Perl operators have the following associativity and precedence, listed from highest precedence to lowest.
Operators borrowed from C keep the same precedence relationship with each other, even where C’s
precedence is slightly screwy. (This makes learning Perl easier for C folks.)With very few exceptions,
these all operate on scalar values only, not array values.

left terms and list operators (leftward)
left −>
nonassoc ++ −−
right **
right ! ˜ \ a nd unary + and −
left =˜ !˜
left * / % x
left + − .
left << >>
nonassoc named unary operators
nonassoc < > <= >= lt gt le g e
nonassoc == != <=> eq ne cmp ˜˜
left &
left | ˆ
left &&
left || //
nonassoc
right ?:
right = += −= *= etc.
left , =>
nonassoc list operators (rightward)
right not
left and
left or xor

In the following sections, these operators are covered in precedence order.

Many operators can be overloaded for objects. See overload.

Terms and List Operators (Leftward)

A TERM has the highest precedence in Perl.They include variables, quote and quote-like operators, any
expression in parentheses, and any function whose arguments are parenthesized.Actually, there aren’t
really functions in this sense, just list operators and unary operators behaving as functions because you put
parentheses around the arguments. Theseare all documented in perlfunc.

If any list operator (print(), etc.) or any unary operator (chdir(), etc.) isfollowed by a left parenthesis as the
next token, the operator and arguments within parentheses are taken to be of highest precedence, just like a
normal function call.

In the absence of parentheses, the precedence of list operators such asprint , sort , or chmod is either
very high or very low depending on whether you are looking at the left side or the right side of the operator.
For example, in

perl v5.10.0 2007-12-18 29

PERLOP(1) PerlProgrammers Reference Guide PERLOP(1)

@ary = (1, 3, sort 4, 2);
print @ary; # prints 1324

the commas on the right of the sort are evaluated before the sort, but the commas on the left are evaluated
after. In other words, list operators tend to gobble up all arguments that follow, and then act like a simple
TERM with regard to the preceding expression. Becareful with parentheses:

These evaluate exit before doing the print:
print($foo, exit); # Obviously not what you want.
print $foo, exit; # Nor is this.

These do the print before evaluating exit:
(print $foo), exit; # This is what you want.
print($foo), exit; # Or t his.
print ($foo), exit; # Or even this.

Also note that

print ($foo & 255) + 1, "\n";

probably doesn’t do what you expect at first glance. The parentheses enclose the argument list forprint
which is evaluated (printing the result of$foo & 255). Thenone is added to the return value ofprint
(usually 1). The result is something like this:

1 + 1, " \n"; # Obviously not what you meant.

To do what you meant properly, you must write:

print(($foo & 255) + 1, "\n");

See ‘‘Named Unary Operators’’ f or more discussion of this.

Also parsed as terms are thedo {} andeval {} constructs, as well as subroutine and method calls, and
the anonymous constructors[] and{} .

See also ‘‘Quote and Quote-like Operators’’ tow ard the end of this section, as well as ‘‘I/O Operators’’.

The Arr ow Operator

"−>" is an infix dereference operator, just as it is in C and C++. If the right side is either a[...] , {...} ,
or a(...) subscript, then the left side must be either a hard or symbolic reference to an array, a hash, or a
subroutine respectively. (Or technically speaking, a location capable of holding a hard reference, if it’s an
array or hash reference being used for assignment.) See perlreftut and perlref.

Otherwise, the right side is a method name or a simple scalar variable containing either the method name or
a subroutine reference, and the left side must be either an object (a blessed reference) or a class name (that
is, a package name). See perlobj.

Auto-increment and Auto-decrement

‘‘ ++’’ and ‘‘−−’ ’ work as in C. That is, if placed before a variable, they increment or decrement the variable
by one before returning the value, and if placed after, increment or decrement after returning the value.

$i = 0; $j = 0;
print $i++; # prints 0
print ++$j; # prints 1

Note that just as in C, Perl doesn’t definewhen the variable is incremented or decremented. You just know
it will be done sometime before or after the value is returned. This also means that modifying a variable
twice in the same statement will lead to undefined behaviour. Avoid statements like:

$i = $i ++;
print ++ $i + $i ++;

Perl will not guarantee what the result of the above statements is.

The auto-increment operator has a little extra builtin magic to it. If you increment a variable that is
numeric, or that has ever been used in a numeric context, you get a normal increment.If, however, the
variable has been used in only string contexts since it was set, and has a value that is not the empty string
and matches the pattern/ˆ[a−zA−Z]*[0−9]*\z/ , the increment is done as a string, preserving each

30 2007-12-18 perl v5.10.0

PERLOP(1) PerlProgrammers Reference Guide PERLOP(1)

character within its range, with carry:

print ++($foo = '99'); # prints '100'
print ++($foo = 'a0'); # prints 'a1'
print ++($foo = 'Az'); # prints 'Ba'
print ++($foo = 'zz'); # prints 'aaa'

undef is always treated as numeric, and in particular is changed to0 before incrementing (so that a post-
increment of an undef value will return0 rather thanundef).

The auto-decrement operator is not magical.

Exponentiation

Binary ‘‘**’ ’ is the exponentiation operator. It binds even more tightly than unary minus, so −2**4 is
−(2**4), not (−2)**4. (This is implemented using C’s pow(3) function, which actually works on doubles
internally.)

Symbolic Unary Operators

Unary ‘‘!’ ’ performs logical negation, i.e., ‘‘not’’. Seealsonot for a lower precedence version of this.

Unary ‘‘−’ ’ performs arithmetic negation if the operand is numeric. If the operand is an identifier, a string
consisting of a minus sign concatenated with the identifier is returned.Otherwise, if the string starts with a
plus or minus, a string starting with the opposite sign is returned.One effect of these rules is that
−bareword is equivalent to the string ‘‘−bareword’’. If, however, the string begins with a non-alphabetic
character (excluding ‘‘+’ ’ or ‘ ‘−’ ’), Perl will attempt to convert the string to a numeric and the arithmetic
negation is performed. If the string cannot be cleanly converted to a numeric, Perl will give the warning
Argument ‘‘the string’ ’ i sn’t numeric in negation (−) at

Unary ‘‘˜’ ’ performs bitwise negation, i.e., 1’s complement. For example,0666 & ˜027 is 0640. (See
also ‘‘Integer Arithmetic’’ and ‘‘Bitwise String Operators’’.) Note that the width of the result is platform-
dependent: ˜0 is 32 bits wide on a 32−bit platform, but 64 bits wide on a 64−bit platform, so if you are
expecting a certain bit width, remember to use the & operator to mask off the excess bits.

Unary ‘‘+’ ’ has no effect whatsoever, even on strings. It is useful syntactically for separating a function
name from a parenthesized expression that would otherwise be interpreted as the complete list of function
arguments. (Seeexamples above under ‘‘Terms and List Operators (Leftward)’’.)

Unary ‘‘\’ ’ creates a reference to whatever follows it. See perlreftut and perlref.Do not confuse this
behavior with the behavior of backslash within a string, although both forms do convey the notion of
protecting the next thing from interpolation.

Binding Operators

Binary ‘‘=˜’ ’ binds a scalar expression to a pattern match. Certain operations search or modify the string
$_ by default. Thisoperator makes that kind of operation work on some other string. The right argument
is a search pattern, substitution, or transliteration.The left argument is what is supposed to be searched,
substituted, or transliterated instead of the default $_ . When used in scalar context, the return value
generally indicates the success of the operation.Behavior in list context depends on the particular operator.
See ‘‘Regexp Quote-Like Operators’’ f or details and perlretut for examples using these operators.

If the right argument is an expression rather than a search pattern, substitution, or transliteration, it is
interpreted as a search pattern at run time. Note that this means that its contents will be interpolated twice,
so

'\\' =˜ q'\\';

is not ok, as the regex engine will end up trying to compile the pattern\ , which it will consider a syntax
error.

Binary ‘‘!˜’ ’ is just like ‘‘=˜’ ’ except the return value is negated in the logical sense.

perl v5.10.0 2007-12-18 31

PERLOP(1) PerlProgrammers Reference Guide PERLOP(1)

Multiplicati ve Operators

Binary ‘‘*’ ’ multiplies two numbers.

Binary ‘‘/’ ’ divides two numbers.

Binary ‘‘%’’ computes the modulus of two numbers. Given integer operands$a and$b : If $b is positive,
then$a % $b is $a minus the largest multiple of$b that is not greater than$a . If $b is negative, then
$a % $b is $a minus the smallest multiple of$b that is not less than$a (i.e. the result will be less than
or equal to zero). If the operands$a and$b are floating point values and the absolute value of$b (that is
abs($b)) is less than(UV_MAX + 1) , only the integer portion of$a and $b will be used in the
operation (Note: hereUV_MAXmeans the maximum of the unsigned integer type). If the absolute value of
the right operand (abs($b)) is greater than or equal to(UV_MAX + 1) , ‘‘%’’ computes the floating-
point remainder$r in the equation($r = $a − $i*$b) where$i is a certain integer that makes$r
should have the same sign as the right operand$b (not as the left operand$a like C function fmod())
and the absolute value less than that of$b . Note that whenuse integer is in scope, ‘‘%’’ giv es you
direct access to the modulus operator as implemented by your C compiler. This operator is not as well
defined for negative operands, but it will execute faster.

Binary ‘‘x’ ’ i s the repetition operator. In scalar context or if the left operand is not enclosed in parentheses,
it returns a string consisting of the left operand repeated the number of times specified by the right operand.
In list context, if the left operand is enclosed in parentheses or is a list formed byqw/STRING/ , it repeats
the list. If the right operand is zero or negative, it returns an empty string or an empty list, depending on the
context.

print '−' x 80; # print row of dashes

print "\t" x ($tab/8), ' ' x ($tab%8); # t ab over

@ones = (1) x 80; # a l ist of 80 1's
@ones = (5) x @ones; # s et all elements to 5

Additi ve Operators

Binary ‘‘+’ ’ returns the sum of two numbers.

Binary ‘‘−’ ’ returns the difference of two numbers.

Binary ‘‘.’’ concatenates two strings.

Shift Operators

Binary ‘‘<<’ ’ returns the value of its left argument shifted left by the number of bits specified by the right
argument. Arguments should be integers. (Seealso ‘‘Integer Arithmetic’’.)

Binary ‘‘>>’ ’ returns the value of its left argument shifted right by the number of bits specified by the right
argument. Arguments should be integers. (Seealso ‘‘Integer Arithmetic’’.)

Note that both ‘‘<<’ ’ and ‘‘>>’ ’ i n Perl are implemented directly using ‘‘<<’ ’ and ‘‘>>’ ’ in C. If use
integer (see ‘‘Integer Arithmetic’’) is in force then signed C integers are used, else unsigned C integers
are used. Either way, the implementation isn’t going to generate results larger than the size of the integer
type Perl was built with (32 bits or 64 bits).

The result of overflowing the range of the integers is undefined because it is undefined also in C. In other
words, using 32−bit integers, 1 << 32 is undefined. Shifting by a negative number of bits is also
undefined.

Named Unary Operators

The various named unary operators are treated as functions with one argument, with optional parentheses.

If any list operator (print(), etc.) or any unary operator (chdir(), etc.) isfollowed by a left parenthesis as the
next token, the operator and arguments within parentheses are taken to be of highest precedence, just like a
normal function call.For example, because named unary operators are higher precedence than ||:

32 2007-12-18 perl v5.10.0

PERLOP(1) PerlProgrammers Reference Guide PERLOP(1)

chdir $foo || die; # (chdir $foo) || die
chdir($foo) || die; # (chdir $foo) || die
chdir ($foo) || die; # (chdir $foo) || die
chdir +($foo) || die; # (chdir $foo) || die

but, because * is higher precedence than named operators:

chdir $foo * 20; # c hdir ($foo * 20)
chdir($foo) * 20; # (chdir $foo) * 20
chdir ($foo) * 20; # (chdir $foo) * 20
chdir +($foo) * 20; # chdir ($foo * 20)

rand 10 * 20; # r and (10 * 20)
rand(10) * 20; # (rand 10) * 20
rand (10) * 20; # (rand 10) * 20
rand +(10) * 20; # r and (10 * 20)

Regarding precedence, the filetest operators, like −f , −M, etc. are treated like named unary operators, but
they don’t follow this functional parenthesis rule. That means, for example, that−f($file).".bak" is
equivalent to−f "$file.bak" .

See also ‘‘Terms and List Operators (Leftward)’’.

Relational Operators

Binary ‘‘<’ ’ returns true if the left argument is numerically less than the right argument.

Binary ‘‘>’ ’ returns true if the left argument is numerically greater than the right argument.

Binary ‘‘<=’’ returns true if the left argument is numerically less than or equal to the right argument.

Binary ‘‘>=’’ returns true if the left argument is numerically greater than or equal to the right argument.

Binary ‘‘lt’ ’ returns true if the left argument is stringwise less than the right argument.

Binary ‘‘gt’’ returns true if the left argument is stringwise greater than the right argument.

Binary ‘‘le’’ returns true if the left argument is stringwise less than or equal to the right argument.

Binary ‘‘ge’’ returns true if the left argument is stringwise greater than or equal to the right argument.

Equality Operators

Binary ‘‘==’’ returns true if the left argument is numerically equal to the right argument.

Binary ‘‘!=’ ’ returns true if the left argument is numerically not equal to the right argument.

Binary ‘‘<=>’’ returns −1, 0, or 1 depending on whether the left argument is numerically less than, equal to,
or greater than the right argument. Ifyour platform supports NaNs (not-a-numbers) as numeric values,
using them with ‘‘<=>’’ returns undef. NaN is not ‘‘<’ ’, ‘ ‘==’ ’, ‘ ‘>’ ’, ‘ ‘<=’ ’ or ‘ ‘>=’ ’ anything (even NaN),
so those 5 return false. NaN != NaN returns true, as does NaN != anything else. If your platform doesn’t
support NaNs then NaN is just a string with numeric value 0.

perl −le '$a = "NaN"; print "No NaN support here" if $a == $a'
perl −le '$a = "NaN"; print "NaN support here" if $a != $a'

Binary ‘‘eq’’ returns true if the left argument is stringwise equal to the right argument.

Binary ‘‘ne’’ returns true if the left argument is stringwise not equal to the right argument.

Binary ‘‘cmp’’ returns −1, 0, or 1 depending on whether the left argument is stringwise less than, equal to,
or greater than the right argument.

Binary ‘‘˜˜’ ’ does a smart match between its arguments. Smart matching is described in ‘‘Smart matching in
detail’’ in perlsyn. Thisoperator is only available if you enable the ‘‘˜˜’ ’ f eature: see feature for more
information.

‘‘ lt’ ’, ‘ ‘le’ ’, ‘ ‘ge’’, ‘ ‘gt’ ’ and ‘‘cmp’’ use the collation (sort) order specified by the current locale ifuse
locale is in effect. Seeperllocale.

perl v5.10.0 2007-12-18 33

PERLOP(1) PerlProgrammers Reference Guide PERLOP(1)

Bitwise And

Binary ‘‘&’ ’ returns its operands ANDed together bit by bit. (See also ‘‘Integer Arithmetic’’ and ‘‘Bitwise
String Operators’’.)

Note that ‘‘&’ ’ has lower priority than relational operators, so for example the brackets are essential in a
test like

print "Even\n" if ($x & 1) == 0;

Bitwise Or and Exclusive Or

Binary ‘‘|’ ’ returns its operands ORed together bit by bit.(See also ‘‘Integer Arithmetic’’ and ‘‘Bitwise
String Operators’’.)

Binary ‘‘ˆ’ ’ returns its operands XORed together bit by bit. (See also ‘‘Integer Arithmetic’’ and ‘‘Bitwise
String Operators’’.)

Note that ‘‘|’ ’ and ‘‘ˆ’ ’ hav e lower priority than relational operators, so for example the brackets are
essential in a test like

print "false\n" if (8 | 2) != 10;

C−style Logical And

Binary ‘‘&&’ ’ performs a short-circuit logicalAND operation. Thatis, if the left operand is false, the right
operand is not even evaluated. Scalaror list context propagates down to the right operand if it is evaluated.

C−style Logical Or

Binary ‘‘||’’ performs a short-circuit logicalOR operation. Thatis, if the left operand is true, the right
operand is not even evaluated. Scalaror list context propagates down to the right operand if it is evaluated.

C−style Logical Defined-Or

Although it has no direct equivalent in C, Perl’s // operator is related to its C−style or. In fact, it’s exactly
the same as|| , except that it tests the left hand side’s definedness instead of its truth.Thus,$a // $b is
similar to defined($a) || $b (except that it returns the value of$a rather than the value of
defined($a)) and is exactly equivalent to defined($a) ? $a : $b . This is very useful for
providing default values for variables. Ifyou actually want to test if at least one of$a and$b is defined,
usedefined($a // $b) .

The || , // and&& operators return the last value evaluated (unlike C’s || and&&, which return 0 or 1).
Thus, a reasonably portable way to find out the home directory might be:

$home = $ENV{'HOME'} // $ENV{'LOGDIR'} //
(getpwuid($<))[7] // die "You're homeless!\n";

In particular, this means that you shouldn’t use this for selecting between two aggregates for assignment:

@a = @b || @c; # t his is wrong
@a = scalar(@b) || @c; # r eally meant this
@a = @b ? @b : @c; # t his works fine, though

As more readable alternatives to && and || when used for control flow, Perl provides theand and or
operators (see below). Theshort-circuit behavior is identical. The precedence of ‘‘and’’ and ‘‘or’ ’ is much
lower, howev er, so that you can safely use them after a list operator without the need for parentheses:

unlink "alpha", "beta", "gamma"
or gripe(), next LINE;

With the C−style operators that would have been written like this:

unlink("alpha", "beta", "gamma")
|| (gripe(), next LINE);

Using ‘‘or’’ f or assignment is unlikely to do what you want; see below.

34 2007-12-18 perl v5.10.0

PERLOP(1) PerlProgrammers Reference Guide PERLOP(1)

Range Operators

Binary ‘‘..’’ i s the range operator, which is really two different operators depending on the context. In list
context, it returns a list of values counting (up by ones) from the left value to the right value. If the left
value is greater than the right value then it returns the empty list. The range operator is useful for writing
foreach (1..10) loops and for doing slice operations on arrays. In the current implementation, no
temporary array is created when the range operator is used as the expression inforeach loops, but older
versions of Perl might burn a lot of memory when you write something like this:

for (1 .. 1_000_000) {
c ode

}

The range operator also works on strings, using the magical auto-increment, see below.

In scalar context, ‘‘..’’ r eturns a boolean value. Theoperator is bistable, like a flip-flop, and emulates the
line-range (comma) operator ofsed, awk, and various editors. Each ‘‘..’’ operator maintains its own
boolean state. It is false as long as its left operand is false. Oncethe left operand is true, the range operator
stays true until the right operand is true,AFTERwhich the range operator becomes false again. It doesn’t
become false till the next time the range operator is evaluated. Itcan test the right operand and become
false on the same evaluation it became true (as inawk), but it still returns true once. If you don’t want it to
test the right operand till the next evaluation, as insed, just use three dots (‘‘...’’) instead of two. In all other
regards, ‘‘...’’ behaves just like ‘‘..’’ does.

The right operand is not evaluated while the operator is in the ‘‘false’’ state, and the left operand is not
evaluated while the operator is in the ‘‘true’’ state. Theprecedence is a little lower than || and &&.The
value returned is either the empty string for false, or a sequence number (beginning with 1) for true.The
sequence number is reset for each range encountered.The final sequence number in a range has the string
‘‘ E0’’ appended to it, which doesn’t affect its numeric value, but gives you something to search for if you
want to exclude the endpoint.You can exclude the beginning point by waiting for the sequence number to
be greater than 1.

If either operand of scalar ‘‘..’’ i s a constant expression, that operand is considered true if it is equal (==) to
the current input line number (the$. variable).

To be pedantic, the comparison is actuallyint(EXPR) == int(EXPR) , but that is only an issue if you
use a floating point expression; when implicitly using$. as described in the previous paragraph, the
comparison isint(EXPR) == int($.) which is only an issue when$. is set to a floating point value
and you are not reading from a file.Furthermore,"span" .. "spat" or 2.18 .. 3.14 will not do
what you want in scalar context because each of the operands are evaluated using their integer
representation.

Examples:

As a scalar operator:

if (101 .. 200) { print; } # print 2nd hundred lines, short for
i f ($. == 101 .. $. == 200) ...

next LINE if (1 .. /ˆ$/); # s kip header lines, short for
. .. if ($. == 1 .. /ˆ$/);
(typically in a loop labeled LINE)

s/ˆ/> / if (/ˆ$/ .. eof()); # quote body

parse mail messages
while (<>) {

$in_header = 1 . . / ˆ$/;
$in_body = /ˆ$/ .. eof;
if ($in_header) {

. ..
} e lse { # in body

. ..
}

} c ontinue {

perl v5.10.0 2007-12-18 35

PERLOP(1) PerlProgrammers Reference Guide PERLOP(1)

close ARGV if eof; # r eset $. each file
}

Here’s a simple example to illustrate the difference between the two range operators:

@lines = (" − Foo",
"01 − Bar",
"1 − Baz",
" − Quux");

foreach (@lines) {
if (/0/ .. /1/) {

print "$_\n";
}

}

This program will print only the line containing ‘‘Bar’’. If the range operator is changed to... , it will also
print the ‘‘Baz’’ l ine.

And now some examples as a list operator:

for (101 .. 200) { print; } # print $_ 100 times
@foo = @foo[0 .. $#foo]; # an e xpensive no−op
@foo = @foo[$#foo−4 .. $#foo]; # s lice last 5 items

The range operator (in list context) makes use of the magical auto-increment algorithm if the operands are
strings. You can say

@alphabet = ('A' .. 'Z');

to get all normal letters of the English alphabet, or

$hexdigit = (0 .. 9, 'a' .. 'f')[$num & 15];

to get a hexadecimal digit, or

@z2 = ('01' .. '31'); print $z2[$mday];

to get dates with leading zeros.

If the final value specified is not in the sequence that the magical increment would produce, the sequence
goes until the next value would be longer than the final value specified.

If the initial value specified isn’t part of a magical increment sequence (that is, a non-empty string matching
‘‘ /ˆ[a−zA−Z]*[0−9]*\z/’ ’), only the initial value will be returned.So the following will only return an
alpha:

use charnames 'greek';
my @greek_small = ("\N{alpha}" .. "\N{omega}");

To get lower-case greek letters, use this instead:

my @greek_small = map { chr } (ord("\N{alpha}") .. ord("\N{omega}"));

Because each operand is evaluated in integer form,2.18 .. 3.14 will return two elements in list
context.

@list = (2.18 .. 3.14); # same as @list = (2 .. 3);

Conditional Operator

Ternary ‘‘?:’’ is the conditional operator, just as in C. It works much like an if-then-else. Ifthe argument
before the ? is true, the argument before the : is returned, otherwise the argument after the : is returned.For
example:

printf "I have %d dog%s.\n", $n,
($n == 1) ? '' : "s";

Scalar or list context propagates downward into the 2nd or 3rd argument, whichever is selected.

36 2007-12-18 perl v5.10.0

PERLOP(1) PerlProgrammers Reference Guide PERLOP(1)

$a = $ok ? $b : $c; # get a scalar
@a = $ok ? @b : @c; # get an array
$a = $ok ? @b : @c; # oops, that's just a count!

The operator may be assigned to if both the 2nd and 3rd arguments are legal lvalues (meaning that you can
assign to them):

($a_or_b ? $a : $b) = $c;

Because this operator produces an assignable result, using assignments without parentheses will get you in
trouble. For example, this:

$a % 2 ? $a += 10 : $a += 2

Really means this:

(($a % 2) ? ($a += 10) : $a) += 2

Rather than this:

($a % 2) ? ($a += 10) : ($a += 2)

That should probably be written more simply as:

$a += ($a % 2) ? 10 : 2;

Assignment Operators

‘‘ =’’ is the ordinary assignment operator.

Assignment operators work as in C. That is,

$a += 2;

is equivalent to

$a = $a + 2;

although without duplicating any side effects that dereferencing the lvalue might trigger, such as fromtie().
Other assignment operators work similarly. The following are recognized:

**= += *= &= <<= &&=
−= /= |= >>= ||=
.= %= ˆ= //=

x=

Although these are grouped by family, they all have the precedence of assignment.

Unlike in C, the scalar assignment operator produces a valid lvalue. Modifyingan assignment is equivalent
to doing the assignment and then modifying the variable that was assigned to. This is useful for modifying
a copy of something, like this:

($tmp = $global) =˜ tr [A−Z] [a−z];

Likewise,

($a += 2) *= 3;

is equivalent to

$a += 2;
$a *= 3;

Similarly, a list assignment in list context produces the list of lvalues assigned to, and a list assignment in
scalar context returns the number of elements produced by the expression on the right hand side of the
assignment.

Comma Operator

Binary ‘‘,’’ i s the comma operator. In scalar context it evaluates its left argument, throws that value away,
then evaluates its right argument and returns that value. Thisis just like C’s comma operator.

In list context, it’s just the list argument separator, and inserts both its arguments into the list.These
arguments are also evaluated from left to right.

The=> operator is a synonym for the comma, but forces any word (consisting entirely of word characters)

perl v5.10.0 2007-12-18 37

PERLOP(1) PerlProgrammers Reference Guide PERLOP(1)

to its left to be interpreted as a string (as of 5.001). This includes words that might otherwise be considered
a constant or function call.

use constant FOO => "something";

my %h = (FOO => 23);

is equivalent to:

my %h = ("FOO", 23);

It is NOT:

my %h = ("something", 23);

If the argument on the left is not a word, it is first interpreted as an expression, and then the string value of
that is used.

The => operator is helpful in documenting the correspondence between keys and values in hashes, and
other paired elements in lists.

%hash = ($key => $value);
login($username => $password);

List Operators (Rightward)

On the right side of a list operator, it has very low precedence, such that it controls all comma-separated
expressions found there.The only operators with lower precedence are the logical operators ‘‘and’’, ‘ ‘or’’,
and ‘‘not’’, which may be used to evaluate calls to list operators without the need for extra parentheses:

open HANDLE, "filename"
or die "Can't open: $!\n";

See also discussion of list operators in ‘‘Terms and List Operators (Leftward)’’.

Logical Not

Unary ‘‘not’’ returns the logical negation of the expression to its right.It’s the equivalent of ‘‘!’ ’ except for
the very low precedence.

Logical And

Binary ‘‘and’’ returns the logical conjunction of the two surrounding expressions. It’s equivalent to &&
except for the very low precedence. Thismeans that it short-circuits: i.e., the right expression is evaluated
only if the left expression is true.

Logical or, Defined or, and Exclusive Or

Binary ‘‘or’ ’ returns the logical disjunction of the two surrounding expressions. It’s equivalent to || except
for the very low precedence. Thismakes it useful for control flow

print FH $data or die "Can't write to FH: $!";

This means that it short-circuits: i.e., the right expression is evaluated only if the left expression is false.
Due to its precedence, you should probably avoid using this for assignment, only for control flow.

$a = $b or $c; # bug: this is wrong
($a = $b) or $c; # r eally means this
$a = $b || $c; # better written this way

However, when it’s a list-context assignment and you’re trying to use ‘‘||’’ f or control flow, you probably
need ‘‘or’’ so that the assignment takes higher precedence.

@info = stat($file) || die; # oops, scalar sense of stat!
@info = stat($file) or die; # better, now @info gets its due

Then again, you could always use parentheses.

Binary ‘‘xor’ ’ returns the exclusive-OR of the two surrounding expressions. Itcannot short circuit, of
course.

38 2007-12-18 perl v5.10.0

PERLOP(1) PerlProgrammers Reference Guide PERLOP(1)

C Operators Missing From Perl

Here is what C has that Perl doesn’t:

unary & Address-of operator. (But see the ‘‘\’’ operator for taking a reference.)

unary * Dereference-address operator. (Perl’s prefix dereferencing operators are typed: $, @, %, and &.)

(TYPE) Type-casting operator.

Quote and Quote-like Operators

While we usually think of quotes as literal values, in Perl they function as operators, providing various
kinds of interpolating and pattern matching capabilities. Perl provides customary quote characters for these
behaviors, but also provides a way for you to choose your quote character for any of them. Inthe following
table, a{} represents any pair of delimiters you choose.

Customary Generic Meaning Interpolates
'' q{} Literal no
"" qq{} Literal yes
`` qx{} Command yes*

qw{} Word list no
// m{} Pattern match yes*

qr{} Pattern yes*
s{}{} Substitution yes*

tr{}{} Transliteration no (but see below)
<<EOF here−doc yes*

* u nless the delimiter is ''.

Non-bracketing delimiters use the same character fore and aft, but the four sorts of brackets (round, angle,
square, curly) will all nest, which means that

q{foo{bar}baz}

is the same as

'foo{bar}baz'

Note, however, that this does not always work for quoting Perl code:

$s = q{ if($a eq "}") ... }; # WRONG

is a syntax error. The Text::Balanced module (fromCPAN, and starting from Perl 5.8 part of the
standard distribution) is able to do this properly.

There can be whitespace between the operator and the quoting characters, except when# is being used as
the quoting character. q#foo# is parsed as the stringfoo , while q #foo# is the operatorq followed by
a comment. Itsargument will be taken from the next line. This allows you to write:

s { foo} # Replace foo
{bar} # with bar.

The following escape sequences are available in constructs that interpolate and in transliterations.

\t tab (HT, TAB)
\n newline (NL)
\r return (CR)
\f form feed (FF)
\b backspace (BS)
\a alarm (bell) (BEL)
\e escape (ESC)
\033 octal char (example: ESC)
\x1b hex char (example: ESC)
\x{263a} wide hex char (example: SMILEY)
\c[control char (example: ESC)
\N{name} named Unicode character

The character following \c is mapped to some other character by converting letters to upper case and then
(on ASCII systems) by inverting the 7th bit (0x40). The most interesting range is from ’@’ to ’_’ (0x40

perl v5.10.0 2007-12-18 39

PERLOP(1) PerlProgrammers Reference Guide PERLOP(1)

through 0x5F), resulting in a control character from 0x00 through 0x1F. A ’?’ maps to theDEL character.
On EBCDIC systems only ’@’, the letters, ’[’, ’\’, ’]’, ’ˆ’, ’_’ and ’?’ will work, resulting in 0x00 through
0x1F and 0x7F.

NOTE: Unlike C and other languages, Perl has no \v escape sequence for the vertical tab (VT − ASCII 11),
but you may use\ck or \x0b .

The following escape sequences are available in constructs that interpolate but not in transliterations.

\l lowercase next char
\u uppercase next char
\L lowercase till \E
\U uppercase till \E
\E end case modification
\Q quote non−word characters till \E

If use locale is in effect, the case map used by\l , \L , \u and \U is taken from the current locale.
See perllocale. If Unicode (for example,\N{} or wide hex characters of 0x100 or beyond) is being used,
the case map used by\l , \L , \u and\U is as defined by Unicode.For documentation of\N{name} , see
charnames.

All systems use the virtual"\n" to represent a line terminator, called a ‘‘newline’’. Thereis no such thing
as an unvarying, physical newline character. It is only an illusion that the operating system, device drivers,
C libraries, and Perl all conspire to preserve. Notall systems read"\r" asASCII CR and"\n" asASCII
LF. For example, on a Mac, these are reversed, and on systems without line terminator, printing "\n" may
emit no actual data.In general, use"\n" when you mean a ‘‘newline’’ f or your system, but use the literal
ASCII when you need an exact character. For example, most networking protocols expect and prefer a
CR+LF ("\015\012" or "\cM\cJ") for line terminators, and although they often accept just"\012" ,
they seldom tolerate just"\015" . If you get in the habit of using"\n" for networking, you may be
burned some day.

For constructs that do interpolate, variables beginning with "$‘‘ o r ’’@" are interpolated.Subscripted
variables such as$a[3] or $href−>{key}[0] are also interpolated, as are array and hash slices.But
method calls such as$obj−>meth are not.

Interpolating an array or slice interpolates the elements in order, separated by the value of $" , so is
equivalent to interpolatingjoin $", @array . ‘‘Punctuation’’ arrays such as@*are only interpolated
if the name is enclosed in braces@{*} , but special arrays@_, @+, and @−are interpolated, even without
braces.

You cannot include a literal$ or @within a \Q sequence. Anunescaped$ or @ interpolates the
corresponding variable, while escaping will cause the literal string\$ to be inserted.You’ll need to write
something likem/\Quser\E\@\Qhost/ .

Patterns are subject to an additional level of interpretation as a regular expression. Thisis done as a second
pass, after variables are interpolated, so that regular expressions may be incorporated into the pattern from
the variables. Ifthis is not what you want, use\Q to interpolate a variable literally.

Apart from the behavior described above, Perl does not expand multiple levels of interpolation. In
particular, contrary to the expectations of shell programmers, back-quotes doNOT interpolate within double
quotes, nor do single quotes impede evaluation of variables when used within double quotes.

Regexp Quote-Like Operators

Here are the quote-like operators that apply to pattern matching and related activities.

qr/STRING/msixpo
This operator quotes (and possibly compiles) itsSTRINGas a regular expression. STRING is
interpolated the same way asPA TTERN in m/PATTERN/. If ‘ ‘’ ’’ i s used as the delimiter, no
interpolation is done. Returns a Perl value which may be used instead of the corresponding
/STRING/msixpo expression. The returned value is a normalized version of the original
pattern. It magically differs from a string containing the same characters:ref(qr/x/) returns
‘‘ Regexp’’, even though dereferencing the result returns undef.

For example,

40 2007-12-18 perl v5.10.0

PERLOP(1) PerlProgrammers Reference Guide PERLOP(1)

$rex = qr/my.STRING/is;
print $rex; # prints (?si−xm:my.STRING)
s/$rex/foo/;

is equivalent to

s/my.STRING/foo/is;

The result may be used as a subpattern in a match:

$re = qr/$pattern/;
$string =˜ /foo${re}bar/; # c an be interpolated in other patterns
$string =˜ $re; # or u sed standalone
$string =˜ /$re/; # or t his way

Since Perl may compile the pattern at the moment of execution ofqr() operator, using qr() may
have speed advantages in some situations, notably if the result ofqr() is used standalone:

sub match {
my $patterns = shift;
my @compiled = map qr/$_/i, @$patterns;
grep {

my $success = 0;
foreach my $pat (@compiled) {

$success = 1, last if /$pat/;
}
$success;

} @_;
}

Precompilation of the pattern into an internal representation at the moment ofqr() avoids a need
to recompile the pattern every time a match/$pat/ is attempted. (Perl has many other internal
optimizations, but none would be triggered in the above example if we did not useqr() operator.)

Options are:

m Treat string as multiple lines.
s Treat string as single line. (Make . match a newline)
i D o c ase−insensitive pattern matching.
x Use extended regular expressions.
p When matching preserve a copy of the matched string so

that ${ˆPREMATCH}, ${ˆMATCH}, ${ˆPOSTMATCH} will be defined.
o Compile pattern only once.

If a precompiled pattern is embedded in a larger pattern then the effect of ’msixp’ will be
propagated appropriately. The effect of the ’o’ modifier has is not propagated, being restricted to
those patterns explicitly using it.

See perlre for additional information on valid syntax forSTRING, and for a detailed look at the
semantics of regular expressions.

m/PATTERN/msixpogc
/PATTERN/msixpogc

Searches a string for a pattern match, and in scalar context returns true if it succeeds, false if it
fails. If no string is specified via the=˜ or !˜ operator, the $_ string is searched. (The string
specified with=˜ need not be an lvalue — itmay be the result of an expression evaluation, but
remember the=˜ binds rather tightly.) See also perlre. See perllocale for discussion of
additional considerations that apply whenuse locale is in effect.

Options are as described inqr// ; in addition, the following match process modifiers are
available:

g Match globally, i.e., find all occurrences.
c Do not reset search position on a failed match when /g is in effect.

If ‘ ‘/’ ’ is the delimiter then the initialm is optional. With them you can use any pair of non-

perl v5.10.0 2007-12-18 41

PERLOP(1) PerlProgrammers Reference Guide PERLOP(1)

alphanumeric, non-whitespace characters as delimiters. This is particularly useful for matching
path names that contain ‘‘/’ ’, to avoid LTS (leaning toothpick syndrome). If ‘‘?’’ is the delimiter,
then the match-only-once rule of?PATTERN?applies. If‘‘ ’’’ i s the delimiter, no interpolation is
performed on thePATTERN.

PATTERN may contain variables, which will be interpolated (and the pattern recompiled) every
time the pattern search is evaluated, except for when the delimiter is a single quote.(Note that
$(, $) , and $| are not interpolated because they look like end-of-string tests.) If you want such
a pattern to be compiled only once, add a/o after the trailing delimiter. This avoids expensive
run-time recompilations, and is useful when the value you are interpolating won’t change over the
life of the script. However, mentioning /o constitutes a promise that you won’t change the
variables in the pattern. If you change them, Perl won’t even notice. See also
‘‘ STRING/msixpo’’‘‘ in ’ ’qr.

If the PATTERN evaluates to the empty string, the lastsuccessfullymatched regular expression is
used instead. In this case, only theg andc flags on the empty pattern is honoured − the other
flags are taken from the original pattern. If no match has previously succeeded, this will (silently)
act instead as a genuine empty pattern (which will always match).

Note that it’s possible to confuse Perl into thinking// (the empty regex) is really // (the
defined-or operator). Perl is usually pretty good about this, but some pathological cases might
trigger this, such as$a/// (is that ($a) / (//) or $a // / ?) andprint $fh //
(print $fh(// or print($fh // ?). Inall of these examples, Perl will assume you meant
defined-or. If you meant the empty regex, just use parentheses or spaces to disambiguate, or even
prefix the empty regex with anm(so// becomesm//).

If the /g option is not used,m// in list context returns a list consisting of the subexpressions
matched by the parentheses in the pattern, i.e., ($1 , $2 , $3 ...). (Notethat here$1 etc. are also
set, and that this differs from Perl 4’s behavior.) Whenthere are no parentheses in the pattern, the
return value is the list(1) for success.With or without parentheses, an empty list is returned
upon failure.

Examples:

open(TTY, '/dev/tty');
<TTY> =˜ /ˆy/i && foo(); # do f oo if desired

if (/Version: *([0−9.]*)/) { $version = $1; }

next if m#ˆ/usr/spool/uucp#;

poor man's grep
$arg = shift;
while (<>) {

print if /$arg/o; # c ompile only once
}

if (($F1, $F2, $Etc) = ($foo =˜ /ˆ(\S+)\s+(\S+)\s*(.*)/))

This last example splits$foo into the first two words and the remainder of the line, and assigns
those three fields to$F1, $F2, and $Etc . The conditional is true if any variables were assigned,
i.e., if the pattern matched.

The /g modifier specifies global pattern matching— that is, matching as many times as possible
within the string. How it behaves depends on the context. In list context, it returns a list of the
substrings matched by any capturing parentheses in the regular expression. If there are no
parentheses, it returns a list of all the matched strings, as if there were parentheses around the
whole pattern.

In scalar context, each execution ofm//g finds the next match, returning true if it matches, and
false if there is no further match. The position after the last match can be read or set using the
pos()function; see ‘‘pos’’ in perlfunc. A failed match normally resets the search position to the
beginning of the string, but you can avoid that by adding the/c modifier (e.g.m//gc).

42 2007-12-18 perl v5.10.0

PERLOP(1) PerlProgrammers Reference Guide PERLOP(1)

Modifying the target string also resets the search position.

You can intermixm//g matches withm/\G.../g , where \G is a zero-width assertion that
matches the exact position where the previous m//g , if any, left off. Without the/g modifier,
the \G assertion still anchors atpos(), but the match is of course only attempted once.Using \G
without /g on a target string that has not previously had a/g match applied to it is the same as
using the\A assertion to match the beginning of the string. Note also that, currently, \G is only
properly supported when anchored at the very beginning of the pattern.

Examples:

l ist context
($one,$five,$fifteen) = (`uptime` =˜ /(\d+\.\d+)/g);

s calar context
$/ = "";
while (defined($paragraph = <>)) {

while ($paragraph =˜ /[a−z]['")]*[.!?]+['")]*\s/g) {
$sentences++;

}
}
print "$sentences\n";

using m//gc with \G
$_ = "ppooqppqq";
while ($i++ < 2) {

print "1: '";
print $1 while /(o)/gc; print "', pos=", pos, "\n";
print "2: '";
print $1 if /\G(q)/gc; print "', pos=", pos, "\n";
print "3: '";
print $1 while /(p)/gc; print "', pos=", pos, "\n";

}
print "Final: '$1', pos=",pos,"\n" if /\G(.)/;

The last example should print:

1: 'oo', pos=4
2: 'q', pos=5
3: 'pp', pos=7
1: '', pos=7
2: 'q', pos=8
3: '', pos=8
Final: 'q', pos=8

Notice that the final match matchedq instead ofp, which a match without the\G anchor would
have done. Also note that the final match did not updatepos — pos is only updated on a/g
match. If the final match did indeed matchp, it’s a good bet that you’re running an older
(pre−5.6.0) Perl.

A useful idiom for lex −like scanners is/\G.../gc . You can combine several regexps like
this to process a string part-by-part, doing different actions depending on which regexp matched.
Each regexp tries to match where the previous one leaves off .

perl v5.10.0 2007-12-18 43

PERLOP(1) PerlProgrammers Reference Guide PERLOP(1)

$_ = <<'EOL';
$url = URI::URL−>new("http://www/"); die if $url eq "xXx";

EOL
LOOP:

{
print(" digits"), redo LOOP if /\G\d+\b[,.;]?\s*/gc;
print(" lowercase"), redo LOOP if /\G[a−z]+\b[,.;]?\s*/gc;
print(" UPPERCASE"), redo LOOP if /\G[A−Z]+\b[,.;]?\s*/gc;
print(" Capitalized"), redo LOOP if /\G[A−Z][a−z]+\b[,.;]?\s*/gc;
print(" MiXeD"), redo LOOP if /\G[A−Za−z]+\b[,.;]?\s*/gc;
print(" alphanumeric"), redo LOOP if /\G[A−Za−z0−9]+\b[,.;]?\s*/gc;
print(" line−noise"), redo LOOP if /\G[ˆA−Za−z0−9]+/gc;
print ". That's all!\n";

}

Here is the output (split into several lines):

line−noise lowercase line−noise lowercase UPPERCASE line−noise
UPPERCASE line−noise lowercase line−noise lowercase line−noise
lowercase lowercase line−noise lowercase lowercase line−noise
MiXeD line−noise. That's all!

?PATTERN?
This is just like the /pattern/ search, except that it matches only once between calls to the
reset()operator. This is a useful optimization when you want to see only the first occurrence of
something in each file of a set of files, for instance.Only ?? patterns local to the current
package are reset.

while (<>) {
if (?ˆ$?) {

blank line between header and body
}

} c ontinue {
reset if eof; # c lear ?? status for next file

}

This usage is vaguely deprecated, which means it just might possibly be removed in some distant
future version of Perl, perhaps somewhere around the year 2168.

s/PATTERN/REPLACEMENT/msixpogce
Searches a string for a pattern, and if found, replaces that pattern with the replacement text and
returns the number of substitutions made.Otherwise it returns false (specifically, the empty
string).

If no string is specified via the=˜ or !˜ operator, the$_ variable is searched and modified.(The
string specified with=˜ must be scalar variable, an array element, a hash element, or an
assignment to one of those, i.e., an lvalue.)

If the delimiter chosen is a single quote, no interpolation is done on either thePATTERN or the
REPLACEMENT. Otherwise, if thePATTERN contains a $ that looks like a variable rather than an
end-of-string test, the variable will be interpolated into the pattern at run-time. If you want the
pattern compiled only once the first time the variable is interpolated, use the/o option. If the
pattern evaluates to the empty string, the last successfully executed regular expression is used
instead. Seeperlre for further explanation on these.See perllocale for discussion of additional
considerations that apply whenuse locale is in effect.

Options are as with m// with the addition of the following replacement specific options:

e Evaluate the right side as an expression.
ee Evaluate the right side as a string then eval the result

Any non-alphanumeric, non-whitespace delimiter may replace the slashes.If single quotes are
used, no interpretation is done on the replacement string (the/e modifier overrides this,
however). Unlike Perl 4, Perl 5 treats backticks as normal delimiters; the replacement text is not

44 2007-12-18 perl v5.10.0

PERLOP(1) PerlProgrammers Reference Guide PERLOP(1)

evaluated as a command. If thePATTERN is delimited by bracketing quotes, theREPLACEMENT
has its own pair of quotes, which may or may not be bracketing quotes, e.g.,s(foo)(bar) or
s<foo>/bar/ . A /e will cause the replacement portion to be treated as a full-fledged Perl
expression and evaluated right then and there. It is, however, syntax checked at compile-time. A
seconde modifier will cause the replacement portion to beeval ed before being run as a Perl
expression.

Examples:

s/\bgreen\b/mauve/g; # don't change wintergreen

$path =˜ s|/usr/bin|/usr/local/bin|;

s/Login: $foo/Login: $bar/; # run−time pattern

($foo = $bar) =˜ s/this/that/; # c opy first, then change

$count = ($paragraph =˜ s/Mister\b/Mr./g); # get change−count

$_ = 'abc123xyz';
s/\d+/$&*2/e; # yields 'abc246xyz'
s/\d+/sprintf("%5d",$&)/e; # yields 'abc 246xyz'
s/\w/$& x 2/eg; # y ields 'aabbcc 224466xxyyzz'

s/%(.)/$percent{$1}/g; # change percent escapes; no /e
s/%(.)/$percent{$1} || $&/ge; # expr now, so /e
s/ˆ=(\w+)/pod($1)/ge; # use function call

expand variables in $_, but dynamics only, using
s ymbolic dereferencing
s/\$(\w+)/${$1}/g;

Add one to the value of any numbers in the string
s/(\d+)/1 + $1/eg;

This will expand any embedded scalar variable
(including lexicals) in $_ : First $1 is interpolated
to t he variable name, and then evaluated
s/(\$\w+)/$1/eeg;

Delete (most) C comments.
$program =˜ s {

/* # Match the opening delimiter.
.*? # Match a minimal number of characters.
*/ # Match the closing delimiter.

} []gsx;

s/ˆ\s*(.*?)\s*$/$1/; # trim whitespace in $_, expensively

for ($variable) { # t rim whitespace in $variable, cheap
s/ˆ\s+//;
s/\s+$//;

}

s/([ˆ]*) *([ˆ]*)/$2 $1/; # r everse 1st two fields

Note the use of $ instead of \ in the last example. Unlike sed, we use the \<digit> form in only
the left hand side. Anywhere else it’s $<digit>.

Occasionally, you can’t use just a/g to get all the changes to occur that you might want. Here
are two common cases:

perl v5.10.0 2007-12-18 45

PERLOP(1) PerlProgrammers Reference Guide PERLOP(1)

put commas in the right places in an integer
1 while s/(\d)(\d\d\d)(?!\d)/$1,$2/g;

expand tabs to 8−column spacing
1 while s/\t+/' ' x (length($&)*8 − length($`)%8)/e;

Quote-Like Operators

q/STRING/
’STRING’

A single-quoted, literal string.A backslash represents a backslash unless followed by the delimiter or
another backslash, in which case the delimiter or backslash is interpolated.

$foo = q!I said, "You said, 'She said it.'"!;
$bar = q('This is it.');
$baz = '\n'; # a t wo−character string

qq/STRING/
‘‘ STRING’’

A double-quoted, interpolated string.

$_ .= qq
(*** The previous line contains the naughty word "$1".\n)

if /\b(tcl|java|python)\b/i; # : −)
$baz = "\n"; # a one−character string

qx/STRING/
‘STRING‘

A string which is (possibly) interpolated and then executed as a system command with/bin/sh or
its equivalent. Shellwildcards, pipes, and redirections will be honored.The collected standard output
of the command is returned; standard error is unaffected. Inscalar context, it comes back as a single
(potentially multi-line) string, or undef if the command failed. In list context, returns a list of lines
(however you’ve defined lines with $/ or$INPUT_RECORD_SEPARATOR), or an empty list if the
command failed.

Because backticks do not affect standard error, use shell file descriptor syntax (assuming the shell
supports this) if you care to address this.To capture a command’sSTDERRandSTDOUT together:

$output = `cmd 2>&1`;

To capture a command’sSTDOUTbut discard itsSTDERR:

$output = `cmd 2>/dev/null`;

To capture a command’sSTDERRbut discard itsSTDOUT(ordering is important here):

$output = `cmd 2>&1 1>/dev/null`;

To exchange a command’s STDOUT and STDERR in order to capture theSTDERR but leave its
STDOUT to come out the oldSTDERR:

$output = `cmd 3>&1 1>&2 2>&3 3>&−`;

To read both a command’s STDOUTand itsSTDERRseparately, it’s easiest to redirect them separately
to files, and then read from those files when the program is done:

system("program args 1>program.stdout 2>program.stderr");

TheSTDIN filehandle used by the command is inherited from Perl’sSTDIN. For example:

open BLAM, "blam" || die "Can't open: $!";
open STDIN, "<&BLAM";
print `sort`;

will print the sorted contents of the file ‘‘blam’’.

Using single-quote as a delimiter protects the command from Perl’s double-quote interpolation,
passing it on to the shell instead:

46 2007-12-18 perl v5.10.0

PERLOP(1) PerlProgrammers Reference Guide PERLOP(1)

$perl_info = qx(ps $$); # t hat's Perl's $$
$shell_info = qx'ps $$'; # t hat's the new shell's $$

How that string gets evaluated is entirely subject to the command interpreter on your system. On most
platforms, you will have to protect shell metacharacters if you want them treated literally. This is in
practice difficult to do, as it’s unclear how to escape which characters. See perlsec for a clean and safe
example of a manualfork() andexec()to emulate backticks safely.

On some platforms (notably DOS-like ones), the shell may not be capable of dealing with multiline
commands, so putting newlines in the string may not get you what you want. You may be able to
evaluate multiple commands in a single line by separating them with the command separator character,
if your shell supports that (e.g.; on many Unix shells;& on the WindowsNT cmd shell).

Beginning with v5.6.0, Perl will attempt to flush all files opened for output before starting the child
process, but this may not be supported on some platforms (see perlport).To be safe, you may need to
set$| ($AUTOFLUSH in English) or call theautoflush() method ofIO::Handle on any open
handles.

Beware that some command shells may place restrictions on the length of the command line.You
must ensure your strings don’t exceed this limit after any necessary interpolations.See the platform-
specific release notes for more details about your particular environment.

Using this operator can lead to programs that are difficult to port, because the shell commands called
vary between systems, and may in fact not be present at all. As one example, thetype command
under thePOSIX shell is very different from thetype command underDOS. That doesn’t mean you
should go out of your way to avoid backticks when they’re the right way to get something done.Perl
was made to be a glue language, and one of the things it glues together is commands.Just understand
what you’re getting yourself into.

See ‘‘I/O Operators’’ f or more discussion.

qw/STRING/
Evaluates to a list of the words extracted out ofSTRING, using embedded whitespace as the word
delimiters. Itcan be understood as being roughly equivalent to:

split(' ', q/STRING/);

the differences being that it generates a real list at compile time, and in scalar context it returns the last
element in the list. So this expression:

qw(foo bar baz)

is semantically equivalent to the list:

'foo', 'bar', 'baz'

Some frequently seen examples:

use POSIX qw(setlocale localeconv)
@EXPORT = qw(foo bar baz);

A common mistake is to try to separate the words with comma or to put comments into a multi-line
qw−string. For this reason, theuse warnings pragma and the−w switch (that is, the$ˆW
variable) produces warnings if theSTRINGcontains the ‘‘,’’ o r the ‘‘#’’ character.

tr/SEARCHLIST/REPLACEMENTLIST/cds
y/SEARCHLIST/REPLACEMENTLIST/cds

Transliterates all occurrences of the characters found in the search list with the corresponding
character in the replacement list. It returns the number of characters replaced or deleted.If no string
is specified via the =˜ or !˜ operator, the$_ string is transliterated. (The string specified with =˜ must
be a scalar variable, an array element, a hash element, or an assignment to one of those, i.e., an lvalue.)

A character range may be specified with a hyphen, sotr/A−J/0−9/ does the same replacement as
tr/ACEGIBDFHJ/0246813579/ . For sed devotees,y is provided as a synonym fortr . If the
SEARCHLIST is delimited by bracketing quotes, theREPLACEMENTLIST has its own pair of quotes,
which may or may not be bracketing quotes, e.g.,tr[A−Z][a−z] or tr(+\−*/)/ABCD/ .

Note thattr doesnot do regular expression character classes such as\d or [:lower:] . The tr

perl v5.10.0 2007-12-18 47

PERLOP(1) PerlProgrammers Reference Guide PERLOP(1)

operator is not equivalent to thetr (1) utility. If you want to map strings between lower/upper cases,
see ‘‘lc’ ’ in perlfunc and ‘‘uc’’ in perlfunc, and in general consider using thes operator if you need
regular expressions.

Note also that the whole range idea is rather unportable between character sets— and even within
character sets they may cause results you probably didn’t expect. A sound principle is to use only
ranges that begin from and end at either alphabets of equal case (a−e, A−E), or digits (0−4).Anything
else is unsafe. If in doubt, spell out the character sets in full.

Options:

c Complement the SEARCHLIST.
d Delete found but unreplaced characters.
s Squash duplicate replaced characters.

If the /c modifier is specified, theSEARCHLISTcharacter set is complemented. If the/d modifier is
specified, any characters specified bySEARCHLIST not found inREPLACEMENTLIST are deleted.
(Note that this is slightly more flexible than the behavior of sometr programs, which delete anything
they find in theSEARCHLIST, period.) If the/s modifier is specified, sequences of characters that
were transliterated to the same character are squashed down to a single instance of the character.

If the /d modifier is used, theREPLACEMENTLIST is always interpreted exactly as specified.
Otherwise, if theREPLACEMENTLIST is shorter than theSEARCHLIST, the final character is
replicated till it is long enough. If theREPLACEMENTLIST is empty, the SEARCHLIST is replicated.
This latter is useful for counting characters in a class or for squashing character sequences in a class.

Examples:

$ARGV[1] =˜ tr/A−Z/a−z/; # c anonicalize to lower case

$cnt = tr/*/*/; # c ount the stars in $_

$cnt = $sky =˜ tr/*/*/; # c ount the stars in $sky

$cnt = tr/0−9//; # c ount the digits in $_

tr/a−zA−Z//s; # bookkeeper −> bokeper

($HOST = $host) =˜ tr/a−z/A−Z/;

tr/a−zA−Z/ /cs; # c hange non−alphas to single space

tr [\200−\377]
[\000−\177]; # delete 8th bit

If multiple transliterations are given for a character, only the first one is used:

tr/AAA/XYZ/

will transliterate any A to X.

Because the transliteration table is built at compile time, neither theSEARCHLIST nor the
REPLACEMENTLISTare subjected to double quote interpolation.That means that if you want to use
variables, you must use aneval():

eval "tr/$oldlist/$newlist/";
die $@ if $@;

eval "tr/$oldlist/$newlist/, 1" or die $@;

<<EOF
A l ine-oriented form of quoting is based on the shell ‘‘here-document’’ syntax. Following a<< you
specify a string to terminate the quoted material, and all lines following the current line down to the
terminating string are the value of the item.

The terminating string may be either an identifier (a word), or some quoted text. An unquoted

48 2007-12-18 perl v5.10.0

PERLOP(1) PerlProgrammers Reference Guide PERLOP(1)

identifier works like double quotes. There may not be a space between the<< and the identifier,
unless the identifier is explicitly quoted. (If you put a space it will be treated as a null identifier, which
is valid, and matches the first empty line.)The terminating string must appear by itself (unquoted and
with no surrounding whitespace) on the terminating line.

If the terminating string is quoted, the type of quotes used determine the treatment of the text.

Double Quotes
Double quotes indicate that the text will be interpolated using exactly the same rules as normal
double quoted strings.

print <<EOF;
The price is $Price.
EOF

print << "EOF"; # same as above
The price is $Price.
EOF

Single Quotes
Single quotes indicate the text is to be treated literally with no interpolation of its content. This is
similar to single quoted strings except that backslashes have no special meaning, with\\ being
treated as two backslashes and not one as they would in every other quoting construct.

This is the only form of quoting in perl where there is no need to worry about escaping content,
something that code generators can and do make good use of.

Backticks
The content of the here doc is treated just as it would be if the string were embedded in backticks.
Thus the content is interpolated as though it were double quoted and then executed via the shell,
with the results of the execution returned.

print << `EOC`; # execute command and get results
echo hi there
EOC

It is possible to stack multiple here-docs in a row:

print <<"foo", <<"bar"; # you can stack them
I s aid foo.
foo
I s aid bar.
bar

myfunc(<< "THIS", 23, <<'THAT');
Here's a line
or two.
THIS
and here's another.
THAT

Just don’t forget that you have to put a semicolon on the end to finish the statement, as Perl doesn’t
know you’re not going to try to do this:

print <<ABC
179231
ABC

+ 20;

If you want to remove the line terminator from your here-docs, usechomp() .

chomp($string = <<'END');
This is a string.
END

If you want your here-docs to be indented with the rest of the code, you’ll need to remove leading

perl v5.10.0 2007-12-18 49

PERLOP(1) PerlProgrammers Reference Guide PERLOP(1)

whitespace from each line manually:

($quote = <<'FINIS') =˜ s/ˆ\s+//gm;
The Road goes ever on and on,
down from the door where it began.

FINIS

If you use a here-doc within a delimited construct, such as ins///eg , the quoted material must come
on the lines following the final delimiter. So instead of

s/this/<<E . 'that'
the other
E

. ' more '/eg;

you have to write

s/this/<<E . 'that'
. ' more '/eg;

the other
E

If the terminating identifier is on the last line of the program, you must be sure there is a newline after
it; otherwise, Perl will give the warning Can’t find string terminator ‘ ‘END’’ anywhere before
EOF....

Additionally, the quoting rules for the end of string identifier are not related to Perl’s quoting rules—
q() , qq() , and the like are not supported in place of'' and "" , and the only interpolation is for
backslashing the quoting character:

print << "abc\"def";
testing...
abc"def

Finally, quoted strings cannot span multiple lines. The general rule is that the identifier must be a
string literal. Stick with that, and you should be safe.

Gory details of parsing quoted constructs

When presented with something that might have sev eral different interpretations, Perl uses theDWIM
(that’s ‘‘Do What I Mean’’) principle to pick the most probable interpretation. This strategy is so
successful that Perl programmers often do not suspect the ambivalence of what they write. But from time
to time, Perl’s notions differ substantially from what the author honestly meant.

This section hopes to clarify how Perl handles quoted constructs. Although the most common reason to
learn this is to unravel labyrinthine regular expressions, because the initial steps of parsing are the same for
all quoting operators, they are all discussed together.

The most important Perl parsing rule is the first one discussed below: when processing a quoted construct,
Perl first finds the end of that construct, then interprets its contents. If you understand this rule, you may
skip the rest of this section on the first reading. The other rules are likely to contradict the user’s
expectations much less frequently than this first one.

Some passes discussed below are performed concurrently, but because their results are the same, we
consider them individually. For different quoting constructs, Perl performs different numbers of passes,
from one to four, but these passes are always performed in the same order.

Finding the end
The first pass is finding the end of the quoted construct, where the information about the delimiters is
used in parsing. During this search, text between the starting and ending delimiters is copied to a safe
location. The text copied gets delimiter-independent.

If the construct is a here-doc, the ending delimiter is a line that has a terminating string as the content.
Therefore<<EOF is terminated byEOF immediately followed by"\n" and starting from the first
column of the terminating line. When searching for the terminating line of a here-doc, nothing is
skipped. In other words, lines after the here-doc syntax are compared with the terminating string line
by line.

50 2007-12-18 perl v5.10.0

PERLOP(1) PerlProgrammers Reference Guide PERLOP(1)

For the constructs except here-docs, single characters are used as starting and ending delimiters. If the
starting delimiter is an opening punctuation (that is(, [, { , or <), the ending delimiter is the
corresponding closing punctuation (that is) ,] , } , or >). If the starting delimiter is an unpaired
character like / or a closing punctuation, the ending delimiter is same as the starting delimiter.
Therefore a/ terminates aqq// construct, while a] terminatesqq[] andqq]] constructs.

When searching for single-character delimiters, escaped delimiters and\\ are skipped. For example,
while searching for terminating/ , combinations of\\ and \/ are skipped. If the delimiters are
bracketing, nested pairs are also skipped.For example, while searching for closing] paired with the
opening[, combinations of\\ , \] , and \[are all skipped, and nested[and] are skipped as well.
However, when backslashes are used as the delimiters (like qq\\ and tr\\\), nothing is skipped.
During the search for the end, backslashes that escape delimiters are removed (exactly speaking, they
are not copied to the safe location).

For constructs with three-part delimiters (s/// , y/// , and tr///), the search is repeated once
more. If the first delimiter is not an opening punctuation, three delimiters must be same such ass!!!
andtr))) , in which case the second delimiter terminates the left part and starts the right part at once.
If the left part is delimited by bracketing punctuations (that is() , [] , {} , or <>), the right part needs
another pair of delimiters such ass(){} and tr[]// . In these cases, whitespaces and comments
are allowed between both parts, though the comment must follow at least one whitespace; otherwise a
character expected as the start of the comment may be regarded as the starting delimiter of the right
part.

During this search no attention is paid to the semantics of the construct. Thus:

"$hash{"$foo/$bar"}"

or:

m/
bar # NOT a comment, this slash / terminated m//!

/x

do not form legal quoted expressions. Thequoted part ends on the first" and/ , and the rest happens
to be a syntax error. Because the slash that terminatedm// was followed by aSPACE, the example
above is not m//x , but ratherm// with no /x modifier. So the embedded# is interpreted as a literal
#.

Also no attention is paid to\c\ (multichar control char syntax) during this search. Thus the second\
in qq/\c\/ is interpreted as a part of\/ , and the following / is not recognized as a delimiter.
Instead, use\034 or \x1c at the end of quoted constructs.

Interpolation
The next step is interpolation in the text obtained, which is now delimiter-independent. Thereare
multiple cases.

<<'EOF'
No interpolation is performed. Note that the combination\\ is left intact, since escaped
delimiters are not available for here-docs.

m'' , the pattern ofs'''
No interpolation is performed at this stage.Any backslashed sequences including\\ are treated
at the stage to ‘‘parsing regular expressions’’.

'' , q// , tr''' , y''' , the replacement ofs'''
The only interpolation is removal of \ from pairs of\\ . Therefore− in tr''' andy''' is
treated literally as a hyphen and no character range is available. \1 in the replacement ofs'''
does not work as$1 .

tr/// , y///
No variable interpolation occurs.String modifying combinations for case and quoting such as
\Q , \U , and \E are not recognized. The other escape sequences such as\200 and \t and
backslashed characters such as\\ and \− are converted to appropriate literals. The character−
is treated specially and therefore\− is treated as a literal−.

perl v5.10.0 2007-12-18 51

PERLOP(1) PerlProgrammers Reference Guide PERLOP(1)

‘‘’’ , `` , qq// , qx// , <file*glob> , <<‘‘EOF’’
\Q , \U , \u , \L , \l (possibly paired with\E) are converted to corresponding Perl constructs.
Thus, "$foo\Qbaz$bar" is converted to $foo . (quotemeta("baz" . $bar))
internally. The other escape sequences such as\200 and\t and backslashed characters such as
\\ and\− are replaced with appropriate expansions.

Let it be stressed thatwhatever falls between\Q and \E is interpolated in the usual way.
Something like "\Q\\E" has no\E inside. instead,it has \Q , \\ , and E, so the result is the
same as for"\\\\E" . As a general rule, backslashes between\Q and \E may lead to
counterintuitive results. So,"\Q\t\E" is converted to quotemeta("\t") , which is the
same as"\\\t" (sinceTAB is not alphanumeric). Note also that:

$str = '\t';
return "\Q$str";

may be closer to the conjecturalintentionof the writer of"\Q\t\E" .

Interpolated scalars and arrays are converted internally to thejoin and. catenation operations.
Thus,"$foo XXX '@arr'" becomes:

$foo . " XXX '" . (join $", @arr) . "'";

All operations above are performed simultaneously, left to right.

Because the result of"\Q STRING \E" has all metacharacters quoted, there is no way to insert
a literal $ or @inside a\Q\E pair. If protected by\ , $ will be quoted to became"\\\$" ; if
not, it is interpreted as the start of an interpolated scalar.

Note also that the interpolation code needs to make a decision on where the interpolated scalar
ends. For instance, whether"a $b −> {c}" really means:

"a " . $b . " −> {c}";

or:

"a " . $b −> {c};

Most of the time, the longest possible text that does not include spaces between components and
which contains matching braces or brackets. becausethe outcome may be determined by voting
based on heuristic estimators, the result is not strictly predictable.Fortunately, it’s usually correct
for ambiguous cases.

the replacement ofs///
Processing of\Q , \U , \u , \L , \l , and interpolation happens as withqq// constructs.

It is at this step that\1 is begrudgingly converted to$1 in the replacement text ofs/// , in order
to correct the incorrigiblesedhackers who haven’t picked up the saner idiom yet.A warning is
emitted if theuse warnings pragma or the−w command-line flag (that is, the$ˆW variable)
was set.

REin ?RE?, /RE/ , m/RE/ , s/RE/foo/ ,
Processing of\Q , \U , \u , \L , \l , \E , and interpolation happens (almost) as withqq//
constructs.

However any other combinations of\ followed by a character are not substituted but only
skipped, in order to parse them as regular expressions at the following step.As \c is skipped at
this step,@of \c@ in RE is possibly treated as an array symbol (for example@foo), even though
the same text inqq// gives interpolation of\c@.

Moreover, inside (?{BLOCK}) , (?# comment) , and a #−comment in a//x −regular
expression, no processing is performed whatsoever. This is the first step at which the presence of
the//x modifier is relevant.

Interpolation in patterns has several quirks: $| , $(, $) , @+and @−are not interpolated, and
constructs$var[SOMETHING] are voted (by several different estimators) to be either an array
element or$var followed by anRE alternative. This is where the notation${arr[$bar]}
comes handy:/${arr[0−9]}/ is interpreted as array element−9, not as a regular expression
from the variable $arr followed by a digit, which would be the interpretation of

52 2007-12-18 perl v5.10.0

PERLOP(1) PerlProgrammers Reference Guide PERLOP(1)

/$arr[0−9]/ . Since voting among different estimators may occur, the result is not
predictable.

The lack of processing of\\ creates specific restrictions on the post-processed text. If the
delimiter is / , one cannot get the combination\/ into the result of this step./ will finish the
regular expression,\/ will be stripped to/ on the previous step, and\\/ will be left as is.
Because/ is equivalent to \/ inside a regular expression, this does not matter unless the
delimiter happens to be character special to theRE engine, such as ins*foo*bar* , m[foo] ,
or ?foo? ; or an alphanumeric char, as in:

m m ˆ a \ s* b mmx;

In theRE above, which is intentionally obfuscated for illustration, the delimiter ism, the modifier
is mx, and after delimiter-removal the RE is the same as form/ ˆ a \s* b /mx . There’s
more than one reason you’re encouraged to restrict your delimiters to non-alphanumeric, non-
whitespace choices.

This step is the last one for all constructs except regular expressions, which are processed further.

parsing regular expressions
Previous steps were performed during the compilation of Perl code, but this one happens at run
time — although it may be optimized to be calculated at compile time if appropriate.After
preprocessing described above, and possibly after evaluation if concatenation, joining, casing
translation, or metaquoting are involved, the resultingstring is passed to theRE engine for
compilation.

Whatever happens in theRE engine might be better discussed in perlre, but for the sake of continuity,
we shall do so here.

This is another step where the presence of the//x modifier is relevant. TheRE engine scans the
string from left to right and converts it to a finite automaton.

Backslashed characters are either replaced with corresponding literal strings (as with\{), or else they
generate special nodes in the finite automaton (as with\b). Charactersspecial to theRE engine (such
as |) generate corresponding nodes or groups of nodes.(?#...) comments are ignored. All the
rest is either converted to literal strings to match, or else is ignored (as is whitespace and#−style
comments if//x is present).

Parsing of the bracketed character class construct,[...] , is rather different than the rule used for the
rest of the pattern. The terminator of this construct is found using the same rules as for finding the
terminator of a{} −delimited construct, the only exception being that] immediately following [is
treated as though preceded by a backslash.Similarly, the terminator of(?{...}) is found using the
same rules as for finding the terminator of a{} −delimited construct.

It is possible to inspect both the string given to RE engine and the resulting finite automaton. See the
argumentsdebug /debugcolor in theuse re pragma, as well as Perl’s −Dr command-line switch
documented in ‘‘Command Switches’’ in perlrun.

Optimization of regular expressions
This step is listed for completeness only. Since it does not change semantics, details of this step are
not documented and are subject to change without notice.This step is performed over the finite
automaton that was generated during the previous pass.

It is at this stage thatsplit() silently optimizes/ˆ/ to mean/ˆ/m .

I/O Operators

There are several I/O operators you should know about.

A string enclosed by backticks (grave accents) first undergoes double-quote interpolation. It is then
interpreted as an external command, and the output of that command is the value of the backtick string, like
in a shell. In scalar context, a single string consisting of all output is returned.In list context, a list of
values is returned, one per line of output.(You can set$/ to use a different line terminator.) Thecommand
is executed each time the pseudo-literal is evaluated. Thestatus value of the command is returned in$?
(see perlvar for the interpretation of$?). Unlike in csh, no translation is done on the return
data — newlines remain newlines. Unlike in any of the shells, single quotes do not hide variable names in

perl v5.10.0 2007-12-18 53

PERLOP(1) PerlProgrammers Reference Guide PERLOP(1)

the command from interpretation.To pass a literal dollar-sign through to the shell you need to hide it with
a backslash. Thegeneralized form of backticks isqx// . (Because backticks always undergo shell
expansion as well, see perlsec for security concerns.)

In scalar context, evaluating a filehandle in angle brackets yields the next line from that file (the newline, if
any, included), orundef at end-of-file or on error. When$/ is set toundef (sometimes known as file-
slurp mode) and the file is empty, it returns'' the first time, followed byundef subsequently.

Ordinarily you must assign the returned value to a variable, but there is one situation where an automatic
assignment happens. If and only if the input symbol is the only thing inside the conditional of awhile
statement (even if disguised as afor(;;) loop), the value is automatically assigned to the global variable
$_ , destroying whatever was there previously. (This may seem like an odd thing to you, but you’ll use the
construct in almost every Perl script you write.)The$_ variable is not implicitly localized.You’ll have to
put alocal $_; before the loop if you want that to happen.

The following lines are equivalent:

while (defined($_ = <STDIN>)) { print; }
while ($_ = <STDIN>) { print; }
while (<STDIN>) { print; }
for (;<STDIN>;) { print; }
print while defined($_ = <STDIN>);
print while ($_ = <STDIN>);
print while <STDIN>;

This also behaves similarly, but avoids$_ :

while (my $line = <STDIN>) { print $line }

In these loop constructs, the assigned value (whether assignment is automatic or explicit) is then tested to
see whether it is defined.The defined test avoids problems where line has a string value that would be
treated as false by Perl, for example a "‘‘ or a ’’0" with no trailing newline. If you really mean for such
values to terminate the loop, they should be tested for explicitly:

while (($_ = <STDIN>) ne '0') { ... }
while (<STDIN>) { last unless $_; ... }

In other boolean contexts, <filehandle> without an explicit defined test or comparison elicit a
warning if theuse warnings pragma or the−w command-line switch (the$ˆW variable) is in effect.

The filehandlesSTDIN, STDOUT, and STDERR are predefined. (The filehandlesstdin , stdout , and
stderr will also work except in packages, where they would be interpreted as local identifiers rather than
global.) Additionalfilehandles may be created with theopen()function, amongst others. See perlopentut
and ‘‘open’’ in perlfunc for details on this.

If a <FILEHANDLE> is used in a context that is looking for a list, a list comprising all input lines is
returned, one line per list element. It’s easy to grow to a rather large data space this way, so use with care.

<FILEHANDLE> may also be spelledreadline(*FILEHANDLE) . See ‘‘readline’’ in perlfunc.

The null filehandle <> is special: it can be used to emulate the behavior ofsedandawk. Input from <>
comes either from standard input, or from each file listed on the command line.Here’s how it works: the
first time <> is evaluated, the@ARGVarray is checked, and if it is empty, $ARGV[0] is set to ‘‘−’ ’, which
when opened gives you standard input.The@ARGVarray is then processed as a list of filenames. The loop

while (<>) {
... # code for each line

}

is equivalent to the following Perl-like pseudo code:

54 2007-12-18 perl v5.10.0

PERLOP(1) PerlProgrammers Reference Guide PERLOP(1)

unshift(@ARGV, '−') unless @ARGV;
while ($ARGV = shift) {

open(ARGV, $ARGV);
while (<ARGV>) {

... # code for each line
}

}

except that it isn’t so cumbersome to say, and will actually work. It really does shift the@ARGVarray and
put the current filename into the$ARGVvariable. It also uses filehandleARGV internally−−<> is just a
synonym for <ARGV>, which is magical. (The pseudo code above doesn’t work because it treats <ARGV>
as non-magical.)

You can modify@ARGVbefore the first <> as long as the array ends up containing the list of filenames you
really want. Linenumbers ($.) continue as though the input were one big happy file. Seethe example in
‘‘ eof ’’ in perlfunc for how to reset line numbers on each file.

If you want to set@ARGVto your own list of files, go right ahead. This sets@ARGVto all plain text files if
no@ARGVwas giv en:

@ARGV = grep { −f && −T } glob('*') unless @ARGV;

You can even set them to pipe commands.For example, this automatically filters compressed arguments
throughgzip:

@ARGV = map { /\.(gz|Z)$/ ? "gzip −dc < $_ |" : $_ } @ARGV;

If you want to pass switches into your script, you can use one of the Getopts modules or put a loop on the
front like this:

while ($_ = $ARGV[0], /ˆ−/) {
shift;
last if /ˆ−−$/;
if (/ˆ−D(.*)/) { $debug = $1 }
if (/ˆ−v/) { $ verbose++ }
. .. # other switches

}

while (<>) {
. .. # code for each line

}

The <> symbol will returnundef for end-of-file only once. If you call it again after this, it will assume
you are processing another@ARGVlist, and if you haven’t set@ARGV, will read input fromSTDIN.

If what the angle brackets contain is a simple scalar variable (e.g., <$foo>), then that variable contains the
name of the filehandle to input from, or its typeglob, or a reference to the same.For example:

$fh = *STDIN;
$line = <$fh>;

If what’s within the angle brackets is neither a filehandle nor a simple scalar variable containing a
filehandle name, typeglob, or typeglob reference, it is interpreted as a filename pattern to be globbed, and
either a list of filenames or the next filename in the list is returned, depending on context. Thisdistinction
is determined on syntactic grounds alone.That means<$x> is always areadline() from an indirect handle,
but <$hash{key}> is always aglob(). That’s because$x is a simple scalar variable, but $hash{key}
is not— it’s a hash element.Even <$x > (note the extra space) is treated asglob("$x ") , not
readline($x) .

One level of double-quote interpretation is done first, but you can’t say <$foo> because that’s an indirect
filehandle as explained in the previous paragraph. (In older versions of Perl, programmers would insert
curly brackets to force interpretation as a filename glob:<${foo}> . These days, it’s considered cleaner to
call the internal function directly asglob($foo) , which is probably the right way to have done it in the
first place.)For example:

perl v5.10.0 2007-12-18 55

PERLOP(1) PerlProgrammers Reference Guide PERLOP(1)

while (<*.c>) {
chmod 0644, $_;

}

is roughly equivalent to:

open(FOO, "echo *.c | tr −s ' \t\r\f' '\\012\\012\\012\\012'|");
while (<FOO>) {

chomp;
chmod 0644, $_;

}

except that the globbing is actually done internally using the standardFile::Glob extension. Ofcourse,
the shortest way to do the above is:

chmod 0644, <*.c>;

A (file)glob evaluates its (embedded) argument only when it is starting a new list. All values must be read
before it will start over. In list context, this isn’t important because you automatically get them all anyway.
However, in scalar context the operator returns the next value each time it’s called, orundef when the list
has run out. As with filehandle reads, an automaticdefined is generated when the glob occurs in the test
part of awhile , because legal glob returns (e.g. a file called0) would otherwise terminate the loop.
Again,undef is returned only once. So if you’re expecting a single value from a glob, it is much better to
say

($file) = <blurch*>;

than

$file = <blurch*>;

because the latter will alternate between returning a filename and returning false.

If you’re trying to do variable interpolation, it’s definitely better to use theglob() function, because the
older notation can cause people to become confused with the indirect filehandle notation.

@files = glob("$dir/*.[ch]");
@files = glob($files[$i]);

Constant Folding

Like C, Perl does a certain amount of expression evaluation at compile time whenever it determines that all
arguments to an operator are static and have no side effects. Inparticular, string concatenation happens at
compile time between literals that don’t do variable substitution. Backslash interpolation also happens at
compile time.You can say

'Now is the time for all' . "\n" .
'good men to come to.'

and this all reduces to one string internally. Likewise, if you say

foreach $file (@filenames) {
if (−s $file > 5 + 100 * 2**16) { }

}

the compiler will precompute the number which that expression represents so that the interpreter won’t
have to.

No-ops

Perl doesn’t officially have a no-op operator, but the bare constants0 and1 are special-cased to not produce
a warning in a void context, so you can for example safely do

1 while foo();

56 2007-12-18 perl v5.10.0

PERLOP(1) PerlProgrammers Reference Guide PERLOP(1)

Bitwise String Operators

Bitstrings of any size may be manipulated by the bitwise operators (˜ | & ˆ).

If the operands to a binary bitwise op are strings of different sizes,| and ˆ ops act as though the shorter
operand had additional zero bits on the right, while the& op acts as though the longer operand were
truncated to the length of the shorter. The granularity for such extension or truncation is one or more bytes.

ASCII−based examples
print "j p \n" ˆ " a h"; # prints "JAPH\n"
print "JA" | " ph\n"; # prints "japh\n"
print "japh\nJunk" & '_ _ _ _ _ '; # prints "JAPH\n";
print 'p N$' ˆ " E<H\n"; # prints "Perl\n";

If you are intending to manipulate bitstrings, be certain that you’re supplying bitstrings: If an operand is a
number, that will imply a numeric bitwise operation.You may explicitly show which type of operation
you intend by using"" or 0+, as in the examples below.

$foo = 150 | 105; # y ields 255 (0x96 | 0x69 is 0xFF)
$foo = '150' | 105; # yields 255
$foo = 150 | '105'; # yields 255
$foo = '150' | '105'; # y ields string '155' (under ASCII)

$baz = 0+$foo & 0+$bar; # both ops explicitly numeric
$biz = "$foo" ˆ "$bar"; # both ops explicitly stringy

See ‘‘vec’’ in perlfunc for information on how to manipulate individual bits in a bit vector.

Integer Arithmetic

By default, Perl assumes that it must do most of its arithmetic in floating point. But by saying

use integer;

you may tell the compiler that it’s okay to use integer operations (if it feels like it) from here to the end of
the enclosingBLOCK. An innerBLOCK may countermand this by saying

no integer;

which lasts until the end of thatBLOCK. Note that this doesn’t mean everything is only an integer, merely
that Perl may use integer operations if it is so inclined.For example, even underuse integer , if you
take thesqrt(2) , you’ll still get 1.4142135623731 or so.

Used on numbers, the bitwise operators (‘‘&’ ’, ‘ ‘|’ ’, ‘ ‘ˆ’ ’, ‘ ‘˜’ ’, ‘ ‘<<’ ’, and ‘‘>>’ ’) always produce integral
results. (Butsee also ‘‘Bitwise String Operators’’.) However, use integer still has meaning for them.
By default, their results are interpreted as unsigned integers, but ifuse integer is in effect, their results
are interpreted as signed integers. For example,˜0 usually evaluates to a large integral value. However,
use integer; ˜0 is −1 on two’s-complement machines.

Floating-point Arithmetic

While use integer provides integer-only arithmetic, there is no analogous mechanism to provide
automatic rounding or truncation to a certain number of decimal places.For rounding to a certain number
of digits,sprintf()or printf() is usually the easiest route. See perlfaq4.

Floating-point numbers are only approximations to what a mathematician would call real numbers.There
are infinitely more reals than floats, so some corners must be cut.For example:

printf "%.20g\n", 123456789123456789;
produces 123456789123456784

Testing for exact equality of floating-point equality or inequality is not a good idea.Here’s a (relatively
expensive) work-around to compare whether two floating-point numbers are equal to a particular number of
decimal places. See Knuth, volumeII , for a more robust treatment of this topic.

perl v5.10.0 2007-12-18 57

PERLOP(1) PerlProgrammers Reference Guide PERLOP(1)

sub fp_equal {
my ($X, $Y, $POINTS) = @_;
my ($tX, $tY);
$tX = sprintf("%.${POINTS}g", $X);
$tY = sprintf("%.${POINTS}g", $Y);
return $tX eq $tY;

}

ThePOSIXmodule (part of the standard perl distribution) implementsceil(), floor(), and other mathematical
and trigonometric functions. The Math::Complex module (part of the standard perl distribution) defines
mathematical functions that work on both the reals and the imaginary numbers.Math::Complex not as
efficient asPOSIX, but POSIXcan’t work with complex numbers.

Rounding in financial applications can have serious implications, and the rounding method used should be
specified precisely. In these cases, it probably pays not to trust whichever system rounding is being used by
Perl, but to instead implement the rounding function you need yourself.

Bigger Numbers

The standard Math::BigInt and Math::BigFloat modules provide variable-precision arithmetic and
overloaded operators, although they’re currently pretty slow. At the cost of some space and considerable
speed, they avoid the normal pitfalls associated with limited-precision representations.

use Math::BigInt;
$x = Math::BigInt−>new('123456789123456789');
print $x * $x;

prints +15241578780673678515622620750190521

There are several modules that let you calculate with (bound only by memory and cpu-time) unlimited or
fixed precision. There are also some non-standard modules that provide faster implementations via external
C libraries.

Here is a short, but incomplete summary:

Math::Fraction big, unlimited fractions like 9973 / 12967
Math::String treat string sequences like numbers
Math::FixedPrecision calculate with a fixed precision
Math::Currency for currency calculations
Bit::Vector manipulate bit vectors fast (uses C)
Math::BigIntFast Bit::Vector wrapper for big numbers
Math::Pari provides access to the Pari C library
Math::BigInteger uses an external C library
Math::Cephes uses external Cephes C library (no big numbers)
Math::Cephes::Fraction fractions via the Cephes library
Math::GMP another one using an external C library

Choose wisely.

58 2007-12-18 perl v5.10.0

PERLSUB(1) PerlProgrammers Reference Guide PERLSUB(1)

NAME
perlsub − Perl subroutines

SYNOPSIS
To declare subroutines:

sub NAME; # A " forward" declaration.
sub NAME(PROTO); # ditto, but with prototypes
sub NAME : ATTRS; # with attributes
sub NAME(PROTO) : ATTRS; # with attributes and prototypes

sub NAME BLOCK # A declaration and a definition.
sub NAME(PROTO) BLOCK # ditto, but with prototypes
sub NAME : ATTRS BLOCK # with attributes
sub NAME(PROTO) : ATTRS BLOCK # with prototypes and attributes

To define an anonymous subroutine at runtime:

$subref = sub BLOCK; # no p roto
$subref = sub (PROTO) BLOCK; # with proto
$subref = sub : ATTRS BLOCK; # with attributes
$subref = sub (PROTO) : ATTRS BLOCK; # with proto and attributes

To import subroutines:

use MODULE qw(NAME1 NAME2 NAME3);

To call subroutines:

NAME(LIST); # & is o ptional with parentheses.
NAME LIST; # Parentheses optional if predeclared/imported.
&NAME(LIST); # Circumvent prototypes.
&NAME; # Makes current @_ visible to called subroutine.

DESCRIPTION
Like many languages, Perl provides for user-defined subroutines. These may be located anywhere in the
main program, loaded in from other files via thedo , require , or use keywords, or generated on the fly
usingeval or anonymous subroutines.You can even call a function indirectly using a variable containing
its name or aCODEreference.

The Perl model for function call and return values is simple: all functions are passed as parameters one
single flat list of scalars, and all functions likewise return to their caller one single flat list of scalars.Any
arrays or hashes in these call and return lists will collapse, losing their identities— but you may always use
pass-by-reference instead to avoid this. Both call and return lists may contain as many or as few scalar
elements as you’d like. (Oftena function without an explicit return statement is called a subroutine, but
there’s really no difference from Perl’s perspective.)

Any arguments passed in show up in the array@_. Therefore, if you called a function with two arguments,
those would be stored in$_[0] and$_[1] . The array@_is a local array, but its elements are aliases for
the actual scalar parameters. In particular, if an element$_[0] is updated, the corresponding argument is
updated (or an error occurs if it is not updatable). If an argument is an array or hash element which did not
exist when the function was called, that element is created only when (and if) it is modified or a reference
to it is taken. (Someearlier versions of Perl created the element whether or not the element was assigned
to.) Assigningto the whole array@_removes that aliasing, and does not update any arguments.

A return statement may be used to exit a subroutine, optionally specifying the returned value, which will
be evaluated in the appropriate context (list, scalar, or void) depending on the context of the subroutine call.
If you specify no return value, the subroutine returns an empty list in list context, the undefined value in
scalar context, or nothing in void context. If you return one or more aggregates (arrays and hashes), these
will be flattened together into one large indistinguishable list.

If no return is found and if the last statement is an expression, its value is returned. If the last statement
is a loop control structure like a foreach or awhile , the returned value is unspecified. The empty sub
returns the empty list.

Perl does not have named formal parameters. In practice all you do is assign to amy() list of these.
Variables that aren’t declared to be private are global variables. For gory details on creating private

perl v5.10.0 2007-12-18 59

PERLSUB(1) PerlProgrammers Reference Guide PERLSUB(1)

variables, see ‘‘Private Variables viamy()’’ and ‘‘Temporary Values vialocal()’’ . To create protected
environments for a set of functions in a separate package (and probably a separate file), see ‘‘Packages’’ i n
perlmod.

Example:

sub max {
my $max = shift(@_);
foreach $foo (@_) {

$max = $foo if $max < $foo;
}
return $max;

}
$bestday = max($mon,$tue,$wed,$thu,$fri);

Example:

get a line, combining continuation lines
t hat start with whitespace

sub get_line {
$thisline = $lookahead; # global variables!
LINE: while (defined($lookahead = <STDIN>)) {

if ($lookahead =˜ /ˆ[\t]/) {
$thisline .= $lookahead;

}
else {

last LINE;
}

}
return $thisline;

}

$lookahead = <STDIN>; # get first line
while (defined($line = get_line())) {

...
}

Assigning to a list of private variables to name your arguments:

sub maybeset {
my($key, $value) = @_;
$Foo{$key} = $value unless $Foo{$key};

}

Because the assignment copies the values, this also has the effect of turning call-by-reference into call-by-
value. Otherwisea function is free to do in-place modifications of@_and change its caller’s values.

upcase_in($v1, $v2); # t his changes $v1 and $v2
sub upcase_in {

for (@_) { tr/a−z/A−Z/ }
}

You aren’t allowed to modify constants in this way, of course. Ifan argument were actually literal and you
tried to change it, you’d take a (presumably fatal) exception. For example, this won’t work:

upcase_in("frederick");

It would be much safer if theupcase_in() function were written to return a copy of its parameters
instead of changing them in place:

60 2007-12-18 perl v5.10.0

PERLSUB(1) PerlProgrammers Reference Guide PERLSUB(1)

($v3, $v4) = upcase($v1, $v2); # t his doesn't change $v1 and $v2
sub upcase {

return unless defined wantarray; # v oid context, do nothing
my @parms = @_;
for (@parms) { tr/a−z/A−Z/ }
return wantarray ? @parms : $parms[0];

}

Notice how this (unprototyped) function doesn’t care whether it was passed real scalars or arrays. Perl sees
all arguments as one big, long, flat parameter list in@_. This is one area where Perl’s simple argument-
passing style shines.The upcase() function would work perfectly well without changing the
upcase() definition even if we fed it things like this:

@newlist = upcase(@list1, @list2);
@newlist = upcase(split /:/, $var);

Do not, however, be tempted to do this:

(@a, @b) = upcase(@list1, @list2);

Like the flattened incoming parameter list, the return list is also flattened on return.So all you have
managed to do here is stored everything in @aand made@bempty. See ‘‘Pass by Reference’’ f or
alternatives.

A subroutine may be called using an explicit & prefix. The& is optional in modern Perl, as are parentheses
if the subroutine has been predeclared.The & is not optional when just naming the subroutine, such as
when it’s used as an argument todefined()or undef(). Nor is it optional when you want to do an indirect
subroutine call with a subroutine name or reference using the&$subref() or &{$subref}()
constructs, although the$subref−>() notation solves that problem. See perlref for more about all that.

Subroutines may be called recursively. If a subroutine is called using the& form, the argument list is
optional, and if omitted, no@_array is set up for the subroutine: the@_array at the time of the call is
visible to subroutine instead. This is an efficiency mechanism that new users may wish to avoid.

&foo(1,2,3); # pass three arguments
foo(1,2,3); # the same

foo(); # pass a null list
&foo(); # the same

&foo; # foo() get current args, like foo(@_) !!
foo; # like foo() IFF sub foo predeclared, else "foo"

Not only does the& form make the argument list optional, it also disables any prototype checking on
arguments you do provide. Thisis partly for historical reasons, and partly for having a convenient way to
cheat if you know what you’re doing. See Prototypes below.

Subroutines whose names are in all upper case are reserved to the Perl core, as are modules whose names
are in all lower case.A subroutine in all capitals is a loosely-held convention meaning it will be called
indirectly by the run-time system itself, usually due to a triggered event. Subroutinesthat do special, pre-
defined things includeAUTOLOAD, CLONE, DESTROYplus all functions mentioned in perltie and
PerlIO::via.

The BEGIN, UNITCHECK, CHECK, INIT and ENDsubroutines are not so much subroutines as named
special code blocks, of which you can have more than one in a package, and which you cannot call
explicitly. See ‘‘BEGIN, UNITCHECK, CHECK, INIT andEND’’ i n perlmod

Private Variables viamy()

Synopsis:

my $foo; # declare $foo lexically local
my (@wid, %get); # declare list of variables local
my $foo = "flurp"; # declare $foo lexical, and init it
my @oof = @bar; # declare @oof lexical, and init it
my $x : Foo = $y; # s imilar, with an attribute applied

perl v5.10.0 2007-12-18 61

PERLSUB(1) PerlProgrammers Reference Guide PERLSUB(1)

WARNING : The use of attribute lists onmy declarations is still evolving. The current semantics and
interface are subject to change. See attributes and Attribute::Handlers.

The my operator declares the listed variables to be lexically confined to the enclosing block, conditional
(if/unless/elsif/else), loop (for/foreach/while/until/continue), subroutine,eval ,
or do/require/use ’d file. If more than one value is listed, the list must be placed in parentheses.All
listed elements must be legal lvalues. Onlyalphanumeric identifiers may be lexically scoped— magical
built-ins like $/ must currently belocal ized withlocal instead.

Unlike dynamic variables created by thelocal operator, lexical variables declared withmy are totally
hidden from the outside world, including any called subroutines. This is true if it’s the same subroutine
called from itself or elsewhere — every call gets its own copy.

This doesn’t mean that amy variable declared in a statically enclosing lexical scope would be invisible.
Only dynamic scopes are cut off. For example, thebumpx() function below has access to the lexical $x
variable because both themyand thesub occurred at the same scope, presumably file scope.

my $x = 10;
sub bumpx { $x++ }

An eval() , howev er, can see lexical variables of the scope it is being evaluated in, so long as the names
aren’t hidden by declarations within theeval() itself. Seeperlref.

The parameter list tomy()may be assigned to if desired, which allows you to initialize your variables. (If
no initializer is given for a particular variable, it is created with the undefined value.) Commonlythis is
used to name input parameters to a subroutine. Examples:

$arg = "fred"; # " global" variable
$n = cube_root(27);
print "$arg thinks the root is $n\n";

fred thinks the root is 3

sub cube_root {
my $arg = shift; # name doesn't matter
$arg **= 1/3;
return $arg;

}

Themy is simply a modifier on something you might assign to.So when you do assign to variables in its
argument list,mydoesn’t change whether those variables are viewed as a scalar or an array. So

my ($foo) = <STDIN>; # WRONG?
my @FOO = <STDIN>;

both supply a list context to the right-hand side, while

my $foo = <STDIN>;

supplies a scalar context. But the following declares only one variable:

my $foo, $bar = 1; # WRONG

That has the same effect as

my $foo;
$bar = 1;

The declared variable is not introduced (is not visible) until after the current statement. Thus,

my $x = $x;

can be used to initialize a new$x with the value of the old$x , and the expression

my $x = 123 and $x == 123

is false unless the old$x happened to have the value123 .

Lexical scopes of control structures are not bounded precisely by the braces that delimit their controlled
blocks; control expressions are part of that scope, too. Thus in the loop

62 2007-12-18 perl v5.10.0

PERLSUB(1) PerlProgrammers Reference Guide PERLSUB(1)

while (my $line = <>) {
$line = lc $line;

} c ontinue {
print $line;

}

the scope of$line extends from its declaration throughout the rest of the loop construct (including the
continue clause), but not beyond it. Similarly, in the conditional

if ((my $answer = <STDIN>) =˜ /ˆyes$/i) {
user_agrees();

} e lsif ($answer =˜ /ˆno$/i) {
user_disagrees();

} e lse {
chomp $answer;
die "'$answer' is neither 'yes' nor 'no'";

}

the scope of$answer extends from its declaration through the rest of that conditional, including any
elsif andelse clauses, but not beyond it. See ‘‘Simple statements’’ in perlsyn for information on the
scope of variables in statements with modifiers.

The foreach loop defaults to scoping its index variable dynamically in the manner oflocal . Howev er,
if the index variable is prefixed with the keyword my, or if there is already a lexical by that name in scope,
then a new lexical is created instead. Thus in the loop

for my $i (1, 2, 3) {
some_function();

}

the scope of$i extends to the end of the loop, but not beyond it, rendering the value of$i inaccessible
within some_function() .

Some users may wish to encourage the use of lexically scoped variables. Asan aid to catching implicit
uses to package variables, which are always global, if you say

use strict 'vars';

then any variable mentioned from there to the end of the enclosing block must either refer to a lexical
variable, be predeclared viaour or use vars , or else must be fully qualified with the package name.A
compilation error results otherwise. An inner block may countermand this withno strict 'vars' .

A my has both a compile-time and a run-time effect. At compile time, the compiler takes notice of it.The
principal usefulness of this is to quietuse strict 'vars' , but it is also essential for generation of
closures as detailed in perlref.Actual initialization is delayed until run time, though, so it gets executed at
the appropriate time, such as each time through a loop, for example.

Variables declared withmy are not part of any package and are therefore never fully qualified with the
package name. In particular, you’re not allowed to try to make a package variable (or other global) lexical:

my $pack::var; # ERROR! Illegal syntax

In fact, a dynamic variable (also known as package or global variables) are still accessible using the fully
qualified:: notation even while a lexical of the same name is also visible:

package main;
local $x = 10;
my $x = 20;
print "$x and $::x\n";

That will print out20 and10 .

You may declaremy variables at the outermost scope of a file to hide any such identifiers from the world
outside that file. This is similar in spirit to C’s static variables when they are used at the file level. To do
this with a subroutine requires the use of a closure (an anonymous function that accesses enclosing
lexicals). If you want to create a private subroutine that cannot be called from outside that block, it can
declare a lexical variable containing an anonymous sub reference:

perl v5.10.0 2007-12-18 63

PERLSUB(1) PerlProgrammers Reference Guide PERLSUB(1)

my $secret_version = '1.001−beta';
my $secret_sub = sub { print $secret_version };
&$secret_sub();

As long as the reference is never returned by any function within the module, no outside module can see the
subroutine, because its name is not in any package’s symbol table. Remember that it’s not REALLYcalled
$some_pack::secret_version or anything; it’s just $secret_version , unqualified and
unqualifiable.

This does not work with object methods, however; all object methods have to be in the symbol table of
some package to be found. See ‘‘Function Templates’’ in perlref for something of a work-around to this.

Persistent Private Variables

There are two ways to build persistent private variables in Perl 5.10. First, you can simply use thestate
feature. Or, you can use closures, if you want to stay compatible with releases older than 5.10.

Persistent variables via state()

Beginning with perl 5.9.4, you can declare variables with thestate keyword in place ofmy. For that to
work, though, you must have enabled that feature beforehand, either by using thefeature pragma, or by
using−E on one-liners. (see feature)

For example, the following code maintains a private counter, incremented each time thegimme_another()
function is called:

use feature 'state';
sub gimme_another { state $x; return ++$x }

Also, since$x is lexical, it can’t be reached or modified by any Perl code outside.

When combined with variable declaration, simple scalar assignment tostate variables (as instate $x
= 42) is executed only the first time. When such statements are evaluated subsequent times, the
assignment is ignored. The behavior of this sort of assignment to non-scalar variables is undefined.

Persistent variables with closures

Just because a lexical variable is lexically (also called statically) scoped to its enclosing block,eval , or do
FILE, this doesn’t mean that within a function it works like a C static. It normally works more like a C
auto, but with implicit garbage collection.

Unlike local variables in C or C++, Perl’s lexical variables don’t necessarily get recycled just because their
scope has exited. If something more permanent is still aware of the lexical, it will stick around.So long as
something else references a lexical, that lexical won’t be freed — whichis as it should be.You wouldn’t
want memory being free until you were done using it, or kept around once you were done.Automatic
garbage collection takes care of this for you.

This means that you can pass back or save away references to lexical variables, whereas to return a pointer
to a C auto is a grave error. It also gives us a way to simulate C’s function statics.Here’s a mechanism for
giving a function private variables with both lexical scoping and a static lifetime.If you do want to create
something like C’s static variables, just enclose the whole function in an extra block, and put the static
variable outside the function but in the block.

{
my $secret_val = 0;
sub gimme_another {

return ++$secret_val;
}

}
$secret_val now becomes unreachable by the outside
world, but retains its value between calls to gimme_another

If this function is being sourced in from a separate file viarequire or use , then this is probably just fine.
If it’ s all in the main program, you’ll need to arrange for themy to be executed early, either by putting the
whole block above your main program, or more likely, placing merely aBEGIN code block around it to
make sure it gets executed before your program starts to run:

64 2007-12-18 perl v5.10.0

PERLSUB(1) PerlProgrammers Reference Guide PERLSUB(1)

BEGIN {
my $secret_val = 0;
sub gimme_another {

return ++$secret_val;
}

}

See ‘‘BEGIN, UNITCHECK, CHECK, INIT and END’’ i n perlmod about the special triggered code blocks,
BEGIN, UNITCHECK, CHECK, INIT andEND.

If declared at the outermost scope (the file scope), then lexicals work somewhat like C’s file statics.They
are available to all functions in that same file declared below them, but are inaccessible from outside that
file. Thisstrategy is sometimes used in modules to create private variables that the whole module can see.

Temporary Values via local()

WARNING : In general, you should be usingmy instead oflocal , because it’s faster and safer. Exceptions
to this include the global punctuation variables, global filehandles and formats, and direct manipulation of
the Perl symbol table itself.local is mostly used when the current value of a variable must be visible to
called subroutines.

Synopsis:

l ocalization of values

local $foo; # make $foo dynamically local
local (@wid, %get); # make list of variables local
local $foo = "flurp"; # make $foo dynamic, and init it
local @oof = @bar; # make @oof dynamic, and init it

local $hash{key} = "val"; # s ets a local value for this hash entry
local ($cond ? $v1 : $v2); # s everal types of lvalues support

l ocalization

l ocalization of symbols

local *FH; # l ocalize $FH, @FH, %FH, &FH ...
local *merlyn = *randal; # now $merlyn is really $randal, plus

@merlyn is really @randal, etc
local *merlyn = 'randal'; # SAME THING: promote 'randal' to *randal
local *merlyn = \$randal; # j ust alias $merlyn, not @merlyn etc

A local modifies its listed variables to be ‘‘local’’ to the enclosing block,eval , or do FILE −−and to
any subroutine called from within that block. A local just gives temporary values to global (meaning
package) variables. Itdoesnot create a local variable. Thisis known as dynamic scoping.Lexical scoping
is done withmy, which works more like C’s auto declarations.

Some types of lvalues can be localized as well : hash and array elements and slices, conditionals (provided
that their result is always localizable), and symbolic references. As for simple variables, this creates new,
dynamically scoped values.

If more than one variable or expression is given to local , they must be placed in parentheses.This
operator works by saving the current values of those variables in its argument list on a hidden stack and
restoring them upon exiting the block, subroutine, or eval. This means that called subroutines can also
reference the local variable, but not the global one. The argument list may be assigned to if desired, which
allows you to initialize your local variables. (Ifno initializer is given for a particular variable, it is created
with an undefined value.)

Becauselocal is a run-time operator, it gets executed each time through a loop.Consequently, it’s more
efficient to localize your variables outside the loop.

Grammatical note on local()

A local is simply a modifier on an lvalue expression. Whenyou assign to alocal ized variable, the
local doesn’t change whether its list is viewed as a scalar or an array. So

perl v5.10.0 2007-12-18 65

PERLSUB(1) PerlProgrammers Reference Guide PERLSUB(1)

local($foo) = <STDIN>;
local @FOO = <STDIN>;

both supply a list context to the right-hand side, while

local $foo = <STDIN>;

supplies a scalar context.

Localization of special variables

If you localize a special variable, you’ll be giving a new value to it, but its magic won’t go away. That
means that all side-effects related to this magic still work with the localized value.

This feature allows code like this to work :

Read the whole contents of FILE in $slurp
{ l ocal $/ = undef; $slurp = <FILE>; }

Note, however, that this restricts localization of some values ; for example, the following statement dies, as
of perl 5.9.0, with an errorModification of a read-only value attempted, because the$1 variable is magical
and read-only :

local $1 = 2;

Similarly, but in a way more difficult to spot, the following snippet will die in perl 5.9.0 :

sub f { local $_ = "foo"; print }
for ($1) {

now $_ is aliased to $1, thus is magic and readonly
f();

}

See next section for an alternative to this situation.

WARNING : Localization of tied arrays and hashes does not currently work as described. This will be fixed
in a future release of Perl; in the meantime, avoid code that relies on any particular behaviour of localising
tied arrays or hashes (localising individual elements is still okay). See ‘‘Localising Tied Arrays and Hashes
Is Broken’’ in perl58delta for more details.

Localization of globs

The construct

local *name;

creates a whole new symbol table entry for the globname in the current package.That means that all
variables in its glob slot ($name,@name, %name, &name, and thename filehandle) are dynamically reset.

This implies, among other things, that any magic eventually carried by those variables is locally lost.In
other words, sayinglocal */ will not have any effect on the internal value of the input record separator.

Notably, if you want to work with a brand new value of the default scalar$_ , and avoid the potential
problem listed above about $_ previously carrying a magic value, you should uselocal *_ instead of
local $_ . As of perl 5.9.1, you can also use the lexical form of$_ (declaring it withmy $_), which
avoids completely this problem.

Localization of elements of composite types

It’s also worth taking a moment to explain what happens when youlocal ize a member of a composite
type (i.e. an array or hash element). In this case, the element islocal izedby name. This means that when
the scope of thelocal() ends, the saved value will be restored to the hash element whose key was named
in the local() , or the array element whose index was named in thelocal() . If that element was
deleted while thelocal() was in effect (e.g. by adelete() from a hash or ashift() of an array), it
will spring back into existence, possibly extending an array and filling in the skipped elements with
undef . For instance, if you say

66 2007-12-18 perl v5.10.0

PERLSUB(1) PerlProgrammers Reference Guide PERLSUB(1)

%hash = ('This' => 'is', 'a' => 'test');
@ary = (0 ..5);
{

local($ary[5]) = 6;
local($hash{'a'}) = 'drill';
while (my $e = pop(@ary)) {

print "$e . . .\n";
last unless $e > 3;

}
if (@ary) {

$hash{'only a'} = 'test';
delete $hash{'a'};

}
}
print join(' ', map { "$_ $hash{$_}" } sort keys %hash),".\n";
print "The array has ",scalar(@ary)," elements: ",

join(', ', map { defined $_ ? $_ : 'undef' } @ary),"\n";

Perl will print

6 . . .
4 . . .
3 . . .
This is a test only a test.
The array has 6 elements: 0, 1, 2, undef, undef, 5

The behavior oflocal() on non-existent members of composite types is subject to change in future.

Lvalue subroutines

WARNING : Lvalue subroutines are still experimental and the implementation may change in future
versions of Perl.

It is possible to return a modifiable value from a subroutine.To do this, you have to declare the subroutine
to return an lvalue.

my $val;
sub canmod : lvalue {

r eturn $val; this doesn't work, don't say "return"
$val;

}
sub nomod {

$val;
}

canmod() = 5; # assigns to $val
nomod() = 5; # ERROR

The scalar/list context for the subroutine and for the right-hand side of assignment is determined as if the
subroutine call is replaced by a scalar. For example, consider:

data(2,3) = get_data(3,4);

Both subroutines here are called in a scalar context, while in:

(data(2,3)) = get_data(3,4);

and in:

(data(2),data(3)) = get_data(3,4);

all the subroutines are called in a list context.

Lvalue subroutines areEXPERIMENTAL
They appear to be convenient, but there are several reasons to be circumspect.

You can’t use the return keyword, you must pass out the value before falling out of subroutine scope.
(see comment in example above). This is usually not a problem, but it disallows an explicit return out

perl v5.10.0 2007-12-18 67

PERLSUB(1) PerlProgrammers Reference Guide PERLSUB(1)

of a deeply nested loop, which is sometimes a nice way out.

They violate encapsulation.A normal mutator can check the supplied argument before setting the
attribute it is protecting, an lvalue subroutine never gets that chance. Consider;

my $some_array_ref = []; # protected by mutators ??

sub set_arr { # normal mutator
my $val = shift;
die("expected array, you supplied ", ref $val)

unless ref $val eq 'ARRAY';
$some_array_ref = $val;

}
sub set_arr_lv : lvalue { # l value mutator

$some_array_ref;
}

s et_arr_lv cannot stop this !
set_arr_lv() = { a => 1 };

Passing Symbol Table Entries (typeglobs)

WARNING : The mechanism described in this section was originally the only way to simulate pass-by-
reference in older versions of Perl. While it still works fine in modern versions, the new reference
mechanism is generally easier to work with. See below.

Sometimes you don’t want to pass the value of an array to a subroutine but rather the name of it, so that the
subroutine can modify the global copy of it rather than working with a local copy. In perl you can refer to
all objects of a particular name by prefixing the name with a star:*foo . This is often known as a
‘‘ typeglob’’, because the star on the front can be thought of as a wildcard match for all the funny prefix
characters on variables and subroutines and such.

When evaluated, the typeglob produces a scalar value that represents all the objects of that name, including
any filehandle, format, or subroutine. When assigned to, it causes the name mentioned to refer to whatever
* value was assigned to it. Example:

sub doubleary {
local(*someary) = @_;
foreach $elem (@someary) {

$elem *= 2;
}

}
doubleary(*foo);
doubleary(*bar);

Scalars are already passed by reference, so you can modify scalar arguments without using this mechanism
by referring explicitly to$_[0] etc. You can modify all the elements of an array by passing all the
elements as scalars, but you have to use the* mechanism (or the equivalent reference mechanism) to
push , pop , or change the size of an array. It will certainly be faster to pass the typeglob (or reference).

Even if you don’t want to modify an array, this mechanism is useful for passing multiple arrays in a single
LIST, because normally theLIST mechanism will merge all the array values so that you can’t extract out the
individual arrays.For more on typeglobs, see ‘‘Typeglobs and Filehandles’’ in perldata.

When to Still Uselocal()

Despite the existence ofmy, there are still three places where thelocal operator still shines. In fact, in
these three places, youmustuselocal instead ofmy.

1. You need to give a global variable a temporary value, especially$_ .

The global variables, like @ARGVor the punctuation variables, must belocal ized with local() .
This block reads in/etc/motd, and splits it up into chunks separated by lines of equal signs, which are
placed in@Fields .

68 2007-12-18 perl v5.10.0

PERLSUB(1) PerlProgrammers Reference Guide PERLSUB(1)

{
local @ARGV = ("/etc/motd");
local $/ = undef;
local $_ = <>;
@Fields = split /ˆ\s*=+\s*$/;

}

It particular, it’s important tolocal ize $_ in any routine that assigns to it.Look out for implicit
assignments inwhile conditionals.

2. You need to create a local file or directory handle or a local function.

A function that needs a filehandle of its own must uselocal() on a complete typeglob. This can be
used to create new symbol table entries:

sub ioqueue {
local (*READER, *WRITER); # not my!
pipe (READER, WRITER) or die "pipe: $!";
return (*READER, *WRITER);

}
($head, $tail) = ioqueue();

See the Symbol module for a way to create anonymous symbol table entries.

Because assignment of a reference to a typeglob creates an alias, this can be used to create what is
effectively a local function, or at least, a local alias.

{
local *grow = \&shrink; # only until this block exists
grow(); # really calls shrink()
move(); # if move() grow()s, it shrink()s too

}
grow(); # get the real grow() again

See ‘‘Function Templates’’ in perlref for more about manipulating functions by name in this way.

3. You want to temporarily change just one element of an array or hash.

You can local ize just one element of an aggregate. Usuallythis is done on dynamics:

{
local $SIG{INT} = 'IGNORE';
funct(); # uninterruptible

}
i nterruptibility automatically restored here

But it also works on lexically declared aggregates. Priorto 5.005, this operation could on occasion
misbehave.

Pass by Reference

If you want to pass more than one array or hash into a function— or return them from it— and have them
maintain their integrity, then you’re going to have to use an explicit pass-by-reference. Before you do that,
you need to understand references as detailed in perlref.This section may not make much sense to you
otherwise.

Here are a few simple examples. First,let’s pass in several arrays to a function and have it pop all of then,
returning a new list of all their former last elements:

@tailings = popmany (\@a, \@b, \@c, \@d);

sub popmany {
my $aref;
my @retlist = ();
foreach $aref (@_) {

push @retlist, pop @$aref;
}

perl v5.10.0 2007-12-18 69

PERLSUB(1) PerlProgrammers Reference Guide PERLSUB(1)

return @retlist;
}

Here’s how you might write a function that returns a list of keys occurring in all the hashes passed to it:

@common = inter(\%foo, \%bar, \%joe);
sub inter {

my ($k, $href, %seen); # locals
foreach $href (@_) {

while ($k = each %$href) {
$seen{$k}++;

}
}
return grep { $seen{$_} == @_ } keys %seen;

}

So far, we’re using just the normal list return mechanism. What happens if you want to pass or return a
hash? Well, if you’re using only one of them, or you don’t mind them concatenating, then the normal
calling convention is ok, although a little expensive.

Where people get into trouble is here:

(@a, @b) = func(@c, @d);
or

(%a, %b) = func(%c, %d);

That syntax simply won’t work. It sets just@aor %aand clears the@bor %b. Plus the function didn’t get
passed into two separate arrays or hashes: it got one long list in@_, as always.

If you can arrange for everyone to deal with this through references, it’s cleaner code, although not so nice
to look at. Here’s a function that takes two array references as arguments, returning the two array elements
in order of how many elements they hav ein them:

($aref, $bref) = func(\@c, \@d);
print "@$aref has more than @$bref\n";
sub func {

my ($cref, $dref) = @_;
if (@$cref > @$dref) {

return ($cref, $dref);
} e lse {

return ($dref, $cref);
}

}

It turns out that you can actually do this also:

(*a, *b) = func(\@c, \@d);
print "@a has more than @b\n";
sub func {

local (*c, *d) = @_;
if (@c > @d) {

return (\@c, \@d);
} e lse {

return (\@d, \@c);
}

}

Here we’re using the typeglobs to do symbol table aliasing.It’s a tad subtle, though, and also won’t work if
you’re usingmyvariables, because only globals (even in disguise aslocal s) are in the symbol table.

If you’re passing around filehandles, you could usually just use the bare typeglob, like *STDOUT, but
typeglobs references work, too.For example:

70 2007-12-18 perl v5.10.0

PERLSUB(1) PerlProgrammers Reference Guide PERLSUB(1)

splutter(*STDOUT);
sub splutter {

my $fh = shift;
print $fh "her um well a hmmm\n";

}

$rec = get_rec(*STDIN);
sub get_rec {

my $fh = shift;
return scalar <$fh>;

}

If you’re planning on generating new filehandles, you could do this. Notice to pass back just the bare *FH,
not its reference.

sub openit {
my $path = shift;
local *FH;
return open (FH, $path) ? *FH : undef;

}

Prototypes

Perl supports a very limited kind of compile-time argument checking using function prototyping. If you
declare

sub mypush (\@@)

thenmypush() takes arguments exactly like push() does. Thefunction declaration must be visible at
compile time. The prototype affects only interpretation of new-style calls to the function, where new-style
is defined as not using the& character. In other words, if you call it like a built-in function, then it behaves
like a built-in function. If you call it like an old-fashioned subroutine, then it behaves like an old-fashioned
subroutine. Itnaturally falls out from this rule that prototypes have no influence on subroutine references
like \&foo or on indirect subroutine calls like&{$subref} or $subref−>() .

Method calls are not influenced by prototypes either, because the function to be called is indeterminate at
compile time, since the exact code called depends on inheritance.

Because the intent of this feature is primarily to let you define subroutines that work like built-in functions,
here are prototypes for some other functions that parse almost exactly like the corresponding built-in.

Declared as Called as

sub mylink ($$) mylink $old, $new
sub myvec ($$$) myvec $var, $offset, 1
sub myindex ($$;$) myindex &getstring, "substr"
sub mysyswrite ($$$;$) mysyswrite $buf, 0, length($buf) − $off, $off
sub myreverse (@) myreverse $a, $b, $c
sub myjoin ($@) myjoin ":", $a, $b, $c
sub mypop (\@) mypop @array
sub mysplice (\@$$@) mysplice @array, @array, 0, @pushme
sub mykeys (\%) mykeys %{$hashref}
sub myopen (*;$) myopen HANDLE, $name
sub mypipe (**) mypipe READHANDLE, WRITEHANDLE
sub mygrep (&@) mygrep { /foo/ } $a, $b, $c
sub myrand (;$) myrand 42
sub mytime () mytime

Any backslashed prototype character represents an actual argument that absolutely must start with that
character. The value passed as part of@_will be a reference to the actual argument given in the subroutine
call, obtained by applying\ to that argument.

You can also backslash several argument types simultaneously by using the\[] notation:

perl v5.10.0 2007-12-18 71

PERLSUB(1) PerlProgrammers Reference Guide PERLSUB(1)

sub myref (\[$@%&*])

will allow calling myref()as

myref $var
myref @array
myref %hash
myref &sub
myref *glob

and the first argument ofmyref()will be a reference to a scalar, an array, a hash, a code, or a glob.

Unbackslashed prototype characters have special meanings.Any unbackslashed@or %eats all remaining
arguments, and forces list context. An argument represented by$ forces scalar context. An & requires an
anonymous subroutine, which, if passed as the first argument, does not require thesub keyword or a
subsequent comma.

A * allows the subroutine to accept a bareword, constant, scalar expression, typeglob, or a reference to a
typeglob in that slot. The value will be available to the subroutine either as a simple scalar, or (in the latter
two cases) as a reference to the typeglob. If you wish to always convert such arguments to a typeglob
reference, useSymbol::qualify_to_ref()as follows:

use Symbol 'qualify_to_ref';

sub foo (*) {
my $fh = qualify_to_ref(shift, caller);
...

}

A semicolon (;) separates mandatory arguments from optional arguments. Itis redundant before@or %,
which gobble up everything else.

As the last character of a prototype, or just before a semicolon, you can use_ in place of$: if this argument
is not provided,$_ will be used instead.

Note how the last three examples in the table above are treated specially by the parser. mygrep() is
parsed as a true list operator, myrand() is parsed as a true unary operator with unary precedence the same
asrand() , andmytime() is truly without arguments, just liketime() . That is, if you say

mytime +2;

you’ll get mytime() + 2 , not mytime(2) , which is how it would be parsed without a prototype.

The interesting thing about& is that you can generate new syntax with it, provided it’s in the initial
position:

sub try (&@) {
my($try,$catch) = @_;
eval { &$try };
if ($@) {

local $_ = $@;
&$catch;

}
}
sub catch (&) { $_[0] }

try {
die "phooey";

} c atch {
/phooey/ and print "unphooey\n";

};

That prints"unphooey" . (Yes, there are still unresolved issues having to do with visibility of@_. I’m
ignoring that question for the moment.(But note that if we make @_lexically scoped, those anonymous
subroutines can act like closures... (Gee, is this sounding a little Lispish? (Never mind.))))

And here’s a reimplementation of the Perlgrep operator:

72 2007-12-18 perl v5.10.0

PERLSUB(1) PerlProgrammers Reference Guide PERLSUB(1)

sub mygrep (&@) {
my $code = shift;
my @result;
foreach $_ (@_) {

push(@result, $_) if &$code;
}
@result;

}

Some folks would prefer full alphanumeric prototypes.Alphanumerics have been intentionally left out of
prototypes for the express purpose of someday in the future adding named, formal parameters. The current
mechanism’s main goal is to let module writers provide better diagnostics for module users.Larry feels the
notation quite understandable to Perl programmers, and that it will not intrude greatly upon the meat of the
module, nor make it harder to read. The line noise is visually encapsulated into a small pill that’s easy to
swallow.

If you try to use an alphanumeric sequence in a prototype you will generate an optional warning − ‘‘Ille gal
character in prototype...’’ . Unfortunately earlier versions of Perl allowed the prototype to be used as long as
its prefix was a valid prototype. The warning may be upgraded to a fatal error in a future version of Perl
once the majority of offending code is fixed.

It’s probably best to prototype new functions, not retrofit prototyping into older ones.That’s because you
must be especially careful about silent impositions of differing list versus scalar contexts. For example, if
you decide that a function should take just one parameter, like this:

sub func ($) {
my $n = shift;
print "you gave me $n\n";

}

and someone has been calling it with an array or expression returning a list:

func(@foo);
func(split /:/);

Then you’ve just supplied an automaticscalar in front of their argument, which can be more than a bit
surprising. Theold @foo which used to hold one thing doesn’t get passed in.Instead,func() now gets
passed in a1; that is, the number of elements in@foo. And thesplit gets called in scalar context so it
starts scribbling on your@_parameter list. Ouch!

This is all very powerful, of course, and should be used only in moderation to make the world a better
place.

Constant Functions

Functions with a prototype of() are potential candidates for inlining. If the result after optimization and
constant folding is either a constant or a lexically-scoped scalar which has no other references, then it will
be used in place of function calls made without&. Calls made using& are never inlined. (Seeconstant.pm
for an easy way to declare most constants.)

The following functions would all be inlined:

sub pi () { 3 .14159 } # Not exact, but close.
sub PI () { 4 * a tan2 1, 1 } # As good as it gets,

and it's inlined, too!
sub ST_DEV () { 0 }
sub ST_INO () { 1 }

sub FLAG_FOO () { 1 << 8 }
sub FLAG_BAR () { 1 << 9 }
sub FLAG_MASK () { F LAG_FOO | FLAG_BAR }

sub OPT_BAZ () { n ot (0x1B58 & FLAG_MASK) }

sub N () { int(OPT_BAZ) / 3 }

perl v5.10.0 2007-12-18 73

PERLSUB(1) PerlProgrammers Reference Guide PERLSUB(1)

sub FOO_SET () { 1 if FLAG_MASK & FLAG_FOO }

Be aware that these will not be inlined; as they contain inner scopes, the constant folding doesn’t reduce
them to a single constant:

sub foo_set () { if (FLAG_MASK & FLAG_FOO) { 1 } }

sub baz_val () {
if (OPT_BAZ) {

return 23;
}
else {

return 42;
}

}

If you redefine a subroutine that was eligible for inlining, you’ll get a mandatory warning. (You can use
this warning to tell whether or not a particular subroutine is considered constant.)The warning is
considered severe enough not to be optional because previously compiled invocations of the function will
still be using the old value of the function. If you need to be able to redefine the subroutine, you need to
ensure that it isn’t inlined, either by dropping the() prototype (which changes calling semantics, so
beware) or by thwarting the inlining mechanism in some other way, such as

sub not_inlined () {
23 if $];

}

Overriding Built-in Functions

Many built-in functions may be overridden, though this should be tried only occasionally and for good
reason. Typically this might be done by a package attempting to emulate missing built-in functionality on a
non-Unix system.

Overriding may be done only by importing the name from a module at compile time— ordinary
predeclaration isn’t good enough.However, theuse subs pragma lets you, in effect, predeclare subs via
the import syntax, and these names may then override built-in ones:

use subs 'chdir', 'chroot', 'chmod', 'chown';
chdir $somewhere;
sub chdir { ... }

To unambiguously refer to the built-in form, precede the built-in name with the special package qualifier
CORE:: . For example, sayingCORE::open() always refers to the built-in open() , even if the current
package has imported some other subroutine called&open() from elsewhere. Even though it looks like a
regular function call, it isn’t: you can’t take a reference to it, such as the incorrect\&CORE::open might
appear to produce.

Library modules should not in general export built-in names like open or chdir as part of their default
@EXPORTlist, because these may sneak into someone else’s namespace and change the semantics
unexpectedly. Instead, if the module adds that name to@EXPORT_OK, then it’s possible for a user to
import the name explicitly, but not implicitly. That is, they could say

use Module 'open';

and it would import theopen override. Butif they said

use Module;

they would get the default imports without overrides.

The foregoing mechanism for overriding built-in is restricted, quite deliberately, to the package that
requests the import.There is a second method that is sometimes applicable when you wish to override a
built-in everywhere, without regard to namespace boundaries.This is achieved by importing a sub into the
special namespaceCORE::GLOBAL:: . Here is an example that quite brazenly replaces theglob
operator with something that understands regular expressions.

74 2007-12-18 perl v5.10.0

PERLSUB(1) PerlProgrammers Reference Guide PERLSUB(1)

package REGlob;
require Exporter;
@ISA = 'Exporter';
@EXPORT_OK = 'glob';

sub import {
my $pkg = shift;
return unless @_;
my $sym = shift;
my $where = ($sym =˜ s/ˆGLOBAL_// ? 'CORE::GLOBAL' : caller(0));
$pkg−>export($where, $sym, @_);

}

sub glob {
my $pat = shift;
my @got;
if (opendir my $d, '.') {

@got = grep /$pat/, readdir $d;
closedir $d;

}
return @got;

}
1;

And here’s how it could be (ab)used:

#use REGlob 'GLOBAL_glob'; # override glob() in ALL namespaces
package Foo;
use REGlob 'glob'; # override glob() in Foo:: only
print for <ˆ[a−z_]+\.pm\$>; # s how all pragmatic modules

The initial comment shows a contrived, even dangerous example. Byoverriding glob globally, you would
be forcing the new (and subversive) behavior for the glob operator forevery namespace, without the
complete cognizance or cooperation of the modules that own those namespaces.Naturally, this should be
done with extreme caution— if it must be done at all.

The REGlob example above does not implement all the support needed to cleanly override perl’s glob
operator. The built-in glob has different behaviors depending on whether it appears in a scalar or list
context, but ourREGlob doesn’t. Indeed,many perl built-in have such context sensitive behaviors, and
these must be adequately supported by a properly written override. For a fully functional example of
overriding glob , study the implementation ofFile::DosGlob in the standard library.

When you override a built-in, your replacement should be consistent (if possible) with the built-in native
syntax. You can achieve this by using a suitable prototype.To get the prototype of an overridable built-in,
use theprototype function with an argument of"CORE::builtin_name" (see ‘‘prototype’’ i n
perlfunc).

Note however that some built-ins can’t hav e their syntax expressed by a prototype (such assystem or
chomp). If you override them you won’t be able to fully mimic their original syntax.

The built-ins do , require and glob can also be overridden, but due to special magic, their original
syntax is preserved, and you don’t hav eto define a prototype for their replacements.(You can’t override
thedo BLOCK syntax, though).

require has special additional dark magic: if you invoke your require replacement asrequire
Foo::Bar , it will actually receive the argument"Foo/Bar.pm" in @_. See ‘‘require’’ in perlfunc.

And, as you’ll have noticed from the previous example, if you override glob , the <*> glob operator is
overridden as well.

In a similar fashion, overriding the readline function also overrides the equivalent I/O operator
<FILEHANDLE>. Also, overriding readpipe also overrides the operators̀̀ andqx// .

Finally, some built-ins (e.g.exists or grep) can’t be overridden.

perl v5.10.0 2007-12-18 75

PERLSUB(1) PerlProgrammers Reference Guide PERLSUB(1)

Autoloading

If you call a subroutine that is undefined, you would ordinarily get an immediate, fatal error complaining
that the subroutine doesn’t exist. (Likewise for subroutines being used as methods, when the method
doesn’t exist in any base class of the class’s package.) However, if an AUTOLOADsubroutine is defined in
the package or packages used to locate the original subroutine, then thatAUTOLOADsubroutine is called
with the arguments that would have been passed to the original subroutine.The fully qualified name of the
original subroutine magically appears in the global$AUTOLOADvariable of the same package as the
AUTOLOADroutine. Thename is not passed as an ordinary argument because, er, well, just because, that’s
why. (As an exception, a method call to a nonexistent import or unimport method is just skipped
instead.)

Many AUTOLOADroutines load in a definition for the requested subroutine usingeval(), then execute that
subroutine using a special form ofgoto() that erases the stack frame of theAUTOLOADroutine without a
trace. (Seethe source to the standard module documented in AutoLoader, for example.) But an
AUTOLOADroutine can also just emulate the routine and never define it. For example, let’s pretend that a
function that wasn’t defined should just invokesystem with those arguments. Allyou’d do is:

sub AUTOLOAD {
my $program = $AUTOLOAD;
$program =˜ s/.*:://;
system($program, @_);

}
date();
who('am', 'i');
ls('−l');

In fact, if you predeclare functions you want to call that way, you don’t even need parentheses:

use subs qw(date who ls);
date;
who "am", "i";
ls '−l';

A more complete example of this is the standard Shell module, which can treat undefined subroutine calls
as calls to external programs.

Mechanisms are available to help modules writers split their modules into autoloadable files.See the
standard AutoLoader module described in AutoLoader and in AutoSplit, the standard SelfLoader modules
in SelfLoader, and the document on adding C functions to Perl code in perlxs.

Subroutine Attributes

A subroutine declaration or definition may have a list of attributes associated with it.If such an attribute
list is present, it is broken up at space or colon boundaries and treated as though ause attributes had
been seen. See attributes for details about what attributes are currently supported.Unlike the limitation
with the obsolescentuse attrs , thesub : ATTRLIST syntax works to associate the attributes with a
pre-declaration, and not just with a subroutine definition.

The attributes must be valid as simple identifier names (without any punctuation other than the ’_’
character). They may have a parameter list appended, which is only checked for whether its parentheses
(’(’,’)’) nest properly.

Examples of valid syntax (even though the attributes are unknown):

sub fnord (&\%) : switch(10,foo(7,3)) : e xpensive;
sub plugh () : Ugly('\(") :Bad;
sub xyzzy : _5x5 { ... }

Examples of invalid syntax:

sub fnord : switch(10,foo(); # ()−string not balanced
sub snoid : Ugly('('); # ()−string not balanced
sub xyzzy : 5x5; # " 5x5" not a valid identifier
sub plugh : Y2::north; # " Y2::north" not a simple identifier
sub snurt : foo + bar; # " +" not a colon or space

76 2007-12-18 perl v5.10.0

PERLSUB(1) PerlProgrammers Reference Guide PERLSUB(1)

The attribute list is passed as a list of constant strings to the code which associates them with the
subroutine. Inparticular, the second example of valid syntax above currently looks like this in terms of
how it’s parsed and invoked:

use attributes _ _PACKAGE_ _, \&plugh, q[Ugly('\(")], 'Bad';

For further details on attribute lists and their manipulation, see attributes and Attribute::Handlers.

SEE ALSO
See ‘‘Function Templates’’ in perlref for more about references and closures. See perlxs if you’d like to
learn about calling C subroutines from Perl. See perlembed if you’d like to learn about calling Perl
subroutines from C.See perlmod to learn about bundling up your functions in separate files.See
perlmodlib to learn what library modules come standard on your system.See perltoot to learn how to make
object method calls.

perl v5.10.0 2007-12-18 77

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

NAME
perlfunc − Perl builtin functions

DESCRIPTION
The functions in this section can serve as terms in an expression. They fall into two major categories: list
operators and named unary operators.These differ in their precedence relationship with a following
comma. (Seethe precedence table in perlop.) List operators take more than one argument, while unary
operators can never take more than one argument. Thus,a comma terminates the argument of a unary
operator, but merely separates the arguments of a list operator. A unary operator generally provides a scalar
context to its argument, while a list operator may provide either scalar or list contexts for its arguments. If
it does both, the scalar arguments will be first, and the list argument will follow. (Note that there can ever
be only one such list argument.) For instance,splice() has three scalar arguments followed by a list,
whereasgethostbyname()has four scalar arguments.

In the syntax descriptions that follow, list operators that expect a list (and provide list context for the
elements of the list) are shown withLIST as an argument. Sucha list may consist of any combination of
scalar arguments or list values; the list values will be included in the list as if each individual element were
interpolated at that point in the list, forming a longer single-dimensional list value. Commasshould
separate elements of theLIST.

Any function in the list below may be used either with or without parentheses around its arguments. (The
syntax descriptions omit the parentheses.)If you use the parentheses, the simple (but occasionally
surprising) rule is this: Itlooks like a function, therefore itis a function, and precedence doesn’t matter.
Otherwise it’s a list operator or unary operator, and precedence does matter. And whitespace between the
function and left parenthesis doesn’t count — soyou need to be careful sometimes:

print 1+2+4; # Prints 7.
print(1+2) + 4; # Prints 3.
print (1+2)+4; # Also prints 3!
print +(1+2)+4; # Prints 7.
print ((1+2)+4); # Prints 7.

If you run Perl with the−w switch it can warn you about this.For example, the third line above produces:

print (...) interpreted as function at − line 1.
Useless use of integer addition in void context at − line 1.

A few functions take no arguments at all, and therefore work as neither unary nor list operators.These
include such functions astime andendpwent . For example,time+86_400 always meanstime() +
86_400 .

For functions that can be used in either a scalar or list context, nonabortive failure is generally indicated in a
scalar context by returning the undefined value, and in a list context by returning the null list.

Remember the following important rule: There isno rule that relates the behavior of an expression in list
context to its behavior in scalar context, or vice versa. Itmight do two totally different things. Each
operator and function decides which sort of value it would be most appropriate to return in scalar context.
Some operators return the length of the list that would have been returned in list context. Someoperators
return the first value in the list. Some operators return the last value in the list. Some operators return a
count of successful operations. In general, they do what you want, unless you want consistency.

A named array in scalar context is quite different from what would at first glance appear to be a list in
scalar context. You can’t get a list like (1,2,3) into being in scalar context, because the compiler knows
the context at compile time. It would generate the scalar comma operator there, not the list construction
version of the comma. That means it was never a list to start with.

In general, functions in Perl that serve as wrappers for system calls of the same name (like chown(2),
fork (2), closedir(2), etc.) all return true when they succeed andundef otherwise, as is usually mentioned
in the descriptions below. This is different from the C interfaces, which return−1 on failure. Exceptionsto
this rule arewait , waitpid , and syscall . System calls also set the special$! variable on failure.
Other functions do not, except accidentally.

78 2007-12-18 perl v5.10.0

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

Perl Functions by Category

Here are Perl’s functions (including things that look like functions, like some keywords and named
operators) arranged by category. Some functions appear in more than one place.

Functions for SCALARs or strings
chomp, chop , chr , crypt , hex , index , lc , lcfirst , length , oct , ord , pack , q// , qq// ,
reverse , rindex , sprintf , substr , tr/// , uc , ucfirst , y///

Regular expressions and pattern matching
m// , pos , quotemeta , s/// , split , study , qr//

Numeric functions
abs , atan2 , cos , exp , hex , int , log , oct , rand , sin , sqrt , srand

Functions for real@ARRAYs
pop , push , shift , splice , unshift

Functions for list data
grep , join , map, qw// , reverse , sort , unpack

Functions for real%HASHes
delete , each , exists , keys , values

Input and output functions
binmode , close , closedir , dbmclose , dbmopen, die , eof , fileno , flock , format ,
getc , print , printf , read , readdir , rewinddir , say , seek , seekdir , select ,
syscall , sysread , sysseek , syswrite , tell , telldir , truncate , warn , write

Functions for fixed length data or records
pack , read , syscall , sysread , syswrite , unpack , vec

Functions for filehandles, files, or directories
−X, chdir , chmod, chown , chroot , fcntl , glob , ioctl , link , lstat , mkdir , open ,
opendir , readlink , rename , rmdir , stat , symlink , sysopen , umask, unlink , utime

Ke ywords related to the control flow of your Perl program
caller , continue , die , do , dump, eval , exit , goto , last , next , redo , return , sub ,
wantarray

Ke ywords related to switch
break , continue , given , when, default

(These are only available if you enable the ‘‘switch’’ f eature. Seefeature and ‘‘Switch statements’’ i n
perlsyn.)

Ke ywords related to scoping
caller , import , local , my, our , state , package , use

(state is only available if the ‘‘state’’ f eature is enabled. See feature.)

Miscellaneous functions
defined , dump, eval , formline , local , my, our , reset , scalar , state , undef ,
wantarray

Functions for processes and process groups
alarm , exec , fork , getpgrp , getppid , getpriority , kill , pipe , qx// , setpgrp ,
setpriority , sleep , system , times , wait , waitpid

Ke ywords related to perl modules
do , import , no , package , require , use

Ke ywords related to classes and object-orientation
bless , dbmclose , dbmopen, package , ref , tie , tied , untie , use

Low-level socket functions
accept , bind , connect , getpeername , getsockname , getsockopt , listen , recv ,
send , setsockopt , shutdown , socket , socketpair

perl v5.10.0 2007-12-18 79

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

System V interprocess communication functions
msgctl , msgget , msgrcv , msgsnd , semctl , semget , semop, shmctl , shmget , shmread ,
shmwrite

Fetching user and group info
endgrent , endhostent , endnetent , endpwent , getgrent , getgrgid , getgrnam ,
getlogin , getpwent , getpwnam , getpwuid , setgrent , setpwent

Fetching network info
endprotoent , endservent , gethostbyaddr , gethostbyname , gethostent ,
getnetbyaddr , getnetbyname , getnetent , getprotobyname , getprotobynumber ,
getprotoent , getservbyname , getservbyport , getservent , sethostent ,
setnetent , setprotoent , setservent

Time-related functions
gmtime , localtime , time , times

Functions new in perl5
abs , bless , break , chomp, chr , continue , default , exists , formline , given , glob ,
import , lc , lcfirst , lock , map, my, no , our , prototype , qr// , qw// , qx// , readline ,
readpipe , ref , sub *, sysopen , tie , tied , uc , ucfirst , untie , use , when

* − sub was a keyword in perl4, but in perl5 it is an operator, which can be used in expressions.

Functions obsoleted in perl5
dbmclose , dbmopen

Portability

Perl was born in Unix and can therefore access all common Unix system calls.In non-Unix environments,
the functionality of some Unix system calls may not be available, or details of the available functionality
may differ slightly. The Perl functions affected by this are:

−X, binmode , chmod, chown , chroot , crypt , dbmclose , dbmopen, dump, endgrent ,
endhostent , endnetent , endprotoent , endpwent , endservent , exec , fcntl , flock ,
fork , getgrent , getgrgid , gethostbyname , gethostent , getlogin , getnetbyaddr ,
getnetbyname , getnetent , getppid , getpgrp , getpriority , getprotobynumber ,
getprotoent , getpwent , getpwnam , getpwuid , getservbyport , getservent ,
getsockopt , glob , ioctl , kill , link , lstat , msgctl , msgget , msgrcv , msgsnd , open ,
pipe , readlink , rename , select , semctl , semget , semop, setgrent , sethostent ,
setnetent , setpgrp , setpriority , setprotoent , setpwent , setservent , setsockopt ,
shmctl , shmget , shmread , shmwrite , socket , socketpair , stat , symlink , syscall ,
sysopen , system , times , truncate , umask, unlink , utime , wait , waitpid

For more information about the portability of these functions, see perlport and other available platform-
specific documentation.

Alphabetical Listing of Perl Functions

−X FILEHANDLE
−X EXPR
−X DIRHANDLE
−X A file test, where X is one of the letters listed below. This unary operator takes one argument,

either a filename, a filehandle, or a dirhandle, and tests the associated file to see if something is
true about it. If the argument is omitted, tests$_ , except for−t , which testsSTDIN. Unless
otherwise documented, it returns1 for true and'' for false, or the undefined value if the file
doesn’t exist. Despitethe funny names, precedence is the same as any other named unary
operator. The operator may be any of:

−r File is readable by effective uid/gid.
−w File is writable by effective uid/gid.
−x File is executable by effective uid/gid.
−o File is owned by effective uid.

−R File is readable by real uid/gid.

80 2007-12-18 perl v5.10.0

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

−W File is writable by real uid/gid.
−X File is executable by real uid/gid.
−O File is owned by real uid.

−e File exists.
−z File has zero size (is empty).
−s File has nonzero size (returns size in bytes).

−f File is a plain file.
−d File is a directory.
−l File is a symbolic link.
−p File is a named pipe (FIFO), or Filehandle is a pipe.
−S File is a socket.
−b File is a block special file.
−c File is a character special file.
−t Filehandle is opened to a tty.

−u File has setuid bit set.
−g File has setgid bit set.
−k File has sticky bit set.

−T File is an ASCII text file (heuristic guess).
−B File is a "binary" file (opposite of −T).

−M Script start time minus file modification time, in days.
−A Same for access time.
−C Same for inode change time (Unix, may differ for other platforms)

Example:

while (<>) {
chomp;
next unless −f $_; # i gnore specials
#...

}

The interpretation of the file permission operators−r , −R, −w, −W, −x , and −X is by default
based solely on the mode of the file and the uids and gids of the user. There may be other reasons
you can’t actually read, write, or execute the file: for example network filesystem access controls,
ACLs (access control lists), read-only filesystems, and unrecognized executable formats.Note
that the use of these six specific operators to verify if some operation is possible is usually a
mistake, because it may be open to race conditions.

Also note that, for the superuser on the local filesystems, the−r , −R, −w, and −Wtests always
return 1, and−x and −X return 1 if any execute bit is set in the mode. Scripts run by the
superuser may thus need to do astat() to determine the actual mode of the file, or temporarily set
their effective uid to something else.

If you are using ACLs, there is a pragma calledfiletest that may produce more accurate
results than the barestat()mode bits. When under theuse filetest 'access' the above-
mentioned filetests will test whether the permission can (not) be granted using theaccess()family
of system calls. Also note that the−x and−X may under this pragma return true even if there are
no execute permission bits set (nor any extra execute permission ACLs). Thisstrangeness is due
to the underlying system calls’ definitions. Note also that, due to the implementation ofuse
filetest 'access' , the _ special filehandle won’t cache the results of the file tests when
this pragma is in effect. Readthe documentation for thefiletest pragma for more
information.

Note that−s/a/b/ does not do a negated substitution.Saying−exp($foo) still works as
expected, however — only single letters following a minus are interpreted as file tests.

The −T and−B switches work as follows. Thefirst block or so of the file is examined for odd

perl v5.10.0 2007-12-18 81

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

characters such as strange control codes or characters with the high bit set.If too many strange
characters (>30%) are found, it’s a−B file; otherwise it’s a−T file. Also,any file containing null
in the first block is considered a binary file.If −T or −B is used on a filehandle, the currentIO
buffer is examined rather than the first block.Both −T and−B return true on a null file, or a file
at EOF when testing a filehandle. Because you have to read a file to do the−T test, on most
occasions you want to use a−f against the file first, as innext unless −f $file && −T
$file .

If any of the file tests (or either thestat or lstat operators) are given the special filehandle
consisting of a solitary underline, then the stat structure of the previous file test (or stat operator)
is used, saving a system call. (This doesn’t work with −t , and you need to remember thatlstat()
and−l will leave values in the stat structure for the symbolic link, not the real file.) (Also, if the
stat buffer was filled by anlstat call, −T and −B will reset it with the results ofstat _).
Example:

print "Can do.\n" if −r $a || −w _ || −x _;

stat($filename);
print "Readable\n" if −r _;
print "Writable\n" if −w _;
print "Executable\n" if −x _;
print "Setuid\n" if −u _;
print "Setgid\n" if −g _;
print "Sticky\n" if −k _;
print "Text\n" if −T _;
print "Binary\n" if −B _;

As of Perl 5.9.1, as a form of purely syntactic sugar, you can stack file test operators, in a way
that −f −w −x $file is equivalent to −x $file && −w _ && −f _ . (This is only
syntax fancy: if you use the return value of−f $file as an argument to another filetest
operator, no special magic will happen.)

absVALUE
abs Returnsthe absolute value of its argument. IfVALUE is omitted, uses$_ .

acceptNEWSOCKET,GENERICSOCKET
Accepts an incoming socket connect, just as theaccept(2) system call does. Returns the packed
address if it succeeded, false otherwise. See the example in ‘‘Sockets: Client/Server
Communication’’ in perlipc.

On systems that support a close-on-exec flag on files, the flag will be set for the newly opened file
descriptor, as determined by the value of $ˆF. See ‘‘$ˆF’’ in perlvar.

alarmSECONDS
alarm Arrangesto have aSIGALRM delivered to this process after the specified number of wallclock

seconds has elapsed.If SECONDSis not specified, the value stored in$_ is used. (On some
machines, unfortunately, the elapsed time may be up to one second less or more than you
specified because of how seconds are counted, and process scheduling may delay the delivery of
the signal even further.)

Only one timer may be counting at once. Each call disables the previous timer, and an argument
of 0 may be supplied to cancel the previous timer without starting a new one. Thereturned value
is the amount of time remaining on the previous timer.

For delays of finer granularity than one second, the Time::HiRes module (fromCPAN, and
starting from Perl 5.8 part of the standard distribution) provides ualarm(). You may also use
Perl’s four-argument version ofselect()leaving the first three arguments undefined, or you might
be able to use thesyscall interface to accesssetitimer(2) if your system supports it. See
perlfaq8 for details.

It is usually a mistake to intermix alarm and sleep calls. (sleep may be internally
implemented in your system withalarm)

If you want to usealarm to time out a system call you need to use aneval /die pair. You

82 2007-12-18 perl v5.10.0

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

can’t rely on the alarm causing the system call to fail with$! set toEINTR because Perl sets up
signal handlers to restart system calls on some systems.Usingeval /die always works, modulo
the caveats given in ‘‘Signals’’ in perlipc.

eval {
local $SIG{ALRM} = sub { die "alarm\n" }; # NB: \n required
alarm $timeout;
$nread = sysread SOCKET, $buffer, $size;
alarm 0;

};
if ($@) {

die unless $@ eq "alarm\n"; # propagate unexpected errors
t imed out

}
else {

didn't
}

For more information see perlipc.

atan2 Y,X
Returns the arctangent of Y/X in the range −PI toPI.

For the tangent operation, you may use theMath::Trig::tan function, or use the familiar
relation:

sub tan { sin($_[0]) / cos($_[0]) }

Note that atan2(0, 0) is not well-defined.

bind SOCKET,NAME
Binds a network address to a socket, just as the bind system call does.Returns true if it
succeeded, false otherwise.NAME should be a packed address of the appropriate type for the
socket. Seethe examples in ‘‘Sockets: Client/Server Communication’’ in perlipc.

binmodeFILEHANDLE, LAYER
binmodeFILEHANDLE

Arranges forFILEHANDLE to be read or written in ‘‘binary’’ or ‘ ‘text’’ mode on systems where
the run-time libraries distinguish between binary and text files. If FILEHANDLE is an expression,
the value is taken as the name of the filehandle. Returns true on success, otherwise it returns
undef and sets$! (errno).

On some systems (in general,DOS and Windows-based systems)binmode()is necessary when
you’re not working with a text file.For the sake of portability it is a good idea to always use it
when appropriate, and to never use it when it isn’t appropriate. Also,people can set their I/O to
be by defaultUTF−8 encoded Unicode, not bytes.

In other words: regardless of platform, usebinmode()on binary data, like for example images.

If LAYER is present it is a single string, but may contain multiple directives. The directives alter
the behaviour of the file handle.WhenLAYER is present using binmode on text file makes sense.

If LAYER is omitted or specified as:raw the filehandle is made suitable for passing binary data.
This includes turning off possible CRLF translation and marking it as bytes (as opposed to
Unicode characters). Note that, despite what may be implied in‘‘ Programming Perl’’ (the
Camel) or elsewhere,:raw is not simply the inverse of :crlf — other layers which would
affect the binary nature of the stream arealso disabled. See PerlIO, perlrun and the discussion
about thePERLIOenvironment variable.

The :bytes , :crlf , and :utf8 , and any other directives of the form :... , are called I/O
layers. Theopen pragma can be used to establish default I/O layers. See open.

TheLAYERparameter of the binmode() function is described as ‘‘DISCIPLINE’’ i n ‘‘Programming
Perl, 3rd Edition’’. However, since the publishing of this book, by many known as ‘‘Camel III ’’ ,
the consensus of the naming of this functionality has moved from ‘‘discipline’’ to ‘‘layer’’. All
documentation of this version of Perl therefore refers to ‘‘layers’’ r ather than to ‘‘disciplines’’.

perl v5.10.0 2007-12-18 83

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

Now back to the regularly scheduled documentation...

To mark FILEHANDLE asUTF−8, use :utf8 or :encoding(utf8) . :utf8 just marks the
data asUTF−8 without further checking, while:encoding(utf8) checks the data for actually
being validUTF−8. More details can be found in PerlIO::encoding.

In general,binmode()should be called afteropen()but before any I/O is done on the filehandle.
Calling binmode()will normally flush any pending buffered output data (and perhaps pending
input data) on the handle. An exception to this is the:encoding layer that changes the default
character encoding of the handle, see open.The :encoding layer sometimes needs to be called
in mid-stream, and it doesn’t flush the stream.The :encoding also implicitly pushes on top of
itself the :utf8 layer because internally Perl will operate onUTF−8 encoded Unicode
characters.

The operating system, device drivers, C libraries, and Perl run-time system all work together to
let the programmer treat a single character (\n) as the line terminator, irrespective of the external
representation. Onmany operating systems, the native text file representation matches the
internal representation, but on some platforms the external representation of\n is made up of
more than one character.

Mac OS, all variants of Unix, and Stream_LF files onVMS use a single character to end each line
in the external representation of text (even though that single character isCARRIAGE RETURNon
Mac OS andLINE FEED on Unix and mostVMS files). In other systems like OS/2, DOS and the
various flavors of MS-Windows your program sees a\n as a simple\cJ , but what’s stored in
text files are the two characters\cM\cJ . That means that, if you don’t usebinmode()on these
systems,\cM\cJ sequences on disk will be converted to \n on input, and any \n in your
program will be converted back to\cM\cJ on output.This is what you want for text files, but it
can be disastrous for binary files.

Another consequence of usingbinmode()(on some systems) is that special end-of-file markers
will be seen as part of the data stream.For systems from the Microsoft family this means that if
your binary data contains\cZ , the I/O subsystem will regard it as the end of the file, unless you
usebinmode().

binmode()is not only important forreadline()andprint() operations, but also when usingread(),
seek(), sysread(), syswrite()andtell() (see perlport for more details). See the$/ and$\ variables
in perlvar for how to manually set your input and output line-termination sequences.

blessREF,CLASSNAME
blessREF

This function tells the thingy referenced byREF that it is now an object in theCLASSNAME
package. IfCLASSNAME is omitted, the current package is used.Because abless is often the
last thing in a constructor, it returns the reference for convenience. Always use the two-argument
version if a derived class might inherit the function doing the blessing. See perltoot and perlobj
for more about the blessing (and blessings) of objects.

Consider always blessing objects in CLASSNAMEs that are mixed case. Namespaces with all
lowercase names are considered reserved for Perl pragmata. Builtin types have all uppercase
names. To prevent confusion, you may wish to avoid such package names as well.Make sure
thatCLASSNAME is a true value.

See ‘‘Perl Modules’’ in perlmod.

break Breakout of agiven() block.

This keyword is enabled by the ‘‘switch’’ f eature: see feature for more information.

callerEXPR
caller Returnsthe context of the current subroutine call. In scalar context, returns the caller’s package

name if there is a caller, that is, if we’re in a subroutine oreval or require , and the undefined
value otherwise. In list context, returns

0 1 2
($package, $filename, $line) = caller;

With EXPR, it returns some extra information that the debugger uses to print a stack trace.The

84 2007-12-18 perl v5.10.0

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

value ofEXPR indicates how many call frames to go back before the current one.

0 1 2 3 4
($package, $filename, $line, $subroutine, $hasargs,

5 6 7 8 9 1 0
$wantarray, $evaltext, $is_require, $hints, $bitmask, $hinthash)

= caller($i);

Here $subroutine may be(eval) if the frame is not a subroutine call, but aneval . In
such a case additional elements$evaltext and $is_require are set:$is_require is
true if the frame is created by arequire or use statement,$evaltext contains the text of
the eval EXPR statement. Inparticular, for aneval BLOCK statement,$subroutine is
(eval) , but $evaltext is undefined.(Note also that eachuse statement creates arequire
frame inside aneval EXPR frame.) $subroutine may also be(unknown) if this
particular subroutine happens to have been deleted from the symbol table.$hasargs is true if a
new instance of@_was set up for the frame.$hints and$bitmask contain pragmatic hints
that the caller was compiled with.The $hints and $bitmask values are subject to change
between versions of Perl, and are not meant for external use.

$hinthash is a reference to a hash containing the value of%ˆH when the caller was compiled,
or undef if %ˆHwas empty. Do not modify the values of this hash, as they are the actual values
stored in the optree.

Furthermore, when called from within theDB package, caller returns more detailed information:
it sets the list variable@DB::args to be the arguments with which the subroutine was invoked.

Be aware that the optimizer might have optimized call frames away beforecaller had a chance
to get the information. That means thatcaller(N) might not return information about the call
frame you expect it do, forN > 1. In particular,@DB::args might have information from the
previous timecaller was called.

chdir EXPR
chdir FILEHANDLE
chdir DIRHANDLE
chdir Changesthe working directory toEXPR, if possible. IfEXPR is omitted, changes to the directory

specified by$ENV{HOME}, if set; if not, changes to the directory specified by$ENV{LOGDIR} .
(UnderVMS, the variable$ENV{SYS$LOGIN} is also checked, and used if it is set.) If neither is
set,chdir does nothing. It returns true upon success, false otherwise. See the example under
die .

On systems that support fchdir, you might pass a file handle or directory handle as argument. On
systems that don’t support fchdir, passing handles produces a fatal error at run time.

chmodLIST
Changes the permissions of a list of files. The first element of the list must be the numerical
mode, which should probably be an octal number, and which definitely shouldnot be a string of
octal digits:0644 is okay, '0644' is not. Returns the number of files successfully changed.
See also ‘‘oct’’, if all you have is a string.

$cnt = chmod 0755, 'foo', 'bar';
chmod 0755, @executables;
$mode = '0644'; chmod $mode, 'foo'; # ! !! sets mode to

−−w−−−−r−T
$mode = '0644'; chmod oct($mode), 'foo'; # this is better
$mode = 0644; chmod $mode, 'foo'; # t his is best

On systems that support fchmod, you might pass file handles among the files. On systems that
don’t support fchmod, passing file handles produces a fatal error at run time.The file handles
must be passed as globs or references to be recognized. Barewords are considered file names.

perl v5.10.0 2007-12-18 85

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

open(my $fh, "<", "foo");
my $perm = (stat $fh)[2] & 07777;
chmod($perm | 0600, $fh);

You can also import the symbolicS_I* constants from the Fcntl module:

use Fcntl ':mode';

chmod S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH, @executables;
This is identical to the chmod 0755 of the above example.

chompVARIABLE
chomp(LIST)
chomp Thissafer version of ‘‘chop’’ removes any trailing string that corresponds to the current value of

$/ (also known as$INPUT_RECORD_SEPARATORin the English module). Itreturns the
total number of characters removed from all its arguments. It’s often used to remove the newline
from the end of an input record when you’re worried that the final record may be missing its
newline. Whenin paragraph mode ($/ = ""), it removes all trailing newlines from the string.
When in slurp mode ($/ = undef) or fixed-length record mode ($/ is a reference to an integer
or the like, see perlvar) chomp()won’t remove anything. If VARIABLE is omitted, it chomps$_ .
Example:

while (<>) {
chomp; # avoid \n on last field
@array = split(/:/);
. ..

}

If VARIABLE is a hash, it chomps the hash’s values, but not its keys.

You can actually chomp anything that’s an lvalue, including an assignment:

chomp($cwd = `pwd`);
chomp($answer = <STDIN>);

If you chomp a list, each element is chomped, and the total number of characters removed is
returned.

Note that parentheses are necessary when you’re chomping anything that is not a simple variable.
This is becausechomp $cwd = `pwd`; is interpreted as(chomp $cwd) = `pwd`; ,
rather than aschomp($cwd = `pwd`) which you might expect. Similarly, chomp $a,
$b is interpreted aschomp($a), $b rather than aschomp($a, $b) .

chopVARIABLE
chop(LIST)
chop Chopsoff the last character of a string and returns the character chopped. It is much more

efficient thans/.$//s because it neither scans nor copies the string.If VARIABLE is omitted,
chops$_ . If VARIABLE is a hash, it chops the hash’s values, but not its keys.

You can actually chop anything that’s an lvalue, including an assignment.

If you chop a list, each element is chopped. Only the value of the lastchop is returned.

Note that chop returns the last character. To return all but the last character, use
substr($string, 0, −1) .

See also ‘‘chomp’’.

chownLIST
Changes the owner (and group) of a list of files. The first two elements of the list must be the
numericuid and gid, in that order. A value of −1 in either position is interpreted by most systems
to leave that value unchanged. Returns the number of files successfully changed.

$cnt = chown $uid, $gid, 'foo', 'bar';
chown $uid, $gid, @filenames;

On systems that support fchown, you might pass file handles among the files. On systems that

86 2007-12-18 perl v5.10.0

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

don’t support fchown, passing file handles produces a fatal error at run time. The file handles
must be passed as globs or references to be recognized. Barewords are considered file names.

Here’s an example that looks up nonnumeric uids in the passwd file:

print "User: ";
chomp($user = <STDIN>);
print "Files: ";
chomp($pattern = <STDIN>);

($login,$pass,$uid,$gid) = getpwnam($user)
or die "$user not in passwd file";

@ary = glob($pattern); # expand filenames
chown $uid, $gid, @ary;

On most systems, you are not allowed to change the ownership of the file unless you’re the
superuser, although you should be able to change the group to any of your secondary groups.On
insecure systems, these restrictions may be relaxed, but this is not a portable assumption.On
POSIXsystems, you can detect this condition this way:

use POSIX qw(sysconf _PC_CHOWN_RESTRICTED);
$can_chown_giveaway = not sysconf(_PC_CHOWN_RESTRICTED);

chr NUMBER
chr Returnsthe character represented by thatNUMBER in the character set.For example,chr(65)

is "A" in eitherASCII or Unicode, and chr(0x263a) is a Unicode smiley face.

Negative values give the Unicode replacement character (chr (0xfffd)), except under the bytes
pragma, where low eight bits of the value (truncated to an integer) are used.

If NUMBER is omitted, uses$_ .

For the reverse, use ‘‘ord’’.

Note that characters from 128 to 255 (inclusive) are by default internally not encoded asUTF−8
for backward compatibility reasons.

See perlunicode for more about Unicode.

chrootFILENAME
chroot Thisfunction works like the system call by the same name: it makes the named directory the new

root directory for all further pathnames that begin with a / by your process and all its children.
(It doesn’t change your current working directory, which is unaffected.) For security reasons, this
call is restricted to the superuser. If FILENAME is omitted, does achroot to $_ .

closeFILEHANDLE
close Closesthe file or pipe associated with the file handle, flushes theIO buffers, and closes the system

file descriptor. Returns true if those operations have succeeded and if no error was reported by
any PerlIO layer. Closes the currently selected filehandle if the argument is omitted.

You don’t hav eto closeFILEHANDLE if you are immediately going to do anotheropen on it,
becauseopen will close it for you. (Seeopen .) However, an explicit close on an input file
resets the line counter ($.), while the implicit close done byopen does not.

If the file handle came from a piped open,close will additionally return false if one of the other
system calls involved fails, or if the program exits with non-zero status. (If the only problem was
that the program exited non-zero,$! will be set to0.) Closinga pipe also waits for the process
executing on the pipe to complete, in case you want to look at the output of the pipe afterwards,
and implicitly puts the exit status value of that command into$? and
${ˆCHILD_ERROR_NATIVE} .

Prematurely closing the read end of a pipe (i.e. before the process writing to it at the other end
has closed it) will result in aSIGPIPEbeing delivered to the writer. If the other end can’t handle
that, be sure to read all the data before closing the pipe.

Example:

perl v5.10.0 2007-12-18 87

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

open(OUTPUT, '|sort >foo') # pipe to sort
or die "Can't start sort: $!";

#... # print stuff to output
close OUTPUT # wait for sort to finish

or warn $! ? "Error closing sort pipe: $!"
: " Exit status $? from sort";

open(INPUT, 'foo') # get sort's results
or die "Can't open 'foo' for input: $!";

FILEHANDLE may be an expression whose value can be used as an indirect filehandle, usually
the real filehandle name.

closedirDIRHANDLE
Closes a directory opened byopendir and returns the success of that system call.

connectSOCKET,NAME
Attempts to connect to a remote socket, just as the connect system call does. Returns true if it
succeeded, false otherwise.NAME should be a packed address of the appropriate type for the
socket. Seethe examples in ‘‘Sockets: Client/Server Communication’’ in perlipc.

continueBLOCK
continue continue is actually a flow control statement rather than a function. If there is acontinue

BLOCK attached to aBLOCK (typically in a while or foreach), it is always executed just
before the conditional is about to be evaluated again, just like the third part of afor loop in C.
Thus it can be used to increment a loop variable, even when the loop has been continued via the
next statement (which is similar to the Ccontinue statement).

last , next , or redo may appear within acontinue block. last andredo will behave as
if they had been executed within the main block. So willnext , but since it will execute a
continue block, it may be more entertaining.

while (EXPR) {
redo always comes here
do_something;

} c ontinue {
next always comes here
do_something_else;
t hen back the top to re−check EXPR

}
last always comes here

Omitting thecontinue section is semantically equivalent to using an empty one, logically
enough. Inthat case,next goes directly back to check the condition at the top of the loop.

If the ‘‘switch’’ f eature is enabled,continue is also a function that will break out of the current
when or default block, and fall through to the next case. See feature and ‘‘Switch statements’’
in perlsyn for more information.

cosEXPR
cos Returnsthe cosine ofEXPR(expressed in radians). IfEXPR is omitted, takes cosine of$_ .

For the inverse cosine operation, you may use theMath::Trig::acos() function, or use this
relation:

sub acos { atan2(sqrt(1 − $_[0] * $_[0]), $_[0]) }

crypt PLAINTEXT,SALT
Creates a digest string exactly like the crypt(3) function in the C library (assuming that you
actually have a version there that has not been extirpated as a potential munitions).

crypt() is a one-way hash function.ThePLAINTEXT andSALT is turned into a short string, called
a digest, which is returned. The samePLAINTEXT andSALT will always return the same string,
but there is no (known) way to get the originalPLAINTEXT from the hash. Small changes in the
PLAINTEXT or SALT will result in large changes in the digest.

There is no decrypt function. This function isn’t all that useful for cryptography (for that, look

88 2007-12-18 perl v5.10.0

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

for Crypt modules on your nearbyCPAN mirror) and the name ‘‘crypt’’ is a bit of a misnomer.
Instead it is primarily used to check if two pieces of text are the same without having to transmit
or store the text itself. An example is checking if a correct password is given. Thedigest of the
password is stored, not the password itself. The user types in a password that iscrypt()’d with the
same salt as the stored digest. If the two digests match the password is correct.

When verifying an existing digest string you should use the digest as the salt (like
crypt($plain, $digest) eq $digest). TheSALT used to create the digest is visible
as part of the digest. This ensurescrypt() will hash the new string with the same salt as the
digest. This allows your code to work with the standard crypt and with more exotic
implementations. Inother words, do not assume anything about the returned string itself, or how
many bytes in the digest matter.

Traditionally the result is a string of 13 bytes: two first bytes of the salt, followed by 11 bytes
from the set[./0−9A−Za−z] , and only the first eight bytes of the digest string mattered, but
alternative hashing schemes (like MD5), higher level security schemes (like C2), and
implementations on non-UNIX platforms may produce different strings.

When choosing a new salt create a random two character string whose characters come from the
set [./0−9A−Za−z] (like join '', ('.', '/', 0..9, 'A'..'Z',
'a'..'z')[rand 64, rand 64]). This set of characters is just a recommendation; the
characters allowed in the salt depend solely on your system’s crypt library, and Perl can’t restrict
what saltscrypt() accepts.

Here’s an example that makes sure that whoever runs this program knows their password:

$pwd = (getpwuid($<))[1];

system "stty −echo";
print "Password: ";
chomp($word = <STDIN>);
print "\n";
system "stty echo";

if (crypt($word, $pwd) ne $pwd) {
die "Sorry...\n";

} e lse {
print "ok\n";

}

Of course, typing in your own password to whoever asks you for it is unwise.

The crypt function is unsuitable for hashing large quantities of data, not least of all because you
can’t get the information back. Look at the Digest module for more robust algorithms.

If usingcrypt() on a Unicode string (whichpotentiallyhas characters with codepoints above 255),
Perl tries to make sense of the situation by trying to downgrade (a copy of the string) the string
back to an eight-bit byte string before callingcrypt() (on that copy). If that works, good. If not,
crypt()dies withWide character in crypt .

dbmcloseHASH
[This function has been largely superseded by theuntie function.]

Breaks the binding between aDBM file and a hash.

dbmopenHASH,DBNAME,MASK
[This function has been largely superseded by thetie function.]

This binds adbm(3), ndbm(3), sdbm(3), gdbm(3), or Berkeley DB file to a hash.HASH is the
name of the hash.(Unlike normal open , the first argument isnot a filehandle, even though it
looks like one). DBNAME is the name of the database (without the.dir or .pagextension if any).
If the database does not exist, it is created with protection specified byMASK (as modified by the
umask). If your system supports only the olderDBM functions, you may perform only one
dbmopen in your program. In older versions of Perl, if your system had neitherDBM nor ndbm,
callingdbmopen produced a fatal error; it now falls back tosdbm(3).

perl v5.10.0 2007-12-18 89

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

If you don’t hav ewrite access to theDBM file, you can only read hash variables, not set them.If
you want to test whether you can write, either use file tests or try setting a dummy hash entry
inside aneval , which will trap the error.

Note that functions such askeys andvalues may return huge lists when used on large DBM
files. You may prefer to use theeach function to iterate over largeDBM files. Example:

print out history file offsets
dbmopen(%HIST,'/usr/lib/news/history',0666);
while (($key,$val) = each %HIST) {

print $key, ' = ', unpack('L',$val), "\n";
}
dbmclose(%HIST);

See also AnyDBM_File for a more general description of the pros and cons of the various dbm
approaches, as well as DB_File for a particularly rich implementation.

You can control whichDBM library you use by loading that library before you calldbmopen():

use DB_File;
dbmopen(%NS_Hist, "$ENV{HOME}/.netscape/history.db")

or die "Can't open netscape history file: $!";

definedEXPR
defined Returnsa Boolean value telling whetherEXPRhas a value other than the undefined valueundef .

If EXPR is not present,$_ will be checked.

Many operations returnundef to indicate failure, end of file, system error, uninitialized variable,
and other exceptional conditions. This function allows you to distinguishundef from other
values. (Asimple Boolean test will not distinguish amongundef , zero, the empty string, and
"0" , which are all equally false.) Notethat sinceundef is a valid scalar, its presence doesn’t
necessarilyindicate an exceptional condition:pop returnsundef when its argument is an empty
array,or when the element to return happens to beundef .

You may also usedefined(&func) to check whether subroutine&func has ever been
defined. Thereturn value is unaffected by any forward declarations of&func . Note that a
subroutine which is not defined may still be callable: its package may have an AUTOLOAD
method that makes it spring into existence the first time that it is called— see perlsub.

Use of defined on aggregates (hashes and arrays) is deprecated. It used to report whether
memory for that aggregate has ever been allocated. This behavior may disappear in future
versions of Perl.You should instead use a simple test for size:

if (@an_array) { print "has array elements\n" }
if (%a_hash) { p rint "has hash members\n" }

When used on a hash element, it tells you whether the value is defined, not whether the key exists
in the hash. Use ‘‘exists’’ f or the latter purpose.

Examples:

print if defined $switch{'D'};
print "$val\n" while defined($val = pop(@ary));
die "Can't readlink $sym: $!"

unless defined($value = readlink $sym);
sub foo { defined &$bar ? &$bar(@_) : die "No bar"; }
$debugging = 0 unless defined $debugging;

Note: Many folks tend to overusedefined , and then are surprised to discover that the number
0 and"" (the zero-length string) are, in fact, defined values. For example, if you say

"ab" =˜ /a(.*)b/;

The pattern match succeeds, and$1 is defined, despite the fact that it matched ‘‘nothing’’. It
didn’t really fail to match anything. Rather, it matched something that happened to be zero
characters long.This is all very above-board and honest. When a function returns an undefined
value, it’s an admission that it couldn’t giv e you an honest answer. So you should usedefined

90 2007-12-18 perl v5.10.0

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

only when you’re questioning the integrity of what you’re trying to do. At other times, a simple
comparison to0 or "" is what you want.

See also ‘‘undef ’’, ‘‘exists’’, ‘ ‘ref ’’.

deleteEXPR
Given an expression that specifies a hash element, array element, hash slice, or array slice, deletes
the specified element(s) from the hash or array. In the case of an array, if the array elements
happen to be at the end, the size of the array will shrink to the highest element that tests true for
exists()(or 0 if no such element exists).

Returns a list with the same number of elements as the number of elements for which deletion
was attempted. Eachelement of that list consists of either the value of the element deleted, or the
undefined value. Inscalar context, this means that you get the value of the last element deleted
(or the undefined value if that element did not exist).

%hash = (foo => 11, bar => 22, baz => 33);
$scalar = delete $hash{foo}; # $scalar is 11
$scalar = delete @hash{qw(foo bar)}; # $scalar is 22
@array = delete @hash{qw(foo bar baz)}; # @array is (undef,undef,33)

Deleting from%ENVmodifies the environment. Deletingfrom a hash tied to aDBM file deletes
the entry from theDBM file. Deletingfrom a tie d hash or array may not necessarily return
anything.

Deleting an array element effectively returns that position of the array to its initial, uninitialized
state. Subsequentlytesting for the same element withexists() will return false. Also,deleting
array elements in the middle of an array will not shift the index of the elements after them down.
Usesplice()for that. See ‘‘exists’’.

The following (inefficiently) deletes all the values of%HASHand@ARRAY:

foreach $key (keys %HASH) {
delete $HASH{$key};

}

foreach $index (0 .. $#ARRAY) {
delete $ARRAY[$index];

}

And so do these:

delete @HASH{keys %HASH};

delete @ARRAY[0 .. $#ARRAY];

But both of these are slower than just assigning the empty list or undefining%HASHor @ARRAY:

%HASH = (); # c ompletely empty %HASH
undef %HASH; # f orget %HASH ever existed

@ARRAY = (); # c ompletely empty @ARRAY
undef @ARRAY; # f orget @ARRAY ever existed

Note that theEXPRcan be arbitrarily complicated as long as the final operation is a hash element,
array element, hash slice, or array slice lookup:

delete $ref−>[$x][$y]{$key};
delete @{$ref−>[$x][$y]}{$key1, $key2, @morekeys};

delete $ref−>[$x][$y][$index];
delete @{$ref−>[$x][$y]}[$index1, $index2, @moreindices];

die LIST Outside aneval , prints the value ofLIST to STDERRand exits with the current value of$!
(errno). If $! is 0, exits with the value of($? >> 8) (backtick ‘command‘ status).If ($?
>> 8) is 0, exits with 255 . Inside aneval(), the error message is stuffed into$@and the

perl v5.10.0 2007-12-18 91

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

eval is terminated with the undefined value. Thismakesdie the way to raise an exception.

Equivalent examples:

die "Can't cd to spool: $!\n" unless chdir '/usr/spool/news';
chdir '/usr/spool/news' or die "Can't cd to spool: $!\n"

If the last element ofLIST does not end in a newline, the current script line number and input line
number (if any) are also printed, and a newline is supplied. Note that the ‘‘input line number’’
(also known as ‘‘chunk’’) is subject to whatever notion of ‘‘line’ ’ happens to be currently in
effect, and is also available as the special variable$. . See ‘‘$/’’ in perlvar and ‘‘$.’’ i n perlvar.

Hint: sometimes appending", stopped" to your message will cause it to make better sense
when the string"at foo line 123" is appended. Suppose you are running script
‘‘ canasta’’.

die "/etc/games is no good";
die "/etc/games is no good, stopped";

produce, respectively

/etc/games is no good at canasta line 123.
/etc/games is no good, stopped at canasta line 123.

See alsoexit(), warn(), and the Carp module.

If LIST is empty and$@already contains a value (typically from a previous eval) that value is
reused after appending"\t...propagated" . This is useful for propagating exceptions:

eval { ... };
die unless $@ =˜ /Expected exception/;

If LIST is empty and$@contains an object reference that has aPROPAGATEmethod, that
method will be called with additional file and line number parameters.The return value replaces
the value in$@. i.e. as if$@ = eval { $@−>PROPAGATE(_ _FILE_ _, _ _LINE_ _)
}; were called.

If $@is empty then the string"Died" is used.

die() can also be called with a reference argument. Ifthis happens to be trapped within aneval(),
$@ contains the reference. This behavior permits a more elaborate exception handling
implementation using objects that maintain arbitrary state about the nature of the exception. Such
a scheme is sometimes preferable to matching particular string values of $@ using regular
expressions. Because$@ is a global variable, andeval() may be used within object
implementations, care must be taken that analyzing the error object doesn’t replace the reference
in the global variable. Theeasiest solution is to make a local copy of the reference before doing
other manipulations. Here’s an example:

use Scalar::Util 'blessed';

eval { ... ; die Some::Module::Exception−>new(FOO => "bar") };
if (my $ev_err = $@) {

if (blessed($ev_err) && $ev_err−>isa("Some::Module::Exception")) {
handle Some::Module::Exception

}
else {

handle all other possible exceptions
}

}

Because perl will stringify uncaught exception messages before displaying them, you may want
to overload stringification operations on such custom exception objects. See overload for details
about that.

You can arrange for a callback to be run just before thedie does its deed, by setting the
$SIG{_ _DIE_ _} hook. Theassociated handler will be called with the error text and can
change the error message, if it sees fit, by callingdie again. See‘‘ $SIG{expr}’’ in perlvar for

92 2007-12-18 perl v5.10.0

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

details on setting%SIG entries, and ‘‘eval BLOCK’’ f or some examples. Althoughthis feature
was to be run only right before your program was to exit, this is not currently the case— the
$SIG{_ _DIE_ _} hook is currently called even insideeval()ed blocks/strings! If one wants the
hook to do nothing in such situations, put

die @_ if $ˆS;

as the first line of the handler (see ‘‘$ˆS’’ in perlvar). Becausethis promotes strange action at a
distance, this counterintuitive behavior may be fixed in a future release.

do BLOCK
Not really a function. Returns the value of the last command in the sequence of commands
indicated byBLOCK. When modified by thewhile or until loop modifier, executes the
BLOCK once before testing the loop condition. (On other statements the loop modifiers test the
conditional first.)

do BLOCK doesnot count as a loop, so the loop control statementsnext , last , or redo
cannot be used to leave or restart the block. See perlsyn for alternative strategies.

do SUBROUTINE(LIST)
This form of subroutine call is deprecated. See perlsub.

do EXPR
Uses the value ofEXPRas a filename and executes the contents of the file as a Perl script.

do 'stat.pl';

is just like

eval `cat stat.pl`;

except that it’s more efficient and concise, keeps track of the current filename for error messages,
searches the@INCdirectories, and updates%INCif the file is found. See ‘‘Predefined Names’’ i n
perlvar for these variables. Italso differs in that code evaluated withdo FILENAME cannot see
lexicals in the enclosing scope;eval STRING does. It’s the same, however, in that it does
reparse the file every time you call it, so you probably don’t want to do this inside a loop.

If do cannot read the file, it returns undef and sets$! to the error. If do can read the file but
cannot compile it, it returns undef and sets an error message in$@. If the file is successfully
compiled,do returns the value of the last expression evaluated.

Note that inclusion of library modules is better done with theuse and require operators,
which also do automatic error checking and raise an exception if there’s a problem.

You might like to usedo to read in a program configuration file.Manual error checking can be
done this way:

r ead in config files: system first, then user
for $file ("/share/prog/defaults.rc",

"$ENV{HOME}/.someprogrc")
{

unless ($return = do $file) {
warn "couldn't parse $file: $@" if $@;
warn "couldn't do $file: $!" unless defined $return;
warn "couldn't run $file" unless $return;

}
}

dumpLABEL
dump Thisfunction causes an immediate core dump.See also the−u command-line switch in perlrun,

which does the same thing.Primarily this is so that you can use theundump program (not
supplied) to turn your core dump into an executable binary after having initialized all your
variables at the beginning of the program. When the new binary is executed it will begin by
executing agoto LABEL (with all the restrictions thatgoto suffers). Thinkof it as a goto with
an intervening core dump and reincarnation.If LABEL is omitted, restarts the program from the
top.

perl v5.10.0 2007-12-18 93

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

WARNING : Any files opened at the time of the dump willnot be open any more when the
program is reincarnated, with possible resulting confusion on the part of Perl.

This function is now largely obsolete, mostly because it’s very hard to convert a core file into an
executable. That’s why you should now inv oke it as CORE::dump() , if you don’t want to be
warned against a possible typo.

eachHASH
When called in list context, returns a 2−element list consisting of the key and value for the next
element of a hash, so that you can iterate over it. Whencalled in scalar context, returns only the
key for the next element in the hash.

Entries are returned in an apparently random order. The actual random order is subject to change
in future versions of perl, but it is guaranteed to be in the same order as either thekeys or
values function would produce on the same (unmodified) hash.Since Perl 5.8.1 the ordering is
different even between different runs of Perl for security reasons (see ‘‘A lgorithmic Complexity
Attacks’’ in perlsec).

When the hash is entirely read, a null array is returned in list context (which when assigned
produces a false (0) value), andundef in scalar context. Thenext call to each after that will
start iterating again. Thereis a single iterator for each hash, shared by alleach , keys , and
values function calls in the program; it can be reset by reading all the elements from the hash,
or by evaluatingkeys HASH or values HASH . If you add or delete elements of a hash while
you’re iterating over it, you may get entries skipped or duplicated, so don’t. Exception:It is
always safe to delete the item most recently returned byeach() , which means that the
following code will work:

while (($key, $value) = each %hash) {
print $key, "\n";
delete $hash{$key}; # This is safe

}

The following prints out your environment like theprintenv(1) program, only in a different order:

while (($key,$value) = each %ENV) {
print "$key=$value\n";

}

See alsokeys , values andsort .

eof FILEHANDLE
eof ()
eof Returns1 if the next read onFILEHANDLE will return end of file, or ifFILEHANDLE is not open.

FILEHANDLE may be an expression whose value gives the real filehandle. (Note that this
function actually reads a character and thenungetc s it, so isn’t very useful in an interactive
context.) Do not read from a terminal file (or calleof(FILEHANDLE) on it) after end-of-file is
reached. Filetypes such as terminals may lose the end-of-file condition if you do.

An eof without an argument uses the last file read.Using eof() with empty parentheses is
very different. It refers to the pseudo file formed from the files listed on the command line and
accessed via the<> operator. Since <> isn’t explicitly opened, as a normal filehandle is, an
eof() before <> has been used will cause@ARGVto be examined to determine if input is
available. Similarly, an eof() after<> has returned end-of-file will assume you are processing
another@ARGVlist, and if you haven’t set @ARGV, will read input fromSTDIN; see ‘‘I/O
Operators’’ in perlop.

In awhile (<>) loop,eof or eof(ARGV) can be used to detect the end of each file,eof()
will only detect the end of the last file. Examples:

94 2007-12-18 perl v5.10.0

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

r eset line numbering on each input file
while (<>) {

next if /ˆ\s*#/; # s kip comments
print "$.\t$_";

} c ontinue {
close ARGV if eof; # Not eof()!

}

i nsert dashes just before last line of last file
while (<>) {

if (eof()) { # c heck for end of last file
print "−−−−−−−−−−−−−−\n";

}
print;
last if eof(); # needed if we're reading from a terminal

}

Practical hint: you almost never need to useeof in Perl, because the input operators typically
returnundef when they run out of data, or if there was an error.

eval EXPR
eval BLOCK
eval In the first form, the return value ofEXPR is parsed and executed as if it were a little Perl

program. Thevalue of the expression (which is itself determined within scalar context) is first
parsed, and if there weren’t any errors, executed in the lexical context of the current Perl
program, so that any variable settings or subroutine and format definitions remain afterwards.
Note that the value is parsed every time theeval executes. IfEXPR is omitted, evaluates$_ .
This form is typically used to delay parsing and subsequent execution of the text ofEXPR until
run time.

In the second form, the code within theBLOCK is parsed only once— at the same time the code
surrounding theeval itself was parsed— and executed within the context of the current Perl
program. Thisform is typically used to trap exceptions more efficiently than the first (see below),
while also providing the benefit of checking the code withinBLOCK at compile time.

The final semicolon, if any, may be omitted from the value ofEXPRor within theBLOCK.

In both forms, the value returned is the value of the last expression evaluated inside the mini-
program; a return statement may be also used, just as with subroutines.The expression providing
the return value is evaluated in void, scalar, or list context, depending on the context of theeval
itself. See‘‘ wantarray’’ f or more on how the evaluation context can be determined.

If there is a syntax error or runtime error, or adie statement is executed, an undefined value is
returned byeval , and $@is set to the error message.If there was no error, $@is guaranteed to
be a null string. Beware that usingeval neither silences perl from printing warnings to
STDERR, nor does it stuff the text of warning messages into$@. To do either of those, you have
to use the$SIG{_ _WARN_ _} facility, or turn off warnings inside theBLOCK or EXPR using
no warnings 'all' . See ‘‘warn’’, perlvar, warnings and perllexwarn.

Note that, becauseeval traps otherwise-fatal errors, it is useful for determining whether a
particular feature (such assocket or symlink) is implemented. Itis also Perl’s exception
trapping mechanism, where the die operator is used to raise exceptions.

If the code to be executed doesn’t vary, you may use the eval-BLOCK form to trap run-time
errors without incurring the penalty of recompiling each time. The error, if any, is still returned
in $@. Examples:

make divide−by−zero nonfatal
eval { $answer = $a / $b; }; warn $@ if $@;

s ame thing, but less efficient
eval '$answer = $a / $b'; warn $@ if $@;

perl v5.10.0 2007-12-18 95

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

a c ompile−time error
eval { $answer = }; # WRONG

a r un−time error
eval '$answer ='; # s ets $@

Using theeval{} form as an exception trap in libraries does have some issues. Due to the
current arguably broken state of_ _DIE_ _ hooks, you may wish not to trigger any _ _DIE_ _
hooks that user code may have installed. You can use thelocal $SIG{_ _DIE_ _} construct
for this purpose, as shown in this example:

a v ery private exception trap for divide−by−zero
eval { local $SIG{'_ _DIE_ _'}; $answer = $a / $b; };
warn $@ if $@;

This is especially significant, given that _ _DIE_ _ hooks can calldie again, which has the
effect of changing their error messages:

_ _DIE_ _ hooks may modify error messages
{

local $SIG{'_ _DIE_ _'} =
sub { (my $x = $_[0]) =˜ s/foo/bar/g; die $x };

eval { die "foo lives here" };
print $@ if $@; # prints "bar lives here"

}

Because this promotes action at a distance, this counterintuitive behavior may be fixed in a future
release.

With aneval , you should be especially careful to remember what’s being looked at when:

eval $x; # CASE 1
eval "$x"; # CASE 2

eval '$x'; # CASE 3
eval { $x }; # CASE 4

eval "\$$x++"; # CASE 5
$$x++; # CASE 6

Cases 1 and 2 above behave identically: they run the code contained in the variable $x .
(Although case 2 has misleading double quotes making the reader wonder what else might be
happening (nothing is).) Cases 3 and 4 likewise behave in the same way: they run the code
'$x' , which does nothing but return the value of $x . (Case 4 is preferred for purely visual
reasons, but it also has the advantage of compiling at compile-time instead of at run-time.)Case
5 is a place where normally youwould like to use double quotes, except that in this particular
situation, you can just use symbolic references instead, as in case 6.

eval BLOCK doesnot count as a loop, so the loop control statementsnext , last , or redo
cannot be used to leave or restart the block.

Note that as a very special case, aneval '' executed within theDB package doesn’t see the
usual surrounding lexical scope, but rather the scope of the first non-DB piece of code that called
it. You don’t normally need to worry about this unless you are writing a Perl debugger.

exec LIST
exec PROGRAM LIST

The exec function executes a system commandand never returns−− usesystem instead of
exec if you want it to return. It fails and returns false only if the command does not exist and it
is executed directly instead of via your system’s command shell (see below).

Since it’s a common mistake to use exec instead ofsystem , Perl warns you if there is a
following statement which isn’t die , warn , or exit (if −w is set − but you always do that). If
you really want to follow an exec with some other statement, you can use one of these styles to
avoid the warning:

96 2007-12-18 perl v5.10.0

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

exec ('foo') or print STDERR "couldn't exec foo: $!";
{ e xec ('foo') }; print STDERR "couldn't exec foo: $!";

If there is more than one argument inLIST, or if LIST is an array with more than one value, calls
execvp(3) with the arguments inLIST. If there is only one scalar argument or an array with one
element in it, the argument is checked for shell metacharacters, and if there are any, the entire
argument is passed to the system’s command shell for parsing (this is/bin/sh −c on Unix
platforms, but varies on other platforms). If there are no shell metacharacters in the argument, it
is split into words and passed directly toexecvp , which is more efficient. Examples:

exec '/bin/echo', 'Your arguments are: ', @ARGV;
exec "sort $outfile | uniq";

If you don’t really want to execute the first argument, but want to lie to the program you are
executing about its own name, you can specify the program you actually want to run as an
‘‘ indirect object’’ (without a comma) in front of theLIST. (This always forces interpretation of
theLIST as a multivalued list, even if there is only a single scalar in the list.) Example:

$shell = '/bin/csh';
exec $shell '−sh'; # pretend it's a login shell

or, more directly,

exec {'/bin/csh'} '−sh'; # pretend it's a login shell

When the arguments get executed via the system shell, results will be subject to its quirks and
capabilities. See‘‘‘ STRING‘’’ in perlop for details.

Using an indirect object withexec or system is also more secure.This usage (which also
works fine withsystem()) forces interpretation of the arguments as a multivalued list, even if the
list had just one argument. Thatway you’re safe from the shell expanding wildcards or splitting
up words with whitespace in them.

@args = ("echo surprise");

exec @args; # s ubject to shell escapes
if @ args == 1

exec { $args[0] } @args; # s afe even with one−arg list

The first version, the one without the indirect object, ran theecho program, passing it
"surprise" an argument. Thesecond version didn’t — it tried to run a program literally
called‘‘ echo surprise’’, didn’t find it, and set$? to a non-zero value indicating failure.

Beginning with v5.6.0, Perl will attempt to flush all files opened for output before the exec, but
this may not be supported on some platforms (see perlport).To be safe, you may need to set$|
($AUTOFLUSH in English) or call theautoflush() method ofIO::Handle on any open
handles in order to avoid lost output.

Note thatexec will not call your ENDblocks, nor will it call any DESTROYmethods in your
objects.

existsEXPR
Given an expression that specifies a hash element or array element, returns true if the specified
element in the hash or array has ever been initialized, even if the corresponding value is
undefined. Theelement is not autovivified if it doesn’t exist.

print "Exists\n" if exists $hash{$key};
print "Defined\n" if defined $hash{$key};
print "True\n" if $hash{$key};

print "Exists\n" if exists $array[$index];
print "Defined\n" if defined $array[$index];
print "True\n" if $array[$index];

A hash or array element can be true only if it’s defined, and defined if it exists, but the reverse
doesn’t necessarily hold true.

perl v5.10.0 2007-12-18 97

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

Given an expression that specifies the name of a subroutine, returns true if the specified
subroutine has ever been declared, even if it is undefined. Mentioninga subroutine name for
exists or defined does not count as declaring it.Note that a subroutine which does not exist may
still be callable: its package may have an AUTOLOADmethod that makes it spring into existence
the first time that it is called— see perlsub.

print "Exists\n" if exists &subroutine;
print "Defined\n" if defined &subroutine;

Note that theEXPRcan be arbitrarily complicated as long as the final operation is a hash or array
key lookup or subroutine name:

if (exists $ref−>{A}−>{B}−>{$key}) { }
if (exists $hash{A}{B}{$key}) { }

if (exists $ref−>{A}−>{B}−>[$ix]) { }
if (exists $hash{A}{B}[$ix]) { }

if (exists &{$ref−>{A}{B}{$key}}) { }

Although the deepest nested array or hash will not spring into existence just because its existence
was tested, any intervening ones will.Thus$ref−>{"A"} and$ref−>{"A"}−>{"B"} will
spring into existence due to the existence test for the$key element above. This happens
anywhere the arrow operator is used, including even:

undef $ref;
if (exists $ref−>{"Some key"}) { }
print $ref; # prints HASH(0x80d3d5c)

This surprising autovivification in what does not at first— or even second — glanceappear to be
an lvalue context may be fixed in a future release.

Use of a subroutine call, rather than a subroutine name, as an argument toexists() is an error.

exists ⊂ # OK
exists &sub(); # Error

exit EXPR
exit EvaluatesEXPRand exits immediately with that value. Example:

$ans = <STDIN>;
exit 0 if $ans =˜ /ˆ[Xx]/;

See alsodie . If EXPR is omitted, exits with0 status. Theonly universally recognized values for
EXPRare0 for success and1 for error; other values are subject to interpretation depending on the
environment in which the Perl program is running.For example, exiting 69 (EX_UNAVA ILABLE)
from a sendmailincoming-mail filter will cause the mailer to return the item undelivered, but
that’s not true everywhere.

Don’t use exit to abort a subroutine if there’s any chance that someone might want to trap
whatever error happened. Usedie instead, which can be trapped by aneval .

Theexit() function does not always exit immediately. It calls any definedENDroutines first, but
theseENDroutines may not themselves abort the exit. Likewise any object destructors that need
to be called are called before the real exit. If this is a problem, you can call
POSIX:_exit($status) to avoid END and destructor processing. See perlmod for details.

exp EXPR
exp Returns e (the natural logarithm base) to the power of EXPR. If EXPR is omitted, gives

exp($_) .

fcntl FILEHANDLE,FUNCTION,SCALAR
Implements thefcntl (2) function. You’ll probably have to say

use Fcntl;

first to get the correct constant definitions.Argument processing and value return works just like

98 2007-12-18 perl v5.10.0

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

ioctl below. For example:

use Fcntl;
fcntl($filehandle, F_GETFL, $packed_return_buffer)

or die "can't fcntl F_GETFL: $!";

You don’t hav e to check fordefined on the return fromfcntl . Like ioctl , it maps a0
return from the system call into"0 but true" in Perl. This string is true in boolean context
and0 in numeric context. It is also exempt from the normal−w warnings on improper numeric
conversions.

Note thatfcntl will produce a fatal error if used on a machine that doesn’t implementfcntl (2).
See the Fcntl module or yourfcntl (2) manpage to learn what functions are available on your
system.

Here’s an example of setting a filehandle namedREMOTEto be non-blocking at the system level.
You’ll have to negotiate$| on your own, though.

use Fcntl qw(F_GETFL F_SETFL O_NONBLOCK);

$flags = fcntl(REMOTE, F_GETFL, 0)
or die "Can't get flags for the socket: $!\n";

$flags = fcntl(REMOTE, F_SETFL, $flags | O_NONBLOCK)
or die "Can't set flags for the socket: $!\n";

fileno FILEHANDLE
Returns the file descriptor for a filehandle, or undefined if the filehandle is not open.This is
mainly useful for constructing bitmaps forselect and low-level POSIX tty-handling operations.
If FILEHANDLE is an expression, the value is taken as an indirect filehandle, generally its name.

You can use this to find out whether two handles refer to the same underlying descriptor:

if (fileno(THIS) == fileno(THAT)) {
print "THIS and THAT are dups\n";

}

(Filehandles connected to memory objects via new features ofopen may return undefined even
though they are open.)

flock FILEHANDLE,OPERATION
Callsflock(2), or an emulation of it, onFILEHANDLE. Returns true for success, false on failure.
Produces a fatal error if used on a machine that doesn’t implementflock(2), fcntl (2) locking, or
lockf(3). flock is Perl’s portable file locking interface, although it locks only entire files, not
records.

Tw o potentially non-obvious but traditionalflock semantics are that it waits indefinitely until
the lock is granted, and that its locksmerely advisory. Such discretionary locks are more
flexible, but offer fewer guarantees. This means that programs that do not also useflock may
modify files locked withflock . See perlport, your port’s specific documentation, or your
system-specific local manpages for details.It’s best to assume traditional behavior if you’re
writing portable programs. (But if you’re not, you should as always feel perfectly free to write
for your own system’s idiosyncrasies (sometimes called ‘‘features’’). Slavish adherence to
portability concerns shouldn’t get in the way of your getting your job done.)

OPERATION is one ofLOCK_SH, LOCK_EX, or LOCK_UN, possibly combined withLOCK_NB.
These constants are traditionally valued 1, 2, 8 and 4, but you can use the symbolic names if you
import them from the Fcntl module, either individually, or as a group using the ’:flock’ tag.
LOCK_SH requests a shared lock,LOCK_EX requests an exclusive lock, andLOCK_UN releases a
previously requested lock.If LOCK_NB is bitwise-or’ed withLOCK_SH or LOCK_EX then
flock will return immediately rather than blocking waiting for the lock (check the return status
to see if you got it).

To avoid the possibility of miscoordination, Perl now flushesFILEHANDLE before locking or
unlocking it.

perl v5.10.0 2007-12-18 99

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

Note that the emulation built with lockf(3) doesn’t provide shared locks, and it requires that
FILEHANDLE be open with write intent. These are the semantics thatlockf(3) implements.Most
if not all systems implementlockf(3) in terms offcntl (2) locking, though, so the differing
semantics shouldn’t bite too many people.

Note that thefcntl (2) emulation offlock(3) requires thatFILEHANDLE be open with read intent
to useLOCK_SHand requires that it be open with write intent to useLOCK_EX.

Note also that some versions offlock cannot lock things over the network; you would need to
use the more system-specificfcntl for that. If you like you can force Perl to ignore your
system’sflock(2) function, and so provide its own fcntl (2)−based emulation, by passing the
switch−Ud_flock to theConfigureprogram when you configure perl.

Here’s a mailbox appender forBSD systems.

use Fcntl ':flock'; # import LOCK_* constants

sub lock {
flock(MBOX,LOCK_EX);
and, in case someone appended
while we were waiting...
seek(MBOX, 0, 2);

}

sub unlock {
flock(MBOX,LOCK_UN);

}

open(MBOX, ">>/usr/spool/mail/$ENV{'USER'}")
or die "Can't open mailbox: $!";

lock();
print MBOX $msg,"\n\n";
unlock();

On systems that support a realflock(), locks are inherited acrossfork() calls, whereas those that
must resort to the more capriciousfcntl() function lose the locks, making it harder to write
servers.

See also DB_File for otherflock()examples.

fork Doesa fork (2) system call to create a new process running the same program at the same point.
It returns the child pid to the parent process,0 to the child process, orundef if the fork is
unsuccessful. Filedescriptors (and sometimes locks on those descriptors) are shared, while
ev erything else is copied. On most systems supportingfork(), great care has gone into making it
extremely efficient (for example, using copy-on-write technology on data pages), making it the
dominant paradigm for multitasking over the last few decades.

Beginning with v5.6.0, Perl will attempt to flush all files opened for output before forking the
child process, but this may not be supported on some platforms (see perlport).To be safe, you
may need to set$| ($AUTOFLUSH in English) or call theautoflush() method of
IO::Handle on any open handles in order to avoid duplicate output.

If you fork without ever waiting on your children, you will accumulate zombies.On some
systems, you can avoid this by setting$SIG{CHLD} to "IGNORE" . See also perlipc for more
examples of forking and reaping moribund children.

Note that if your forked child inherits system file descriptors like STDIN and STDOUT that are
actually connected by a pipe or socket, even if you exit, then the remote server (such as, say, a
CGI script or a backgrounded job launched from a remote shell) won’t think you’re done.You
should reopen those to/dev/nullif it’ s any issue.

format Declarea picture format for use by thewrite function. For example:

100 2007-12-18 perl v5.10.0

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

format Something =
Test: @<<<<<<<< @||||| @>>>>>

$str, $%, '$' . int($num)
.

$str = "widget";
$num = $cost/$quantity;
$˜ = 'Something';
write;

See perlform for many details and examples.

formline PICTURE,LIST
This is an internal function used byformat s, though you may call it, too. It formats (see
perlform) a list of values according to the contents ofPICTURE, placing the output into the format
output accumulator, $ˆA (or $ACCUMULATORin English). Eventually, when awrite is done,
the contents of$ˆA are written to some filehandle.You could also read$ˆA and then set$ˆA
back to "" . Note that a format typically does oneformline per line of form, but the
formline function itself doesn’t care how many newlines are embedded in thePICTURE. This
means that thẽ and˜˜ tokens will treat the entirePICTUREas a single line.You may therefore
need to use multiple formlines to implement a single record format, just like the format compiler.

Be careful if you put double quotes around the picture, because an@character may be taken to
mean the beginning of an array name.formline always returns true.See perlform for other
examples.

getcFILEHANDLE
getc Returnsthe next character from the input file attached toFILEHANDLE, or the undefined value at

end of file, or if there was an error (in the latter case$! is set). If FILEHANDLE is omitted, reads
from STDIN. This is not particularly efficient. However, it cannot be used by itself to fetch single
characters without waiting for the user to hit enter. For that, try something more like:

if ($BSD_STYLE) {
system "stty cbreak </dev/tty >/dev/tty 2>&1";

}
else {

system "stty", '−icanon', 'eol', "\001";
}

$key = getc(STDIN);

if ($BSD_STYLE) {
system "stty −cbreak </dev/tty >/dev/tty 2>&1";

}
else {

system "stty", 'icanon', 'eol', 'ˆ@'; # ASCII null
}
print "\n";

Determination of whether$BSD_STYLEshould be set is left as an exercise to the reader.

The POSIX::getattr function can do this more portably on systems purportingPOSIX
compliance. Seealso theTerm::ReadKey module from your nearestCPAN site; details on
CPAN can be found on ‘‘CPAN’’ i n perlmodlib.

getlogin Thisimplements the C library function of the same name, which on most systems returns the
current login from/etc/utmp, if any. If null, usegetpwuid .

$login = getlogin || getpwuid($<) || "Kilroy";

Do not considergetlogin for authentication: it is not as secure asgetpwuid .

getpeernameSOCKET
Returns the packed sockaddr address of other end of theSOCKETconnection.

perl v5.10.0 2007-12-18 101

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

use Socket;
$hersockaddr = getpeername(SOCK);
($port, $iaddr) = sockaddr_in($hersockaddr);
$herhostname = gethostbyaddr($iaddr, AF_INET);
$herstraddr = inet_ntoa($iaddr);

getpgrpPID
Returns the current process group for the specifiedPID. Use aPID of 0 to get the current process
group for the current process.Will raise an exception if used on a machine that doesn’t
implementgetpgrp(2). If PID is omitted, returns process group of current process. Note that the
POSIXversion ofgetpgrp does not accept aPID argument, so onlyPID==0 is truly portable.

getppid Returnsthe process id of the parent process.

Note for Linux users: on Linux, the C functionsgetpid() andgetppid() return different
values from different threads. In order to be portable, this behavior is not reflected by the perl-
level functiongetppid() , that returns a consistent value across threads. If you want to call the
underlyinggetppid() , you may use theCPAN moduleLinux::Pid .

getpriorityWHICH,WHO
Returns the current priority for a process, a process group, or a user. (Seegetpriority (2).) Will
raise a fatal exception if used on a machine that doesn’t implementgetpriority (2).

getpwnamNAME
getgrnamNAME
gethostbynameNAME
getnetbynameNAME
getprotobynameNAME
getpwuidUID
getgrgidGID
getservbynameNAME,PROT O
gethostbyaddrADDR,ADDRTYPE
getnetbyaddrADDR,ADDRTYPE
getprotobynumberNUMBER
getservbyportPORT,PROT O
getpwent
getgrent
gethostent
getnetent
getprotoent
getservent
setpwent
setgrent
sethostentSTAY OPEN
setnetentSTAY OPEN
setprotoentSTAY OPEN
setserventSTAY OPEN
endpwent
endgrent
endhostent
endnetent
endprotoent
endservent

These routines perform the same functions as their counterparts in the system library. In list
context, the return values from the various get routines are as follows:

102 2007-12-18 perl v5.10.0

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

($name,$passwd,$uid,$gid,
$quota,$comment,$gcos,$dir,$shell,$expire) = getpw*

($name,$passwd,$gid,$members) = getgr*
($name,$aliases,$addrtype,$length,@addrs) = gethost*
($name,$aliases,$addrtype,$net) = getnet*
($name,$aliases,$proto) = getproto*
($name,$aliases,$port,$proto) = getserv*

(If the entry doesn’t exist you get a null list.)

The exact meaning of the$gcos field varies but it usually contains the real name of the user (as
opposed to the login name) and other information pertaining to the user. Bew are, however, that in
many system users are able to change this information and therefore it cannot be trusted and
therefore the$gcos is tainted (see perlsec).The $passwd and $shell , user’s encrypted
password and login shell, are also tainted, because of the same reason.

In scalar context, you get the name, unless the function was a lookup by name, in which case you
get the other thing, whatever it is. (If the entry doesn’t exist you get the undefined value.) For
example:

$uid = getpwnam($name);
$name = getpwuid($num);
$name = getpwent();
$gid = getgrnam($name);
$name = getgrgid($num);
$name = getgrent();
#etc.

In getpw*() the fields$quota , $comment , and $expire are special cases in the sense that in
many systems they are unsupported. If the$quota is unsupported, it is an empty scalar. If i t is
supported, it usually encodes the disk quota. If the$comment field is unsupported, it is an
empty scalar. If it is supported it usually encodes some administrative comment about the user.
In some systems the$quota field may be$change or $age , fields that have to do with
password aging. In some systems the$comment field may be$class . The$expire field, if
present, encodes the expiration period of the account or the password. For the availability and the
exact meaning of these fields in your system, please consult yourgetpwnam(3) documentation
and yourpwd.hfile. You can also find out from within Perl what your$quota and$comment
fields mean and whether you have the $expire field by using theConfig module and the
valuesd_pwquota , d_pwage , d_pwchange , d_pwcomment , and d_pwexpire . Shadow
password files are only supported if your vendor has implemented them in the intuitive fashion
that calling the regular C library routines gets the shadow versions if you’re running under
privilege or if there exists theshadow(3) functions as found in System V (this includes Solaris
and Linux.) Those systems that implement a proprietary shadow password facility are unlikely to
be supported.

The $members value returned bygetgr*() is a space separated list of the login names of the
members of the group.

For thegethost*() functions, if theh_errno variable is supported in C, it will be returned to you
via $? if the function call fails. The@addrs value returned by a successful call is a list of the
raw addresses returned by the corresponding system library call. In the Internet domain, each
address is four bytes long and you can unpack it by saying something like:

($a,$b,$c,$d) = unpack('W4',$addr[0]);

The Socket library makes this slightly easier:

use Socket;
$iaddr = inet_aton("127.1"); # or whatever address
$name = gethostbyaddr($iaddr, AF_INET);

or g oing the other way
$straddr = inet_ntoa($iaddr);

perl v5.10.0 2007-12-18 103

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

In the opposite way, to resolve a hostname to theIP address you can write this:

use Socket;
$packed_ip = gethostbyname("www.perl.org");
if (defined $packed_ip) {

$ip_address = inet_ntoa($packed_ip);
}

Make sure <gethostbyname()> is called in SCALAR context and that its return value is checked
for definedness.

If you get tired of remembering which element of the return list contains which return value, by-
name interfaces are provided in standard modules:File::stat , Net::hostent ,
Net::netent , Net::protoent , Net::servent , Time::gmtime ,
Time::localtime , and User::grent . These override the normal built-ins, supplying
versions that return objects with the appropriate names for each field.For example:

use File::stat;
use User::pwent;
$is_his = (stat($filename)−>uid == pwent($whoever)−>uid);

Even though it looks like they’re the same method calls (uid), they aren’t, because a
File::stat object is different from aUser::pwent object.

getsocknameSOCKET
Returns the packed sockaddr address of this end of theSOCKET connection, in case you don’t
know the address because you have sev eral different IPs that the connection might have come in
on.

use Socket;
$mysockaddr = getsockname(SOCK);
($port, $myaddr) = sockaddr_in($mysockaddr);
printf "Connect to %s [%s]\n",

scalar gethostbyaddr($myaddr, AF_INET),
inet_ntoa($myaddr);

getsockoptSOCKET,LEVEL,OPTNAME
Queries the option namedOPTNAME associated withSOCKET at a given LEVEL. Options may
exist at multiple protocol levels depending on the socket type, but at least the uppermost socket
level SOL_SOCKET(defined in theSocket module) will exist. To query options at another level
the protocol number of the appropriate protocol controlling the option should be supplied. For
example, to indicate that an option is to be interpreted by theTCP protocol,LEVEL should be set
to the protocol number ofTCP, which you can get using getprotobyname.

The call returns a packed string representing the requested socket option, orundef if there is an
error (the error reason will be in $!). What exactly is in the packed string depends in theLEVEL
andOPTNAME, consult your system documentation for details. A very common case however is
that the option is an integer, in which case the result will be a packed integer which you can
decode using unpack with thei (or I) format.

An example testing if Nagle’s algorithm is turned on on a socket:

use Socket qw(:all);

defined(my $tcp = getprotobyname("tcp"))
or die "Could not determine the protocol number for tcp";

my $tcp = IPPROTO_TCP; # Alternative
my $packed = getsockopt($socket, $tcp, TCP_NODELAY)

or die "Could not query TCP_NODELAY socket option: $!";
my $nodelay = unpack("I", $packed);
print "Nagle's algorithm is turned ", $nodelay ? "off\n" : "on\n";

glob EXPR
glob In list context, returns a (possibly empty) list of filename expansions on the value ofEXPR such

as the standard Unix shell/bin/csh would do. In scalar context, glob iterates through such

104 2007-12-18 perl v5.10.0

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

filename expansions, returning undef when the list is exhausted. This is the internal function
implementing the<*.c> operator, but you can use it directly. If EXPR is omitted,$_ is used.
The<*.c> operator is discussed in more detail in ‘‘I/O Operators’’ in perlop.

Beginning with v5.6.0, this operator is implemented using the standardFile::Glob extension.
See File::Glob for details.

gmtimeEXPR
gmtime Works just like localtime but the returned values are localized for the standard Greenwich time

zone.

Note: when called in list context, $isdst , the last value returned by gmtime is always 0. There
is no Daylight Saving Time inGMT.

See ‘‘gmtime’’ in perlport for portability concerns.

gotoLABEL
gotoEXPR
goto &NAME

Thegoto−LABEL form finds the statement labeled withLABEL and resumes execution there.It
may not be used to go into any construct that requires initialization, such as a subroutine or a
foreach loop. It also can’t be used to go into a construct that is optimized away, or to get out
of a block or subroutine given to sort . It can be used to go almost anywhere else within the
dynamic scope, including out of subroutines, but it’s usually better to use some other construct
such aslast or die . The author of Perl has never felt the need to use this form ofgoto (in
Perl, that is— C is another matter). (The difference being that C does not offer named loops
combined with loop control. Perl does, and this replaces most structured uses ofgoto in other
languages.)

The goto−EXPR form expects a label name, whose scope will be resolved dynamically. This
allows for computedgoto s per FORTRAN, but isn’t necessarily recommended if you’re
optimizing for maintainability:

goto ("FOO", "BAR", "GLARCH")[$i];

Thegoto−&NAME form is quite different from the other forms ofgoto . In fact, it isn’t a goto
in the normal sense at all, and doesn’t hav ethe stigma associated with other gotos. Instead, it
exits the current subroutine (losing any changes set bylocal()) and immediately calls in its place
the named subroutine using the current value of@_. This is used byAUTOLOADsubroutines that
wish to load another subroutine and then pretend that the other subroutine had been called in the
first place (except that any modifications to@_in the current subroutine are propagated to the
other subroutine.) After thegoto , not even caller will be able to tell that this routine was
called first.

NAME needn’t be the name of a subroutine; it can be a scalar variable containing a code
reference, or a block that evaluates to a code reference.

grepBLOCK LIST
grepEXPR,LIST

This is similar in spirit to, but not the same as,grep(1) and its relatives. In particular, it is not
limited to using regular expressions.

Evaluates theBLOCK or EXPR for each element ofLIST (locally setting$_ to each element) and
returns the list value consisting of those elements for which the expression evaluated to true.In
scalar context, returns the number of times the expression was true.

@foo = grep(!/ˆ#/, @bar); # weed out comments

or equivalently,

@foo = grep {!/ˆ#/} @bar; # weed out comments

Note that$_ is an alias to the list value, so it can be used to modify the elements of theLIST.
While this is useful and supported, it can cause bizarre results if the elements ofLIST are not
variables. Similarly, grep returns aliases into the original list, much as a for loop’s index variable
aliases the list elements.That is, modifying an element of a list returned by grep (for example, in

perl v5.10.0 2007-12-18 105

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

a foreach , map or anothergrep) actually modifies the element in the original list. This is
usually something to be avoided when writing clear code.

If $_ is lexical in the scope where thegrep appears (because it has been declared withmy $_)
then, in addition to being locally aliased to the list elements,$_ keeps being lexical inside the
block; i.e. it can’t be seen from the outside, avoiding any potential side-effects.

See also ‘‘map’’ f or a list composed of the results of theBLOCK or EXPR.

hexEXPR
hex InterpretsEXPR as a hex string and returns the corresponding value. (To convert strings that

might start with either0, 0x , or 0b , see ‘‘oct’’.) If EXPR is omitted, uses$_ .

print hex '0xAf'; # prints '175'
print hex 'aF'; # s ame

Hex strings may only represent integers. Stringsthat would cause integer overflow trigger a
warning. Leadingwhitespace is not stripped, unlike oct(). To present something as hex, look into
‘‘ printf ’’, ‘ ‘sprintf ’’, or ‘‘unpack’’.

import LIST
There is no builtin import function. It is just an ordinary method (subroutine) defined (or
inherited) by modules that wish to export names to another module.The use function calls the
import method for the package used. See also ‘‘use’’, perlmod, and Exporter.

indexSTR,SUBSTR,POSITION
indexSTR,SUBSTR

The index function searches for one string within another, but without the wildcard-like behavior
of a full regular-expression pattern match. It returns the position of the first occurrence of
SUBSTR in STR at or after POSITION. If POSITION is omitted, starts searching from the
beginning of the string.POSITIONbefore the beginning of the string or after its end is treated as
if it were the beginning or the end, respectively. POSITIONand the return value are based at0 (or
whatever you’ve set the$[variable to— but don’t do that). If the substring is not found,index
returns one less than the base, ordinarily−1.

int EXPR
int Returnsthe integer portion ofEXPR. If EXPR is omitted, uses$_ . You should not use this

function for rounding: one because it truncates towards 0, and two because machine
representations of floating point numbers can sometimes produce counterintuitive results. For
example,int(−6.725/0.025) produces −268 rather than the correct −269; that’s because it’s
really more like −268.99999999999994315658 instead.Usually, thesprintf , printf , or the
POSIX::floor andPOSIX::ceil functions will serve you better than willint().

ioctl FILEHANDLE,FUNCTION,SCALAR
Implements theioctl (2) function. You’ll probably first have to say

require "sys/ioctl.ph"; # probably in $Config{archlib}/sys/ioctl.ph

to get the correct function definitions.If sys/ioctl.phdoesn’t exist or doesn’t hav e the correct
definitions you’ll have to roll your own, based on your C header files such as<sys/ioctl.h>.
(There is a Perl script calledh2ph that comes with the Perl kit that may help you in this, but it’s
nontrivial.) SCALAR will be read and/or written depending on the FUNCTION— a pointer to the
string value ofSCALAR will be passed as the third argument of the actualioctl call. (If
SCALAR has no string value but does have a numeric value, that value will be passed rather than a
pointer to the string value. To guarantee this to be true, add a0 to the scalar before using it.)The
pack and unpack functions may be needed to manipulate the values of structures used by
ioctl .

The return value ofioctl (andfcntl) is as follows:

if OS returns: then Perl returns:
−1 undefined value

0 s tring "0 but true"
anything else that number

Thus Perl returns true on success and false on failure, yet you can still easily determine the actual

106 2007-12-18 perl v5.10.0

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

value returned by the operating system:

$retval = ioctl(...) || −1;
printf "System returned %d\n", $retval;

The special string"0 but true" is exempt from −w complaints about improper numeric
conversions.

join EXPR,LIST
Joins the separate strings ofLIST into a single string with fields separated by the value ofEXPR,
and returns that new string. Example:

$rec = join(':', $login,$passwd,$uid,$gid,$gcos,$home,$shell);

Beware that unlikesplit , join doesn’t take a pattern as its first argument. Compare‘‘ split’’.

keys HASH
Returns a list consisting of all the keys of the named hash. (In scalar context, returns the number
of keys.)

The keys are returned in an apparently random order. The actual random order is subject to
change in future versions of perl, but it is guaranteed to be the same order as either thevalues
or each function produces (given that the hash has not been modified).Since Perl 5.8.1 the
ordering is different even between different runs of Perl for security reasons (see ‘‘A lgorithmic
Complexity Attacks’’ in perlsec).

As a side effect, callingkeys() resets theHASH’s internal iterator (see ‘‘each’’). In particular,
callingkeys() in void context resets the iterator with no other overhead.

Here is yet another way to print your environment:

@keys = keys %ENV;
@values = values %ENV;
while (@keys) {

print pop(@keys), '=', pop(@values), "\n";
}

or how about sorted by key:

foreach $key (sort(keys %ENV)) {
print $key, '=', $ENV{$key}, "\n";

}

The returned values are copies of the original keys in the hash, so modifying them will not affect
the original hash. Compare ‘‘values’’.

To sort a hash by value, you’ll need to use asort function. Here’s a descending numeric sort of
a hash by its values:

foreach $key (sort { $hash{$b} <=> $hash{$a} } keys %hash) {
printf "%4d %s\n", $hash{$key}, $key;

}

As an lvalue keys allows you to increase the number of hash buckets allocated for the given
hash. Thiscan gain you a measure of efficiency if you know the hash is going to get big. (This is
similar to pre-extending an array by assigning a larger number to $#array.) If you say

keys %hash = 200;

then%hash will have at least 200 buckets allocated for it−−256 of them, in fact, since it rounds
up to the next power of two. Thesebuckets will be retained even if you do%hash = () , use
undef %hash if you want to free the storage while%hash is still in scope.You can’t shrink
the number of buckets allocated for the hash usingkeys in this way (but you needn’t worry
about doing this by accident, as trying has no effect).

See alsoeach , values andsort .

perl v5.10.0 2007-12-18 107

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

kill SIGNAL, LIST
Sends a signal to a list of processes. Returns the number of processes successfully signaled
(which is not necessarily the same as the number actually killed).

$cnt = kill 1, $child1, $child2;
kill 9, @goners;

If SIGNAL is zero, no signal is sent to the process, but thekill (2) system call will check whether
it’s possible to send a signal to it (that means, to be brief, that the process is owned by the same
user, or we are the super-user). Thisis a useful way to check that a child process is alive (ev en if
only as a zombie) and hasn’t changed itsUID. See perlport for notes on the portability of this
construct.

Unlike in the shell, if SIGNAL is negative, it kills process groups instead of processes.(On
System V, a neg ative PROCESSnumber will also kill process groups, but that’s not portable.)
That means you usually want to use positive not negative signals. You may also use a signal
name in quotes.

See ‘‘Signals’’ in perlipc for more details.

lastLABEL
last Thelast command is like thebreak statement in C (as used in loops); it immediately exits the

loop in question. If theLABEL is omitted, the command refers to the innermost enclosing loop.
Thecontinue block, if any, is not executed:

LINE: while (<STDIN>) {
last LINE if /ˆ$/; # exit when done with header
#...

}

last cannot be used to exit a block which returns a value such aseval {} , sub {} or do
{} , and should not be used to exit agrep()or map()operation.

Note that a block by itself is semantically identical to a loop that executes once.Thuslast can
be used to effect an early exit out of such a block.

See also ‘‘continue’’ f or an illustration of howlast , next , and redo work.

lc EXPR
lc Returnsa lowercased version ofEXPR. This is the internal function implementing the\L escape

in double-quoted strings.Respects currentLC_CTYPE locale if use locale in force. See
perllocale and perlunicode for more details about locale and Unicode support.

If EXPR is omitted, uses$_ .

lcfirst EXPR
lcfirst Returnsthe value ofEXPR with the first character lowercased. Thisis the internal function

implementing the\l escape in double-quoted strings.Respects currentLC_CTYPElocale ifuse
locale in force. See perllocale and perlunicode for more details about locale and Unicode
support.

If EXPR is omitted, uses$_ .

lengthEXPR
length Returnsthe length incharactersof the value ofEXPR. If EXPR is omitted, returns length of$_ .

Note that this cannot be used on an entire array or hash to find out how many elements these
have. For that, usescalar @array andscalar keys %hash respectively.

Note thecharacters: if the EXPR is in Unicode, you will get the number of characters, not the
number of bytes. To get the length of the internal string in bytes, use
bytes::length(EXPR) , see bytes. Note that the internal encoding is variable, and the
number of bytes usually meaningless.To get the number of bytes that the string would have
when encoded asUTF−8, uselength(Encoding::encode_utf8(EXPR)) .

link OLDFILE,NEWFILE
Creates a new filename linked to the old filename. Returns true for success, false otherwise.

108 2007-12-18 perl v5.10.0

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

listenSOCKET,QUEUESIZE
Does the same thing that the listen system call does. Returns true if it succeeded, false otherwise.
See the example in ‘‘Sockets: Client/Server Communication’’ in perlipc.

local EXPR
You really probably want to be usingmy instead, becauselocal isn’t what most people think of
as ‘‘local’’. See‘‘ Private Variables viamy()’’ i n perlsub for details.

A local modifies the listed variables to be local to the enclosing block, file, or eval. If more than
one value is listed, the list must be placed in parentheses.See ‘‘Temporary Values vialocal()’’ i n
perlsub for details, including issues with tied arrays and hashes.

localtimeEXPR
localtime

Converts a time as returned by the time function to a 9−element list with the time analyzed for the
local time zone.Typically used as follows:

0 1 2 3 4 5 6 7 8
($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) =

localtime(time);

All list elements are numeric, and come straight out of the C ‘struct tm’.$sec , $min , and
$hour are the seconds, minutes, and hours of the specified time.

$mday is the day of the month, and$mon is the month itself, in the range0..11 with 0
indicating January and 11 indicating December. This makes it easy to get a month name from a
list:

my @abbr = qw(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec);
print "$abbr[$mon] $mday";
$mon=9, $mday=18 gives "Oct 18"

$year is the number of years since 1900, not just the last two digits of the year. That is,$year
is 123 in year 2023. The proper way to get a complete 4−digit year is simply:

$year += 1900;

Otherwise you create non−Y2K−compliant programs— and you wouldn’t want to do that, would
you?

To get the last two digits of the year (e.g., ’01’ in 2001) do:

$year = sprintf("%02d", $year % 100);

$wday is the day of the week, with 0 indicating Sunday and 3 indicating Wednesday.$yday is
the day of the year, in the range0..364 (or 0..365 in leap years.)

$isdst is true if the specified time occurs during Daylight Saving Time, false otherwise.

If EXPR is omitted,localtime() uses the current time (localtime(time)).

In scalar context,localtime() returns thectime(3) value:

$now_string = localtime; # e.g., "Thu Oct 13 04:54:34 1994"

This scalar value isnot locale dependent but is a Perl builtin. For GMT instead of local time use
the ‘‘gmtime’’ builtin. See also theTime::Local module (to convert the second, minutes,
hours, ... back to the integer value returned bytime()), and thePOSIX module’sstrftime(3) and
mktime(3) functions.

To get somewhat similar but locale dependent date strings, set up your locale environment
variables appropriately (please see perllocale) and try for example:

use POSIX qw(strftime);
$now_string = strftime "%a %b %e %H:%M:%S %Y", localtime;
or f or GMT formatted appropriately for your locale:
$now_string = strftime "%a %b %e %H:%M:%S %Y", gmtime;

Note that the%aand%b, the short forms of the day of the week and the month of the year, may

perl v5.10.0 2007-12-18 109

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

not necessarily be three characters wide.

See ‘‘localtime’’ in perlport for portability concerns.

The Time::gmtime and Time::localtime modules provides a convenient, by-name access
mechanism to thegmtime()andlocaltime()functions, respectively.

For a comprehensive date and time representation look at the DateTime module onCPAN.

lock THING
This function places an advisory lock on a shared variable, or referenced object contained in
THING until the lock goes out of scope.

lock() is a ‘‘weak keyword’’ : this means that if you’ve defined a function by this name (before
any calls to it), that function will be called instead. (However, if you’ve said use threads ,
lock() is always a keyword.) See threads.

log EXPR
log Returnsthe natural logarithm (basee) of EXPR. If EXPR is omitted, returns log of$_ . To get the

log of another base, use basic algebra: The base-N log of a number is equal to the natural log of
that number divided by the natural log of N.For example:

sub log10 {
my $n = shift;
return log($n)/log(10);

}

See also ‘‘exp’’ f or the inverse operation.

lstatEXPR
lstat Doesthe same thing as thestat function (including setting the special_ filehandle) but stats a

symbolic link instead of the file the symbolic link points to.If symbolic links are unimplemented
on your system, a normalstat is done. For much more detailed information, please see the
documentation forstat .

If EXPR is omitted, stats$_ .

m// Thematch operator. See perlop.

mapBLOCK LIST
mapEXPR,LIST

Evaluates theBLOCK or EXPR for each element ofLIST (locally setting$_ to each element) and
returns the list value composed of the results of each such evaluation. Inscalar context, returns
the total number of elements so generated.EvaluatesBLOCK or EXPR in list context, so each
element ofLIST may produce zero, one, or more elements in the returned value.

@chars = map(chr, @nums);

translates a list of numbers to the corresponding characters. And

%hash = map { get_a_key_for($_) => $_ } @array;

is just a funny way to write

%hash = ();
foreach (@array) {

$hash{get_a_key_for($_)} = $_;
}

Note that$_ is an alias to the list value, so it can be used to modify the elements of theLIST.
While this is useful and supported, it can cause bizarre results if the elements ofLIST are not
variables. Usinga regular foreach loop for this purpose would be clearer in most cases.See
also ‘‘grep’’ f or an array composed of those items of the original list for which theBLOCK or
EXPRevaluates to true.

If $_ is lexical in the scope where themap appears (because it has been declared withmy $_),
then, in addition to being locally aliased to the list elements,$_ keeps being lexical inside the
block; that is, it can’t be seen from the outside, avoiding any potential side-effects.

110 2007-12-18 perl v5.10.0

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

{ starts both hash references and blocks, somap { ... could be either the start of mapBLOCK
LIST or mapEXPR, LIST. Because perl doesn’t look ahead for the closing} it has to take a guess
at which its dealing with based what it finds just after the{ . Usually it gets it right, but if it
doesn’t it won’t realize something is wrong until it gets to the} and encounters the missing (or
unexpected) comma. The syntax error will be reported close to the} but you’ll need to change
something near the{ such as using a unary+ to give perl some help:

%hash = map { "\L$_", 1 } @array # perl guesses EXPR. wrong
%hash = map { +"\L$_", 1 } @array # perl guesses BLOCK. right
%hash = map { ("\L$_", 1) } @array # t his also works
%hash = map { lc($_), 1 } @array # as does this.
%hash = map +(lc($_), 1), @array # t his is EXPR and works!

%hash = map (l c($_), 1), @array # evaluates to (1, @array)

or to force an anon hash constructor use+{ :

@hashes = map +{ lc($_), 1 }, @array # EXPR, so needs , at end

and you get list of anonymous hashes each with only 1 entry.

mkdir FILENAME,MASK
mkdir FILENAME
mkdir Createsthe directory specified byFILENAME, with permissions specified byMASK (as modified

by umask). If it succeeds it returns true, otherwise it returns false and sets$! (errno). If
omitted,MASK defaults to 0777. If omitted,FILENAME defaults to$_ .

In general, it is better to create directories with permissive MASK, and let the user modify that
with their umask, than it is to supply a restrictive MASK and give the user no way to be more
permissive. The exceptions to this rule are when the file or directory should be kept private (mail
files, for instance).The perlfunc(1) entry onumask discusses the choice ofMASK in more
detail.

Note that according to thePOSIX 1003.1−1996 theFILENAME may have any number of trailing
slashes. Someoperating and filesystems do not get this right, so Perl automatically removes all
trailing slashes to keep everyone happy.

In order to recursively create a directory structure look at themkpath function of the File::Path
module.

msgctlID,CMD,ARG
Calls the System VIPC functionmsgctl(2). You’ll probably have to say

use IPC::SysV;

first to get the correct constant definitions.If CMD is IPC_STAT, thenARG must be a variable
that will hold the returnedmsqid_ds structure. Returnslike ioctl : the undefined value for
error, "0 but true" for zero, or the actual return value otherwise. See also ‘‘SysV IPC’’ i n
perlipc,IPC::SysV , and IPC::Semaphore documentation.

msggetKEY,FLAGS
Calls the System VIPC function msgget (2). Returnsthe message queue id, or the undefined
value if there is an error. See also ‘‘SysV IPC’’ i n perlipc andIPC::SysV and IPC::Msg
documentation.

msgrcvID,VAR,SIZE,TYPE,FLAGS
Calls the System VIPC function msgrcv to receive a message from message queueID into
variable VAR with a maximum message size ofSIZE. Note that when a message is received, the
message type as a native long integer will be the first thing inVAR, followed by the actual
message. Thispacking may be opened withunpack("l! a*") . Taints the variable. Returns
true if successful, or false if there is an error. See also ‘‘SysV IPC’’ i n perlipc, IPC::SysV , and
IPC::SysV::Msg documentation.

msgsndID,MSG,FLAGS
Calls the System VIPC function msgsnd to send the messageMSG to the message queueID.
MSG must begin with the native long integer message type, and be followed by the length of the

perl v5.10.0 2007-12-18 111

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

actual message, and finally the message itself. This kind of packing can be achieved with
pack("l! a*", $type, $message) . Returns true if successful, or false if there is an
error. See alsoIPC::SysV andIPC::SysV::Msg documentation.

my EXPR
my TYPE EXPR
my EXPR : ATTRS
my TYPE EXPR: ATTRS

A my declares the listed variables to be local (lexically) to the enclosing block, file, oreval . If
more than one value is listed, the list must be placed in parentheses.

The exact semantics and interface of TYPE and ATTRS are still evolving. TYPE is currently
bound to the use offields pragma, and attributes are handled using theattributes pragma,
or starting from Perl 5.8.0 also via theAttribute::Handlers module. See‘‘ Private
Variables viamy()’’ i n perlsub for details, and fields, attributes, and Attribute::Handlers.

nextLABEL
next Thenext command is like thecontinue statement in C; it starts the next iteration of the loop:

LINE: while (<STDIN>) {
next LINE if /ˆ#/; # discard comments
#...

}

Note that if there were acontinue block on the above, it would get executed even on discarded
lines. If theLABEL is omitted, the command refers to the innermost enclosing loop.

next cannot be used to exit a block which returns a value such aseval {} , sub {} or do
{} , and should not be used to exit agrep()or map()operation.

Note that a block by itself is semantically identical to a loop that executes once.Thusnext will
exit such a block early.

See also ‘‘continue’’ f or an illustration of howlast , next , and redo work.

no ModuleVERSION LIST
no ModuleVERSION
no ModuleLIST
no Module
no VERSION

See theuse function, of whichno is the opposite.

oct EXPR
oct InterpretsEXPRas an octal string and returns the corresponding value. (IfEXPRhappens to start

off with 0x , interprets it as a hex string. If EXPR starts off with 0b , it is interpreted as a binary
string. Leadingwhitespace is ignored in all three cases.) The following will handle decimal,
binary, octal, and hex in the standard Perl or C notation:

$val = oct($val) if $val =˜ /ˆ0/;

If EXPR is omitted, uses$_ . To go the other way (produce a number in octal), usesprintf() or
printf():

$perms = (stat("filename"))[2] & 07777;
$oct_perms = sprintf "%lo", $perms;

Theoct() function is commonly used when a string such as644 needs to be converted into a file
mode, for example. (Although perl will automatically convert strings into numbers as needed, this
automatic conversion assumes base 10.)

openFILEHANDLE,EXPR
openFILEHANDLE,MODE,EXPR
openFILEHANDLE,MODE,EXPR,LIST
openFILEHANDLE,MODE,REFERENCE
openFILEHANDLE

Opens the file whose filename is given by EXPR, and associates it withFILEHANDLE.

112 2007-12-18 perl v5.10.0

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

(The following is a comprehensive reference toopen(): for a gentler introduction you may
consider perlopentut.)

If FILEHANDLE is an undefined scalar variable (or array or hash element) the variable is assigned
a reference to a new anonymous filehandle, otherwise ifFILEHANDLE is an expression, its value
is used as the name of the real filehandle wanted. (Thisis considered a symbolic reference, so
use strict 'refs' shouldnotbe in effect.)

If EXPR is omitted, the scalar variable of the same name as theFILEHANDLE contains the
filename. (Notethat lexical variables — thosedeclared withmy−−will not work for this purpose;
so if you’re usingmy, specify EXPR in your call to open.)

If three or more arguments are specified then the mode of opening and the file name are separate.
If MODE is '<' or nothing, the file is opened for input.If MODE is '>' , the file is truncated and
opened for output, being created if necessary. If MODE is '>>' , the file is opened for appending,
again being created if necessary.

You can put a'+' in front of the '>' or '<' to indicate that you want both read and write
access to the file; thus'+<' is almost always preferred for read/write updates— the '+>' mode
would clobber the file first.You can’t usually use either read-write mode for updating textfiles,
since they hav evariable length records. See the−i switch in perlrun for a better approach.The
file is created with permissions of0666 modified by the process’umask value.

These various prefixes correspond to thefopen(3) modes of'r' , 'r+' , 'w' , 'w+' , 'a' , and
'a+' .

In the 2−arguments (and 1−argument) form of the call the mode and filename should be
concatenated (in this order), possibly separated by spaces. It is possible to omit the mode in these
forms if the mode is'<' .

If the filename begins with'|' , the filename is interpreted as a command to which output is to
be piped, and if the filename ends with a'|' , the filename is interpreted as a command which
pipes output to us. See ‘‘Using open()for IPC’’ i n perlipc for more examples of this.(You are
not allowed toopen to a command that pipes both inandout, but see IPC::Open2, IPC::Open3,
and ‘‘Bidirectional Communication with Another Process’’ in perlipc for alternatives.)

For three or more arguments ifMODE is '|−' , the filename is interpreted as a command to
which output is to be piped, and ifMODE is '−|' , the filename is interpreted as a command
which pipes output to us. In the 2−arguments (and 1−argument) form one should replace dash
('−') with the command. See ‘‘Using open() for IPC’’ i n perlipc for more examples of this.
(You are not allowed toopen to a command that pipes both inand out, but see IPC::Open2,
IPC::Open3, and ‘‘Bidirectional Communication’’ in perlipc for alternatives.)

In the three-or-more argument form of pipe opens, ifLIST is specified (extra arguments after the
command name) thenLIST becomes arguments to the command invoked if the platform supports
it. The meaning ofopen with more than three arguments for non-pipe modes is not yet
specified. Experimental ‘‘layers’’ may give extra LIST arguments meaning.

In the 2−arguments (and 1−argument) form opening'−' opensSTDIN and opening'>−' opens
STDOUT.

You may use the three-argument form of open to specifyIO ‘‘ layers’’ (sometimes also referred to
as ‘‘disciplines’’) to be applied to the handle that affect how the input and output are processed
(see open and PerlIO for more details). For example

open(FH, "<:encoding(UTF−8)", "file")

will open theUTF−8 encoded file containing Unicode characters, see perluniintro. Note that if
layers are specified in the three-arg form then default layers stored in ${ˆOPEN} (see perlvar;
usually set by theopenpragma or the switch−CioD) are ignored.

Open returns nonzero upon success, the undefined value otherwise. If theopen involved a pipe,
the return value happens to be the pid of the subprocess.

If you’re running Perl on a system that distinguishes between text files and binary files, then you
should check out ‘‘binmode’’ f or tips for dealing with this. The key distinction between systems

perl v5.10.0 2007-12-18 113

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

that needbinmode and those that don’t is their text file formats.Systems like Unix, Mac OS,
and Plan 9, which delimit lines with a single character, and which encode that character in C as
"\n" , do not needbinmode . The rest need it.

When opening a file, it’s usually a bad idea to continue normal execution if the request failed, so
open is frequently used in connection withdie . Even if die won’t do what you want (say, in a
CGI script, where you want to make a nicely formatted error message (but there are modules that
can help with that problem)) you should always check the return value from opening a file.The
infrequent exception is when working with an unopened filehandle is actually what you want to
do.

As a special case the 3−arg form with a read/write mode and the third argument beingundef :

open(TMP, "+>", undef) or die ...

opens a filehandle to an anonymous temporary file. Also using ‘‘+<’ ’ works for symmetry, but
you really should consider writing something to the temporary file first.You will need toseek()
to do the reading.

Since v5.8.0, perl has built using PerlIO by default. Unlessyou’ve changed this (i.e. Configure
−Uuseperlio), you can open file handles to ‘‘in memory’’ fi les held in Perl scalars via:

open($fh, '>', \$variable) || ..

Though if you try to re-openSTDOUTor STDERRas an ‘‘in memory’’ fi le, you have to close it
first:

close STDOUT;
open STDOUT, '>', \$variable or die "Can't open STDOUT: $!";

Examples:

$ARTICLE = 100;
open ARTICLE or die "Can't find article $ARTICLE: $!\n";
while (<ARTICLE>) {...

open(LOG, '>>/usr/spool/news/twitlog'); # (log is reserved)
if t he open fails, output is discarded

open(DBASE, '+<', 'dbase.mine') # open for update
or die "Can't open 'dbase.mine' for update: $!";

open(DBASE, '+<dbase.mine') # ditto
or die "Can't open 'dbase.mine' for update: $!";

open(ARTICLE, '−|', "caesar <$article") # decrypt article
or die "Can't start caesar: $!";

open(ARTICLE, "caesar <$article |") # ditto
or die "Can't start caesar: $!";

open(EXTRACT, "|sort >Tmp$$") # $$ is o ur process id
or die "Can't start sort: $!";

in m emory files
open(MEMORY,'>', \$var)

or die "Can't open memory file: $!";
print MEMORY "foo!\n"; # output will end up in $var

process argument list of files along with any includes

foreach $file (@ARGV) {
process($file, 'fh00');

}

114 2007-12-18 perl v5.10.0

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

sub process {
my($filename, $input) = @_;
$input++; # this is a string increment
unless (open($input, $filename)) {

print STDERR "Can't open $filename: $!\n";
return;

}

local $_;
while (<$input>) { # note use of indirection

if (/ˆ#include "(.*)"/) {
process($1, $input);
next;

}
#... # whatever

}
}

See perliol for detailed info on PerlIO.

You may also, in the Bourne shell tradition, specify anEXPRbeginning with'>&' , in which case
the rest of the string is interpreted as the name of a filehandle (or file descriptor, if numeric) to be
duped (asdup(2)) and opened.You may use& after>, >>, <, +>, +>>, and +<. The mode you
specify should match the mode of the original filehandle.(Duping a filehandle does not take into
account any existing contents ofIO buffers.) If you use the 3−arg form then you can pass either a
number, the name of a filehandle or the normal ‘‘reference to a glob’’.

Here is a script that saves, redirects, and restoresSTDOUTandSTDERRusing various methods:

#!/usr/bin/perl
open my $oldout, ">&STDOUT" or die "Can't dup STDOUT: $!";
open OLDERR, ">&", *STDERR or die "Can't dup STDERR: $!";

open STDOUT, '>', "foo.out" or die "Can't redirect STDOUT: $!";
open STDERR, ">&STDOUT" or die "Can't dup STDOUT: $!";

select STDERR; $| = 1; # make unbuffered
select STDOUT; $| = 1; # make unbuffered

print STDOUT "stdout 1\n"; # t his works for
print STDERR "stderr 1\n"; # s ubprocesses too

open STDOUT, ">&", $oldout or die "Can't dup \$oldout: $!";
open STDERR, ">&OLDERR" or die "Can't dup OLDERR: $!";

print STDOUT "stdout 2\n";
print STDERR "stderr 2\n";

If you specify'<&=X' , whereX is a file descriptor number or a filehandle, then Perl will do an
equivalent of C’s fdopen of that file descriptor (and not calldup(2)); this is more parsimonious
of file descriptors.For example:

open for input, reusing the fileno of $fd
open(FILEHANDLE, "<&=$fd")

or

open(FILEHANDLE, "<&=", $fd)

or

perl v5.10.0 2007-12-18 115

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

open for append, using the fileno of OLDFH
open(FH, ">>&=", OLDFH)

or

open(FH, ">>&=OLDFH")

Being parsimonious on filehandles is also useful (besides being parsimonious) for example when
something is dependent on file descriptors, like for example locking usingflock(). If you do just
open(A, '>>&B') , the filehandle A will not have the same file descriptor as B, and therefore
flock(A) will not flock(B), and vice versa. Butwith open(A, '>>&=B') the filehandles will
share the same file descriptor.

Note that if you are using Perls older than 5.8.0, Perl will be using the standard C libraries’
fdopen()to implement the ‘‘=’ ’ f unctionality. On many UNIX systemsfdopen()fails when file
descriptors exceed a certain value, typically 255.For Perls 5.8.0 and later, PerlIO is most often
the default.

You can see whether Perl has been compiled with PerlIO or not by runningperl −V and
looking for useperlio= line. If useperlio is define , you have PerlIO, otherwise you
don’t.

If you open a pipe on the command'−' , i.e., either'|−' or '−|' with 2−arguments (or
1−argument) form ofopen(), then there is an implicit fork done, and the return value of open is
the pid of the child within the parent process, and0 within the child process.(Use
defined($pid) to determine whether the open was successful.) The filehandle behaves
normally for the parent, but i/o to that filehandle is piped from/to theSTDOUT/STDINof the child
process. Inthe child process the filehandle isn’t opened — i/ohappens from/to the new STDOUT
or STDIN. Typically this is used like the normal piped open when you want to exercise more
control over just how the pipe command gets executed, such as when you are running setuid, and
don’t want to have to scan shell commands for metacharacters. The following triples are more or
less equivalent:

open(FOO, "|tr '[a−z]' '[A−Z]'");
open(FOO, '|−', "tr '[a−z]' '[A−Z]'");
open(FOO, '|−') || exec 'tr', '[a−z]', '[A−Z]';
open(FOO, '|−', "tr", '[a−z]', '[A−Z]');

open(FOO, "cat −n '$file'|");
open(FOO, '−|', "cat −n '$file'");
open(FOO, '−|') || exec 'cat', '−n', $file;
open(FOO, '−|', "cat", '−n', $file);

The last example in each block shows the pipe as ‘‘list form’’, which is not yet supported on all
platforms. Agood rule of thumb is that if your platform has truefork() (in other words, if
your platform isUNIX) you can use the list form.

See ‘‘Safe Pipe Opens’’ in perlipc for more examples of this.

Beginning with v5.6.0, Perl will attempt to flush all files opened for output before any operation
that may do a fork, but this may not be supported on some platforms (see perlport).To be safe,
you may need to set$| ($AUTOFLUSH in English) or call theautoflush() method of
IO::Handle on any open handles.

On systems that support a close-on-exec flag on files, the flag will be set for the newly opened file
descriptor as determined by the value of $ˆF. See ‘‘$ˆF’’ in perlvar.

Closing any piped filehandle causes the parent process to wait for the child to finish, and returns
the status value in$? and${ˆCHILD_ERROR_NATIVE} .

The filename passed to 2−argument (or 1−argument) form ofopen()will have leading and trailing
whitespace deleted, and the normal redirection characters honored.This property, known as
‘‘ magic open’’, can often be used to good effect. A user could specify a filename of‘‘ rsh cat file
|’’ , or you could change certain filenames as needed:

116 2007-12-18 perl v5.10.0

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

$filename =˜ s/(.*\.gz)\s*$/gzip −dc < $1|/;
open(FH, $filename) or die "Can't open $filename: $!";

Use 3−argument form to open a file with arbitrary weird characters in it,

open(FOO, '<', $file);

otherwise it’s necessary to protect any leading and trailing whitespace:

$file =˜ s#ˆ(\s)#./$1#;
open(FOO, "< $file\0");

(this may not work on some bizarre filesystems).One should conscientiously choose between the
magicand 3−arguments form ofopen():

open IN, $ARGV[0];

will allow the user to specify an argument of the form"rsh cat file |" , but will not work
on a filename which happens to have a trailing space, while

open IN, '<', $ARGV[0];

will have exactly the opposite restrictions.

If you want a ‘‘real’’ C open (seeopen(2) on your system), then you should use thesysopen
function, which involves no such magic (but may use subtly different filemodes than Perlopen(),
which is mapped to Cfopen()). Thisis another way to protect your filenames from interpretation.
For example:

use IO::Handle;
sysopen(HANDLE, $path, O_RDWR|O_CREAT|O_EXCL)

or die "sysopen $path: $!";
$oldfh = select(HANDLE); $| = 1; select($oldfh);
print HANDLE "stuff $$\n";
seek(HANDLE, 0, 0);
print "File contains: ", <HANDLE>;

Using the constructor from theIO::Handle package (or one of its subclasses, such as
IO::File or IO::Socket), you can generate anonymous filehandles that have the scope of
whatever variables hold references to them, and automatically close whenever and however you
leave that scope:

use IO::File;
#...
sub read_myfile_munged {

my $ALL = shift;
my $handle = new IO::File;
open($handle, "myfile") or die "myfile: $!";
$first = <$handle>

or return (); # Automatically closed here.
mung $first or die "mung failed"; # Or h ere.
return $first, <$handle> if $ALL; # Or h ere.
$first; # Or here.

}

See ‘‘seek’’ f or some details about mixing reading and writing.

opendirDIRHANDLE,EXPR
Opens a directory namedEXPR for processing by readdir , telldir , seekdir ,
rewinddir , and closedir . Returns true if successful.DIRHANDLE may be an expression
whose value can be used as an indirect dirhandle, usually the real dirhandle name.If
DIRHANDLE is an undefined scalar variable (or array or hash element), the variable is assigned a
reference to a new anonymous dirhandle. DIRHANDLEs have their own namespace separate
from FILEHANDLEs.

perl v5.10.0 2007-12-18 117

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

ord EXPR
ord Returnsthe numeric (the native 8−bit encoding, like ASCII or EBCDIC, or Unicode) value of the

first character ofEXPR. If EXPR is omitted, uses$_ .

For the reverse, see ‘‘chr’’. Seeperlunicode for more about Unicode.

our EXPR
our TYPE EXPR
our EXPR : ATTRS
our TYPE EXPR: ATTRS

our associates a simple name with a package variable in the current package for use within the
current scope.When use strict 'vars' is in effect, our lets you use declared global
variables without qualifying them with package names, within the lexical scope of theour
declaration. Inthis wayour differs fromuse vars , which is package scoped.

Unlike my, which both allocates storage for a variable and associates a simple name with that
storage for use within the current scope,our associates a simple name with a package variable in
the current package, for use within the current scope.In other words,our has the same scoping
rules asmy, but does not necessarily create a variable.

If more than one value is listed, the list must be placed in parentheses.

our $foo;
our($bar, $baz);

An our declaration declares a global variable that will be visible across its entire lexical scope,
ev en across package boundaries. The package in which the variable is entered is determined at
the point of the declaration, not at the point of use. This means the following behavior holds:

package Foo;
our $bar; # declares $Foo::bar for rest of lexical scope
$bar = 20;

package Bar;
print $bar; # prints 20, as it refers to $Foo::bar

Multiple our declarations with the same name in the same lexical scope are allowed if they are
in different packages. If they happen to be in the same package, Perl will emit warnings if you
have asked for them, just like multiple my declarations. Unlike asecondmy declaration, which
will bind the name to a fresh variable, a secondour declaration in the same package, in the same
scope, is merely redundant.

use warnings;
package Foo;
our $bar; # declares $Foo::bar for rest of lexical scope
$bar = 20;

package Bar;
our $bar = 30; # declares $Bar::bar for rest of lexical scope
print $bar; # prints 30

our $bar; # emits warning but has no other effect
print $bar; # s till prints 30

An our declaration may also have a list of attributes associated with it.

The exact semantics and interface of TYPE and ATTRS are still evolving. TYPE is currently
bound to the use offields pragma, and attributes are handled using theattributes pragma,
or starting from Perl 5.8.0 also via theAttribute::Handlers module. See‘‘ Private
Variables viamy()’’ i n perlsub for details, and fields, attributes, and Attribute::Handlers.

packTEMPLATE,LIST
Takes aLIST of values and converts it into a string using the rules given by theTEMPLATE. The
resulting string is the concatenation of the converted values. Typically, each converted value
looks like its machine-level representation. For example, on 32−bit machines an integer may be

118 2007-12-18 perl v5.10.0

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

represented by a sequence of 4 bytes that will be converted to a sequence of 4 characters.

TheTEMPLATE is a sequence of characters that give the order and type of values, as follows:

a A string with arbitrary binary data, will be null padded.
A A text (ASCII) string, will be space padded.
Z A null terminated (ASCIZ) string, will be null padded.

b A bit string (ascending bit order inside each byte, like vec()).
B A bit string (descending bit order inside each byte).
h A hex string (low nybble first).
H A hex string (high nybble first).

c A signed char (8−bit) value.
C An unsigned char (octet) value.
W An unsigned char value (can be greater than 255).

s A signed short (16−bit) value.
S An unsigned short value.

l A signed long (32−bit) value.
L An unsigned long value.

q A signed quad (64−bit) value.
Q An unsigned quad value.

(Quads are available only if your system supports 64−bit
integer values _and_ if Perl has been compiled to support those.
Causes a fatal error otherwise.)

i A signed integer value.
I A unsigned integer value.

(This 'integer' is _at_least_ 32 bits wide. Its exact
size depends on what a local C compiler calls 'int'.)

n An unsigned short (16−bit) in "network" (big−endian) order.
N An unsigned long (32−bit) in "network" (big−endian) order.
v An unsigned short (16−bit) in "VAX" (little−endian) order.
V An unsigned long (32−bit) in "VAX" (little−endian) order.

j A Perl internal signed integer value (IV).
J A Perl internal unsigned integer value (UV).

f A single−precision float in the native format.
d A double−precision float in the native format.

F A Perl internal floating point value (NV) in the native format
D A long double−precision float in the native format.

(Long doubles are available only if your system supports long
double values _and_ if Perl has been compiled to support those.
Causes a fatal error otherwise.)

p A pointer to a null−terminated string.
P A pointer to a structure (fixed−length string).

u A uuencoded string.
U A Unicode character number. Encodes to a character in character mode

and UTF−8 (or UTF−EBCDIC in EBCDIC platforms) in byte mode.

w A BER compressed integer (not an ASN.1 BER, see perlpacktut for
details). Its bytes represent an unsigned integer in base 128,

perl v5.10.0 2007-12-18 119

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

most significant digit first, with as few digits as possible. Bit
eight (the high bit) is set on each byte except the last.

x A null byte.
X Back up a byte.
@ Null fill or truncate to absolute position, counted from the

start of the innermost ()−group.
. N ull fill or truncate to absolute position specified by value.
(S tart of a ()−group.

One or more of the modifiers below may optionally follow some letters in theTEMPLATE (the
second column lists the letters for which the modifier is valid):

! s SlLiI Forces native (short, long, int) sizes instead
of fixed (16−/32−bit) sizes.

xX Make x a nd X act as alignment commands.

nNvV Treat integers as signed instead of unsigned.

@. Specify position as byte offset in the internal
representation of the packed string. Efficient but
dangerous.

> sSiIlLqQ Force big−endian byte−order on the type.
jJfFdDpP (The "big end" touches the construct.)

< sSiIlLqQ Force little−endian byte−order on the type.
jJfFdDpP (The "little end" touches the construct.)

The > and< modifiers can also be used on() −groups, in which case they force a certain byte-
order on all components of that group, including subgroups.

The following rules apply:

• Each letter may optionally be followed by a number giving a repeat count.With all
types excepta, A, Z, b, B, h, H, @, . , x , X andP the pack function will gobble up that
many values from theLIST. A * for the repeat count means to use however many items
are left, except for@, x , X, where it is equivalent to0, for <.> where it means relative to
string start andu, where it is equivalent to 1 (or 45, which is the same).A numeric
repeat count may optionally be enclosed in brackets, as inpack 'C[80]', @arr .

One can replace the numeric repeat count by a template enclosed in brackets; then the
packed length of this template in bytes is used as a count.For example,x[L] skips a
long (it skips the number of bytes in a long); the template$t X[$t] $t unpack()s
twice what $t unpacks. Ifthe template in brackets contains alignment commands
(such asx![d]), its packed length is calculated as if the start of the template has the
maximal possible alignment.

When used withZ, * results in the addition of a trailing null byte (so the packed result
will be one longer than the bytelength of the item).

When used with@, the repeat count represents an offset from the start of the innermost
() group.

When used with. , the repeat count is used to determine the starting position from
where the value offset is calculated. If the repeat count is 0, it’s relative to the current
position. If the repeat count is* , the offset is relative to the start of the packed string.
And if its an integer n the offset is relative to the start of the n−th innermost () group
(or the start of the string ifn is bigger then the group level).

The repeat count foru is interpreted as the maximal number of bytes to encode per line
of output, with 0, 1 and 2 replaced by 45. The repeat count should not be more than 65.

120 2007-12-18 perl v5.10.0

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

• The a, A, and Z types gobble just one value, but pack it as a string of length count,
padding with nulls or spaces as necessary. When unpacking,A strips trailing
whitespace and nulls,Z strips everything after the first null, anda returns data
verbatim.

If the value-to-pack is too long, it is truncated. If too long and an explicit count is
provided,Z packs only$count−1 bytes, followed by a null byte.Thus Z always
packs a trailing null (except when the count is 0).

• Likewise, theb andB fields pack a string that many bits long. Each character of the
input field ofpack()generates 1 bit of the result.Each result bit is based on the least-
significant bit of the corresponding input character, i.e., on ord($char)%2 . In
particular, characters"0" and "1" generate bits 0 and 1, as do characters"\0" and
"\1" .

Starting from the beginning of the input string ofpack(), each 8−tuple of characters is
converted to 1 character of output.With format b the first character of the 8−tuple
determines the least-significant bit of a character, and with formatB it determines the
most-significant bit of a character.

If the length of the input string is not exactly divisible by 8, the remainder is packed as
if the input string were padded by null characters at the end.Similarly, during
unpack()ing the ‘‘extra’’ bits are ignored.

If the input string ofpack()is longer than needed, extra characters are ignored. A* for
the repeat count ofpack() means to use all the characters of the input field.On
unpack()ing the bits are converted to a string of"0" s and "1" s.

• The h and H fields pack a string that many nybbles (4−bit groups, representable as
hexadecimal digits, 0−9a−f) long.

Each character of the input field ofpack() generates 4 bits of the result.For non-
alphabetical characters the result is based on the 4 least-significant bits of the input
character, i.e., onord($char)%16 . In particular, characters"0" and"1" generate
nybbles 0 and 1, as do bytes"\0" and "\1" . For characters"a".."f" and
"A".."F" the result is compatible with the usual hexadecimal digits, so that"a" and
"A" both generate the nybble 0xa==10 . The result for characters"g".."z" and
"G".."Z" is not well-defined.

Starting from the beginning of the input string ofpack(), each pair of characters is
converted to 1 character of output.With format h the first character of the pair
determines the least-significant nybble of the output character, and with formatH it
determines the most-significant nybble.

If the length of the input string is not even, it behaves as if padded by a null character at
the end. Similarly, duringunpack()ing the ‘‘extra’’ nybbles are ignored.

If the input string ofpack()is longer than needed, extra characters are ignored.A * for
the repeat count ofpack() means to use all the characters of the input field.On
unpack()ing the nybbles are converted to a string of hexadecimal digits.

• Thep type packs a pointer to a null-terminated string.You are responsible for ensuring
the string is not a temporary value (which can potentially get deallocated before you get
around to using the packed result).TheP type packs a pointer to a structure of the size
indicated by the length.A NULL pointer is created if the corresponding value forp or
P is undef , similarly for unpack().

If your system has a strange pointer size (i.e. a pointer is neither as big as an int nor as
big as a long), it may not be possible to pack or unpack pointers in big− or little-endian
byte order. Attempting to do so will result in a fatal error.

• The / template character allows packing and unpacking of a sequence of items where
the packed structure contains a packed item count followed by the packed items
themselves.

For pack you write length-item/ sequence-itemand thelength-itemdescribes how the

perl v5.10.0 2007-12-18 121

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

length value is packed. The ones likely to be of most use are integer-packing ones like
n (for Java strings),w (for ASN.1 orSNMP) andN (for SunXDR).

For pack , the sequence-itemmay have a repeat count, in which case the minimum of
that and the number of available items is used as argument for thelength-item. If it has
no repeat count or uses a ’*’, the number of available items is used.

For unpack an internal stack of integer arguments unpacked so far is used. You write
/ sequence-itemand the repeat count is obtained by popping off the last element from
the stack. Thesequence-itemmust not have a repeat count.

If the sequence-itemrefers to a string type ("A" , "a" or "Z"), the length-itemis a
string length, not a number of strings. If there is an explicit repeat count for pack, the
packed string will be adjusted to that given length.

unpack 'W/a', "\04Gurusamy"; gives ('Guru')
unpack 'a3/A A*', '007 Bond J ' ; g ives (' Bond', 'J')
unpack 'a3 x2 /A A*', '007: Bond, J.'; gives ('Bond, J', '.')
pack 'n/a* w/a','hello,','world'; gives "\000\006hello,\005world"
pack 'a/W2', ord('a') .. ord('z'); gives '2ab'

The length-itemis not returned explicitly fromunpack .

Adding a count to thelength-itemletter is unlikely to do anything useful, unless that
letter is A, a or Z. Packing with alength-itemof a or Z may introduce"\000"
characters, which Perl does not regard as legal in numeric strings.

• The integer typess , S, l , and L may be followed by a! modifier to signify native
shorts or longs— as you can see from above for example a barel does mean exactly 32
bits, the native long (as seen by the local C compiler) may be larger. This is an issue
mainly in 64−bit platforms.You can see whether using! makes any difference by

print length(pack("s")), " ", length(pack("s!")), "\n";
print length(pack("l")), " ", length(pack("l!")), "\n";

i! andI! also work but only because of completeness; they are identical toi andI .

The actual sizes (in bytes) of native shorts, ints, longs, and long longs on the platform
where Perl was built are also available via Config:

use Config;
print $Config{shortsize}, "\n";
print $Config{intsize}, "\n";
print $Config{longsize}, "\n";
print $Config{longlongsize}, "\n";

(The$Config{longlongsize} will be undefined if your system does not support
long longs.)

• The integer formatss , S, i , I , l , L, j , and J are inherently non-portable between
processors and operating systems because they obey the native byteorder and
endianness. For example a 4−byte integer 0x12345678 (305419896 decimal) would be
ordered natively (arranged in and handled by theCPU registers) into bytes as

0x12 0x34 0x56 0x78 # big−endian
0x78 0x56 0x34 0x12 # l ittle−endian

Basically, the Intel andVAX CPUs are little-endian, while everybody else, for example
Motorola m68k/88k,PPC, Sparc,HP PA, Power, and Cray are big-endian. Alpha and
MIPS can be either: Digital/Compaq used/uses them in little-endian mode; SGI/Cray
uses them in big-endian mode.

The names ‘big−endian’ and ‘little−endian’ are comic references to the classic
‘‘ Gulliver’s Travels’’ (via the paper ‘‘On Holy Wars and a Plea for Peace’’ by Danny
Cohen,USC/ISI IEN137, April 1, 1980) and the egg-eating habits of the Lilliputians.

Some systems may have even weirder byte orders such as

122 2007-12-18 perl v5.10.0

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

0x56 0x78 0x12 0x34
0x34 0x12 0x78 0x56

You can see your system’s preference with

print join(" ", map { sprintf "%#02x", $_ }
unpack("W*",pack("L",0x12345678))), "\n";

The byteorder on the platform where Perl was built is also available via Config:

use Config;
print $Config{byteorder}, "\n";

Byteorders'1234' and '12345678' are little-endian,'4321' and '87654321'
are big-endian.

If you want portable packed integers you can either use the formatsn, N, v , and V, or
you can use the> and< modifiers. Thesemodifiers are only available as of perl 5.9.2.
See also perlport.

• All integer and floating point formats as well asp and P and () −groups may be
followed by the> or < modifiers to force big− or little− endian byte-order, respectively.
This is especially useful, sincen, N, v and V don’t cover signed integers, 64−bit
integers and floating point values. However, there are some things to keep in mind.

Exchanging signed integers between different platforms only works if all platforms
store them in the same format. Most platforms store signed integers in two’s
complement, so usually this is not an issue.

The> or < modifiers can only be used on floating point formats on big− or little-endian
machines. Otherwise,attempting to do so will result in a fatal error.

Forcing big− or little-endian byte-order on floating point values for data exchange can
only work if all platforms are using the same binary representation (e.g.IEEE floating
point format). Even if all platforms are usingIEEE, there may be subtle differences.
Being able to use> or < on floating point values can be very useful, but also very
dangerous if you don’t know exactly what you’re doing. It is definitely not a general
way to portably store floating point values.

When using> or < on an() −group, this will affect all types inside the group that
accept the byte-order modifiers, including all subgroups. It will silently be ignored for
all other types.You are not allowed to override the byte-order within a group that
already has a byte-order modifier suffix.

• Real numbers (floats and doubles) are in the native machine format only; due to the
multiplicity of floating formats around, and the lack of a standard ‘‘network’’
representation, no facility for interchange has been made.This means that packed
floating point data written on one machine may not be readable on another − even if
both use IEEE floating point arithmetic (as the endian-ness of the memory
representation is not part of theIEEE spec). Seealso perlport.

If you know exactly what you’re doing, you can use the> or < modifiers to force big−
or little-endian byte-order on floating point values.

Note that Perl uses doubles (or long doubles, if configured) internally for all numeric
calculation, and converting from double into float and thence back to double again will
lose precision (i.e.,unpack("f", pack("f", $foo)) will not in general equal
$foo).

• Pack and unpack can operate in two modes, character mode (C0 mode) where the
packed string is processed per character andUTF−8 mode (U0 mode) where the packed
string is processed in its UTF−8−encoded Unicode form on a byte by byte basis.
Character mode is the default unless the format string starts with anU. You can switch
mode at any moment with an explicit C0 or U0 in the format. A mode is in effect until
the next mode switch or until the end of the ()−group in which it was entered.

perl v5.10.0 2007-12-18 123

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

• You must yourself do any alignment or padding by inserting for example enough'x' es
while packing. There is no way to pack() and unpack() could know where the
characters are going to or coming from.Thereforepack (andunpack) handle their
output and input as flat sequences of characters.

• A ()−group is a sub-TEMPLATE enclosed in parentheses.A group may take a repeat
count, both as postfix, and forunpack()also via the/ template character. Within each
repetition of a group, positioning with@starts again at 0. Therefore, the result of

pack('@1A((@2A)@3A)', 'a', 'b', 'c')

is the string ‘‘\0a\0\0bc’’.

• x and X accept! modifier. In this case they act as alignment commands: they jump
forward/back to the closest position aligned at a multiple ofcount characters. For
example, topack() or unpack() C’s struct {char c; double d; char
cc[2]} one may need to use the templateW x![d] d W[2] ; this assumes that
doubles must be aligned on the double’s size.

For alignment commandscount of 0 is equivalent tocount of 1; both result in no-
ops.

• n, N, v andV accept the! modifier. In this case they will represent signed 16−/32−bit
integers in big−/little−endian order. This is only portable if all platforms sharing the
packed data use the same binary representation for signed integers (e.g. all platforms
are using two’s complement representation).

• A comment in aTEMPLATE starts with# and goes to the end of line. White space may
be used to separate pack codes from each other, but modifiers and a repeat count must
follow immediately.

• If TEMPLATE requires more arguments topack() than actually given, pack() assumes
additional "" arguments. If TEMPLATE requires fewer arguments topack() than
actually given, extra arguments are ignored.

Examples:

$foo = pack("WWWW",65,66,67,68);
f oo eq "ABCD"
$foo = pack("W4",65,66,67,68);
s ame thing
$foo = pack("W4",0x24b6,0x24b7,0x24b8,0x24b9);
s ame thing with Unicode circled letters.
$foo = pack("U4",0x24b6,0x24b7,0x24b8,0x24b9);
s ame thing with Unicode circled letters. You don't get the UTF−8
bytes because the U at the start of the format caused a switch to
U0−mode, so the UTF−8 bytes get joined into characters
$foo = pack("C0U4",0x24b6,0x24b7,0x24b8,0x24b9);
f oo eq "\xe2\x92\xb6\xe2\x92\xb7\xe2\x92\xb8\xe2\x92\xb9"
This is the UTF−8 encoding of the string in the previous example

$foo = pack("ccxxcc",65,66,67,68);
f oo eq "AB\0\0CD"

note: the above examples featuring "W" and "c" are true
only on ASCII and ASCII−derived systems such as ISO Latin 1
and UTF−8. In EBCDIC the first example would be
$foo = pack("WWWW",193,194,195,196);

$foo = pack("s2",1,2);
" \1\0\2\0" on little−endian
" \0\1\0\2" on big−endian

$foo = pack("a4","abcd","x","y","z");

124 2007-12-18 perl v5.10.0

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

" abcd"

$foo = pack("aaaa","abcd","x","y","z");
" axyz"

$foo = pack("a14","abcdefg");
" abcdefg\0\0\0\0\0\0\0"

$foo = pack("i9pl", gmtime);
a r eal struct tm (on my system anyway)

$utmp_template = "Z8 Z8 Z16 L";
$utmp = pack($utmp_template, @utmp1);
a s truct utmp (BSDish)

@utmp2 = unpack($utmp_template, $utmp);
" @utmp1" eq "@utmp2"

sub bintodec {
unpack("N", pack("B32", substr("0" x 32 . shift, −32)));

}

$foo = pack('sx2l', 12, 34);
s hort 12, two zero bytes padding, long 34
$bar = pack('s@4l', 12, 34);
s hort 12, zero fill to position 4, long 34
$foo eq $bar
$baz = pack('s.l', 12, 4, 34);
s hort 12, zero fill to position 4, long 34

$foo = pack('nN', 42, 4711);
pack big−endian 16− and 32−bit unsigned integers
$foo = pack('S>L>', 42, 4711);
exactly the same
$foo = pack('s<l<', −42, 4711);
pack little−endian 16− and 32−bit signed integers
$foo = pack('(sl)<', −42, 4711);
exactly the same

The same template may generally also be used inunpack().

packageNAMESPACE
package Declaresthe compilation unit as being in the given namespace. Thescope of the package

declaration is from the declaration itself through the end of the enclosing block, file, or eval (the
same as themy operator). Allfurther unqualified dynamic identifiers will be in this namespace.
A package statement affects only dynamic variables — includingthose you’ve used local
on — but not lexical variables, which are created withmy. Typically it would be the first
declaration in a file to be included by therequire or use operator. You can switch into a
package in more than one place; it merely influences which symbol table is used by the compiler
for the rest of that block.You can refer to variables and filehandles in other packages by
prefixing the identifier with the package name and a double colon:$Package::Variable .
If the package name is null, themain package as assumed. That is,$::sail is equivalent to
$main::sail (as well as to$main'sail , still seen in older code).

If NAMESPACE is omitted, then there is no current package, and all identifiers must be fully
qualified or lexicals. However, you are strongly advised not to make use of this feature. Its use
can cause unexpected behaviour, even crashing some versions of Perl. It is deprecated, and will
be removed from a future release.

See ‘‘Packages’’ in perlmod for more information about packages, modules, and classes.See
perlsub for other scoping issues.

perl v5.10.0 2007-12-18 125

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

pipeREADHANDLE,WRITEHANDLE
Opens a pair of connected pipes like the corresponding system call. Note that if you set up a loop
of piped processes, deadlock can occur unless you are very careful.In addition, note that Perl’s
pipes useIO buffering, so you may need to set$| to flush yourWRITEHANDLE after each
command, depending on the application.

See IPC::Open2, IPC::Open3, and ‘‘Bidirectional Communication’’ in perlipc for examples of
such things.

On systems that support a close-on-exec flag on files, the flag will be set for the newly opened file
descriptors as determined by the value of $ˆF. See ‘‘$ˆF’’ in perlvar.

popARRAY
pop Popsand returns the last value of the array, shortening the array by one element.

If there are no elements in the array, returns the undefined value (although this may happen at
other times as well).If ARRAY is omitted, pops the@ARGVarray in the main program, and the
@_array in subroutines, just likeshift .

posSCALAR
pos Returnsthe offset of where the lastm//g search left off for the variable in question ($_ is used

when the variable is not specified). Note that 0 is a valid match offset. undef indicates that the
search position is reset (usually due to match failure, but can also be because no match has yet
been performed on the scalar).pos directly accesses the location used by the regexp engine to
store the offset, so assigning topos will change that offset, and so will also influence the\G
zero-width assertion in regular expressions. Because a failed m//gc match doesn’t reset the
offset, the return frompos won’t change either in this case. See perlre and perlop.

print FILEHANDLE LIST
print LIST
print Printsa string or a list of strings.Returns true if successful.FILEHANDLE may be a scalar

variable name, in which case the variable contains the name of or a reference to the filehandle,
thus introducing one level of indirection. (NOTE: If FILEHANDLE is a variable and the next token
is a term, it may be misinterpreted as an operator unless you interpose a+ or put parentheses
around the arguments.) IfFILEHANDLE is omitted, prints by default to standard output (or to the
last selected output channel— see ‘‘select’’). If LIST is also omitted, prints$_ to the currently
selected output channel.To set the default output channel to something other thanSTDOUT use
the select operation.The current value of$, (if any) is printed between eachLIST item. The
current value of$\ (if any) is printed after the entireLIST has been printed.Because print takes
a LIST, anything in theLIST is evaluated in list context, and any subroutine that you call will have
one or more of its expressions evaluated in list context. Also be careful not to follow the print
keyword with a left parenthesis unless you want the corresponding right parenthesis to terminate
the arguments to the print— interpose a+ or put parentheses around all the arguments.

Note that if you’re storing FILEHANDLEs in an array, or if you’re using any other expression
more complex than a scalar variable to retrieve it, you will have to use a block returning the
filehandle value instead:

print { $files[$i] } "stuff\n";
print { $OK ? STDOUT : STDERR } "stuff\n";

printf FILEHANDLE FORMAT, LIST
printf FORMAT, LIST

Equivalent to print FILEHANDLE sprintf(FORMAT, LIST) , except that$\ (the
output record separator) is not appended. The first argument of the list will be interpreted as the
printf format. Seesprintf for an explanation of the format argument. Ifuse locale is
in effect, andPOSIX::setlocale()has been called, the character used for the decimal separator in
formatted floating point numbers is affected by theLC_NUMERIC locale. Seeperllocale and
POSIX.

Don’t fall into the trap of using aprintf when a simpleprint would do. Theprint is more
efficient and less error prone.

126 2007-12-18 perl v5.10.0

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

prototypeFUNCTION
Returns the prototype of a function as a string (orundef if the function has no prototype).
FUNCTION is a reference to, or the name of, the function whose prototype you want to retrieve.

If FUNCTION is a string starting withCORE:: , the rest is taken as a name for Perl builtin. If the
builtin is not overridable (such asqw//) or if i ts arguments cannot be adequately expressed by a
prototype (such assystem), prototype() returnsundef , because the builtin does not really
behave like a Perl function. Otherwise, the string describing the equivalent prototype is returned.

pushARRAY,LIST
TreatsARRAY as a stack, and pushes the values ofLIST onto the end ofARRAY. The length of
ARRAY increases by the length ofLIST. Has the same effect as

for $value (LIST) {
$ARRAY[++$#ARRAY] = $value;

}

but is more efficient. Returnsthe number of elements in the array following the completed
push .

q/STRING/
qq/STRING/
qr/STRING/
qx/STRING/
qw/STRING/

Generalized quotes. See ‘‘Regexp Quote-Like Operators’’ in perlop.

quotemetaEXPR
quotemeta

Returns the value ofEXPR with all non−‘‘word’’ characters backslashed. (That is, all characters
not matching/[A−Za−z_0−9]/ will be preceded by a backslash in the returned string,
regardless of any locale settings.)This is the internal function implementing the\Q escape in
double-quoted strings.

If EXPR is omitted, uses$_ .

randEXPR
rand Returnsa random fractional number greater than or equal to0 and less than the value ofEXPR.

(EXPR should be positive.) If EXPR is omitted, the value 1 is used. Currently EXPR with the
value 0 is also special-cased as1 − this has not been documented before perl 5.8.0 and is subject
to change in future versions of perl.Automatically callssrand unlesssrand has already been
called. Seealsosrand .

Apply int() to the value returned byrand() if you want random integers instead of random
fractional numbers.For example,

int(rand(10))

returns a random integer between0 and9, inclusive.

(Note: If your rand function consistently returns numbers that are too large or too small, then
your version of Perl was probably compiled with the wrong number ofRANDBITS.)

readFILEHANDLE,SCALAR,LENGTH,OFFSET
readFILEHANDLE,SCALAR,LENGTH

Attempts to readLENGTH characters of data into variable SCALAR from the specified
FILEHANDLE. Returns the number of characters actually read,0 at end of file, or undef if there
was an error (in the latter case$! is also set).SCALAR will be grown or shrunk so that the last
character actually read is the last character of the scalar after the read.

An OFFSETmay be specified to place the read data at some place in the string other than the
beginning. A negative OFFSETspecifies placement at that many characters counting backwards
from the end of the string.A positive OFFSETgreater than the length ofSCALAR results in the
string being padded to the required size with"\0" bytes before the result of the read is
appended.

The call is actually implemented in terms of either Perl’s or system’sfread() call. To get a true

perl v5.10.0 2007-12-18 127

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

read(2) system call, seesysread .

Note thecharacters: depending on the status of the filehandle, either (8−bit) bytes or characters
are read. By default all filehandles operate on bytes, but for example if the filehandle has been
opened with the:utf8 I/O layer (see ‘‘open’’, and theopen pragma, open), the I/O will operate
on UTF−8 encoded Unicode characters, not bytes. Similarly for the:encoding pragma: in that
case pretty much any characters can be read.

readdirDIRHANDLE
Returns the next directory entry for a directory opened byopendir . If used in list context,
returns all the rest of the entries in the directory. If there are no more entries, returns an
undefined value in scalar context or a null list in list context.

If you’re planning to filetest the return values out of areaddir , you’d better prepend the
directory in question. Otherwise, because we didn’t chdir there, it would have been testing the
wrong file.

opendir(DIR, $some_dir) || die "can't opendir $some_dir: $!";
@dots = grep { /ˆ\./ && −f "$some_dir/$_" } readdir(DIR);
closedir DIR;

readlineEXPR
readline Readsfrom the filehandle whose typeglob is contained inEXPR (or from *ARGV if EXPR is not

provided). Inscalar context, each call reads and returns the next line, until end-of-file is reached,
whereupon the subsequent call returns undef. In list context, reads until end-of-file is reached
and returns a list of lines.Note that the notion of ‘‘line’ ’ used here is however you may have
defined it with$/ or $INPUT_RECORD_SEPARATOR). See‘‘ $/’’ in perlvar.

When$/ is set toundef , whenreadline() is in scalar context (i.e. file slurp mode), and when an
empty file is read, it returns'' the first time, followed byundef subsequently.

This is the internal function implementing the<EXPR>operator, but you can use it directly. The
<EXPR>operator is discussed in more detail in ‘‘I/O Operators’’ in perlop.

$line = <STDIN>;
$line = readline(*STDIN); # s ame thing

If readline encounters an operating system error, $! will be set with the corresponding error
message. Itcan be helpful to check$! when you are reading from filehandles you don’t trust,
such as a tty or a socket. Thefollowing example uses the operator form ofreadline , and takes
the necessary steps to ensure thatreadline was successful.

for (;;) {
undef $!;
unless (defined($line = <>)) {

die $! if $!;
last; # reached EOF

}
. ..

}

readlinkEXPR
readlink Returnsthe value of a symbolic link, if symbolic links are implemented.If not, gives a fatal

error. If there is some system error, returns the undefined value and sets$! (errno). If EXPR is
omitted, uses$_ .

readpipeEXPR
readpipeEXPR is executed as a system command. The collected standard output of the command is

returned. Inscalar context, it comes back as a single (potentially multi-line) string. In list
context, returns a list of lines (however you’ve defined lines with $/ or
$INPUT_RECORD_SEPARATOR). This is the internal function implementing theqx/EXPR/
operator, but you can use it directly. Theqx/EXPR/ operator is discussed in more detail in ‘‘I/O
Operators’’ in perlop. If EXPR is omitted, uses$_ .

128 2007-12-18 perl v5.10.0

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

recvSOCKET,SCALAR,LENGTH,FLAGS
Receives a message on a socket. Attemptsto receive LENGTH characters of data into variable
SCALAR from the specifiedSOCKETfilehandle. SCALAR will be grown or shrunk to the length
actually read.Takes the same flags as the system call of the same name.Returns the address of
the sender ifSOCKET’s protocol supports this; returns an empty string otherwise. If there’s an
error, returns the undefined value. Thiscall is actually implemented in terms ofrecvfrom(2)
system call. See ‘‘UDP: Message Passing’’ in perlipc for examples.

Note thecharacters: depending on the status of the socket, either (8−bit) bytes or characters are
received. By default all sockets operate on bytes, but for example if the socket has been changed
using binmode()to operate with the:encoding(utf8) I/O layer (see theopen pragma,
open), the I/O will operate onUTF−8 encoded Unicode characters, not bytes.Similarly for the
:encoding pragma: in that case pretty much any characters can be read.

redoLABEL
redo Theredo command restarts the loop block without evaluating the conditional again. The

continue block, if any, is not executed. If the LABEL is omitted, the command refers to the
innermost enclosing loop. Programs that want to lie to themselves about what was just input
normally use this command:

a s impleminded Pascal comment stripper
(warning: assumes no { or } in strings)
LINE: while (<STDIN>) {

while (s|({.*}.*){.*}|$1 |) {}
s|{.*}| |;
if (s|{.*| |) {

$front = $_;
while (<STDIN>) {

if (/}/) { # end of comment?
s|ˆ|$front\{|;
redo LINE;

}
}

}
print;

}

redo cannot be used to retry a block which returns a value such aseval {} , sub {} or do
{} , and should not be used to exit agrep()or map()operation.

Note that a block by itself is semantically identical to a loop that executes once.Thus redo
inside such a block will effectively turn it into a looping construct.

See also ‘‘continue’’ f or an illustration of howlast , next , and redo work.

ref EXPR
ref Returnsa non-empty string ifEXPR is a reference, the empty string otherwise. IfEXPR is not

specified,$_ will be used. The value returned depends on the type of thing the reference is a
reference to. Builtin types include:

SCALAR
ARRAY
HASH
CODE
REF
GLOB
LVALUE
FORMAT
IO
VSTRING
Regexp

If the referenced object has been blessed into a package, then that package name is returned

perl v5.10.0 2007-12-18 129

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

instead. You can think ofref as atypeof operator.

if (ref($r) eq "HASH") {
print "r is a reference to a hash.\n";

}
unless (ref($r)) {

print "r is not a reference at all.\n";
}

The return valueLVALUE indicates a reference to an lvalue that is not a variable. You get this
from taking the reference of function calls like pos() or substr() . VSTRING is returned if
the reference points to a version string.

The resultRegexp indicates that the argument is a regular expression resulting fromqr// .

See also perlref.

renameOLDNAME,NEWNAME
Changes the name of a file; an existing fileNEWNAME will be clobbered. Returns true for
success, false otherwise.

Behavior of this function varies wildly depending on your system implementation.For example,
it will usually not work across file system boundaries, even though the systemmv command
sometimes compensates for this.Other restrictions include whether it works on directories, open
files, or pre-existing files. Check perlport and either therename(2) manpage or equivalent
system documentation for details.

For a platform independentmove function look at the File::Copy module.

requireVERSION
requireEXPR
require Demandsa version of Perl specified byVERSION, or demands some semantics specified byEXPR

or by$_ if EXPR is not supplied.

VERSION may be either a numeric argument such as 5.006, which will be compared to$] , or a
literal of the form v5.6.1, which will be compared to$ˆV (aka$PERL_VERSION). A fatal error
is produced at run time ifVERSION is greater than the version of the current Perl interpreter.
Compare with ‘‘use’’, which can do a similar check at compile time.

SpecifyingVERSION as a literal of the form v5.6.1 should generally be avoided, because it leads
to misleading error messages under earlier versions of Perl that do not support this syntax.The
equivalent numeric version should be used instead.

require v5.6.1; # r un time version check
require 5.6.1; # ditto
require 5.006_001; # ditto; preferred for backwards compatibility

Otherwise,require demands that a library file be included if it hasn’t already been included.
The file is included via the do-FILE mechanism, which is essentially just a variety ofeval with
the caveat that lexical variables in the invoking script will be invisible to the included code.Has
semantics similar to the following subroutine:

sub require {
my ($filename) = @_;
if (exists $INC{$filename}) {

return 1 if $INC{$filename};
die "Compilation failed in require";

}
my ($realfilename,$result);
ITER: {

foreach $prefix (@INC) {
$realfilename = "$prefix/$filename";
if (−f $realfilename) {

$INC{$filename} = $realfilename;
$result = do $realfilename;

130 2007-12-18 perl v5.10.0

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

last ITER;
}

}
die "Can't find $filename in \@INC";

}
if ($@) {

$INC{$filename} = undef;
die $@;

} e lsif (!$result) {
delete $INC{$filename};
die "$filename did not return true value";

} e lse {
return $result;

}
}

Note that the file will not be included twice under the same specified name.

The file must return true as the last statement to indicate successful execution of any initialization
code, so it’s customary to end such a file with1; unless you’re sure it’ll return true otherwise.
But it’s better just to put the1; , in case you add more statements.

If EXPR is a bareword, the require assumes a ".pm‘‘ extension and replaces ’’ :: ‘‘ w ith ’’ /" in the
filename for you, to make it easy to load standard modules. This form of loading of modules
does not risk altering your namespace.

In other words, if you try this:

require Foo::Bar; # a s plendid bareword

The require function will actually look for the "Foo/Bar.pm" fi le in the directories specified in the
@INCarray.

But if you try this:

$class = 'Foo::Bar';
require $class; # $class is not a bareword

#or
require "Foo::Bar"; # not a bareword because of the ""

The require function will look for the "Foo::Bar‘‘ fi le in the@INCarray and will complain about
not finding ’’Foo::Bar" there. Inthis case you can do:

eval "require $class";

Now that you understand how require looks for files in the case of a bareword argument, there
is a little extra functionality going on behind the scenes.Before require looks for a ".pm‘‘
extension, it will first look for a similar filename with a ’’ .pmc‘‘ extension. If this file is found, it
will be loaded in place of any file ending in a ’’.pm" extension.

You can also insert hooks into the import facility, by putting directly Perl code into the@INC
array. There are three forms of hooks: subroutine references, array references and blessed
objects.

Subroutine references are the simplest case. When the inclusion system walks through@INCand
encounters a subroutine, this subroutine gets called with two parameters, the first being a
reference to itself, and the second the name of the file to be included (e.g. "Foo/Bar.pm"). The
subroutine should return nothing, or a list of up to three values in the following order:

1. A filehandle, from which the file will be read.

2. A reference to a subroutine. If there is no filehandle (previous item), then this subroutine is
expected to generate one line of source code per call, writing the line into$_ and returning
1, then returning 0 at ‘‘end of file’’. If there is a filehandle, then the subroutine will be called
to act a simple source filter, with the line as read in$_ . Again, return 1 for each valid line,
and 0 after all lines have been returned.

perl v5.10.0 2007-12-18 131

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

3. Optionalstate for the subroutine. The state is passed in as$_[1] . A reference to the
subroutine itself is passed in as$_[0] .

If an empty list,undef , or nothing that matches the first 3 values above is returned then
require will look at the remaining elements of@INC. Note that this file handle must be a real
file handle (strictly a typeglob, or reference to a typeglob, blessed or unblessed) − tied file handles
will be ignored and return value processing will stop there.

If the hook is an array reference, its first element must be a subroutine reference. This subroutine
is called as above, but the first parameter is the array reference. This enables to pass indirectly
some arguments to the subroutine.

In other words, you can write:

push @INC, \&my_sub;
sub my_sub {

my ($coderef, $filename) = @_; # $coderef is \&my_sub
...

}

or:

push @INC, [\&my_sub, $x, $y, ...];
sub my_sub {

my ($arrayref, $filename) = @_;
Retrieve $x, $y, ...
my @parameters = @$arrayref[1..$#$arrayref];
...

}

If the hook is an object, it must provide an INC method that will be called as above, the first
parameter being the object itself. (Note that you must fully qualify the sub’s name, as unqualified
INC is always forced into packagemain .) Hereis a typical code layout:

In F oo.pm
package Foo;
sub new { ... }
sub Foo::INC {

my ($self, $filename) = @_;
...

}

In t he main program
push @INC, new Foo(...);

Note that these hooks are also permitted to set the%INC entry corresponding to the files they
have loaded. See ‘‘%INC’’ in perlvar.

For a yet-more-powerful import facility, see ‘‘use’’ and perlmod.

resetEXPR
reset Generallyused in acontinue block at the end of a loop to clear variables and reset?? searches

so that they work again. Theexpression is interpreted as a list of single characters (hyphens
allowed for ranges). All variables and arrays beginning with one of those letters are reset to their
pristine state.If the expression is omitted, one-match searches (?pattern?) are reset to match
again. Resetsonly variables or searches in the current package. Always returns 1. Examples:

reset 'X'; # r eset all X variables
reset 'a−z'; # r eset lower case variables
reset; # just reset ?one−time? searches

Resetting"A−Z" is not recommended because you’ll wipe out your@ARGVand @INCarrays
and your%ENVhash. Resetsonly package variables — lexical variables are unaffected, but they
clean themselves up on scope exit anyway, so you’ll probably want to use them instead.See
‘‘ my’’.

132 2007-12-18 perl v5.10.0

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

returnEXPR
return Returnsfrom a subroutine,eval , or do FILE with the value given in EXPR. Evaluation of

EXPRmay be in list, scalar, or void context, depending on how the return value will be used, and
the context may vary from one execution to the next (seewantarray). If no EXPR is given,
returns an empty list in list context, the undefined value in scalar context, and (of course) nothing
at all in a void context.

(Note that in the absence of an explicit return , a subroutine, eval, or doFILE will automatically
return the value of the last expression evaluated.)

reverseLIST
In list context, returns a list value consisting of the elements ofLIST in the opposite order. In
scalar context, concatenates the elements ofLIST and returns a string value with all characters in
the opposite order.

print reverse <>; # l ine tac, last line first

undef $/; # f or efficiency of <>
print scalar reverse <>; # c haracter tac, last line tsrif

Used without arguments in scalar context,re verse()reverses$_ .

This operator is also handy for inverting a hash, although there are some caveats. If a value is
duplicated in the original hash, only one of those can be represented as a key in the inverted hash.
Also, this has to unwind one hash and build a whole new one, which may take some time on a
large hash, such as from aDBM file.

%by_name = reverse %by_address; # I nvert the hash

rewinddirDIRHANDLE
Sets the current position to the beginning of the directory for thereaddir routine on
DIRHANDLE.

rindexSTR,SUBSTR,POSITION
rindexSTR,SUBSTR

Works just like index() except that it returns the position of thelast occurrence ofSUBSTR in
STR. If POSITIONis specified, returns the last occurrence beginning at or before that position.

rmdir FILENAME
rmdir Deletesthe directory specified byFILENAME if that directory is empty. If it succeeds it returns

true, otherwise it returns false and sets$! (errno). IfFILENAME is omitted, uses$_ .

To remove a directory tree recursively (rm −rf on unix) look at thermtree function of the
File::Path module.

s/// Thesubstitution operator. See perlop.

sayFILEHANDLE LIST
sayLIST
say Justlike print , but implicitly appends a newline. say LIST is simply an abbreviation for{

local $\ = "\n"; print LIST } .

This keyword is only available when the ‘‘say’’ f eature is enabled: see feature.

scalarEXPR
ForcesEXPR to be interpreted in scalar context and returns the value ofEXPR.

@counts = (scalar @a, scalar @b, scalar @c);

There is no equivalent operator to force an expression to be interpolated in list context because in
practice, this is never needed. Ifyou really wanted to do so, however, you could use the
construction@{[(some expression)]} , but usually a simple(some expression)
suffices.

Becausescalar is unary operator, if you accidentally use forEXPR a parenthesized list, this
behaves as a scalar comma expression, evaluating all but the last element in void context and
returning the final element evaluated in scalar context. Thisis seldom what you want.

perl v5.10.0 2007-12-18 133

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

The following single statement:

print uc(scalar(&foo,$bar)),$baz;

is the moral equivalent of these two:

&foo;
print(uc($bar),$baz);

See perlop for more details on unary operators and the comma operator.

seekFILEHANDLE,POSITION,WHENCE
SetsFILEHANDLE’s position, just like the fseek call of stdio . FILEHANDLE may be an
expression whose value gives the name of the filehandle. The values forWHENCEare0 to set the
new position in bytesto POSITION, 1 to set it to the current position plusPOSITION, and 2 to set
it to EOF plus POSITION (typically negative). For WHENCE you may use the constants
SEEK_SET, SEEK_CUR, and SEEK_END(start of the file, current position, end of the file) from
the Fcntl module. Returns1 upon success,0 otherwise.

Note thein bytes: even if the filehandle has been set to operate on characters (for example by
using the:encoding(utf8) open layer),tell() will return byte offsets, not character offsets
(because implementing that would renderseek()andtell() rather slow).

If you want to position file forsysread or syswrite , don’t useseek −−buffering makes its
effect on the file’s system position unpredictable and non-portable. Usesysseek instead.

Due to the rules and rigors ofANSI C, on some systems you have to do a seek whenever you
switch between reading and writing.Amongst other things, this may have the effect of calling
stdio’sclearerr(3). A WHENCEof 1 (SEEK_CUR) is useful for not moving the file position:

seek(TEST,0,1);

This is also useful for applications emulatingtail −f . Once you hitEOF on your read, and
then sleep for a while, you might have to stick in a seek()to reset things.The seek doesn’t
change the current position, but itdoesclear the end-of-file condition on the handle, so that the
next<FILE> makes Perl try again to read something.We hope.

If that doesn’t work (someIO implementations are particularly cantankerous), then you may need
something more like this:

for (;;) {
for ($curpos = tell(FILE); $_ = <FILE>;

$curpos = tell(FILE)) {
s earch for some stuff and put it into files

}
sleep($for_a_while);
seek(FILE, $curpos, 0);

}

seekdirDIRHANDLE,POS
Sets the current position for thereaddir routine on DIRHANDLE. POS must be a value
returned bytelldir . seekdir also has the same caveats about possible directory compaction
as the corresponding system library routine.

selectFILEHANDLE
select Returnsthe currently selected filehandle.If FILEHANDLE is supplied, sets the new current

default filehandle for output. This has two effects: first, awrite or a print without a
filehandle will default to thisFILEHANDLE. Second, references to variables related to output will
refer to this output channel.For example, if you have to set the top of form format for more than
one output channel, you might do the following:

select(REPORT1);
$ˆ = 'report1_top';
select(REPORT2);
$ˆ = 'report2_top';

FILEHANDLE may be an expression whose value gives the name of the actual filehandle. Thus:

134 2007-12-18 perl v5.10.0

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

$oldfh = select(STDERR); $| = 1; select($oldfh);

Some programmers may prefer to think of filehandles as objects with methods, preferring to write
the last example as:

use IO::Handle;
STDERR−>autoflush(1);

selectRBITS,WBITS,EBITS,TIMEOUT
This calls theselect(2) system call with the bit masks specified, which can be constructed using
fileno andvec , along these lines:

$rin = $win = $ein = '';
vec($rin,fileno(STDIN),1) = 1;
vec($win,fileno(STDOUT),1) = 1;
$ein = $rin | $win;

If you want to select on many filehandles you might wish to write a subroutine:

sub fhbits {
my(@fhlist) = split(' ',$_[0]);
my($bits);
for (@fhlist) {

vec($bits,fileno($_),1) = 1;
}
$bits;

}
$rin = fhbits('STDIN TTY SOCK');

The usual idiom is:

($nfound,$timeleft) =
select($rout=$rin, $wout=$win, $eout=$ein, $timeout);

or to block until something becomes ready just do this

$nfound = select($rout=$rin, $wout=$win, $eout=$ein, undef);

Most systems do not bother to return anything useful in$timeleft , so calling select()in scalar
context just returns$nfound .

Any of the bit masks can also be undef.The timeout, if specified, is in seconds, which may be
fractional. Note:not all implementations are capable of returning the$timeleft . If not, they
always return$timeleft equal to the supplied$timeout .

You can effect a sleep of 250 milliseconds this way:

select(undef, undef, undef, 0.25);

Note that whetherselect gets restarted after signals (say, SIGALRM) is implementation-
dependent. Seealso perlport for notes on the portability ofselect .

On error,select behaves like theselect(2) system call : it returns −1 and sets$! .

Note: on some Unixes, theselect(2) system call may report a socket file descriptor as ‘‘ready for
reading’’, when actually no data is available, thus a subsequent read blocks. It can be avoided
using always the O_NONBLOCK flag on the socket. Seeselect(2) and fcntl (2) for further
details.

WARNING : One should not attempt to mix buffered I/O (like read or <FH>) with select ,
except as permitted byPOSIX, and even then only onPOSIXsystems. You have to usesysread
instead.

semctlID,SEMNUM,CMD,ARG
Calls the System VIPC functionsemctl . You’ll probably have to say

use IPC::SysV;

first to get the correct constant definitions.If CMD is IPC_STAT or GETALL, thenARG must be a

perl v5.10.0 2007-12-18 135

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

variable that will hold the returned semid_ds structure or semaphore value array. Returns like
ioctl : the undefined value for error, "0 but true " for zero, or the actual return value
otherwise. TheARG must consist of a vector of native short integers, which may be created with
pack("s!",(0)x$nsem) . See also ‘‘SysV IPC’’ i n perlipc, IPC::SysV ,
IPC::Semaphore documentation.

semgetKEY,NSEMS,FLAGS
Calls the System VIPC function semget. Returns the semaphore id, or the undefined value if
there is an error. See also ‘‘SysV IPC’’ i n perlipc, IPC::SysV , IPC::SysV::Semaphore
documentation.

semopKEY,OPSTRING
Calls the System VIPC function semop to perform semaphore operations such as signalling and
waiting. OPSTRINGmust be a packed array of semop structures.Each semop structure can be
generated withpack("s!3", $semnum, $semop, $semflag) . The length of
OPSTRING implies the number of semaphore operations. Returns true if successful, or false if
there is an error. As an example, the following code waits on semaphore$semnumof semaphore
id $semid:

$semop = pack("s!3", $semnum, −1, 0);
die "Semaphore trouble: $!\n" unless semop($semid, $semop);

To signal the semaphore, replace−1 with 1. See also ‘‘SysV IPC’’ i n perlipc, IPC::SysV , and
IPC::SysV::Semaphore documentation.

sendSOCKET,MSG,FLAGS,TO
sendSOCKET,MSG,FLAGS

Sends a message on a socket. Attemptsto send the scalarMSG to theSOCKETfilehandle. Takes
the same flags as the system call of the same name.On unconnected sockets you must specify a
destination to sendTO, in which case it does a Csendto . Returns the number of characters
sent, or the undefined value if there is an error. The C system callsendmsg(2) is currently
unimplemented. See‘‘ UDP: Message Passing’’ in perlipc for examples.

Note thecharacters: depending on the status of the socket, either (8−bit) bytes or characters are
sent. Bydefault all sockets operate on bytes, but for example if the socket has been changed
usingbinmode()to operate with the:encoding(utf8) I/O layer (see ‘‘open’’, or the open
pragma, open), the I/O will operate onUTF−8 encoded Unicode characters, not bytes.Similarly
for the:encoding pragma: in that case pretty much any characters can be sent.

setpgrpPID,PGRP
Sets the current process group for the specifiedPID, 0 for the current process.Will produce a
fatal error if used on a machine that doesn’t implementPOSIX setpgid(2) or BSD setpgrp(2). If
the arguments are omitted, it defaults to0,0 . Note that theBSD 4.2 version ofsetpgrp does
not accept any arguments, so onlysetpgrp(0,0) is portable. See alsoPOSIX::setsid() .

setpriorityWHICH,WHO,PRIORITY
Sets the current priority for a process, a process group, or a user. (Seesetpriority(2).) Will
produce a fatal error if used on a machine that doesn’t implementsetpriority(2).

setsockoptSOCKET,LEVEL,OPTNAME,OPTVAL
Sets the socket option requested. Returns undefined if there is an error. Use integer constants
provided by theSocket module for LEVEL and OPNAME. Values forLEVEL can also be
obtained from getprotobyname.OPTVAL might either be a packed string or an integer. An
integerOPTVAL is shorthand for pack(‘‘i’’,OPTVAL).

An example disabling the Nagle’s algorithm for a socket:

use Socket qw(IPPROTO_TCP TCP_NODELAY);
setsockopt($socket, IPPROTO_TCP, TCP_NODELAY, 1);

shift ARRAY
shift Shifts the first value of the array off and returns it, shortening the array by 1 and moving

ev erything down. If there are no elements in the array, returns the undefined value. IfARRAY is
omitted, shifts the@_array within the lexical scope of subroutines and formats, and the@ARGV
array outside of a subroutine and also within the lexical scopes established by theeval

136 2007-12-18 perl v5.10.0

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

STRING, BEGIN {} , INIT {} , CHECK {} , UNITCHECK {} andEND {} constructs.

See alsounshift , push , and pop . shift andunshift do the same thing to the left end of
an array thatpop andpush do to the right end.

shmctlID,CMD,ARG
Calls the System VIPC function shmctl.You’ll probably have to say

use IPC::SysV;

first to get the correct constant definitions.If CMD is IPC_STAT, thenARG must be a variable
that will hold the returnedshmid_ds structure. Returnslike ioctl: the undefined value for error,
"0 but true" for zero, or the actual return value otherwise. See also ‘‘SysV IPC’’ i n perlipc and
IPC::SysV documentation.

shmgetKEY,SIZE,FLAGS
Calls the System VIPC function shmget. Returns the shared memory segment id, or the
undefined value if there is an error. See also ‘‘SysV IPC’’ i n perlipc and IPC::SysV
documentation.

shmreadID,VAR,POS,SIZE
shmwriteID,STRING,POS,SIZE

Reads or writes the System V shared memory segmentID starting at positionPOSfor sizeSIZE
by attaching to it, copying in/out, and detaching from it.When reading,VAR must be a variable
that will hold the data read. When writing, ifSTRING is too long, onlySIZE bytes are used; if
STRING is too short, nulls are written to fill outSIZE bytes. Returntrue if successful, or false if
there is an error. shmread()taints the variable. See also ‘‘SysV IPC’’ i n perlipc, IPC::SysV
documentation, and theIPC::Shareable module fromCPAN.

shutdownSOCKET,HOW
Shuts down a socket connection in the manner indicated byHOW, which has the same
interpretation as in the system call of the same name.

shutdown(SOCKET, 0); # I /we have stopped reading data
shutdown(SOCKET, 1); # I /we have stopped writing data
shutdown(SOCKET, 2); # I /we have stopped using this socket

This is useful with sockets when you want to tell the other side you’re done writing but not done
reading, or vice versa. It’s also a more insistent form of close because it also disables the file
descriptor in any forked copies in other processes.

sin EXPR
sin Returnsthe sine ofEXPR(expressed in radians). IfEXPR is omitted, returns sine of$_ .

For the inverse sine operation, you may use theMath::Trig::asin function, or use this
relation:

sub asin { atan2($_[0], sqrt(1 − $_[0] * $_[0])) }

sleepEXPR
sleep Causesthe script to sleep forEXPR seconds, or forever if no EXPR. May be interrupted if the

process receives a signal such asSIGALRM. Returns the number of seconds actually slept.You
probably cannot mixalarm and sleep calls, becausesleep is often implemented using
alarm .

On some older systems, it may sleep up to a full second less than what you requested, depending
on how it counts seconds.Most modern systems always sleep the full amount.They may appear
to sleep longer than that, however, because your process might not be scheduled right away in a
busy multitasking system.

For delays of finer granularity than one second, the Time::HiRes module (fromCPAN, and
starting from Perl 5.8 part of the standard distribution) providesusleep(). You may also use Perl’s
four-argument version ofselect()leaving the first three arguments undefined, or you might be
able to use thesyscall interface to accesssetitimer(2) if your system supports it. See perlfaq8
for details.

See also thePOSIXmodule’spause function.

perl v5.10.0 2007-12-18 137

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

socketSOCKET,DOMAIN,TYPE,PROT OCOL
Opens a socket of the specified kind and attaches it to filehandleSOCKET. DOMAIN , TYPE, and
PROT OCOL are specified the same as for the system call of the same name.You should use
Socket first to get the proper definitions imported. See the examples in ‘‘Sockets: Client/Server
Communication’’ in perlipc.

On systems that support a close-on-exec flag on files, the flag will be set for the newly opened file
descriptor, as determined by the value of $ˆF. See ‘‘$ˆF’’ in perlvar.

socketpairSOCKET1,SOCKET2,DOMAIN,TYPE,PROT OCOL
Creates an unnamed pair of sockets in the specified domain, of the specified type.DOMAIN ,
TYPE, and PROT OCOL are specified the same as for the system call of the same name.If
unimplemented, yields a fatal error. Returns true if successful.

On systems that support a close-on-exec flag on files, the flag will be set for the newly opened file
descriptors, as determined by the value of $ˆF. See ‘‘$ˆF’’ in perlvar.

Some systems definedpipe in terms ofsocketpair , in which a call topipe(Rdr, Wtr)
is essentially:

use Socket;
socketpair(Rdr, Wtr, AF_UNIX, SOCK_STREAM, PF_UNSPEC);
shutdown(Rdr, 1); # no more writing for reader
shutdown(Wtr, 0); # no more reading for writer

See perlipc for an example of socketpair use. Perl 5.8 and later will emulate socketpair usingIP
sockets to localhost if your system implements sockets but not socketpair.

sortSUBNAME LIST
sortBLOCK LIST
sortLIST

In list context, this sorts theLIST and returns the sorted list value. In scalar context, the
behaviour ofsort() is undefined.

If SUBNAME or BLOCK is omitted,sort s in standard string comparison order. If SUBNAME is
specified, it gives the name of a subroutine that returns an integer less than, equal to, or greater
than0, depending on how the elements of the list are to be ordered.(The<=> andcmp operators
are extremely useful in such routines.)SUBNAME may be a scalar variable name
(unsubscripted), in which case the value provides the name of (or a reference to) the actual
subroutine to use.In place of aSUBNAME, you can provide aBLOCK as an anonymous, in-line
sort subroutine.

If the subroutine’s prototype is($$) , the elements to be compared are passed by reference in
@_, as for a normal subroutine.This is slower than unprototyped subroutines, where the elements
to be compared are passed into the subroutine as the package global variables$a and$b (see
example below). Note that in the latter case, it is usually counter-productive to declare$a and
$b as lexicals.

The values to be compared are always passed by reference and should not be modified.

You also cannot exit out of the sort block or subroutine using any of the loop control operators
described in perlsyn or withgoto .

When use locale is in effect, sort LIST sorts LIST according to the current collation
locale. Seeperllocale.

sort() returns aliases into the original list, much as a for loop’s index variable aliases the list
elements. Thatis, modifying an element of a list returned bysort() (for example, in aforeach ,
map or grep) actually modifies the element in the original list.This is usually something to be
avoided when writing clear code.

Perl 5.6 and earlier used a quicksort algorithm to implement sort. That algorithm was not stable,
andcouldgo quadratic.(A stablesort preserves the input order of elements that compare equal.
Although quicksort’s run time is O(NlogN) when averaged over all arrays of length N, the time
can be O(N**2),quadraticbehavior, for some inputs.)In 5.7, the quicksort implementation was
replaced with a stable mergesort algorithm whose worst-case behavior is O(NlogN).But

138 2007-12-18 perl v5.10.0

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

benchmarks indicated that for some inputs, on some platforms, the original quicksort was faster.
5.8 has a sort pragma for limited control of the sort.Its rather blunt control of the underlying
algorithm may not persist into future Perls, but the ability to characterize the input or output in
implementation independent ways quite probably will. See sort.

Examples:

s ort lexically
@articles = sort @files;

s ame thing, but with explicit sort routine
@articles = sort {$a cmp $b} @files;

now case−insensitively
@articles = sort {uc($a) cmp uc($b)} @files;

s ame thing in reversed order
@articles = sort {$b cmp $a} @files;

s ort numerically ascending
@articles = sort {$a <=> $b} @files;

s ort numerically descending
@articles = sort {$b <=> $a} @files;

t his sorts the %age hash by value instead of key
using an in−line function
@eldest = sort { $age{$b} <=> $age{$a} } keys %age;

s ort using explicit subroutine name
sub byage {

$age{$a} <=> $age{$b}; # presuming numeric
}
@sortedclass = sort byage @class;

sub backwards { $b cmp $a }
@harry = qw(dog cat x Cain Abel);
@george = qw(gone chased yz Punished Axed);
print sort @harry;

prints AbelCaincatdogx
print sort backwards @harry;

prints xdogcatCainAbel
print sort @george, 'to', @harry;

prints AbelAxedCainPunishedcatchaseddoggonetoxyz

i nefficiently sort by descending numeric compare using
t he first integer after the first = sign, or the
whole record case−insensitively otherwise

@new = sort {
($b =˜ /=(\d+)/)[0] <=> ($a =˜ /=(\d+)/)[0]

||
uc($a) cmp uc($b)

} @old;

s ame thing, but much more efficiently;
we'll build auxiliary indices instead
f or speed
@nums = @caps = ();
for (@old) {

perl v5.10.0 2007-12-18 139

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

push @nums, /=(\d+)/;
push @caps, uc($_);

}

@new = @old[sort {
$nums[$b] <=> $nums[$a]

||
$caps[$a] cmp $caps[$b]

} 0 ..$#old
];

s ame thing, but without any temps
@new = map { $_−>[0] }

sort { $b−>[1] <=> $a−>[1]
||

$a−>[2] cmp $b−>[2]
} map { [$_, /=(\d+)/, uc($_)] } @old;

using a prototype allows you to use any comparison subroutine
as a s ort subroutine (including other package's subroutines)
package other;
sub backwards ($$) { $_[1] cmp $_[0]; } # $a a nd $b are not set here

package main;
@new = sort other::backwards @old;

guarantee stability, regardless of algorithm
use sort 'stable';
@new = sort { substr($a, 3, 5) cmp substr($b, 3, 5) } @old;

f orce use of mergesort (not portable outside Perl 5.8)
use sort '_mergesort'; # note discouraging _
@new = sort { substr($a, 3, 5) cmp substr($b, 3, 5) } @old;

If you’re using strict, youmust notdeclare$a and $b as lexicals. They are package globals.
That means if you’re in themain package and type

@articles = sort {$b <=> $a} @files;

then $a and $b are $main::a and $main::b (or $::a and $::b), but if you’re in the
FooPack package, it’s the same as typing

@articles = sort {$FooPack::b <=> $FooPack::a} @files;

The comparison function is required to behave. If it returns inconsistent results (sometimes
saying$x[1] is less than$x[2] and sometimes saying the opposite, for example) the results
are not well-defined.

Because<=> returnsundef when either operand isNaN (not-a-number), and becausesort
will trigger a fatal error unless the result of a comparison is defined, when sorting with a
comparison function like $a <=> $b , be careful about lists that might contain aNaN. The
following example takes advantage of the fact thatNaN != NaN to eliminate any NaNs from the
input.

@result = sort { $a <=> $b } grep { $_ == $_ } @input;

spliceARRAY,OFFSET,LENGTH,LIST
spliceARRAY,OFFSET,LENGTH
spliceARRAY,OFFSET
spliceARRAY

Removes the elements designated byOFFSETandLENGTH from an array, and replaces them with
the elements ofLIST, if any. In list context, returns the elements removed from the array. In
scalar context, returns the last element removed, or undef if no elements are removed. The

140 2007-12-18 perl v5.10.0

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

array grows or shrinks as necessary. If OFFSETis negative then it starts that far from the end of
the array. If LENGTH is omitted, removes everything from OFFSET onward. If LENGTH is
negative, removes the elements fromOFFSETonward except for −LENGTH elements at the end
of the array. If both OFFSETandLENGTH are omitted, removes everything. If OFFSETis past the
end of the array, perl issues a warning, and splices at the end of the array.

The following equivalences hold (assuming$[== 0 and $#a >= $i)

push(@a,$x,$y) splice(@a,@a,0,$x,$y)
pop(@a) splice(@a,−1)
shift(@a) splice(@a,0,1)
unshift(@a,$x,$y) splice(@a,0,0,$x,$y)
$a[$i] = $y splice(@a,$i,1,$y)

Example, assuming array lengths are passed before arrays:

sub aeq { # c ompare two list values
my(@a) = splice(@_,0,shift);
my(@b) = splice(@_,0,shift);
return 0 unless @a == @b; # s ame len?
while (@a) {

return 0 if pop(@a) ne pop(@b);
}
return 1;

}
if (&aeq($len,@foo[1..$len],0+@bar,@bar)) { ... }

split /PATTERN/,EXPR,LIMIT
split /PATTERN/,EXPR
split /PATTERN/
split Splitsthe stringEXPR into a list of strings and returns that list.By default, empty leading fields

are preserved, and empty trailing ones are deleted. (If all fields are empty, they are considered to
be trailing.)

In scalar context, returns the number of fields found and splits into the@_array. Use of split in
scalar context is deprecated, however, because it clobbers your subroutine arguments.

If EXPR is omitted, splits the$_ string. If PATTERN is also omitted, splits on whitespace (after
skipping any leading whitespace).Anything matchingPATTERN is taken to be a delimiter
separating the fields. (Note that the delimiter may be longer than one character.)

If LIMIT is specified and positive, it represents the maximum number of fields theEXPR will be
split into, though the actual number of fields returned depends on the number of timesPATTERN
matches withinEXPR. If LIMIT is unspecified or zero, trailing null fields are stripped (which
potential users ofpop would do well to remember).If LIMIT is negative, it is treated as if an
arbitrarily large LIMIT had been specified. Note that splitting anEXPR that evaluates to the
empty string always returns the empty list, regardless of theLIMIT specified.

A pattern matching the null string (not to be confused with a null pattern// , which is just one
member of the set of patterns matching a null string) will split the value ofEXPR into separate
characters at each point it matches that way. For example:

print join(':', split(/ */, 'hi there'));

produces the output ’h:i:t:h:e:r:e’.

As a special case forsplit , using the empty pattern// specifically matches only the null
string, and is not be confused with the regular use of// to mean ‘‘the last successful pattern
match’’. So, for split , the following:

print join(':', split(//, 'hi there'));

produces the output ’h:i: :t:h:e:r:e’.

Empty leading fields are produced when there are positive-width matches at the beginning of the
string; a zero-width match at the beginning of the string does not produce an empty field. For

perl v5.10.0 2007-12-18 141

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

example:

print join(':', split(/(?=\w)/, 'hi there!'));

produces the output ’h:i :t:h:e:r:e!’. Empty trailing fields, on the other hand, are produced when
there is a match at the end of the string (and whenLIMIT is given and is not 0), regardless of the
length of the match.For example:

print join(':', split(//, 'hi there!', −1));
print join(':', split(/\W/, 'hi there!', −1));

produce the output ’h:i: :t:h:e:r:e:!:’ and ’hi:there:’, respectively, both with an empty trailing field.

TheLIMIT parameter can be used to split a line partially

($login, $passwd, $remainder) = split(/:/, $_, 3);

When assigning to a list, ifLIMIT is omitted, or zero, Perl supplies aLIMIT one larger than the
number of variables in the list, to avoid unnecessary work. For the list above LIMIT would have
been 4 by default. In time critical applications it behooves you not to split into more fields than
you really need.

If the PATTERN contains parentheses, additional list elements are created from each matching
substring in the delimiter.

split(/([,−])/, "1−10,20", 3);

produces the list value

(1, '−', 10, ',', 20)

If you had the entire header of a normal Unix email message in$header , you could split it up
into fields and their values this way:

$header =˜ s/\n\s+/ /g; # f ix continuation lines
%hdrs = (UNIX_FROM => split /ˆ(\S*?):\s*/m, $header);

The pattern/PATTERN/ may be replaced with an expression to specify patterns that vary at
runtime. (To do runtime compilation only once, use/$variable/o .)

As a special case, specifying aPATTERN of space (' ') will split on white space just assplit
with no arguments does.Thus,split(' ') can be used to emulateawk’s default behavior,
whereassplit(/ /) will give you as many null initial fields as there are leading spaces.A
split on /\s+/ is like asplit(' ') except that any leading whitespace produces a null
first field. Asplit with no arguments really does asplit(' ', $_) internally.

A PATTERN of /ˆ/ is treated as if it were/ˆ/m , since it isn’t much use otherwise.

Example:

open(PASSWD, '/etc/passwd');
while (<PASSWD>) {

chomp;
($login, $passwd, $uid, $gid,

$gcos, $home, $shell) = split(/:/);
#...

}

As with regular pattern matching, any capturing parentheses that are not matched in asplit()
will be set toundef when returned:

@fields = split /(A)|B/, "1A2B3";
@fields is (1, 'A', 2, undef, 3)

sprintf FORMAT, LIST
Returns a string formatted by the usualprintf conventions of the C library functionsprintf .
See below for more details and seesprintf(3) or printf (3) on your system for an explanation of
the general principles.

For example:

142 2007-12-18 perl v5.10.0

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

Format number with up to 8 leading zeroes
$result = sprintf("%08d", $number);

Round number to 3 digits after decimal point
$rounded = sprintf("%.3f", $number);

Perl does its own sprintf formatting — itemulates the C functionsprintf , but it doesn’t use
it (except for floating-point numbers, and even then only the standard modifiers are allowed). As
a result, any non-standard extensions in your localsprintf are not available from Perl.

Unlike printf , sprintf does not do what you probably mean when you pass it an array as
your first argument. The array is given scalar context, and instead of using the 0th element of the
array as the format, Perl will use the count of elements in the array as the format, which is almost
never useful.

Perl’ssprintf permits the following universally-known conversions:

%% a percent sign
%c a character with the given number
%s a string
%d a signed integer, in decimal
%u an unsigned integer, in decimal
%o an unsigned integer, in octal
%x an unsigned integer, in hexadecimal
%e a floating−point number, in scientific notation
%f a floating−point number, in fixed decimal notation
%g a floating−point number, in %e or %f notation

In addition, Perl permits the following widely-supported conversions:

%X like %x, but using upper−case letters
%E like %e, but using an upper−case "E"
%G like %g, but with an upper−case "E" (if applicable)
%b an unsigned integer, in binary
%B like %b, but using an upper−case "B" with the # flag
%p a pointer (outputs the Perl value's address in hexadecimal)
%n special: *stores* the number of characters output so far

into the next variable in the parameter list

Finally, for backward (and we do mean ‘‘backward’’) compatibility, Perl permits these
unnecessary but widely-supported conversions:

%i a synonym for %d
%D a synonym for %ld
%U a synonym for %lu
%O a synonym for %lo
%F a synonym for %f

Note that the number of exponent digits in the scientific notation produced by%e, %E, %gand%G
for numbers with the modulus of the exponent less than 100 is system-dependent: it may be three
or less (zero-padded as necessary). In other words, 1.23 times ten to the 99th may be either
‘‘ 1.23e99’’ or ‘ ‘1.23e099’’.

Between the% and the format letter, you may specify a number of additional attributes
controlling the interpretation of the format. In order, these are:

format parameter index
An explicit format parameter index, such as2$. By default sprintf will format the next
unused argument in the list, but this allows you to take the arguments out of order, e.g.:

printf '%2$d %1$d', 12, 34; # prints "34 12"
printf '%3$d %d %1$d', 1, 2, 3; # prints "3 1 1"

perl v5.10.0 2007-12-18 143

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

flags
one or more of:

space prefix positive number with a space
+ prefix positive number with a plus sign
− l eft−justify within the field
0 use zeros, not spaces, to right−justify
ensure the leading "0" for any octal,

prefix non−zero hexadecimal with "0x" or "0X",
prefix non−zero binary with "0b" or "0B"

For example:

printf '<% d>', 12; # prints "< 12>"
printf '<%+d>', 12; # prints "<+12>"
printf '<%6s>', 12; # prints "< 12>"
printf '<%−6s>', 12; # prints "<12 >"
printf '<%06s>', 12; # prints "<000012>"
printf '<%#o>', 12; # prints "<014>"
printf '<%#x>', 12; # prints "<0xc>"
printf '<%#X>', 12; # prints "<0XC>"
printf '<%#b>', 12; # prints "<0b1100>"
printf '<%#B>', 12; # prints "<0B1100>"

When a space and a plus sign are given as the flags at once, a plus sign is used to prefix a
positive number.

printf '<%+ d>', 12; # prints "<+12>"
printf '<% +d>', 12; # prints "<+12>"

When the # flag and a precision are given in the%oconversion, the precision is incremented
if it’ s necessary for the leading ‘‘0’’.

printf '<%#.5o>', 012; # prints "<00012>"
printf '<%#.5o>', 012345; # prints "<012345>"
printf '<%#.0o>', 0; # prints "<0>"

vector flag
This flag tells perl to interpret the supplied string as a vector of integers, one for each
character in the string. Perl applies the format to each integer in turn, then joins the resulting
strings with a separator (a dot. by default). This can be useful for displaying ordinal values
of characters in arbitrary strings:

printf "%vd", "AB\x{100}"; # prints "65.66.256"
printf "version is v%vd\n", $ˆV; # Perl's version

Put an asterisk* before thev to override the string to use to separate the numbers:

printf "address is %*vX\n", ":", $addr; # I Pv6 address
printf "bits are %0*v8b\n", " ", $bits; # r andom bitstring

You can also explicitly specify the argument number to use for the join string using e.g.
*2$v :

printf '%*4$vX %*4$vX %*4$vX', @addr[1..3], ":"; # 3 I Pv6 addresses

(minimum) width
Arguments are usually formatted to be only as wide as required to display the given value.
You can override the width by putting a number here, or get the width from the next
argument (with*) or from a specified argument (with e.g.*2$):

144 2007-12-18 perl v5.10.0

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

printf '<%s>', "a"; # prints "<a>"
printf '<%6s>', "a"; # prints "< a>"
printf '<%*s>', 6, "a"; # prints "< a>"
printf '<%*2$s>', "a", 6; # prints "< a>"
printf '<%2s>', "long"; # prints "<long>" (does not truncate)

If a field width obtained through* is negative, it has the same effect as the− flag: left-
justification.

precision, or maximum width
You can specify a precision (for numeric conversions) or a maximum width (for string
conversions) by specifying a. followed by a number. For floating point formats, with the
exception of ’g’ and ’G’, this specifies the number of decimal places to show (the default
being 6), e.g.:

t hese examples are subject to system−specific variation
printf '<%f>', 1; # prints "<1.000000>"
printf '<%.1f>', 1; # prints "<1.0>"
printf '<%.0f>', 1; # prints "<1>"
printf '<%e>', 10; # prints "<1.000000e+01>"
printf '<%.1e>', 10; # prints "<1.0e+01>"

For ’g’ and ’G’, this specifies the maximum number of digits to show, including prior to the
decimal point as well as after it, e.g.:

t hese examples are subject to system−specific variation
printf '<%g>', 1; # prints "<1>"
printf '<%.10g>', 1; # prints "<1>"
printf '<%g>', 100; # prints "<100>"
printf '<%.1g>', 100; # prints "<1e+02>"
printf '<%.2g>', 100.01; # prints "<1e+02>"
printf '<%.5g>', 100.01; # prints "<100.01>"
printf '<%.4g>', 100.01; # prints "<100>"

For integer conversions, specifying a precision implies that the output of the number itself
should be zero-padded to this width, where the 0 flag is ignored:

printf '<%.6d>', 1; # prints "<000001>"
printf '<%+.6d>', 1; # prints "<+000001>"
printf '<%−10.6d>', 1; # prints "<000001 >"
printf '<%10.6d>', 1; # prints "< 000001>"
printf '<%010.6d>', 1; # prints "< 000001>"
printf '<%+10.6d>', 1; # prints "< +000001>"

printf '<%.6x>', 1; # prints "<000001>"
printf '<%#.6x>', 1; # prints "<0x000001>"
printf '<%−10.6x>', 1; # prints "<000001 >"
printf '<%10.6x>', 1; # prints "< 000001>"
printf '<%010.6x>', 1; # prints "< 000001>"
printf '<%#10.6x>', 1; # prints "< 0x000001>"

For string conversions, specifying a precision truncates the string to fit in the specified
width:

printf '<%.5s>', "truncated"; # prints "<trunc>"
printf '<%10.5s>', "truncated"; # prints "< trunc>"

You can also get the precision from the next argument using.* :

printf '<%.6x>', 1; # prints "<000001>"
printf '<%.*x>', 6, 1; # prints "<000001>"

If a precision obtained through* is negative, it has the same effect as no precision.

perl v5.10.0 2007-12-18 145

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

printf '<%.*s>', 7, "string"; # prints "<string>"
printf '<%.*s>', 3, "string"; # prints "<str>"
printf '<%.*s>', 0, "string"; # prints "<>"
printf '<%.*s>', −1, "string"; # prints "<string>"

printf '<%.*d>', 1, 0; # prints "<0>"
printf '<%.*d>', 0, 0; # prints "<>"
printf '<%.*d>', −1, 0; # prints "<0>"

You cannot currently get the precision from a specified number, but it is intended that this
will be possible in the future using e.g..*2$:

printf '<%.*2$x>', 1, 6; # I NVALID, but in future will print "<000001>"

size
For numeric conversions, you can specify the size to interpret the number as usingl , h, V,
q, L, or ll . For integer conversions (d u o x X b i D U O), numbers are usually
assumed to be whatever the default integer size is on your platform (usually 32 or 64 bits),
but you can override this to use instead one of the standard C types, as supported by the
compiler used to build Perl:

l i nterpret integer as C type "long" or "unsigned long"
h i nterpret integer as C type "short" or "unsigned short"
q, L or ll interpret integer as C type "long long", "unsigned long long".

or "quads" (typically 64−bit integers)

The last will produce errors if Perl does not understand ‘‘quads’’ in your installation. (This
requires that either the platform natively supports quads or Perl was specifically compiled to
support quads.) You can find out whether your Perl supports quads via Config:

use Config;
($Config{use64bitint} eq 'define' || $Config{longsize} >= 8) &&

print "quads\n";

For floating point conversions (e f g E F G), numbers are usually assumed to be the
default floating point size on your platform (double or long double), but you can force ’long
double’ withq, L, or ll if your platform supports them. You can find out whether your Perl
supports long doubles via Config:

use Config;
$Config{d_longdbl} eq 'define' && print "long doubles\n";

You can find out whether Perl considers ’long double’ to be the default floating point size to
use on your platform via Config:

use Config;
($Config{uselongdouble} eq 'define') &&

print "long doubles by default\n";

It can also be the case that long doubles and doubles are the same thing:

use Config;
($Config{doublesize} == $Config{longdblsize}) &&

print "doubles are long doubles\n";

The size specifierV has no effect for Perl code, but it is supported for compatibility withXS
code; it means ’use the standard size for a Perl integer (or floating-point number)’, which is
already the default for Perl code.

order of arguments
Normally, sprintf takes the next unused argument as the value to format for each format
specification. If the format specification uses* to require additional arguments, these are
consumed from the argument list in the order in which they appear in the format
specificationbefore the value to format. Where an argument is specified using an explicit
index, this does not affect the normal order for the arguments (even when the explicitly
specified index would have been the next argument in any case).

146 2007-12-18 perl v5.10.0

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

So:

printf '<%*.*s>', $a, $b, $c;

would use$a for the width,$b for the precision and$c as the value to format, while:

printf '<%*1$.*s>', $a, $b;

would use$a for the width and the precision, and$b as the value to format.

Here are some more examples − beware that when using an explicit index, the$ may need to
be escaped:

printf "%2\$d %d\n", 12, 34; # will print "34 12\n"
printf "%2\$d %d %d\n", 12, 34; # will print "34 12 34\n"
printf "%3\$d %d %d\n", 12, 34, 56; # will print "56 12 34\n"
printf "%2\$*3\$d %d\n", 12, 34, 3; # will print " 34 12\n"

If use locale is in effect, andPOSIX::setlocale()has been called, the character used for the
decimal separator in formatted floating point numbers is affected by theLC_NUMERIC locale.
See perllocale andPOSIX.

sqrtEXPR
sqrt Returnthe square root ofEXPR. If EXPR is omitted, returns square root of$_ . Only works on

non-negative operands, unless you’ve loaded the standard Math::Complex module.

use Math::Complex;
print sqrt(−2); # prints 1.4142135623731i

srandEXPR
srand Setsthe random number seed for therand operator.

The point of the function is to ‘‘seed’’ the rand function so thatrand can produce a different
sequence each time you run your program.

If srand() is not called explicitly, it is called implicitly at the first use of therand operator.
However, this was not the case in versions of Perl before 5.004, so if your script will run under
older Perl versions, it should callsrand .

Most programs won’t even call srand()at all, except those that need a cryptographically-strong
starting point rather than the generally acceptable default, which is based on time of day, process
ID, and memory allocation, or the/dev/urandomdevice, if available.

You can call srand($seed) with the same$seed to reproduce thesamesequence fromrand(), but
this is usually reserved for generating predictable results for testing or debugging. Otherwise,
don’t call srand()more than once in your program.

Do not call srand() (i.e. without an argument) more than once in a script. The internal state of
the random number generator should contain more entropy than can be provided by any seed, so
callingsrand()again actuallylosesrandomness.

Most implementations ofsrand take an integer and will silently truncate decimal numbers.
This meanssrand(42) will usually produce the same results assrand(42.1) . To be safe,
always passsrand an integer.

In versions of Perl prior to 5.004 the default seed was just the currenttime . This isn’t a
particularly good seed, so many old programs supply their own seed value (oftentime ˆ $$ or
time ˆ ($$ + ($$ << 15))), but that isn’t necessary any more.

For cryptographic purposes, however, you need something much more random than the default
seed. Checksummingthe compressed output of one or more rapidly changing operating system
status programs is the usual method.For example:

srand (time ˆ $$ ˆ unpack "%L*", `ps axww | gzip −f`);

If you’re particularly concerned with this, see theMath::TrulyRandom module inCPAN.

Frequently called programs (likeCGI scripts) that simply use

perl v5.10.0 2007-12-18 147

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

time ˆ $$

for a seed can fall prey to the mathematical property that

aˆb == (a+1)ˆ(b+1)

one-third of the time. So don’t do that.

statFILEHANDLE
statEXPR
statDIRHANDLE
stat Returnsa 13−element list giving the status info for a file, either the file opened viaFILEHANDLE

or DIRHANDLE, or named byEXPR. If EXPR is omitted, it stats$_ . Returns a null list if the stat
fails. Typically used as follows:

($dev,$ino,$mode,$nlink,$uid,$gid,$rdev,$size,
$atime,$mtime,$ctime,$blksize,$blocks)

= stat($filename);

Not all fields are supported on all filesystem types. Here are the meanings of the fields:

0 dev device number of filesystem
1 i no inode number
2 mode file mode (type and permissions)
3 nlink number of (hard) links to the file
4 uid numeric user ID of file's owner
5 gid numeric group ID of file's owner
6 r dev the device identifier (special files only)
7 s ize total size of file, in bytes
8 atime last access time in seconds since the epoch
9 mtime last modify time in seconds since the epoch

10 ctime inode change time in seconds since the epoch (*)
11 blksize preferred block size for file system I/O
12 blocks actual number of blocks allocated

(The epoch was at 00:00 January 1, 1970GMT.)

(*) Not all fields are supported on all filesystem types. Notably, the ctime field is non-portable.In
particular, you cannot expect it to be a ‘‘creation time’’, see ‘‘Files and Filesystems’’ in perlport
for details.

If stat is passed the special filehandle consisting of an underline, no stat is done, but the current
contents of the stat structure from the laststat , lstat , or filetest are returned. Example:

if (−x $file && (($d) = stat(_)) && $d < 0) {
print "$file is executable NFS file\n";

}

(This works on machines only for which the device number is negative underNFS.)

Because the mode contains both the file type and its permissions, you should mask off the file
type portion and (s)printf using a"%o" if you want to see the real permissions.

$mode = (stat($filename))[2];
printf "Permissions are %04o\n", $mode & 07777;

In scalar context, stat returns a boolean value indicating success or failure, and, if successful,
sets the information associated with the special filehandle_.

The File::stat module provides a convenient, by-name access mechanism:

use File::stat;
$sb = stat($filename);
printf "File is %s, size is %s, perm %04o, mtime %s\n",

$filename, $sb−>size, $sb−>mode & 07777,
scalar localtime $sb−>mtime;

You can import symbolic mode constants (S_IF*) and functions (S_IS*) from the Fcntl

148 2007-12-18 perl v5.10.0

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

module:

use Fcntl ':mode';

$mode = (stat($filename))[2];

$user_rwx = ($mode & S_IRWXU) >> 6;
$group_read = ($mode & S_IRGRP) >> 3;
$other_execute = $mode & S_IXOTH;

printf "Permissions are %04o\n", S_IMODE($mode), "\n";

$is_setuid = $mode & S_ISUID;
$is_directory = S_ISDIR($mode);

You could write the last two using the−u and−d operators. Thecommonly available S_IF*
constants are

Permissions: read, write, execute, for user, group, others.

S_IRWXU S_IRUSR S_IWUSR S_IXUSR
S_IRWXG S_IRGRP S_IWGRP S_IXGRP
S_IRWXO S_IROTH S_IWOTH S_IXOTH

Setuid/Setgid/Stickiness/SaveText.
Note that the exact meaning of these is system dependent.

S_ISUID S_ISGID S_ISVTX S_ISTXT

File types. Not necessarily all are available on your system.

S_IFREG S_IFDIR S_IFLNK S_IFBLK S_IFCHR S_IFIFO S_IFSOCK S_IFWHT S_ENFMT

The following are compatibility aliases for S_IRUSR, S_IWUSR, S_IXUSR.

S_IREAD S_IWRITE S_IEXEC

and theS_IF* functions are

S_IMODE($mode) the part of $mode containing the permission bits
and the setuid/setgid/sticky bits

S_IFMT($mode) the part of $mode containing the file type
which can be bit−anded with e.g. S_IFREG
or with the following functions

The operators −f, −d, −l, −b, −c, −p, and −S.

S_ISREG($mode) S_ISDIR($mode) S_ISLNK($mode)
S_ISBLK($mode) S_ISCHR($mode) S_ISFIFO($mode) S_ISSOCK($mode)

No direct −X operator counterpart, but for the first one
t he −g operator is often equivalent. The ENFMT stands for
r ecord flocking enforcement, a platform−dependent feature.

S_ISENFMT($mode) S_ISWHT($mode)

See your native chmod(2) andstat(2) documentation for more details about theS_* constants.
To get status info for a symbolic link instead of the target file behind the link, use thelstat
function.

perl v5.10.0 2007-12-18 149

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

stateEXPR
stateTYPE EXPR
stateEXPR : ATTRS
stateTYPE EXPR: ATTRS

state declares a lexically scoped variable, just like my does. However, those variables will
never be reinitialized, contrary to lexical variables that are reinitialized each time their enclosing
block is entered.

state variables are only enabled when thefeature 'state' pragma is in effect. See
feature.

studySCALAR
study Takes extra time to studySCALAR ($_ if unspecified) in anticipation of doing many pattern

matches on the string before it is next modified.This may or may not save time, depending on
the nature and number of patterns you are searching on, and on the distribution of character
frequencies in the string to be searched— you probably want to compare run times with and
without it to see which runs faster. Those loops that scan for many short constant strings
(including the constant parts of more complex patterns) will benefit most.You may have only
onestudy active at a time — if you study a different scalar the first is ‘‘unstudied’’. (The way
study works is this: a linked list of every character in the string to be searched is made, so we
know, for example, where all the'k' characters are. From each search string, the rarest
character is selected, based on some static frequency tables constructed from some C programs
and English text. Only those places that contain this ‘‘rarest’’ character are examined.)

For example, here is a loop that inserts index producing entries before any line containing a
certain pattern:

while (<>) {
study;
print ".IX foo\n" if /\bfoo\b/;
print ".IX bar\n" if /\bbar\b/;
print ".IX blurfl\n" if /\bblurfl\b/;
. ..
print;

}

In searching for/\bfoo\b/ , only those locations in$_ that containf will be looked at,
becausef is rarer thano. In general, this is a big win except in pathological cases. The only
question is whether it saves you more time than it took to build the linked list in the first place.

Note that if you have to look for strings that you don’t know till runtime, you can build an entire
loop as a string andeval that to avoid recompiling all your patterns all the time.Together with
undefining $/ to input entire files as one record, this can be very fast, often faster than
specialized programs like fgrep(1). Thefollowing scans a list of files (@files) for a list of
words (@words), and prints out the names of those files that contain a match:

$search = 'while (<>) { study;';
foreach $word (@words) {

$search .= "++\$seen{\$ARGV} if /\\b$word\\b/;\n";
}
$search .= "}";
@ARGV = @files;
undef $/;
eval $search; # t his screams
$/ = "\n"; # put back to normal input delimiter
foreach $file (sort keys(%seen)) {

print $file, "\n";
}

subNAME BLOCK
subNAME (PROT O) BLOCK

150 2007-12-18 perl v5.10.0

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

subNAME : ATTRS BLOCK
subNAME (PROT O) : ATTRS BLOCK

This is subroutine definition, not a real functionper se. Without a BLOCK it’ s just a forward
declaration. Without aNAME, it’s an anonymous function declaration, and does actually return a
value: theCODEref of the closure you just created.

See perlsub and perlref for details about subroutines and references, and attributes and
Attribute::Handlers for more information about attributes.

substrEXPR,OFFSET,LENGTH,REPLACEMENT
substrEXPR,OFFSET,LENGTH
substrEXPR,OFFSET

Extracts a substring out ofEXPR and returns it. First character is at offset0, or whatever you’ve
set$[to (but don’t do that). If OFFSETis negative (or more precisely, less than$[), starts that
far from the end of the string.If LENGTH is omitted, returns everything to the end of the string.
If LENGTH is negative, leaves that many characters off the end of the string.

my $s = "The black cat climbed the green tree";
my $color = substr $s, 4, 5; # black
my $middle = substr $s, 4, −11; # black cat climbed the
my $end = substr $s, 14; # c limbed the green tree
my $tail = substr $s, −4; # t ree
my $z = substr $s, −4, 2; # t r

You can use thesubstr()function as an lvalue, in which caseEXPR must itself be an lvalue. If
you assign something shorter thanLENGTH, the string will shrink, and if you assign something
longer thanLENGTH, the string will grow to accommodate it.To keep the string the same length
you may need to pad or chop your value usingsprintf .

If OFFSETandLENGTH specify a substring that is partly outside the string, only the part within
the string is returned. If the substring is beyond either end of the string,substr() returns the
undefined value and produces a warning. Whenused as an lvalue, specifying a substring that is
entirely outside the string is a fatal error. Here’s an example showing the behavior for boundary
cases:

my $name = 'fred';
substr($name, 4) = 'dy'; # $name is now 'freddy'
my $null = substr $name, 6, 2; # r eturns '' (no warning)
my $oops = substr $name, 7; # r eturns undef, with warning
substr($name, 7) = 'gap'; # f atal error

An alternative to using substr() as an lvalue is to specify the replacement string as the 4th
argument. Thisallows you to replace parts of theEXPR and return what was there before in one
operation, just as you can withsplice().

my $s = "The black cat climbed the green tree";
my $z = substr $s, 14, 7, "jumped from"; # c limbed
$s is n ow "The black cat jumped from the green tree"

Note that the lvalue returned by the 3−arg version ofsubstr()acts as a ’magic bullet’; each time it
is assigned to, it remembers which part of the original string is being modified; for example:

$x = '1234';
for (substr($x,1,2)) {

$_ = 'a'; print $x,"\n"; # prints 1a4
$_ = 'xyz'; print $x,"\n"; # prints 1xyz4
$x = '56789';
$_ = 'pq'; print $x,"\n"; # prints 5pq9

}

Prior to Perl version 5.9.1, the result of using an lvalue multiple times was unspecified.

symlink OLDFILE,NEWFILE
Creates a new filename symbolically linked to the old filename.Returns1 for success,0
otherwise. Onsystems that don’t support symbolic links, produces a fatal error at run time.To

perl v5.10.0 2007-12-18 151

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

check for that, use eval:

$symlink_exists = eval { symlink("",""); 1 };

syscallNUMBER, LIST
Calls the system call specified as the first element of the list, passing the remaining elements as
arguments to the system call. If unimplemented, produces a fatal error. The arguments are
interpreted as follows: if a given argument is numeric, the argument is passed as an int.If not, the
pointer to the string value is passed.You are responsible to make sure a string is pre-extended
long enough to receive any result that might be written into a string.You can’t use a string literal
(or other read-only string) as an argument tosyscall because Perl has to assume that any
string pointer might be written through. If your integer arguments are not literals and have nev er
been interpreted in a numeric context, you may need to add0 to them to force them to look like
numbers. Thisemulates thesyswrite function (or vice versa):

require 'syscall.ph'; # may need to run h2ph
$s = "hi there\n";
syscall(&SYS_write, fileno(STDOUT), $s, length $s);

Note that Perl supports passing of up to only 14 arguments to your system call, which in practice
should usually suffice.

Syscall returns whatever value returned by the system call it calls. If the system call fails,
syscall returns−1 and sets$! (errno). Notethat some system calls can legitimately return
−1. The proper way to handle such calls is to assign$!=0; before the call and check the value
of $! if syscall returns−1.

There’s a problem withsyscall(&SYS_pipe) : it returns the file number of the read end of
the pipe it creates. There is no way to retrieve the file number of the other end.You can avoid
this problem by usingpipe instead.

sysopenFILEHANDLE,FILENAME,MODE
sysopenFILEHANDLE,FILENAME,MODE,PERMS

Opens the file whose filename is given by FILENAME, and associates it withFILEHANDLE. If
FILEHANDLE is an expression, its value is used as the name of the real filehandle wanted. This
function calls the underlying operating system’s open function with the parametersFILENAME,
MODE, PERMS.

The possible values and flag bits of theMODE parameter are system-dependent; they are available
via the standard moduleFcntl . See the documentation of your operating system’s open to see
which values and flag bits are available. You may combine several flags using the| −operator.

Some of the most common values areO_RDONLYfor opening the file in read-only mode,
O_WRONLYfor opening the file in write-only mode, andO_RDWRfor opening the file in read-
write mode.

For historical reasons, some values work on almost every system supported by perl: zero means
read-only, one means write-only, and two means read/write.We know that these values donot
work underOS/390& VM/ESA Unix and on the Macintosh; you probably don’t want to use them
in new code.

If the file named byFILENAME does not exist and theopen call creates it (typically because
MODE includes theO_CREATflag), then the value ofPERMS specifies the permissions of the
newly created file. If you omit thePERMS argument tosysopen , Perl uses the octal value
0666 . These permission values need to be in octal, and are modified by your process’s current
umask.

In many systems theO_EXCLflag is available for opening files in exclusive mode. Thisis not
locking: exclusiveness means here that if the file already exists, sysopen()fails. O_EXCLmay
not work on network filesystems, and has no effect unless theO_CREATflag is set as well.
SettingO_CREAT|O_EXCLprevents the file from being opened if it is a symbolic link. It does
not protect against symbolic links in the file’s path.

Sometimes you may want to truncate an already-existing file. This can be done using the
O_TRUNCflag. Thebehavior ofO_TRUNCwith O_RDONLYis undefined.

152 2007-12-18 perl v5.10.0

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

You should seldom if ever use 0644 as argument tosysopen , because that takes away the
user’s option to have a more permissive umask. Betterto omit it. See theperlfunc(1) entry on
umask for more on this.

Note thatsysopen depends on thefdopen() C library function. On many UNIX systems,
fdopen()is known to fail when file descriptors exceed a certain value, typically 255. If you need
more file descriptors than that, consider rebuilding Perl to use thesfio library, or perhaps using
thePOSIX::open()function.

See perlopentut for a kinder, gentler explanation of opening files.

sysreadFILEHANDLE,SCALAR,LENGTH,OFFSET
sysreadFILEHANDLE,SCALAR,LENGTH

Attempts to readLENGTH bytes of data into variableSCALAR from the specifiedFILEHANDLE,
using the system callread(2). It bypasses buffered IO, so mixing this with other kinds of reads,
print , write , seek , tell , or eof can cause confusion because the perlio or stdio layers
usually buffers data.Returns the number of bytes actually read,0 at end of file, or undef if there
was an error (in the latter case$! is also set).SCALAR will be grown or shrunk so that the last
byte actually read is the last byte of the scalar after the read.

An OFFSETmay be specified to place the read data at some place in the string other than the
beginning. A negative OFFSETspecifies placement at that many characters counting backwards
from the end of the string.A positive OFFSETgreater than the length ofSCALAR results in the
string being padded to the required size with"\0" bytes before the result of the read is
appended.

There is nosyseof()function, which is ok, sinceeof()doesn’t work very well on device files (like
ttys) anyway. Usesysread()and check for a return value for 0 to decide whether you’re done.

Note that if the filehandle has been marked as:utf8 Unicode characters are read instead of
bytes (theLENGTH, OFFSET, and the return value ofsysread()are in Unicode characters).The
:encoding(...) layer implicitly introduces the:utf8 layer. See ‘‘binmode’’, ‘ ‘open’’, and
theopen pragma, open.

sysseekFILEHANDLE,POSITION,WHENCE
SetsFILEHANDLE’s system position in bytes using the system calllseek(2). FILEHANDLE may
be an expression whose value gives the name of the filehandle. The values forWHENCEare0 to
set the new position toPOSITION, 1 to set the it to the current position plusPOSITION, and 2 to
set it toEOFplusPOSITION(typically negative).

Note thein bytes: even if the filehandle has been set to operate on characters (for example by
using the:encoding(utf8) I/O layer), tell() will return byte offsets, not character offsets
(because implementing that would rendersysseek()very slow).

sysseek()bypasses normal buffered IO, so mixing this with reads (other thansysread , for
example<> or read()) print , write , seek , tell , or eof may cause confusion.

For WHENCE, you may also use the constantsSEEK_SET, SEEK_CUR, and SEEK_END(start of
the file, current position, end of the file) from the Fcntl module.Use of the constants is also more
portable than relying on 0, 1, and 2.For example to define a ‘‘systell’’ f unction:

use Fcntl 'SEEK_CUR';
sub systell { sysseek($_[0], 0, SEEK_CUR) }

Returns the new position, or the undefined value on failure. Aposition of zero is returned as the
string "0 but true" ; thussysseek returns true on success and false on failure, yet you can
still easily determine the new position.

systemLIST
systemPROGRAM LIST

Does exactly the same thing asexec LIST , except that a fork is done first, and the parent
process waits for the child process to complete. Note that argument processing varies depending
on the number of arguments. Ifthere is more than one argument inLIST, or if LIST is an array
with more than one value, starts the program given by the first element of the list with arguments
given by the rest of the list. If there is only one scalar argument, the argument is checked for

perl v5.10.0 2007-12-18 153

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

shell metacharacters, and if there are any, the entire argument is passed to the system’s command
shell for parsing (this is/bin/sh −c on Unix platforms, but varies on other platforms).If
there are no shell metacharacters in the argument, it is split into words and passed directly to
execvp , which is more efficient.

Beginning with v5.6.0, Perl will attempt to flush all files opened for output before any operation
that may do a fork, but this may not be supported on some platforms (see perlport).To be safe,
you may need to set$| ($AUTOFLUSH in English) or call theautoflush() method of
IO::Handle on any open handles.

The return value is the exit status of the program as returned by thewait call. To get the actual
exit value, shift right by eight (see below). See also ‘‘exec’’. This is not what you want to use to
capture the output from a command, for that you should use merely backticks orqx// , as
described in ‘‘‘ STRING‘’’ in perlop. Returnvalue of −1 indicates a failure to start the program or
an error of thewait (2) system call (inspect $! for the reason).

Like exec , system allows you to lie to a program about its name if you use thesystem
PROGRAM LISTsyntax. Again, see ‘‘exec’’.

SinceSIGINT andSIGQUIT are ignored during the execution ofsystem , if you expect your
program to terminate on receipt of these signals you will need to arrange to do so yourself based
on the return value.

@args = ("command", "arg1", "arg2");
system(@args) == 0

or die "system @args failed: $?"

You can check all the failure possibilities by inspecting$? like this:

if ($? == −1) {
print "failed to execute: $!\n";

}
elsif ($? & 127) {

printf "child died with signal %d, %s coredump\n",
($? & 127), ($? & 128) ? 'with' : 'without';

}
else {

printf "child exited with value %d\n", $? >> 8;
}

Alternatively you might inspect the value of${ˆCHILD_ERROR_NATIVE} with the W*() calls
of thePOSIXextension.

When the arguments get executed via the system shell, results and return codes will be subject to
its quirks and capabilities. See ‘‘‘ STRING‘’’ in perlop and ‘‘exec’’ f or details.

syswriteFILEHANDLE,SCALAR,LENGTH,OFFSET
syswriteFILEHANDLE,SCALAR,LENGTH
syswriteFILEHANDLE,SCALAR

Attempts to writeLENGTH bytes of data from variableSCALAR to the specifiedFILEHANDLE,
using the system callwrite (2). If LENGTH is not specified, writes wholeSCALAR. It bypasses
bufferedIO, so mixing this with reads (other thansysread()) , print , write , seek , tell ,
or eof may cause confusion because the perlio and stdio layers usually buffers data. Returns the
number of bytes actually written, orundef if there was an error (in this case the errno variable
$! is also set). If theLENGTH is greater than the available data in theSCALAR after theOFFSET,
only as much data as is available will be written.

An OFFSET may be specified to write the data from some part of the string other than the
beginning. A negative OFFSETspecifies writing that many characters counting backwards from
the end of the string. In the case theSCALAR is empty you can useOFFSETbut only zero offset.

Note that if the filehandle has been marked as:utf8 , Unicode characters are written instead of
bytes (theLENGTH, OFFSET, and the return value ofsyswrite()are inUTF−8 encoded Unicode
characters). The:encoding(...) layer implicitly introduces the:utf8 layer. See
‘‘ binmode’’, ‘‘open’’, and theopen pragma, open.

154 2007-12-18 perl v5.10.0

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

tell FILEHANDLE
tell Returnsthe current positionin bytesfor FILEHANDLE, or −1 on error. FILEHANDLE may be an

expression whose value gives the name of the actual filehandle.If FILEHANDLE is omitted,
assumes the file last read.

Note thein bytes: even if the filehandle has been set to operate on characters (for example by
using the:encoding(utf8) open layer),tell() will return byte offsets, not character offsets
(because that would renderseek()andtell() rather slow).

The return value oftell() for the standard streams like the STDIN depends on the operating
system: it may return −1 or something else.tell() on pipes, fifos, and sockets usually returns −1.

There is nosystell function. Usesysseek(FH, 0, 1) for that.

Do not usetell() (or other buffered I/O operations) on a file handle that has been manipulated by
sysread(), syswrite()or sysseek(). Those functions ignore the buffering, whiletell() does not.

telldir DIRHANDLE
Returns the current position of thereaddir routines onDIRHANDLE. Value may be given to
seekdir to access a particular location in a directory. telldir has the same caveats about
possible directory compaction as the corresponding system library routine.

tie VARIABLE,CLASSNAME,LIST
This function binds a variable to a package class that will provide the implementation for the
variable. VARIABLE is the name of the variable to be enchanted.CLASSNAME is the name of a
class implementing objects of correct type.Any additional arguments are passed to thenew
method of the class (meaningTIESCALAR, TIEHANDLE, TIEARRAY, or TIEHASH).
Typically these are arguments such as might be passed to thedbm_open() function of C. The
object returned by thenew method is also returned by thetie function, which would be useful if
you want to access other methods inCLASSNAME.

Note that functions such askeys andvalues may return huge lists when used on large objects,
like DBM files. You may prefer to use theeach function to iterate over such. Example:

print out history file offsets
use NDBM_File;
tie(%HIST, 'NDBM_File', '/usr/lib/news/history', 1, 0);
while (($key,$val) = each %HIST) {

print $key, ' = ', unpack('L',$val), "\n";
}
untie(%HIST);

A class implementing a hash should have the following methods:

TIEHASH classname, LIST
FETCH this, key
STORE this, key, value
DELETE this, key
CLEAR this
EXISTS this, key
FIRSTKEY this
NEXTKEY this, lastkey
SCALAR this
DESTROY this
UNTIE this

A class implementing an ordinary array should have the following methods:

perl v5.10.0 2007-12-18 155

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

TIEARRAY classname, LIST
FETCH this, key
STORE this, key, value
FETCHSIZE this
STORESIZE this, count
CLEAR this
PUSH this, LIST
POP this
SHIFT this
UNSHIFT this, LIST
SPLICE this, offset, length, LIST
EXTEND this, count
DESTROY this
UNTIE this

A class implementing a file handle should have the following methods:

TIEHANDLE classname, LIST
READ this, scalar, length, offset
READLINE this
GETC this
WRITE this, scalar, length, offset
PRINT this, LIST
PRINTF this, format, LIST
BINMODE this
EOF this
FILENO this
SEEK this, position, whence
TELL this
OPEN this, mode, LIST
CLOSE this
DESTROY this
UNTIE this

A class implementing a scalar should have the following methods:

TIESCALAR classname, LIST
FETCH this,
STORE this, value
DESTROY this
UNTIE this

Not all methods indicated above need be implemented.See perltie, Tie::Hash, Tie::Array,
Tie::Scalar, and Tie::Handle.

Unlike dbmopen, the tie function will not use or require a module for you— you need to do
that explicitly yourself. See DB_File or theConfigmodule for interestingtie implementations.

For further details see perltie, ‘‘tiedVARIABLE’’ .

tied VARIABLE
Returns a reference to the object underlyingVARIABLE (the same value that was originally
returned by thetie call that bound the variable to a package.) Returns the undefined value if
VARIABLE isn’t tied to a package.

time Returnsthe number of non-leap seconds since whatever time the system considers to be the
epoch, suitable for feeding togmtime andlocaltime . On most systems the epoch is 00:00:00
UTC, January 1, 1970; a prominent exception being MacOS Classic which uses 00:00:00,
January 1, 1904 in the current local time zone for its epoch.

For measuring time in better granularity than one second, you may use either the Time::HiRes
module (fromCPAN, and starting from Perl 5.8 part of the standard distribution), or if you have
gettimeofday(2), you may be able to use thesyscall interface of Perl. See perlfaq8 for details.

156 2007-12-18 perl v5.10.0

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

For date and time processing look at the many related modules onCPAN. For a comprehensive
date and time representation look at the DateTime module.

times Returnsa four-element list giving the user and system times, in seconds, for this process and the
children of this process.

($user,$system,$cuser,$csystem) = times;

In scalar context,times returns$user .

Note that times for children are included only after they terminate.

tr/// Thetransliteration operator. Same asy/// . See perlop.

truncateFILEHANDLE,LENGTH
truncateEXPR,LENGTH

Truncates the file opened onFILEHANDLE, or named byEXPR, to the specified length.Produces
a fatal error if truncate isn’t implemented on your system. Returns true if successful, the
undefined value otherwise.

The behavior is undefined ifLENGTH is greater than the length of the file.

The position in the file ofFILEHANDLE is left unchanged.You may want to call seek before
writing to the file.

uc EXPR
uc Returnsan uppercased version ofEXPR. This is the internal function implementing the\U

escape in double-quoted strings.Respects currentLC_CTYPE locale if use locale in force.
See perllocale and perlunicode for more details about locale and Unicode support. It does not
attempt to do titlecase mapping on initial letters. Seeucfirst for that.

If EXPR is omitted, uses$_ .

ucfirstEXPR
ucfirst Returnsthe value ofEXPRwith the first character in uppercase (titlecase in Unicode).This is the

internal function implementing the\u escape in double-quoted strings. Respects current
LC_CTYPE locale if use locale in force. See perllocale and perlunicode for more details
about locale and Unicode support.

If EXPR is omitted, uses$_ .

umaskEXPR
umask Setsthe umask for the process toEXPR and returns the previous value. If EXPR is omitted,

merely returns the current umask.

The Unix permissionrwxr−x−−− is represented as three sets of three bits, or three octal digits:
0750 (the leading 0 indicates octal and isn’t one of the digits).The umask value is such a
number representing disabled permissions bits.The permission (or ‘‘mode’’) values you pass
mkdir or sysopen are modified by your umask, so even if you tell sysopen to create a file
with permissions0777 , if your umask is0022 then the file will actually be created with
permissions0755 . If your umask were 0027 (group can’t write; others can’t read, write, or
execute), then passingsysopen 0666 would create a file with mode0640 (0666 &˜ 027 is
0640).

Here’s some advice: supply a creation mode of0666 for regular files (insysopen) and one of
0777 for directories (inmkdir) and executable files. This gives users the freedom of choice: if
they want protected files, they might choose process umasks of022 , 027 , or even the
particularly antisocial mask of077 . Programs should rarely if ever make policy decisions better
left to the user. The exception to this is when writing files that should be kept private: mail files,
web browser cookies,.rhostsfiles, and so on.

If umask(2) is not implemented on your system and you are trying to restrict access foryourself
(i.e., (EXPR& 0700) > 0), produces a fatal error at run time.If umask(2) is not implemented and
you are not trying to restrict access for yourself, returnsundef .

Remember that a umask is a number, usually given in octal; it isnot a string of octal digits.See
also ‘‘oct’’, if all you have is a string.

perl v5.10.0 2007-12-18 157

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

undefEXPR
undef Undefinesthe value ofEXPR, which must be an lvalue. Useonly on a scalar value, an array

(using @), a hash (using%), a subroutine (using&), or a typeglob (using*). (Sayingundef
$hash{$key} will probably not do what you expect on most predefined variables orDBM list
values, so don’t do that; see delete.)Always returns the undefined value. You can omit the
EXPR, in which case nothing is undefined, but you still get an undefined value that you could, for
instance, return from a subroutine, assign to a variable or pass as a parameter. Examples:

undef $foo;
undef $bar{'blurfl'}; # Compare to: delete $bar{'blurfl'};
undef @ary;
undef %hash;
undef &mysub;
undef *xyz; # destroys $xyz, @xyz, %xyz, &xyz, etc.
return (wantarray ? (undef, $errmsg) : undef) if $they_blew_it;
select undef, undef, undef, 0.25;
($a, $b, undef, $c) = &foo; # I gnore third value returned

Note that this is a unary operator, not a list operator.

unlink LIST
unlink Deletesa list of files. Returns the number of files successfully deleted.

$cnt = unlink 'a', 'b', 'c';
unlink @goners;
unlink <*.bak>;

Note: unlink will not attempt to delete directories unless you are superuser and the−U flag is
supplied to Perl.Even if these conditions are met, be warned that unlinking a directory can inflict
damage on your filesystem.Finally, using unlink on directories is not supported on many
operating systems. Usermdir instead.

If LIST is omitted, uses$_ .

unpackTEMPLATE,EXPR
unpackTEMPLATE

unpack does the reverse ofpack : it takes a string and expands it out into a list of values. (In
scalar context, it returns merely the first value produced.)

If EXPR is omitted, unpacks the$_ string.

The string is broken into chunks described by theTEMPLATE. Each chunk is converted
separately to a value. Typically, either the string is a result ofpack , or the characters of the
string represent a C structure of some kind.

The TEMPLATE has the same format as in thepack function. Here’s a subroutine that does
substring:

sub substr {
my($what,$where,$howmuch) = @_;
unpack("x$where a$howmuch", $what);

}

and then there’s

sub ordinal { unpack("W",$_[0]); } # same as ord()

In addition to fields allowed inpack(), you may prefix a field with a %<number> to indicate that
you want a <number>−bit checksum of the items instead of the items themselves. Default is a
16−bit checksum.Checksum is calculated by summing numeric values of expanded values (for
string fields the sum oford($char) is taken, for bit fields the sum of zeroes and ones).

For example, the following computes the same number as the System V sum program:

158 2007-12-18 perl v5.10.0

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

$checksum = do {
local $/; # s lurp!
unpack("%32W*",<>) % 65535;

};

The following efficiently counts the number of set bits in a bit vector:

$setbits = unpack("%32b*", $selectmask);

The p andP formats should be used with care.Since Perl has no way of checking whether the
value passed tounpack() corresponds to a valid memory location, passing a pointer value
that’s not known to be valid is likely to have disastrous consequences.

If there are more pack codes or if the repeat count of a field or a group is larger than what the
remainder of the input string allows, the result is not well defined: in some cases, the repeat count
is decreased, orunpack() will produce null strings or zeroes, or terminate with an error. If the
input string is longer than one described by theTEMPLATE, the rest is ignored.

See ‘‘pack’’ f or more examples and notes.

untieVARIABLE
Breaks the binding between a variable and a package.(Seetie .) Hasno effect if the variable is
not tied.

unshiftARRAY,LIST
Does the opposite of ashift . Or the opposite of apush , depending on how you look at it.
Prepends list to the front of the array, and returns the new number of elements in the array.

unshift(@ARGV, '−e') unless $ARGV[0] =˜ /ˆ−/;

Note theLIST is prepended whole, not one element at a time, so the prepended elements stay in
the same order. Usereverse to do the reverse.

use ModuleVERSION LIST
use ModuleVERSION
use ModuleLIST
use Module
useVERSION

Imports some semantics into the current package from the named module, generally by aliasing
certain subroutine or variable names into your package. It is exactly equivalent to

BEGIN { require Module; Module−>import(LIST); }

except that Modulemustbe a bareword.

In the peculiaruse VERSION form, VERSIONmay be either a numeric argument such as 5.006,
which will be compared to$] , or a literal of the form v5.6.1, which will be compared to$ˆV
(aka$PERL_VERSION). A fatal error is produced ifVERSION is greater than the version of the
current Perl interpreter; Perl will not attempt to parse the rest of the file. Compare with
‘‘ require’’, which can do a similar check at run time.Symmetrically,no VERSION allows you
to specify that you want a version of perl older than the specified one.

SpecifyingVERSION as a literal of the form v5.6.1 should generally be avoided, because it leads
to misleading error messages under earlier versions of Perl that do not support this syntax.The
equivalent numeric version should be used instead.

Alternatively, you can use a numeric versionuse 5.006 followed by a v−string version like
use v5.10.1 , to avoid the unintuitive use 5.010_001 . (older perl versions fail gracefully
at the firstuse , later perl versions understand the v−string syntax in the second).

use v5.6.1; # c ompile time version check
use 5.6.1; # ditto
use 5.006_001; # ditto; preferred for backwards compatibility
use 5.006; use 5.6.1; # ditto, for compatibility and readability

This is often useful if you need to check the current Perl version beforeuse ing library modules
that have changed in incompatible ways from older versions of Perl.(We try not to do this more

perl v5.10.0 2007-12-18 159

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

than we have to.)

Also, if the specified perl version is greater than or equal to 5.9.5,use VERSION will also load
thefeature pragma and enable all features available in the requested version. Seefeature.

TheBEGIN forces therequire andimport to happen at compile time.Therequire makes
sure the module is loaded into memory if it hasn’t been yet.The import is not a builtin — it’s
just an ordinary static method call into theModule package to tell the module to import the list
of features back into the current package.The module can implement itsimport method any
way it l ikes, though most modules just choose to derive their import method via inheritance
from the Exporter class that is defined in theExporter module. SeeExporter. If no
import method can be found then the call is skipped, even if there is anAUTOLOAD method.

If you do not want to call the package’s import method (for instance, to stop your namespace
from being altered), explicitly supply the empty list:

use Module ();

That is exactly equivalent to

BEGIN { require Module }

If the VERSION argument is present between Module andLIST, then theuse will call the
VERSION method in class Module with the given version as an argument. ThedefaultVERSION
method, inherited from theUNIVERSAL class, croaks if the given version is larger than the value
of the variable$Module::VERSION .

Again, there is a distinction between omittingLIST (import called with no arguments) and an
explicit emptyLIST () (import not called). Note that there is no comma afterVERSION!

Because this is a wide-open interface, pragmas (compiler directives) are also implemented this
way. Currently implemented pragmas are:

use constant;
use diagnostics;
use integer;
use sigtrap qw(SEGV BUS);
use strict qw(subs vars refs);
use subs qw(afunc blurfl);
use warnings qw(all);
use sort qw(stable _quicksort _mergesort);

Some of these pseudo-modules import semantics into the current block scope (like strict or
integer , unlike ordinary modules, which import symbols into the current package (which are
effective through the end of the file).

There’s a correspondingno command that unimports meanings imported byuse , i.e., it calls
unimport Module LIST instead ofimport . It behaves exactly as import does with
respect toVERSION, an omittedLIST, empty LIST, or no unimport method being found.

no integer;
no strict 'refs';
no warnings;

See perlmodlib for a list of standard modules and pragmas.See perlrun for the−M and −m
command-line options to perl that giveuse functionality from the command-line.

utimeLIST
Changes the access and modification times on each file of a list of files. The first two elements of
the list must be theNUMERICAL access and modification times, in that order. Returns the
number of files successfully changed.The inode change time of each file is set to the current
time. For example, this code has the same effect as the Unixtouch(1) command when the files
already existand belong to the user running the program:

160 2007-12-18 perl v5.10.0

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

#!/usr/bin/perl
$atime = $mtime = time;
utime $atime, $mtime, @ARGV;

Since perl 5.7.2, if the first two elements of the list areundef , then theutime(2) function in the
C library will be called with a null second argument. On most systems, this will set the file’s
access and modification times to the current time (i.e. equivalent to the example above) and will
ev en work on other users’ files where you have write permission:

utime undef, undef, @ARGV;

UnderNFS this will use the time of theNFSserver, not the time of the local machine. If there is a
time synchronization problem, theNFS server and local machine will have different times.The
Unix touch(1) command will in fact normally use this form instead of the one shown in the first
example.

Note that only passing one of the first two elements asundef will be equivalent of passing it as
0 and will not have the same effect as described when they are bothundef . This case will also
trigger an uninitialized warning.

On systems that support futimes, you might pass file handles among the files. On systems that
don’t support futimes, passing file handles produces a fatal error at run time.The file handles
must be passed as globs or references to be recognized. Barewords are considered file names.

valuesHASH
Returns a list consisting of all the values of the named hash.(In a scalar context, returns the
number of values.)

The values are returned in an apparently random order. The actual random order is subject to
change in future versions of perl, but it is guaranteed to be the same order as either thekeys or
each function would produce on the same (unmodified) hash.Since Perl 5.8.1 the ordering is
different even between different runs of Perl for security reasons (see ‘‘A lgorithmic Complexity
Attacks’’ in perlsec).

As a side effect, callingvalues()resets theHASH’s internal iterator, see ‘‘each’’. (In particular,
callingvalues()in void context resets the iterator with no other overhead.)

Note that the values are not copied, which means modifying them will modify the contents of the
hash:

for (values %hash) { s /foo/bar/g } # modifies %hash values
for (@hash{keys %hash}) { s/foo/bar/g } # s ame

See alsokeys , each , andsort .

vec EXPR,OFFSET,BITS
Treats the string inEXPRas a bit vector made up of elements of widthBITS, and returns the value
of the element specified byOFFSETas an unsigned integer. BITS therefore specifies the number
of bits that are reserved for each element in the bit vector. This must be a power of two from 1 to
32 (or 64, if your platform supports that).

If BITS is 8, ‘‘elements’’ coincide with bytes of the input string.

If BITS is 16 or more, bytes of the input string are grouped into chunks of sizeBITS/8, and each
group is converted to a number as withpack()/unpack() with big-endian formatsn/N (and
analogously for BITS==64). See ‘‘pack’’ f or details.

If bits is 4 or less, the string is broken into bytes, then the bits of each byte are broken into
8/BITS groups.Bits of a byte are numbered in a little-endian-ish way, as in 0x01 , 0x02 , 0x04 ,
0x08 , 0x10 , 0x20 , 0x40 , 0x80 . For example, breaking the single input bytechr(0x36)
into two groups gives a list (0x6, 0x3) ; breaking it into 4 groups gives (0x2, 0x1, 0x3,
0x0) .

vec may also be assigned to, in which case parentheses are needed to give the expression the
correct precedence as in

perl v5.10.0 2007-12-18 161

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

vec($image, $max_x * $x + $y, 8) = 3;

If the selected element is outside the string, the value 0 is returned. If an element off the end of
the string is written to, Perl will first extend the string with sufficiently many zero bytes. It is an
error to try to write off the beginning of the string (i.e. negative OFFSET).

If the string happens to be encoded asUTF−8 internally (and thus has theUTF8 flag set), this is
ignored byvec , and it operates on the internal byte string, not the conceptual character string,
ev en if you only have characters with values less than 256.

Strings created withvec can also be manipulated with the logical operators| , &, ˆ , and ˜ .
These operators will assume a bit vector operation is desired when both operands are strings.See
‘‘ Bitwise String Operators’’ in perlop.

The following code will build up anASCII string saying'PerlPerlPerl' . The comments
show the string after each step.Note that this code works in the same way on big-endian or little-
endian machines.

my $foo = '';
vec($foo, 0, 32) = 0x5065726C; # ' Perl'

$foo eq "Perl" eq "\x50\x65\x72\x6C", 32 bits
print vec($foo, 0, 8); # prints 80 == 0x50 == ord('P')

vec($foo, 2, 16) = 0x5065; # ' PerlPe'
vec($foo, 3, 16) = 0x726C; # ' PerlPerl'
vec($foo, 8, 8) = 0x50; # 'PerlPerlP'
vec($foo, 9, 8) = 0x65; # 'PerlPerlPe'
vec($foo, 20, 4) = 2; # ' PerlPerlPe' . "\x02"
vec($foo, 21, 4) = 7; # ' PerlPerlPer'

' r' is "\x72"
vec($foo, 45, 2) = 3; # ' PerlPerlPer' . "\x0c"
vec($foo, 93, 1) = 1; # ' PerlPerlPer' . "\x2c"
vec($foo, 94, 1) = 1; # ' PerlPerlPerl'

' l' is "\x6c"

To transform a bit vector into a string or list of 0’s and 1’s, use these:

$bits = unpack("b*", $vector);
@bits = split(//, unpack("b*", $vector));

If you know the exact length in bits, it can be used in place of the* .

Here is an example to illustrate how the bits actually fall in place:

#!/usr/bin/perl −wl

print <<'EOT';
0 1 2 3

unpack("V",$_) 01234567890123456789012345678901
−−
EOT

for $w (0..3) {
$width = 2**$w;
for ($shift=0; $shift < $width; ++$shift) {

for ($off=0; $off < 32/$width; ++$off) {
$str = pack("B*", "0"x32);
$bits = (1<<$shift);
vec($str, $off, $width) = $bits;
$res = unpack("b*",$str);
$val = unpack("V", $str);
write;

}

162 2007-12-18 perl v5.10.0

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

}
}

format STDOUT =
vec($_,@#,@#) = @<< == @######### @>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
$off, $width, $bits, $val, $res
.
_ _END_ _

Regardless of the machine architecture on which it is run, the above example should print the
following table:

0 1 2 3
unpack("V",$_) 01234567890123456789012345678901

−−
vec($_, 0, 1) = 1 == 1 10000000000000000000000000000000
vec($_, 1, 1) = 1 == 2 01000000000000000000000000000000
vec($_, 2, 1) = 1 == 4 00100000000000000000000000000000
vec($_, 3, 1) = 1 == 8 00010000000000000000000000000000
vec($_, 4, 1) = 1 == 16 00001000000000000000000000000000
vec($_, 5, 1) = 1 == 32 00000100000000000000000000000000
vec($_, 6, 1) = 1 == 64 00000010000000000000000000000000
vec($_, 7, 1) = 1 == 128 00000001000000000000000000000000
vec($_, 8, 1) = 1 == 256 00000000100000000000000000000000
vec($_, 9, 1) = 1 == 512 00000000010000000000000000000000
vec($_,10, 1) = 1 == 1024 00000000001000000000000000000000
vec($_,11, 1) = 1 == 2048 00000000000100000000000000000000
vec($_,12, 1) = 1 == 4096 00000000000010000000000000000000
vec($_,13, 1) = 1 == 8192 00000000000001000000000000000000
vec($_,14, 1) = 1 == 16384 00000000000000100000000000000000
vec($_,15, 1) = 1 == 32768 00000000000000010000000000000000
vec($_,16, 1) = 1 == 65536 00000000000000001000000000000000
vec($_,17, 1) = 1 == 131072 00000000000000000100000000000000
vec($_,18, 1) = 1 == 262144 00000000000000000010000000000000
vec($_,19, 1) = 1 == 524288 00000000000000000001000000000000
vec($_,20, 1) = 1 == 1048576 00000000000000000000100000000000
vec($_,21, 1) = 1 == 2097152 00000000000000000000010000000000
vec($_,22, 1) = 1 == 4194304 00000000000000000000001000000000
vec($_,23, 1) = 1 == 8388608 00000000000000000000000100000000
vec($_,24, 1) = 1 == 16777216 00000000000000000000000010000000
vec($_,25, 1) = 1 == 33554432 00000000000000000000000001000000
vec($_,26, 1) = 1 == 67108864 00000000000000000000000000100000
vec($_,27, 1) = 1 == 134217728 00000000000000000000000000010000
vec($_,28, 1) = 1 == 268435456 00000000000000000000000000001000
vec($_,29, 1) = 1 == 536870912 00000000000000000000000000000100
vec($_,30, 1) = 1 == 1073741824 00000000000000000000000000000010
vec($_,31, 1) = 1 == 2147483648 00000000000000000000000000000001
vec($_, 0, 2) = 1 == 1 10000000000000000000000000000000
vec($_, 1, 2) = 1 == 4 00100000000000000000000000000000
vec($_, 2, 2) = 1 == 16 00001000000000000000000000000000
vec($_, 3, 2) = 1 == 64 00000010000000000000000000000000
vec($_, 4, 2) = 1 == 256 00000000100000000000000000000000
vec($_, 5, 2) = 1 == 1024 00000000001000000000000000000000
vec($_, 6, 2) = 1 == 4096 00000000000010000000000000000000
vec($_, 7, 2) = 1 == 16384 00000000000000100000000000000000
vec($_, 8, 2) = 1 == 65536 00000000000000001000000000000000
vec($_, 9, 2) = 1 == 262144 00000000000000000010000000000000
vec($_,10, 2) = 1 == 1048576 00000000000000000000100000000000
vec($_,11, 2) = 1 == 4194304 00000000000000000000001000000000
vec($_,12, 2) = 1 == 16777216 00000000000000000000000010000000

perl v5.10.0 2007-12-18 163

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

vec($_,13, 2) = 1 == 67108864 00000000000000000000000000100000
vec($_,14, 2) = 1 == 268435456 00000000000000000000000000001000
vec($_,15, 2) = 1 == 1073741824 00000000000000000000000000000010
vec($_, 0, 2) = 2 == 2 01000000000000000000000000000000
vec($_, 1, 2) = 2 == 8 00010000000000000000000000000000
vec($_, 2, 2) = 2 == 32 00000100000000000000000000000000
vec($_, 3, 2) = 2 == 128 00000001000000000000000000000000
vec($_, 4, 2) = 2 == 512 00000000010000000000000000000000
vec($_, 5, 2) = 2 == 2048 00000000000100000000000000000000
vec($_, 6, 2) = 2 == 8192 00000000000001000000000000000000
vec($_, 7, 2) = 2 == 32768 00000000000000010000000000000000
vec($_, 8, 2) = 2 == 131072 00000000000000000100000000000000
vec($_, 9, 2) = 2 == 524288 00000000000000000001000000000000
vec($_,10, 2) = 2 == 2097152 00000000000000000000010000000000
vec($_,11, 2) = 2 == 8388608 00000000000000000000000100000000
vec($_,12, 2) = 2 == 33554432 00000000000000000000000001000000
vec($_,13, 2) = 2 == 134217728 00000000000000000000000000010000
vec($_,14, 2) = 2 == 536870912 00000000000000000000000000000100
vec($_,15, 2) = 2 == 2147483648 00000000000000000000000000000001
vec($_, 0, 4) = 1 == 1 10000000000000000000000000000000
vec($_, 1, 4) = 1 == 16 00001000000000000000000000000000
vec($_, 2, 4) = 1 == 256 00000000100000000000000000000000
vec($_, 3, 4) = 1 == 4096 00000000000010000000000000000000
vec($_, 4, 4) = 1 == 65536 00000000000000001000000000000000
vec($_, 5, 4) = 1 == 1048576 00000000000000000000100000000000
vec($_, 6, 4) = 1 == 16777216 00000000000000000000000010000000
vec($_, 7, 4) = 1 == 268435456 00000000000000000000000000001000
vec($_, 0, 4) = 2 == 2 01000000000000000000000000000000
vec($_, 1, 4) = 2 == 32 00000100000000000000000000000000
vec($_, 2, 4) = 2 == 512 00000000010000000000000000000000
vec($_, 3, 4) = 2 == 8192 00000000000001000000000000000000
vec($_, 4, 4) = 2 == 131072 00000000000000000100000000000000
vec($_, 5, 4) = 2 == 2097152 00000000000000000000010000000000
vec($_, 6, 4) = 2 == 33554432 00000000000000000000000001000000
vec($_, 7, 4) = 2 == 536870912 00000000000000000000000000000100
vec($_, 0, 4) = 4 == 4 00100000000000000000000000000000
vec($_, 1, 4) = 4 == 64 00000010000000000000000000000000
vec($_, 2, 4) = 4 == 1024 00000000001000000000000000000000
vec($_, 3, 4) = 4 == 16384 00000000000000100000000000000000
vec($_, 4, 4) = 4 == 262144 00000000000000000010000000000000
vec($_, 5, 4) = 4 == 4194304 00000000000000000000001000000000
vec($_, 6, 4) = 4 == 67108864 00000000000000000000000000100000
vec($_, 7, 4) = 4 == 1073741824 00000000000000000000000000000010
vec($_, 0, 4) = 8 == 8 00010000000000000000000000000000
vec($_, 1, 4) = 8 == 128 00000001000000000000000000000000
vec($_, 2, 4) = 8 == 2048 00000000000100000000000000000000
vec($_, 3, 4) = 8 == 32768 00000000000000010000000000000000
vec($_, 4, 4) = 8 == 524288 00000000000000000001000000000000
vec($_, 5, 4) = 8 == 8388608 00000000000000000000000100000000
vec($_, 6, 4) = 8 == 134217728 00000000000000000000000000010000
vec($_, 7, 4) = 8 == 2147483648 00000000000000000000000000000001
vec($_, 0, 8) = 1 == 1 10000000000000000000000000000000
vec($_, 1, 8) = 1 == 256 00000000100000000000000000000000
vec($_, 2, 8) = 1 == 65536 00000000000000001000000000000000
vec($_, 3, 8) = 1 == 16777216 00000000000000000000000010000000
vec($_, 0, 8) = 2 == 2 01000000000000000000000000000000
vec($_, 1, 8) = 2 == 512 00000000010000000000000000000000
vec($_, 2, 8) = 2 == 131072 00000000000000000100000000000000
vec($_, 3, 8) = 2 == 33554432 00000000000000000000000001000000

164 2007-12-18 perl v5.10.0

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

vec($_, 0, 8) = 4 == 4 00100000000000000000000000000000
vec($_, 1, 8) = 4 == 1024 00000000001000000000000000000000
vec($_, 2, 8) = 4 == 262144 00000000000000000010000000000000
vec($_, 3, 8) = 4 == 67108864 00000000000000000000000000100000
vec($_, 0, 8) = 8 == 8 00010000000000000000000000000000
vec($_, 1, 8) = 8 == 2048 00000000000100000000000000000000
vec($_, 2, 8) = 8 == 524288 00000000000000000001000000000000
vec($_, 3, 8) = 8 == 134217728 00000000000000000000000000010000
vec($_, 0, 8) = 16 == 16 00001000000000000000000000000000
vec($_, 1, 8) = 16 == 4096 00000000000010000000000000000000
vec($_, 2, 8) = 16 == 1048576 00000000000000000000100000000000
vec($_, 3, 8) = 16 == 268435456 00000000000000000000000000001000
vec($_, 0, 8) = 32 == 32 00000100000000000000000000000000
vec($_, 1, 8) = 32 == 8192 00000000000001000000000000000000
vec($_, 2, 8) = 32 == 2097152 00000000000000000000010000000000
vec($_, 3, 8) = 32 == 536870912 00000000000000000000000000000100
vec($_, 0, 8) = 64 == 64 00000010000000000000000000000000
vec($_, 1, 8) = 64 == 16384 00000000000000100000000000000000
vec($_, 2, 8) = 64 == 4194304 00000000000000000000001000000000
vec($_, 3, 8) = 64 == 1073741824 00000000000000000000000000000010
vec($_, 0, 8) = 128 == 128 00000001000000000000000000000000
vec($_, 1, 8) = 128 == 32768 00000000000000010000000000000000
vec($_, 2, 8) = 128 == 8388608 00000000000000000000000100000000
vec($_, 3, 8) = 128 == 2147483648 00000000000000000000000000000001

wait Behaves like thewait (2) system call on your system: it waits for a child process to terminate and
returns the pid of the deceased process, or−1 if there are no child processes. The status is
returned in$? and {ˆCHILD_ERROR_NATIVE} . Note that a return value of−1 could mean
that child processes are being automatically reaped, as described in perlipc.

waitpid PID,FLAGS
Waits for a particular child process to terminate and returns the pid of the deceased process, or−1
if there is no such child process.On some systems, a value of 0 indicates that there are processes
still running. The status is returned in$? and{ˆCHILD_ERROR_NATIVE} . If you say

use POSIX ":sys_wait_h";
#...
do {

$kid = waitpid(−1, WNOHANG);
} w hile $kid > 0;

then you can do a non-blocking wait for all pending zombie processes.Non-blocking wait is
available on machines supporting either thewaitpid(2) or wait4(2) system calls.However,
waiting for a particular pid withFLAGS of 0 is implemented everywhere. (Perlemulates the
system call by remembering the status values of processes that have exited but have not been
harvested by the Perl script yet.)

Note that on some systems, a return value of−1 could mean that child processes are being
automatically reaped. See perlipc for details, and for other examples.

wantarray
Returns true if the context of the currently executing subroutine oreval is looking for a list
value. Returnsfalse if the context is looking for a scalar. Returns the undefined value if the
context is looking for no value (void context).

return unless defined wantarray; # don't bother doing more
my @a = complex_calculation();
return wantarray ? @a : "@a";

wantarray() ’s result is unspecified in the top level of a file, in a BEGIN, UNITCHECK,
CHECK, INIT or ENDblock, or in aDESTROYmethod.

This function should have been namedwantlist() instead.

perl v5.10.0 2007-12-18 165

PERLFUNC(1) PerlProgrammers Reference Guide PERLFUNC(1)

warn LIST
Prints the value ofLIST to STDERR. If the last element ofLIST does not end in a newline, it
appends the same file/line number text asdie does.

If LIST is empty and$@already contains a value (typically from a previous eval) that value is
used after appending"\t...caught" to $@. This is useful for staying almost, but not entirely
similar todie .

If $@is empty then the string"Warning: Something's wrong" is used.

No message is printed if there is a$SIG{_ _WARN_ _} handler installed. It is the handler’s
responsibility to deal with the message as it sees fit (like, for instance, converting it into adie).
Most handlers must therefore make arrangements to actually display the warnings that they are
not prepared to deal with, by callingwarn again in the handler. Note that this is quite safe and
will not produce an endless loop, since_ _WARN_ _hooks are not called from inside one.

You will find this behavior is slightly different from that of$SIG{_ _DIE_ _} handlers (which
don’t suppress the error text, but can instead calldie again to change it).

Using a_ _WARN_ _handler provides a powerful way to silence all warnings (even the so-called
mandatory ones). An example:

wipe out *all* compile−time warnings
BEGIN { $SIG{'_ _WARN_ _'} = sub { warn $_[0] if $DOWARN } }
my $foo = 10;
my $foo = 20; # no warning about duplicate my $foo,

but hey, you asked for it!
no c ompile−time or run−time warnings before here
$DOWARN = 1;

r un−time warnings enabled after here
warn "\$foo is alive and $foo!"; # does show up

See perlvar for details on setting%SIGentries, and for more examples. Seethe Carp module for
other kinds of warnings using itscarp()andcluck()functions.

write FILEHANDLE
write EXPR
write Writesa formatted record (possibly multi-line) to the specifiedFILEHANDLE, using the format

associated with that file.By default the format for a file is the one having the same name as the
filehandle, but the format for the current output channel (see theselect function) may be set
explicitly by assigning the name of the format to the$˜ variable.

Top of form processing is handled automatically: if there is insufficient room on the current page
for the formatted record, the page is advanced by writing a form feed, a special top-of-page
format is used to format the new page header, and then the record is written. By default the top-
of-page format is the name of the filehandle with ‘‘_TOP’’ appended, but it may be dynamically
set to the format of your choice by assigning the name to the$ˆ variable while the filehandle is
selected. Thenumber of lines remaining on the current page is in variable$−, which can be set
to 0 to force a new page.

If FILEHANDLE is unspecified, output goes to the current default output channel, which starts out
asSTDOUT but may be changed by theselect operator. If theFILEHANDLE is anEXPR, then
the expression is evaluated and the resulting string is used to look up the name of the
FILEHANDLE at run time.For more on formats, see perlform.

Note that write isnot the opposite ofread . Unfortunately.

y/// Thetransliteration operator. Same astr/// . See perlop.

166 2007-12-18 perl v5.10.0

PERLVAR(1) PerlProgrammers Reference Guide PERLVAR(1)

NAME
perlvar − Perl predefined variables

DESCRIPTION
Predefined Names

The following names have special meaning to Perl. Most punctuation names have reasonable mnemonics,
or analogs in the shells. Nevertheless, if you wish to use long variable names, you need only say

use English;

at the top of your program. This aliases all the short names to the long names in the current package. Some
ev en hav emedium names, generally borrowed fromawk. In general, it’s best to use the

use English '−no_match_vars';

invocation if you don’t need$PREMATCH, $MATCH, or $POSTMATCH, as it avoids a certain performance
hit with the use of regular expressions. See English.

Variables that depend on the currently selected filehandle may be set by calling an appropriate object
method on the IO::Handle object, although this is less efficient than using the regular built-in variables.
(Summary lines below for this contain the wordHANDLE.) First you must say

use IO::Handle;

after which you may use either

method HANDLE EXPR

or more safely,

HANDLE−>method(EXPR)

Each method returns the old value of the IO::Handle attribute. Themethods each take an optional EXPR,
which, if supplied, specifies the new value for the IO::Handle attribute in question. If not supplied, most
methods do nothing to the current value — except forautoflush(), which will assume a 1 for you, just to be
different.

Because loading in the IO::Handle class is an expensive operation, you should learn how to use the regular
built-in variables.

A few of these variables are considered ‘‘read-only’’. This means that if you try to assign to this variable,
either directly or indirectly through a reference, you’ll raise a run-time exception.

You should be very careful when modifying the default values of most special variables described in this
document. In most cases you want to localize these variables before changing them, since if you don’t, the
change may affect other modules which rely on the default values of the special variables that you have
changed. This is one of the correct ways to read the whole file at once:

open my $fh, "foo" or die $!;
local $/; # enable localized slurp mode
my $content = <$fh>;
close $fh;

But the following code is quite bad:

open my $fh, "foo" or die $!;
undef $/; # enable slurp mode
my $content = <$fh>;
close $fh;

since some other module, may want to read data from some file in the default ‘‘line mode’’, so if the code
we have just presented has been executed, the global value of$/ is now changed for any other code
running inside the same Perl interpreter.

Usually when a variable is localized you want to make sure that this change affects the shortest scope
possible. So unless you are already inside some short{} block, you should create one yourself. For
example:

perl v5.10.0 2007-12-18 167

PERLVAR(1) PerlProgrammers Reference Guide PERLVAR(1)

my $content = '';
open my $fh, "foo" or die $!;
{

local $/;
$content = <$fh>;

}
close $fh;

Here is an example of how your own code can go broken:

for (1..5){
nasty_break();
print "$_ ";

}
sub nasty_break {

$_ = 5;
do s omething with $_

}

You probably expect this code to print:

1 2 3 4 5

but instead you get:

5 5 5 5 5

Why? Becausenasty_break()modifies$_ without localizing it first. The fix is to addlocal():

local $_ = 5;

It’s easy to notice the problem in such a short example, but in more complicated code you are looking for
trouble if you don’t localize changes to the special variables.

The following list is ordered by scalar variables first, then the arrays, then the hashes.

$ARG
$_ The default input and pattern-searching space. The following pairs are equivalent:

while (<>) {...} # equivalent only in while!
while (defined($_ = <>)) {...}

/ˆSubject:/
$_ =˜ /ˆSubject:/

tr/a−z/A−Z/
$_ =˜ tr/a−z/A−Z/

chomp
chomp($_)

Here are the places where Perl will assume$_ ev en if you don’t use it:

• Various unary functions, including functions like ord() and int(), as well as the all file tests
(−f , −d) except for−t , which defaults toSTDIN.

• Various list functions likeprint() andunlink().

• The pattern matching operationsm// , s/// , and tr/// when used without an=˜ operator.

• The default iterator variable in aforeach loop if no other variable is supplied.

• The implicit iterator variable in thegrep()andmap()functions.

• The default place to put an input record when a<FH> operation’s result is tested by itself as
the sole criterion of awhile test. Outsideawhile test, this will not happen.

As $_ is a global variable, this may lead in some cases to unwanted side-effects. Asof perl 5.9.1,
you can now use a lexical version of$_ by declaring it in a file or in a block withmy. Moreover,
declaringour $_ restores the global$_ in the current scope.

168 2007-12-18 perl v5.10.0

PERLVAR(1) PerlProgrammers Reference Guide PERLVAR(1)

(Mnemonic: underline is understood in certain operations.)

$a
$b Special package variables when usingsort(), see ‘‘sort’’ in perlfunc. Becauseof this specialness

$a and $b don’t need to be declared (using use vars, orour()) even when using thestrict
'vars' pragma. Don’t lexicalize them withmy $a or my $b if you want to be able to use
them in thesort() comparison block or function.

$<digits>
Contains the subpattern from the corresponding set of capturing parentheses from the last pattern
match, not counting patterns matched in nested blocks that have been exited already.
(Mnemonic: like \digits.) Thesevariables are all read-only and dynamically scoped to the current
BLOCK.

$MATCH
$& The string matched by the last successful pattern match (not counting any matches hidden within

a BLOCK or eval() enclosed by the currentBLOCK). (Mnemonic:like & in some editors.)This
variable is read-only and dynamically scoped to the currentBLOCK.

The use of this variable anywhere in a program imposes a considerable performance penalty on
all regular expression matches. See ‘‘BUGS’’ .

See ‘‘@−’’ f or a replacement.

${ˆMATCH}
This is similar to$& ($POSTMATCH) except that it does not incur the performance penalty
associated with that variable, and is only guaranteed to return a defined value when the pattern
was compiled or executed with the/p modifier.

$PREMATCH
$‘ The string preceding whatever was matched by the last successful pattern match (not counting

any matches hidden within aBLOCK or eval enclosed by the currentBLOCK). (Mnemonic:`
often precedes a quoted string.) This variable is read-only.

The use of this variable anywhere in a program imposes a considerable performance penalty on
all regular expression matches. See ‘‘BUGS’’ .

See ‘‘@−’’ f or a replacement.

${ˆPREMATCH}
This is similar to$` ($PREMATCH) except that it does not incur the performance penalty
associated with that variable, and is only guaranteed to return a defined value when the pattern
was compiled or executed with the/p modifier.

$POSTMATCH
$’ The string following whatever was matched by the last successful pattern match (not counting

any matches hidden within aBLOCK or eval() enclosed by the currentBLOCK). (Mnemonic:'
often follows a quoted string.) Example:

local $_ = 'abcdefghi';
/def/;
print "$`:$&:$'\n"; # prints abc:def:ghi

This variable is read-only and dynamically scoped to the currentBLOCK.

The use of this variable anywhere in a program imposes a considerable performance penalty on
all regular expression matches. See ‘‘BUGS’’ .

See ‘‘@−’’ f or a replacement.

${ˆPOSTMATCH}
This is similar to$' ($POSTMATCH) except that it does not incur the performance penalty
associated with that variable, and is only guaranteed to return a defined value when the pattern
was compiled or executed with the/p modifier.

$LAST_PAREN_MATCH
$+ Thetext matched by the last bracket of the last successful search pattern. This is useful if you

don’t know which one of a set of alternative patterns matched. For example:

perl v5.10.0 2007-12-18 169

PERLVAR(1) PerlProgrammers Reference Guide PERLVAR(1)

/Version: (.*)|Revision: (.*)/ && ($rev = $+);

(Mnemonic: be positive and forward looking.) This variable is read-only and dynamically scoped
to the currentBLOCK.

$LAST_SUBMATCH_RESULT
$ˆN The text matched by the used group most-recently closed (i.e. the group with the rightmost

closing parenthesis) of the last successful search pattern. (Mnemonic: the (possibly) Nested
parenthesis that most recently closed.)

This is primarily used inside(?{...}) blocks for examining text recently matched. For
example, to effectively capture text to a variable (in addition to$1 , $2 , etc.), replace(...) with

(?:(...)(?{ $var = $ˆN }))

By setting and then using$var in this way relieves you from having to worry about exactly
which numbered set of parentheses they are.

This variable is dynamically scoped to the currentBLOCK.

@LAST_MATCH_END
@+ Thisarray holds the offsets of the ends of the last successful submatches in the currently active

dynamic scope.$+[0] is the offset into the string of the end of the entire match. This is the
same value as what thepos function returns when called on the variable that was matched
against. Thenth element of this array holds the offset of thenth submatch, so$+[1] is the
offset past where$1 ends,$+[2] the offset past where$2 ends, and so on.You can use$#+ to
determine how many subgroups were in the last successful match.See the examples given for the
@−variable.

%+ Similar to @+, the %+hash allows access to the named capture buffers, should they exist, in the
last successful match in the currently active dynamic scope.

For example,$+{foo} is equivalent to$1 after the following match:

'foo' =˜ /(?<foo>foo)/;

The keys of the %+hash list only the names of buffers that have captured (and that are thus
associated to defined values).

The underlying behaviour of%+is provided by the Tie::Hash::NamedCapture module.

Note: %−and%+are tied views into a common internal hash associated with the last successful
regular expression. Therefore mixing iterative access to them viaeach may have unpredictable
results. Likewise, if the last successful match changes, then the results may be surprising.

HANDLE−>input_line_number(EXPR)
$INPUT_LINE_NUMBER
$NR
$. Currentline number for the last filehandle accessed.

Each filehandle in Perl counts the number of lines that have been read from it. (Depending on the
value of $/ , Perl’s idea of what constitutes a line may not match yours.) When a line is read
from a filehandle (viareadline() or <>), or whentell() or seek()is called on it,$. becomes an
alias to the line counter for that filehandle.

You can adjust the counter by assigning to$. , but this will not actually move the seek pointer.
Localizing$. will not localize the filehandle’s line count. Instead, it will localize perl’s notion of
which filehandle$. is currently aliased to.

$. is reset when the filehandle is closed, but not when an open filehandle is reopened without an
interveningclose(). For more details, see ‘‘I/O Operators’’ in perlop. Because<> never does an
explicit close, line numbers increase acrossARGV files (but see examples in ‘‘eof ’’ in perlfunc).

You can also useHANDLE−>input_line_number(EXPR) to access the line counter for a
given filehandle without having to worry about which handle you last accessed.

(Mnemonic: many programs use ‘‘.’’ t o mean the current line number.)

170 2007-12-18 perl v5.10.0

PERLVAR(1) PerlProgrammers Reference Guide PERLVAR(1)

IO::Handle−>input_record_separator(EXPR)
$INPUT_RECORD_SEPARATOR
$RS
$/ Theinput record separator, newline by default. Thisinfluences Perl’s idea of what a ‘‘line’ ’ i s.

Works like awk’s RS variable, including treating empty lines as a terminator if set to the null
string. (Anempty line cannot contain any spaces or tabs.)You may set it to a multi-character
string to match a multi-character terminator, or to undef to read through the end of file.Setting
it to "\n\n" means something slightly different than setting to"" , if the file contains
consecutive empty lines. Setting to"" will treat two or more consecutive empty lines as a single
empty line. Setting to"\n\n" will blindly assume that the next input character belongs to the
next paragraph, even if i t’s a newline. (Mnemonic:/ delimits line boundaries when quoting
poetry.)

local $/; # enable "slurp" mode
local $_ = <FH>; # whole file now here
s/\n[\t]+/ /g;

Remember: the value of$/ is a string, not a regex.awk has to be better for something. :−)

Setting$/ to a reference to an integer, scalar containing an integer, or scalar that’s convertible to
an integer will attempt to read records instead of lines, with the maximum record size being the
referenced integer. So this:

local $/ = \32768; # or \"32768", or \$var_containing_32768
open my $fh, $myfile or die $!;
local $_ = <$fh>;

will read a record of no more than 32768 bytes fromFILE. If you’re not reading from a record-
oriented file (or yourOS doesn’t hav erecord-oriented files), then you’ll likely get a full chunk of
data with every read. If a record is larger than the record size you’ve set, you’ll get the record
back in pieces.Trying to set the record size to zero or less will cause reading in the (rest of the)
whole file.

On VMS, record reads are done with the equivalent of sysread , so it’s best not to mix record
and non-record reads on the same file. (This is unlikely to be a problem, because any file you’d
want to read in record mode is probably unusable in line mode.) Non-VMS systems do normal
I/O, so it’s safe to mix record and non-record reads of a file.

See also ‘‘Newlines’’ in perlport. Alsosee$. .

HANDLE−>autoflush(EXPR)
$OUTPUT_AUTOFLUSH
$| If set to nonzero, forces a flush right away and after every write or print on the currently selected

output channel.Default is 0 (regardless of whether the channel is really buffered by the system or
not; $| tells you only whether you’ve asked Perl explicitly to flush after each write).STDOUT
will typically be line buffered if output is to the terminal and block buffered otherwise.Setting
this variable is useful primarily when you are outputting to a pipe or socket, such as when you are
running a Perl program underrsh and want to see the output as it’s happening. Thishas no effect
on input buffering. See‘‘ getc’’ in perlfunc for that.(Mnemonic: when you want your pipes to be
piping hot.)

IO::Handle−>output_field_separatorEXPR
$OUTPUT_FIELD_SEPARATOR
$OFS
$, Theoutput field separator for the print operator. If defined, this value is printed between each of

print’s arguments. Default is undef . (Mnemonic: what is printed when there is a ‘‘,’’ i n your
print statement.)

IO::Handle−>output_record_separatorEXPR
$OUTPUT_RECORD_SEPARATOR
$ORS
$\ Theoutput record separator for the print operator. If defined, this value is printed after the last of

print’s arguments. Default isundef . (Mnemonic: you set$\ instead of adding ‘‘\n’ ’ at the end
of the print. Also, it’s just like$/ , but it’s what you get ‘‘back’’ f rom Perl.)

perl v5.10.0 2007-12-18 171

PERLVAR(1) PerlProgrammers Reference Guide PERLVAR(1)

$LIST_SEPARATOR
$" This is like $, except that it applies to array and slice values interpolated into a double-quoted

string (or similar interpreted string). Default is a space. (Mnemonic: obvious, I think.)

$SUBSCRIPT_SEPARATOR
$SUBSEP
$; Thesubscript separator for multidimensional array emulation. If you refer to a hash element as

$foo{$a,$b,$c}

it really means

$foo{join($;, $a, $b, $c)}

But don’t put

@foo{$a,$b,$c} # a s lice−−note the @

which means

($foo{$a},$foo{$b},$foo{$c})

Default is ‘‘\034’’, the same asSUBSEPin awk. If your keys contain binary data there might not
be any safe value for$; . (Mnemonic: comma (the syntactic subscript separator) is a semi-
semicolon. Yeah, I know, it’s pretty lame, but $, is already taken for something more important.)

Consider using ‘‘real’’ multidimensional arrays as described in perllol.

HANDLE−>format_page_number(EXPR)
$FORMAT_PAGE_NUMBER
$% The current page number of the currently selected output channel. Used with formats.

(Mnemonic: % is page number innroff .)

HANDLE−>format_lines_per_page(EXPR)
$FORMAT_LINES_PER_PAGE
$= Thecurrent page length (printable lines) of the currently selected output channel.Default is 60.

Used with formats. (Mnemonic: = has horizontal lines.)

HANDLE−>format_lines_left(EXPR)
$FORMAT_LINES_LEFT
$− Thenumber of lines left on the page of the currently selected output channel. Used with formats.

(Mnemonic: lines_on_page − lines_printed.)

@LAST_MATCH_START
@− $−[0] is the offset of the start of the last successful match.$−[n] is the offset of the start of the

substring matched byn−th subpattern, or undef if the subpattern did not match.

Thus after a match against$_ , $& coincides withsubstr $_, $−[0], $+[0] − $−[0] .
Similarly, $n coincides withsubstr $_, $−[n], $+[n] − $−[n] if $−[n] is defined,
and $+ coincides withsubstr $_, $−[$#−], $+[$#−] − $−[$#−] . One can use$#−
to find the last matched subgroup in the last successful match.Contrast with$#+ , the number of
subgroups in the regular expression. Comparewith @+.

This array holds the offsets of the beginnings of the last successful submatches in the currently
active dynamic scope.$−[0] is the offset into the string of the beginning of the entire match.
Thenth element of this array holds the offset of thenth submatch, so$−[1] is the offset where
$1 begins,$−[2] the offset where$2 begins, and so on.

After a match against some variable$var:

$` is the same assubstr($var, 0, $−[0])
$& is the same assubstr($var, $−[0], $+[0] − $−[0])
$' is the same assubstr($var, $+[0])
$1 is the same assubstr($var, $−[1], $+[1] − $−[1])
$2 is the same assubstr($var, $−[2], $+[2] − $−[2])
$3 is the same assubstr($var, $−[3], $+[3] − $−[3])

%− Similar to %+, this variable allows access to the named capture buffers in the last successful
match in the currently active dynamic scope. To each capture buffer name found in the regular

172 2007-12-18 perl v5.10.0

PERLVAR(1) PerlProgrammers Reference Guide PERLVAR(1)

expression, it associates a reference to an array containing the list of values captured by all
buffers with that name (should there be several of them), in the order where they appear.

Here’s an example:

if ('1234' =˜ /(?<A>1)(?2)(?<A>3)(?4)/) {
foreach my $bufname (sort keys %−) {

my $ary = $−{$bufname};
foreach my $idx (0..$#$ary) {

print "\$−{$bufname}[$idx] : ",
(defined($ary−>[$idx]) ? "'$ary−>[$idx]'" : "undef"),
"\n";

}
}

}

would print out:

$−{A}[0] : '1'
$−{A}[1] : '3'
$−{B}[0] : '2'
$−{B}[1] : '4'

The keys of the%−hash correspond to all buffer names found in the regular expression.

The behaviour of%−is implemented via the Tie::Hash::NamedCapture module.

Note: %−and%+are tied views into a common internal hash associated with the last successful
regular expression. Therefore mixing iterative access to them viaeach may have unpredictable
results. Likewise, if the last successful match changes, then the results may be surprising.

HANDLE−>format_name(EXPR)
$FORMAT_NAME
$˜ Thename of the current report format for the currently selected output channel.Default is the

name of the filehandle. (Mnemonic: brother to$ˆ .)

HANDLE−>format_top_name(EXPR)
$FORMAT_TOP_NAME
$ˆ Thename of the current top-of-page format for the currently selected output channel.Default is

the name of the filehandle with _TOP appended. (Mnemonic: points to top of page.)

IO::Handle−>format_line_break_charactersEXPR
$FORMAT_LINE_BREAK_CHARACTERS
$: The current set of characters after which a string may be broken to fill continuation fields

(starting with ˆ) in a format.Default is ‘‘ \n−’’, to break on whitespace or hyphens. (Mnemonic:
a ‘‘colon’’ in poetry is a part of a line.)

IO::Handle−>format_formfeedEXPR
$FORMAT_FORMFEED
$ˆL Whatformats output as a form feed. Default is \f.

$ACCUMULATOR
$ˆA The current value of thewrite() accumulator forformat() lines. A format containsformline()

calls that put their result into$ˆA . After calling its format,write() prints out the contents of$ˆA
and empties. So you never really see the contents of$ˆA unless you callformline()yourself and
then look at it. See perlform and ‘‘formline()’’ i n perlfunc.

$CHILD_ERROR
$? Thestatus returned by the last pipe close, backtick (``) command, successful call towait() or

waitpid(), or from thesystem()operator. This is just the 16−bit status word returned by the
traditional Unixwait() system call (or else is made up to look like it). Thus,the exit value of the
subprocess is really ($? >> 8), and$? & 127 gives which signal, if any, the process died
from, and$? & 128 reports whether there was a core dump. (Mnemonic: similar tosh and
ksh.)

Additionally, if the h_errno variable is supported in C, its value is returned via $? if any

perl v5.10.0 2007-12-18 173

PERLVAR(1) PerlProgrammers Reference Guide PERLVAR(1)

gethost*() function fails.

If you have installed a signal handler forSIGCHLD, the value of$? will usually be wrong
outside that handler.

Inside anENDsubroutine$? contains the value that is going to be given to exit() . You can
modify $? in anENDsubroutine to change the exit status of your program.For example:

END {
$? = 1 if $? == 255; # die would make it 255

}

UnderVMS, the pragmause vmsish 'status' makes$? reflect the actualVMS exit status,
instead of the default emulation ofPOSIXstatus; see ‘‘$?’’ in perlvms for details.

Also see ‘‘Error Indicators’’.

${ˆCHILD_ERROR_NATIVE}
The native status returned by the last pipe close, backtick (``) command, successful call towait()
or waitpid(), or from thesystem()operator. On POSIX-like systems this value can be decoded
with the WIFEXITED, WEXITSTATUS, WIFSIGNALED, WTERMSIG, WIFSTOPPED, WSTOPSIG
andWIFCONTINUED functions provided by thePOSIXmodule.

UnderVMS this reflects the actualVMS exit status; i.e. it is the same as $? when the pragmause
vmsish 'status' is in effect.

${ˆENCODING}
The object referenceto the Encode object that is used to convert the source code to Unicode.
Thanks to this variable your perl script does not have to be written in UTF−8. Default isundef.
The direct manipulation of this variable is highly discouraged.

$OS_ERROR
$ERRNO
$! If used numerically, yields the current value of the Cerrno variable, or in other words, if a

system or library call fails, it sets this variable. Thismeans that the value of$! is meaningful
only immediatelyafter afailure :

if (open(FH, $filename)) {
Here $! is meaningless.
...

} e lse {
ONLY here is $! meaningful.
...
Already here $! might be meaningless.

}
Since here we might have either success or failure,
here $! is meaningless.

In the above meaninglessstands for anything: zero, non-zero,undef . A successful system or
library call doesnot set the variable to zero.

If used as a string, yields the corresponding system error string.You can assign a number to$!
to seterrno if, for instance, you want "$!" to return the string for errorn, or you want to set the
exit value for thedie()operator. (Mnemonic: What just went bang?)

Also see ‘‘Error Indicators’’.

%OS_ERROR
%ERRNO
%! Eachelement of%! has a true value only if$! is set to that value. For example,$!{ENOENT}

is true if and only if the current value of$! is ENOENT; that is, if the most recent error was ‘‘No
such file or directory’’ (or its moral equivalent: not all operating systems give that exact error, and
certainly not all languages).To check if a particular key is meaningful on your system, use
exists $!{the_key} ; for a list of legal keys, usekeys %! . See Errno for more
information, and also see above for the validity of$! .

174 2007-12-18 perl v5.10.0

PERLVAR(1) PerlProgrammers Reference Guide PERLVAR(1)

$EXTENDED_OS_ERROR
$ˆE Errorinformation specific to the current operating system.At the moment, this differs from$!

under onlyVMS, OS/2, and Win32 (and for MacPerl). On all other platforms,$ˆE is always just
the same as$! .

UnderVMS, $ˆE provides theVMS status value from the last system error. This is more specific
information about the last system error than that provided by$! . This is particularly important
when$! is set toEVMSERR.

UnderOS/2, $ˆE is set to the error code of the last call toOS/2 APIeither viaCRT, or directly
from perl.

Under Win32, $ˆE always returns the last error information reported by the Win32 call
GetLastError() which describes the last error from within the Win32 API. Most
Win32−specific code will report errors via$ˆE . ANSI C and Unix-like calls seterrno and so
most portable Perl code will report errors via$! .

Caveats mentioned in the description of$! generally apply to$ˆE , also. (Mnemonic:Extra
error explanation.)

Also see ‘‘Error Indicators’’.

$EVAL_ERROR
$@ ThePerl syntax error message from the lasteval() operator. If $@ is the null string, the last

eval() parsed and executed correctly (although the operations you invoked may have failed in the
normal fashion). (Mnemonic:Where was the syntax error ‘‘at’’?)

Warning messages are not collected in this variable. You can, however, set up a routine to
process warnings by setting$SIG{_ _WARN_ _} as described below.

Also see ‘‘Error Indicators’’.

$PROCESS_ID
$PID
$$ Theprocess number of the Perl running this script.You should consider this variable read-only,

although it will be altered acrossfork() calls. (Mnemonic:same as shells.)

Note for Linux users: on Linux, the C functionsgetpid() andgetppid() return different
values from different threads. In order to be portable, this behavior is not reflected by$$, whose
value remains consistent across threads. If you want to call the underlyinggetpid() , you may
use theCPAN moduleLinux::Pid .

$REAL_USER_ID
$UID
$< Thereal uid of this process. (Mnemonic: it’s the uid you camefrom, if you’re running setuid.)

You can change both the real uid and the effective uid at the same time by usingPOSIX::setuid().
Since changes to $< require a system call, check $! after a change attempt to detect any possible
errors.

$EFFECTIVE_USER_ID
$EUID
$> Theeffective uid of this process. Example:

$< = $>; # s et real to effective uid
($<,$>) = ($>,$<); # s wap real and effective uid

You can change both the effective uid and the real uid at the same time by usingPOSIX::setuid().
Changes to $> require a check to $! to detect any possible errors after an attempted change.

(Mnemonic: it’s the uid you wentto, if you’re running setuid.)$< and$> can be swapped only
on machines supportingsetreuid().

$REAL_GROUP_ID
$GID
$(The real gid of this process.If you are on a machine that supports membership in multiple

groups simultaneously, giv es a space separated list of groups you are in. The first number is the
one returned bygetgid(), and the subsequent ones bygetgroups(), one of which may be the same

perl v5.10.0 2007-12-18 175

PERLVAR(1) PerlProgrammers Reference Guide PERLVAR(1)

as the first number.

However, a value assigned to$(must be a single number used to set the real gid. So the value
given by $(shouldnot be assigned back to$(without being forced numeric, such as by adding
zero. Note that this is different to the effective gid ($)) which does take a list.

You can change both the real gid and the effective gid at the same time by usingPOSIX::setgid().
Changes to $(require a check to $! to detect any possible errors after an attempted change.

(Mnemonic: parentheses are used togroup things. Thereal gid is the group youleft, if you’re
running setgid.)

$EFFECTIVE_GROUP_ID
$EGID
$) Theeffective gid of this process.If you are on a machine that supports membership in multiple

groups simultaneously, giv es a space separated list of groups you are in. The first number is the
one returned bygetegid(), and the subsequent ones bygetgroups(), one of which may be the same
as the first number.

Similarly, a value assigned to$) must also be a space-separated list of numbers. The first
number sets the effective gid, and the rest (if any) are passed tosetgroups(). To get the effect of
an empty list forsetgroups(), just repeat the new effective gid; that is, to force an effective gid of
5 and an effectively emptysetgroups()list, say $) = "5 5" .

You can change both the effective gid and the real gid at the same time by usingPOSIX::setgid()
(use only a single numeric argument). Changesto $) require a check to $! to detect any possible
errors after an attempted change.

(Mnemonic: parentheses are used togroup things. Theeffective gid is the group that’s right for
you, if you’re running setgid.)

$<, $>, $(and$) can be set only on machines that support the correspondingset[re][ug]id()
routine. $(and$) can be swapped only on machines supportingsetregid().

$PROGRAM_NAME
$0 Contains the name of the program being executed.

On some (read: not all) operating systems assigning to$0 modifies the argument area that theps
program sees. On some platforms you may have to use specialps options or a differentps to
see the changes. Modifying the$0 is more useful as a way of indicating the current program
state than it is for hiding the program you’re running. (Mnemonic: same asshandksh.)

Note that there are platform specific limitations on the maximum length of$0 . In the most
extreme case it may be limited to the space occupied by the original$0 .

In some platforms there may be arbitrary amount of padding, for example space characters, after
the modified name as shown byps . In some platforms this padding may extend all the way to
the original length of the argument area, no matter what you do (this is the case for example with
Linux 2.2).

Note for BSD users: setting$0 does not completely remove ‘‘perl’’ f rom theps(1) output. For
example, setting$0 to "foobar" may result in"perl: foobar (perl)" (whether both
the "perl: " prefix and the ‘‘ (perl)’’ suffix are shown depends on your exactBSD variant and
version). Thisis an operating system feature, Perl cannot help it.

In multithreaded scripts Perl coordinates the threads so that any thread may modify its copy of the
$0 and the change becomes visible tops(1) (assuming the operating system plays along).Note
that the view of $0 the other threads have will not change since they hav etheir own copies of it.

$[The index of the first element in an array, and of the first character in a substring.Default is 0,
but you could theoretically set it to 1 to make Perl behave more like awk (or Fortran) when
subscripting and when evaluating the index() and substr() functions. (Mnemonic:[begins
subscripts.)

As of release 5 of Perl, assignment to$[is treated as a compiler directive, and cannot influence
the behavior of any other file. (That’s why you can only assign compile-time constants to it.)Its
use is highly discouraged.

176 2007-12-18 perl v5.10.0

PERLVAR(1) PerlProgrammers Reference Guide PERLVAR(1)

Note that, unlike other compile-time directives (such as strict), assignment to$[can be seen
from outer lexical scopes in the same file.However, you can uselocal() on it to strictly bind its
value to a lexical block.

$] The version + patchlevel / 1000 of the Perl interpreter. This variable can be used to determine
whether the Perl interpreter executing a script is in the right range of versions. (Mnemonic:Is
this version of perl in the right bracket?) Example:

warn "No checksumming!\n" if $] < 3.019;

See also the documentation ofuse VERSION andrequire VERSION for a convenient way
to fail if the running Perl interpreter is too old.

The floating point representation can sometimes lead to inaccurate numeric comparisons.See
$ˆV for a more modern representation of the Perl version that allows accurate string
comparisons.

$COMPILING
$ˆC Thecurrent value of the flag associated with the−c switch. Mainlyof use with−MO=... to allow

code to alter its behavior when being compiled, such as for example toAUTOLOAD at compile
time rather than normal, deferred loading.Setting$ˆC = 1 is similar to callingB::minus_c .

$DEBUGGING
$ˆD Thecurrent value of the debugging flags. (Mnemonic: value of−D switch.) May be read or set.

Like its command-line equivalent, you can use numeric or symbolic values, eg $ˆD = 10 or
$ˆD = "st" .

${ˆRE_DEBUG_FLAGS}
The current value of the regex debugging flags. Set to 0 for no debug output even when the re
’debug’ module is loaded. See re for details.

${ˆRE_TRIE_MAXBUF}
Controls how certain regex optimisations are applied and how much memory they utilize. This
value by default is 65536 which corresponds to a 512kB temporary cache. Set this to a higher
value to trade memory for speed when matching large alternations. Set it to a lower value if you
want the optimisations to be as conservative of memory as possible but still occur, and set it to a
negative value to prevent the optimisation and conserve the most memory. Under normal
situations this variable should be of no interest to you.

$SYSTEM_FD_MAX
$ˆF Themaximum system file descriptor, ordinarily 2. System file descriptors are passed toexec()ed

processes, while higher file descriptors are not.Also, during anopen(), system file descriptors
are preserved even if the open()fails. (Ordinaryfile descriptors are closed before theopen()is
attempted.) Theclose-on-exec status of a file descriptor will be decided according to the value of
$ˆF when the corresponding file, pipe, or socket was opened, not the time of theexec().

$ˆH WARNING: This variable is strictly for internal use only. Its availability, behavior, and contents
are subject to change without notice.

This variable contains compile-time hints for the Perl interpreter. At the end of compilation of a
BLOCK the value of this variable is restored to the value when the interpreter started to compile
theBLOCK.

When perl begins to parse any block construct that provides a lexical scope (e.g., eval body,
required file, subroutine body, loop body, or conditional block), the existing value of $ˆH is saved,
but its value is left unchanged.When the compilation of the block is completed, it regains the
saved value. Betweenthe points where its value is saved and restored, code that executes within
BEGIN blocks is free to change the value of $ˆH.

This behavior provides the semantic of lexical scoping, and is used in, for instance, theuse
strict pragma.

The contents should be an integer; different bits of it are used for different pragmatic flags.
Here’s an example:

sub add_100 { $ˆH |= 0x100 }

perl v5.10.0 2007-12-18 177

PERLVAR(1) PerlProgrammers Reference Guide PERLVAR(1)

sub foo {
BEGIN { add_100() }
bar−>baz($boon);

}

Consider what happens during execution of theBEGIN block. At this point theBEGIN block has
already been compiled, but the body offoo() is still being compiled. The new value of $ˆH will
therefore be visible only while the body offoo() is being compiled.

Substitution of the above BEGIN block with:

BEGIN { require strict; strict−>import('vars') }

demonstrates how use strict 'vars' is implemented.Here’s a conditional version of the
same lexical pragma:

BEGIN { require strict; strict−>import('vars') if $condition }

%ˆH The %ˆH hash provides the same scoping semantic as $ˆH.This makes it useful for
implementation of lexically scoped pragmas. See perlpragma.

$INPLACE_EDIT
$ˆI The current value of the inplace-edit extension. Useundef to disable inplace editing.

(Mnemonic: value of−i switch.)

$ˆM By default, running out of memory is an untrappable, fatal error. Howev er, if suitably built, Perl
can use the contents of$ˆM as an emergency memory pool afterdie()ing. Supposethat your Perl
were compiled with−DPERL_EMERGENCY_SBRKand used Perl’s malloc. Then

$ˆM = 'a' x (1 << 16);

would allocate a 64K buffer for use in an emergency. See theINSTALLfile in the Perl distribution
for information on how to add custom C compilation flags when compiling perl.To discourage
casual use of this advanced feature, there is no English long name for this variable.

$OSNAME
$ˆO Thename of the operating system under which this copy of Perl was built, as determined during

the configuration process.The value is identical to$Config{'osname'} . See also Config
and the−V command-line switch documented in perlrun.

In Windows platforms, $ˆO is not very helpful: since it is always MSWin32, it doesn’t tell the
difference between 95/98/ME/NT/2000/XP/CE/.NET. Use Win32::GetOSName() or
Win32::GetOSVersion()(see Win32 and perlport) to distinguish between the variants.

${ˆOPEN}
An internal variable used by PerlIO.A string in two parts, separated by a\0 byte, the first part
describes the input layers, the second part describes the output layers.

$PERLDB
$ˆP Theinternal variable for debugging support. The meanings of the various bits are subject to

change, but currently indicate:

0x01 Debug subroutine enter/exit.

0x02 Line-by-linedebugging.

0x04 Switchoff optimizations.

0x08 Preserve more data for future interactive inspections.

0x10 Keep info about source lines on which a subroutine is defined.

0x20 Startwith single-step on.

0x40 Usesubroutine address instead of name when reporting.

0x80 Reportgoto &subroutine as well.

0x100 Provide informative ‘‘file’ ’ names for evals based on the place they were compiled.

0x200 Provide informative names to anonymous subroutines based on the place they were
compiled.

178 2007-12-18 perl v5.10.0

PERLVAR(1) PerlProgrammers Reference Guide PERLVAR(1)

0x400 Debug assertion subroutines enter/exit.

Some bits may be relevant at compile-time only, some at run-time only. This is a new mechanism
and the details may change.

$LAST_REGEXP_CODE_RESULT
$ˆR Theresult of evaluation of the last successful(?{ code }) regular expression assertion (see

perlre). Maybe written to.

$EXCEPTIONS_BEING_CAUGHT
$ˆS Currentstate of the interpreter.

$ˆS State
−−−−−−−−− −−−−−−−−−−−−−−−−−−−
undef Parsing module/eval
true (1) Executing an eval
false (0) Otherwise

The first state may happen in$SIG {_ _DIE_ _} and$SIG {_ _WARN_ _} handlers.

$BASETIME
$ˆT Thetime at which the program began running, in seconds since the epoch (beginning of 1970).

The values returned by the−M , −A, and−C filetests are based on this value.

${ˆTAINT}
Reflects if taint mode is on or off. 1 for on (the program was run with−T), 0 for off, −1 when
only taint warnings are enabled (i.e. with−t or −TU). Thisvariable is read-only.

${ˆUNICODE}
Reflects certain Unicode settings of Perl.See perlrun documentation for the−C switch for more
information about the possible values. This variable is set during Perl startup and is thereafter
read-only.

${ˆUTF8CACHE}
This variable controls the state of the internalUTF−8 offset caching code.1 for on (the default), 0
for off, −1 to debug the caching code by checking all its results against linear scans, and
panicking on any discrepancy.

${ˆUTF8LOCALE}
This variable indicates whether anUTF−8 locale was detected by perl at startup. This information
is used by perl when it’s in adjust−utf8ness−to−locale mode (as when run with the−CL
command-line switch); see perlrun for more info on this.

$PERL_VERSION
$ˆV Therevision, version, and subversion of the Perl interpreter, represented as aversion object.

This variable first appeared in perl 5.6.0; earlier versions of perl will see an undefined value.
Before perl 5.10.0 $ˆV was represented as a v−string.

$ˆV can be used to determine whether the Perl interpreter executing a script is in the right range
of versions. (Mnemonic:use ˆV for Version Control.) Example:

warn "Hashes not randomized!\n" if !$ˆV or $ˆV lt v5.8.1

To convert $ˆV into its string representation usesprintf()’s "%vd" conversion:

printf "version is v%vd\n", $ˆV; # Perl's version

See the documentation ofuse VERSION andrequire VERSION for a convenient way to fail
if the running Perl interpreter is too old.

See also$] for an older representation of the Perl version.

$WARNING
$ˆW The current value of the warning switch, initially true if−w was used, false otherwise, but

directly modifiable. (Mnemonic: related to the−w switch.) Seealso warnings.

${ˆWARNING_BITS}
The current set of warning checks enabled by theuse warnings pragma. Seethe
documentation ofwarnings for more details.

perl v5.10.0 2007-12-18 179

PERLVAR(1) PerlProgrammers Reference Guide PERLVAR(1)

${ˆWIN32_SLOPPY_STAT}
If this variable is set to a true value, thenstat() on Windows will not try to open the file. This
means that the link count cannot be determined and file attributes may be out of date if additional
hardlinks to the file exist. On the other hand, not opening the file is considerably faster, especially
for files on network drives.

This variable could be set in thesitecustomize.plfile to configure the local Perl installation to use
‘‘ sloppy’’ stat()by default. Seeperlrun for more information about site customization.

$EXECUTABLE_NAME
$ˆX The name used to execute the current copy of Perl, from C’s argv[0] or (where supported)

/proc/self/exe.

Depending on the host operating system, the value of $ˆX may be a relative or absolute pathname
of the perl program file, or may be the string used to invoke perl but not the pathname of the perl
program file. Also, most operating systems permit invoking programs that are not in thePATH
environment variable, so there is no guarantee that the value of $ˆX is inPATH. For VMS, the
value may or may not include a version number.

You usually can use the value of $ˆX to re-invoke an independent copy of the same perl that is
currently running, e.g.,

@first_run = `$ˆX −le "print int rand 100 for 1..100"`;

But recall that not all operating systems support forking or capturing of the output of commands,
so this complex statement may not be portable.

It is not safe to use the value of $ˆX as a path name of a file, as some operating systems that have
a mandatory suffix on executable files do not require use of the suffix when invoking a command.
To convert the value of $ˆX to a path name, use the following statements:

Build up a set of file names (not command names).
use Config;
$this_perl = $ˆX;
if ($ˆO ne 'VMS')

{$this_perl .= $Config{_exe}
unless $this_perl =˜ m/$Config{_exe}$/i;}

Because many operating systems permit anyone with read access to the Perl program file to make
a copy of it, patch the copy, and then execute the copy, the security-conscious Perl programmer
should take care to invoke the installed copy of perl, not the copy referenced by $ˆX.The
following statements accomplish this goal, and produce a pathname that can be invoked as a
command or referenced as a file.

use Config;
$secure_perl_path = $Config{perlpath};
if ($ˆO ne 'VMS')

{$secure_perl_path .= $Config{_exe}
unless $secure_perl_path =˜ m/$Config{_exe}$/i;}

ARGV The special filehandle that iterates over command-line filenames in@ARGV. Usually written as
the null filehandle in the angle operator<>. Note that currentlyARGVonly has its magical effect
within the<> operator; elsewhere it is just a plain filehandle corresponding to the last file opened
by <>. In particular, passing*ARGV as a parameter to a function that expects a filehandle may
not cause your function to automatically read the contents of all the files in@ARGV.

$ARGV contains the name of the current file when reading from <>.

@ARGV The array@ARGVcontains the command-line arguments intended for the script.$#ARGV is
generally the number of arguments minus one, because$ARGV[0] is the first argument,not the
program’s command name itself. See$0 for the command name.

ARGVOUT
The special filehandle that points to the currently open output file when doing edit-in-place
processing with−i. Useful when you have to do a lot of inserting and don’t want to keep
modifying$_ . See perlrun for the−i switch.

180 2007-12-18 perl v5.10.0

PERLVAR(1) PerlProgrammers Reference Guide PERLVAR(1)

@F The array@Fcontains the fields of each line read in when autosplit mode is turned on.See
perlrun for the−a switch. Thisarray is package-specific, and must be declared or given a full
package name if not in package main when running understrict 'vars' .

@INC The array@INCcontains the list of places that thedo EXPR , require , or use constructs look
for their library files. It initially consists of the arguments to any −I command-line switches,
followed by the default Perl library, probably/usr/local/lib/perl, followed by ‘‘.’’ , to represent the
current directory. (‘‘ .’’ w ill not be appended if taint checks are enabled, either by−T or by −t .)
If you need to modify this at runtime, you should use theuse lib pragma to get the machine-
dependent library properly loaded also:

use lib '/mypath/libdir/';
use SomeMod;

You can also insert hooks into the file inclusion system by putting Perl code directly into@INC.
Those hooks may be subroutine references, array references or blessed objects. See ‘‘require’’ i n
perlfunc for details.

@ARG
@_ Within a subroutine the array@_contains the parameters passed to that subroutine. See perlsub.

%INC The hash%INC contains entries for each filename included via thedo , require , or use
operators. Thekey is the filename you specified (with module names converted to pathnames),
and the value is the location of the file found.Therequire operator uses this hash to determine
whether a particular file has already been included.

If the file was loaded via a hook (e.g. a subroutine reference, see ‘‘require’’ in perlfunc for a
description of these hooks), this hook is by default inserted into%INC in place of a filename.
Note, however, that the hook may have set the%INCentry by itself to provide some more specific
info.

%ENV
$ENV{expr}

The hash%ENVcontains your current environment. Settinga value in ENV changes the
environment for any child processes you subsequentlyfork() off.

%SIG
$SIG {expr}

The hash%SIGcontains signal handlers for signals.For example:

sub handler { # 1st argument is signal name
my($sig) = @_;
print "Caught a SIG$sig−−shutting down\n";
close(LOG);
exit(0);

}

$SIG{'INT'} = \&handler;
$SIG{'QUIT'} = \&handler;
...
$SIG{'INT'} = 'DEFAULT'; # restore default action
$SIG{'QUIT'} = 'IGNORE'; # i gnore SIGQUIT

Using a value of'IGNORE' usually has the effect of ignoring the signal, except for theCHLD
signal. Seeperlipc for more about this special case.

Here are some other examples:

$SIG{"PIPE"} = "Plumber"; # assumes main::Plumber (not recommended)
$SIG{"PIPE"} = \&Plumber; # j ust fine; assume current Plumber
$SIG{"PIPE"} = *Plumber; # s omewhat esoteric
$SIG{"PIPE"} = Plumber(); # oops, what did Plumber() return??

Be sure not to use a bareword as the name of a signal handler, lest you inadvertently call it.

If your system has thesigaction()function then signal handlers are installed using it. This means

perl v5.10.0 2007-12-18 181

PERLVAR(1) PerlProgrammers Reference Guide PERLVAR(1)

you get reliable signal handling.

The default delivery policy of signals changed in Perl 5.8.0 from immediate (also known as
‘‘ unsafe’’) to deferred, also known as ‘‘safe signals’’. Seeperlipc for more information.

Certain internal hooks can be also set using the%SIG hash. Theroutine indicated by
$SIG{_ _WARN_ _} is called when a warning message is about to be printed.The warning
message is passed as the first argument. Thepresence of a_ _WARN_ _hook causes the ordinary
printing of warnings toSTDERRto be suppressed.You can use this to save warnings in a
variable, or turn warnings into fatal errors, like this:

local $SIG{_ _WARN_ _} = sub { die $_[0] };
eval $proggie;

As the 'IGNORE' hook is not supported by_ _WARN_ _, you can disable warnings using the
empty subroutine:

local $SIG{_ _WARN_ _} = sub {};

The routine indicated by$SIG{_ _DIE_ _} is called when a fatal exception is about to be
thrown. Theerror message is passed as the first argument. Whena _ _DIE_ _ hook routine
returns, the exception processing continues as it would have in the absence of the hook, unless the
hook routine itself exits via agoto , a loop exit, or adie() . The _ _DIE_ _ handler is
explicitly disabled during the call, so that you can die from a_ _DIE_ _ handler. Similarly for
_ _WARN_ _.

Due to an implementation glitch, the$SIG{_ _DIE_ _} hook is called even inside aneval().
Do not use this to rewrite a pending exception in$@, or as a bizarre substitute for overriding
CORE::GLOBAL::die() . This strange action at a distance may be fixed in a future release so
that$SIG{_ _DIE_ _} is only called if your program is about to exit, as was the original intent.
Any other use is deprecated.

_ _DIE_ _ /_ _WARN_ _handlers are very special in one respect: they may be called to report
(probable) errors found by the parser. In such a case the parser may be in inconsistent state, so
any attempt to evaluate Perl code from such a handler will probably result in a segfault. This
means that warnings or errors that result from parsing Perl should be used with extreme caution,
like this:

require Carp if defined $ˆS;
Carp::confess("Something wrong") if defined &Carp::confess;
die "Something wrong, but could not load Carp to give backtrace...

To see backtrace try starting Perl with −MCarp switch";

Here the first line will load Carpunlessit is the parser who called the handler. The second line
will print backtrace and die if Carp was available. Thethird line will be executed only if Carp
was not available.

See ‘‘die’’ in perlfunc, ‘‘warn’’ in perlfunc, ‘‘eval’ ’ in perlfunc, and warnings for additional
information.

Error Indicators

The variables$@, $! , $ˆE , and $? contain information about different types of error conditions that may
appear during execution of a Perl program. The variables are shown ordered by the ‘‘distance’’ between the
subsystem which reported the error and the Perl process.They correspond to errors detected by the Perl
interpreter, C library, operating system, or an external program, respectively.

To illustrate the differences between these variables, consider the following Perl expression, which uses a
single-quoted string:

eval q{
open my $pipe, "/cdrom/install |" or die $!;
my @res = <$pipe>;
close $pipe or die "bad pipe: $?, $!";

};

After execution of this statement all 4 variables may have been set.

182 2007-12-18 perl v5.10.0

PERLVAR(1) PerlProgrammers Reference Guide PERLVAR(1)

$@is set if the string to beeval −ed did not compile (this may happen ifopen or close were imported
with bad prototypes), or if Perl code executed during evaluationdie()d . In these cases the value of $@ is
the compile error, or the argument todie (which will interpolate$! and$?). (Seealso Fatal, though.)

When theeval() expression above is executed,open(), <PIPE> , and close are translated to calls in the C
run-time library and thence to the operating system kernel. $! is set to the C library’s errno if one of
these calls fails.

Under a few operating systems,$ˆE may contain a more verbose error indicator, such as in this case,
‘‘ CDROM tray not closed.’’ Systems that do not support extended error messages leave $ˆE the same as
$! .

Finally, $? may be set to non−0 value if the external program/cdrom/install fails. The upper eight bits
reflect specific error conditions encountered by the program (the program’s exit() value). Thelower eight
bits reflect mode of failure, like signal death and core dump informationSeewait (2) for details. In
contrast to$! and$ˆE , which are set only if error condition is detected, the variable$? is set on each
wait or pipeclose , overwriting the old value. Thisis more like $@, which on every eval() is always set
on failure and cleared on success.

For more details, see the individual descriptions at$@, $! , $ˆE , and$? .

Technical Note on the Syntax of Variable Names

Variable names in Perl can have sev eral formats. Usually, they must begin with a letter or underscore, in
which case they can be arbitrarily long (up to an internal limit of 251 characters) and may contain letters,
digits, underscores, or the special sequence:: or ' . In this case, the part before the last:: or ' is taken to
be apackage qualifier; see perlmod.

Perl variable names may also be a sequence of digits or a single punctuation or control character. These
names are all reserved for special uses by Perl; for example, the all-digits names are used to hold data
captured by backreferences after a regular expression match. Perl has a special syntax for the single-
control-character names: It understandsˆX (caretX) to mean the control−X character. For example, the
notation$ˆW (dollar-sign caretW) is the scalar variable whose name is the single character control−W. This
is better than typing a literal control−Winto your program.

Finally, new in Perl 5.6, Perl variable names may be alphanumeric strings that begin with control characters
(or better yet, a caret). These variables must be written in the form${ˆFoo} ; the braces are not optional.
${ˆFoo} denotes the scalar variable whose name is a control−F followed by two o’s. These variables are
reserved for future special uses by Perl, except for the ones that begin withˆ_ (control-underscore or caret-
underscore). Nocontrol-character name that begins withˆ_ will acquire a special meaning in any future
version of Perl; such names may therefore be used safely in programs.$ˆ_ itself, however, is reserved.

Perl identifiers that begin with digits, control characters, or punctuation characters are exempt from the
effects of thepackage declaration and are always forced to be in packagemain ; they are also exempt
from strict 'vars' errors. Afew other names are also exempt in these ways:

ENV STDIN
INC STDOUT
ARGV STDERR
ARGVOUT _
SIG

In particular, the new special${ˆ_XYZ} variables are always taken to be in packagemain , reg ardless of
anypackage declarations presently in scope.

BUGS
Due to an unfortunate accident of Perl’s implementation,use English imposes a considerable
performance penalty on all regular expression matches in a program, regardless of whether they occur in
the scope ofuse English . For that reason, sayinguse English in libraries is strongly discouraged.
See the Devel::SawAmpersand module documentation from CPAN (
http://www.cpan.org/modules/by−module/Devel/) for more information. Writing use English
'−no_match_vars'; avoids the performance penalty.

Having to even think about the $ˆS variable in your exception handlers is simply wrong.
$SIG{_ _DIE_ _} as currently implemented invites grievous and difficult to track down errors. Av oid it
and use anEND{} or CORE::GLOBAL::die override instead.

perl v5.10.0 2007-12-18 183

PERLRUN(1) PerlProgrammers Reference Guide PERLRUN(1)

NAME
perlrun − how to execute the Perl interpreter

SYNOPSIS
perl [−sTtuUWX] [−hv] [−V[:configvar]]

[−cw] [−d[t][:debugger]] [−D[number/list]]
[−pna] [−Fpattern] [−l[octal]] [−0[octal/hexadecimal]]
[−Idir] [−m[−]module] [−M [−]’module...’] [−f] [−C [number/list]] [−P]
[−S] [−x[dir]] [−i[extension]]
[−eE ’command’] [−−] [programfile] [argument]...

DESCRIPTION
The normal way to run a Perl program is by making it directly executable, or else by passing the name of
the source file as an argument on the command line. (An interactive Perl environment is also
possible — seeperldebug for details on how to do that.) Uponstartup, Perl looks for your program in one
of the following places:

1. Specifiedline by line via−eor −E switches on the command line.

2. Containedin the file specified by the first filename on the command line. (Note that systems
supporting the #! notation invoke interpreters this way. See ‘‘Location of Perl’’.)

3. Passed in implicitly via standard input. This works only if there are no filename arguments — topass
arguments to a STDIN-read program you must explicitly specify a ‘‘−’’ f or the program name.

With methods 2 and 3, Perl starts parsing the input file from the beginning, unless you’ve specified a−x
switch, in which case it scans for the first line starting with #! and containing the word ‘‘perl’’, and starts
there instead. This is useful for running a program embedded in a larger message. (In this case you would
indicate the end of the program using the_ _END_ _ token.)

The #! line is always examined for switches as the line is being parsed. Thus, if you’re on a machine that
allows only one argument with the #! line, or worse, doesn’t even recognize the #! line, you still can get
consistent switch behavior regardless of how Perl was invoked, even if −x was used to find the beginning of
the program.

Because historically some operating systems silently chopped off kernel interpretation of the #! line after
32 characters, some switches may be passed in on the command line, and some may not; you could even
get a ‘‘−’ ’ w ithout its letter, if you’re not careful.You probably want to make sure that all your switches
fall either before or after that 32−character boundary. Most switches don’t actually care if they’re
processed redundantly, but getting a ‘‘−’ ’ i nstead of a complete switch could cause Perl to try to execute
standard input instead of your program. And a partial−I switch could also cause odd results.

Some switches do care if they are processed twice, for instance combinations of−l and−0. Either put all
the switches after the 32−character boundary (if applicable), or replace the use of−0digits by BEGIN{ $/
= " \0digits"; } .

Parsing of the #! switches starts wherever ‘‘perl’’ is mentioned in the line. The sequences ‘‘−*’ ’ and ‘‘− ’’
are specifically ignored so that you could, if you were so inclined, say

#!/bin/sh −− # −*− perl −*− −p
eval 'exec perl −wS $0 ${1+"$@"}'

if $running_under_some_shell;

to let Perl see the−p switch.

A similar trick involves theenvprogram, if you have it.

#!/usr/bin/env perl

The examples above use a relative path to the perl interpreter, getting whatever version is first in the user’s
path. Ifyou want a specific version of Perl, say, perl5.005_57, you should place that directly in the #! line’s
path.

If the #! line does not contain the word ‘‘perl’’, the program named after the #! is executed instead of the
Perl interpreter. This is slightly bizarre, but it helps people on machines that don’t do #!, because they can
tell a program that theirSHELL is /usr/bin/perl, and Perl will then dispatch the program to the correct
interpreter for them.

After locating your program, Perl compiles the entire program to an internal form. If there are any

184 2007-12-18 perl v5.10.0

PERLRUN(1) PerlProgrammers Reference Guide PERLRUN(1)

compilation errors, execution of the program is not attempted. (This is unlike the typical shell script, which
might run part-way through before finding a syntax error.)

If the program is syntactically correct, it is executed. If the program runs off the end without hitting an
exit() or die()operator, an implicit exit(0) is provided to indicate successful completion.

#! and quoting on non-Unix systems

Unix’s #! technique can be simulated on other systems:

OS/2
Put

extproc perl −S −your_switches

as the first line in*.cmd file (−Sdue to a bug in cmd.exe’s ‘extproc’ handling).

MS-DOS
Create a batch file to run your program, and codify it inALTERNATE_SHEBANG(see thedosish.hfile
in the source distribution for more information).

Win95/NT
The Win95/NT installation, when using the ActiveState installer for Perl, will modify the Registry to
associate the.pl extension with the perl interpreter. If you install Perl by other means (including
building from the sources), you may have to modify the Registry yourself. Note that this means you
can no longer tell the difference between an executable Perl program and a Perl library file.

Macintosh
Under ‘‘Classic’’ M acOS, a perl program will have the appropriate Creator and Type, so that double-
clicking them will invoke the MacPerl application. Under MacOS X, clickable apps can be made
from any#! script using Wil Sanchez’ DropScript utility: http://www.wsanchez.net/software/ .

VMS
Put

$ perl −mysw 'f$env("procedure")' 'p1' 'p2' 'p3' 'p4' 'p5' 'p6' 'p7' 'p8' !
$ exit++ + ++$status != 0 and $exit = $status = undef;

at the top of your program, where−mysw are any command line switches you want to pass to Perl.
You can now inv oke the program directly, by saying perl program , or as aDCL procedure, by
saying@program (or implicitly via DCL$PATH by just using the name of the program).

This incantation is a bit much to remember, but Perl will display it for you if you sayperl
"−V:startperl" .

Command-interpreters on non-Unix systems have rather different ideas on quoting than Unix shells.You’ll
need to learn the special characters in your command-interpreter (* , \ and " are common) and how to
protect whitespace and these characters to run one-liners (see−ebelow).

On some systems, you may have to change single-quotes to double ones, which you mustnot do on Unix or
Plan 9 systems.You might also have to change a single % to a %%.

For example:

Unix
perl −e 'print "Hello world\n"'

MS−DOS, etc.
perl −e "print \"Hello world\n\""

Macintosh
print "Hello world\n"

(then Run "Myscript" or Shift−Command−R)

VMS
perl −e "print ""Hello world\n"""

The problem is that none of this is reliable: it depends on the command and it is entirely possible neither

perl v5.10.0 2007-12-18 185

PERLRUN(1) PerlProgrammers Reference Guide PERLRUN(1)

works. If 4DOSwere the command shell, this would probably work better:

perl −e "print <Ctrl−x>"Hello world\n<Ctrl−x>""

CMD .EXE in WindowsNT slipped a lot of standard Unix functionality in when nobody was looking, but
just try to find documentation for its quoting rules.

Under the Macintosh, it depends which environment you are using. The MacPerl shell, orMPW, is much
like Unix shells in its support for several quoting variants, except that it makes free use of the Macintosh’s
non-ASCII characters as control characters.

There is no general solution to all of this. It’s just a mess.

Location of Perl

It may seem obvious to say, but Perl is useful only when users can easily find it. When possible, it’s good
for both /usr/bin/perl and /usr/local/bin/perl to be symlinks to the actual binary. If that can’t be done,
system administrators are strongly encouraged to put (symlinks to) perl and its accompanying utilities into
a directory typically found along a user’sPATH, or in some other obvious and convenient place.

In this documentation,#!/usr/bin/perl on the first line of the program will stand in for whatever
method works on your system.You are advised to use a specific path if you care about a specific version.

#!/usr/local/bin/perl5.00554

or if you just want to be running at least version, place a statement like this at the top of your program:

use 5.005_54;

Command Switches

As with all standard commands, a single-character switch may be clustered with the following switch, if
any.

#!/usr/bin/perl −spi.orig # s ame as −s −p −i.orig

Switches include:

−0[octal/hexadecimal]
specifies the input record separator ($/) as an octal or hexadecimal number. If there are no digits,
the null character is the separator. Other switches may precede or follow the digits. For example, if
you have a version of find which can print filenames terminated by the null character, you can say
this:

find . −name '*.orig' −print0 | perl −n0e unlink

The special value 00 will cause Perl to slurp files in paragraph mode.The value 0777 will cause Perl
to slurp files whole because there is no legal byte with that value.

If you want to specify any Unicode character, use the hexadecimal format:−0xHHH... , where theH
are valid hexadecimal digits. (This means that you cannot use the−x with a directory name that
consists of hexadecimal digits.)

−a turns on autosplit mode when used with a−n or −p. An implicit split command to the@Farray is
done as the first thing inside the implicit while loop produced by the−n or −p.

perl −ane 'print pop(@F), "\n";'

is equivalent to

while (<>) {
@F = split(' ');
print pop(@F), "\n";

}

An alternate delimiter may be specified using−F.

−C [number/list]
The−C flag controls some of the Perl Unicode features.

As of 5.8.1, the−C can be followed either by a number or a list of option letters. The letters, their
numeric values, and effects are as follows; listing the letters is equal to summing the numbers.

186 2007-12-18 perl v5.10.0

PERLRUN(1) PerlProgrammers Reference Guide PERLRUN(1)

I 1 STDIN is assumed to be in UTF−8
O 2 STDOUT will be in UTF−8
E 4 STDERR will be in UTF−8
S 7 I + O + E
i 8 UTF−8 is the default PerlIO layer for input streams
o 16 UTF−8 is the default PerlIO layer for output streams
D 24 i + o
A 32 t he @ARGV elements are expected to be strings encoded

in UTF−8
L 64 normally the "IOEioA" are unconditional,

the L makes them conditional on the locale environment
variables (the LC_ALL, LC_TYPE, and LANG, in the order
of decreasing precedence) −− if the variables indicate
UTF−8, then the selected "IOEioA" are in effect

a 256 Set ${ˆUTF8CACHE} to −1, to run the UTF−8 caching code in
debugging mode.

For example, −COE and −C6 will both turn on UTF−8−ness on bothSTDOUT and STDERR.
Repeating letters is just redundant, not cumulative nor toggling.

The io options mean that any subsequentopen()(or similar I/O operations) will have the :utf8
PerlIO layer implicitly applied to them, in other words,UTF−8 is expected from any input stream, and
UTF−8 is produced to any output stream. This is just the default, with explicit layers inopen()and
with binmode()one can manipulate streams as usual.

−C on its own (not followed by any number or option list), or the empty string"" for the
PERL_UNICODEenvironment variable, has the same effect as−CSDL. In other words, the standard
I/O handles and the default open() layer are UTF−8−fiedbut only if the locale environment
variables indicate aUTF−8 locale. Thisbehaviour follows the implicit (and problematic)UTF−8
behaviour of Perl 5.8.0.

You can use−C0 (or "0" for PERL_UNICODE) to explicitly disable all the above Unicode features.

The read-only magic variable ${ˆUNICODE} reflects the numeric value of this setting. This is
variable is set during Perl startup and is thereafter read-only. If you want runtime effects, use the
three-argopen()(see ‘‘open’’ in perlfunc), the two-argbinmode()(see ‘‘binmode’’ in perlfunc), and
theopen pragma (see open).

(In Perls earlier than 5.8.1 the−C switch was a Win32−only switch that enabled the use of Unicode-
aw are ‘‘wide system call’’ Win32 APIs. This feature was practically unused, however, and the
command line switch was therefore ‘‘recycled’’.)

−c causes Perl to check the syntax of the program and then exit without executing it. Actually, it will
executeBEGIN, UNITCHECK, CHECK, and use blocks, because these are considered as occurring
outside the execution of your program.INIT andENDblocks, however, will be skipped.

−d
−dt runs the program under the Perl debugger. See perldebug. If t is specified, it indicates to the

debugger that threads will be used in the code being debugged.

−d:foo[=bar,baz]
−dt: foo[=bar,baz]

runs the program under the control of a debugging, profiling, or tracing module installed as
Devel::foo. E.g.,−d:DProf executes the program using the Devel::DProf profiler. As with the −M
flag, options may be passed to the Devel::foo package where they will be received and interpreted by
the Devel::foo::import routine. The comma-separated list of options must follow a = character. If t
is specified, it indicates to the debugger that threads will be used in the code being debugged. See
perldebug.

−Dletters
−Dnumber

sets debugging flags.To watch how it executes your program, use−Dtls. (This works only if
debugging is compiled into your Perl.)Another nice value is−Dx, which lists your compiled syntax
tree. And −Dr displays compiled regular expressions; the format of the output is explained in

perl v5.10.0 2007-12-18 187

PERLRUN(1) PerlProgrammers Reference Guide PERLRUN(1)

perldebguts.

As an alternative, specify a number instead of list of letters (e.g.,−D14 is equivalent to−Dtls):

1 p Tokenizing and parsing (with v, displays parse stack)
2 s Stack snapshots (with v, displays all stacks)
4 l C ontext (loop) stack processing
8 t T race execution

16 o Method and overloading resolution
32 c String/numeric conversions
64 P Print profiling info, preprocessor command for −P, source file input state

128 m Memory allocation
256 f Format processing
512 r Regular expression parsing and execution

1024 x Syntax tree dump
2048 u Tainting checks
4096 U Unofficial, User hacking (reserved for private, unreleased use)
8192 H Hash dump −− usurps values()

16384 X Scratchpad allocation
32768 D Cleaning up
65536 S Thread synchronization

131072 T Tokenising
262144 R Include reference counts of dumped variables (eg when using −Ds)
524288 J Do not s,t,P−debug (Jump over) opcodes within package DB

1048576 v Verbose: use in conjunction with other flags
2097152 C Copy On Write
4194304 A Consistency checks on internal structures
8388608 q quiet − currently only suppresses the "EXECUTING" message

All these flags require−DDEBUGGING when you compile the Perl executable (but see
Devel::Peek, re which may change this). See theINSTALLfile in the Perl source distribution for how
to do this. This flag is automatically set if you include−g option whenConfigure asks you about
optimizer/debugger flags.

If you’re just trying to get a print out of each line of Perl code as it executes, the way thatsh −x
provides for shell scripts, you can’t use Perl’s−D switch. Insteaddo this

If y ou have "env" utility
env PERLDB_OPTS="NonStop=1 AutoTrace=1 frame=2" perl −dS program

Bourne shell syntax
$ PERLDB_OPTS="NonStop=1 AutoTrace=1 frame=2" perl −dS program

c sh syntax
% (setenv PERLDB_OPTS "NonStop=1 AutoTrace=1 frame=2"; perl −dS program)

See perldebug for details and variations.

−ecommandline
may be used to enter one line of program.If −e is given, Perl will not look for a filename in the
argument list.Multiple −e commands may be given to build up a multi-line script.Make sure to use
semicolons where you would in a normal program.

−E commandline
behaves just like −e, except that it implicitly enables all optional features (in the main compilation
unit). See feature.

−f Disable executing$Config{sitelib}/sitecustomize.plat startup.

Perl can be built so that it by default will try to execute$Config{sitelib}/sitecustomize.plat startup.
This is a hook that allows the sysadmin to customize how perl behaves. It can for instance be used to
add entries to the@INCarray to make perl find modules in non-standard locations.

188 2007-12-18 perl v5.10.0

PERLRUN(1) PerlProgrammers Reference Guide PERLRUN(1)

−Fpattern
specifies the pattern to split on if−a is also in effect. Thepattern may be surrounded by// , "" , or
'' , otherwise it will be put in single quotes. You can’t use literal whitespace in the pattern.

−h prints a summary of the options.

−i[extension]
specifies that files processed by the<> construct are to be edited in-place.It does this by renaming
the input file, opening the output file by the original name, and selecting that output file as the default
for print() statements. Theextension, if supplied, is used to modify the name of the old file to make a
backup copy, following these rules:

If no extension is supplied, no backup is made and the current file is overwritten.

If the extension doesn’t contain a* , then it is appended to the end of the current filename as a suffix.
If the extension does contain one or more* characters, then each* is replaced with the current
filename. InPerl terms, you could think of this as:

($backup = $extension) =˜ s/*/$file_name/g;

This allows you to add a prefix to the backup file, instead of (or in addition to) a suffix:

$ perl −pi'orig_*' −e 's/bar/baz/' fileA # backup to 'orig_fileA'

Or even to place backup copies of the original files into another directory (provided the directory
already exists):

$ perl −pi'old/*.orig' −e 's/bar/baz/' fileA # backup to 'old/fileA.orig'

These sets of one-liners are equivalent:

$ perl −pi −e 's/bar/baz/' fileA # overwrite current file
$ perl −pi'*' −e 's/bar/baz/' fileA # overwrite current file

$ perl −pi'.orig' −e 's/bar/baz/' fileA # backup to 'fileA.orig'
$ perl −pi'*.orig' −e 's/bar/baz/' fileA # backup to 'fileA.orig'

From the shell, saying

$ perl −p −i.orig −e "s/foo/bar/; ... "

is the same as using the program:

#!/usr/bin/perl −pi.orig
s/foo/bar/;

which is equivalent to

#!/usr/bin/perl
$extension = '.orig';
LINE: while (<>) {

if ($ARGV ne $oldargv) {
if ($extension !˜ /*/) {

$backup = $ARGV . $extension;
}
else {

($backup = $extension) =˜ s/*/$ARGV/g;
}
rename($ARGV, $backup);
open(ARGVOUT, ">$ARGV");
select(ARGVOUT);
$oldargv = $ARGV;

}
s/foo/bar/;

}
continue {

print; # this prints to original filename

perl v5.10.0 2007-12-18 189

PERLRUN(1) PerlProgrammers Reference Guide PERLRUN(1)

}
select(STDOUT);

except that the−i form doesn’t need to compare$ARGVto $oldargv to know when the filename
has changed. It does, however, use ARGVOUT for the selected filehandle.Note thatSTDOUT is
restored as the default output filehandle after the loop.

As shown above, Perl creates the backup file whether or not any output is actually changed. So this
is just a fancy way to copy files:

$ perl −p −i'/some/file/path/*' −e 1 file1 file2 file3...
or

$ perl −p −i'.orig' −e 1 file1 file2 file3...

You can useeof without parentheses to locate the end of each input file, in case you want to append
to each file, or reset line numbering (see example in ‘‘eof ’’ in perlfunc).

If, for a given file, Perl is unable to create the backup file as specified in the extension then it will skip
that file and continue on with the next one (if it exists).

For a discussion of issues surrounding file permissions and−i, see ‘‘Why does Perl let me delete
read-only files? Why does −i clobber protected files? Isn’t this a bug in Perl?’’ in perlfaq5.

You cannot use−i to create directories or to strip extensions from files.

Perl does not expand˜ in filenames, which is good, since some folks use it for their backup files:

$ perl −pi˜ −e 's/foo/bar/' file1 file2 file3...

Note that because−i renames or deletes the original file before creating a new file of the same name,
UNIX-style soft and hard links will not be preserved.

Finally, the −i switch does not impede execution when no files are given on the command line.In
this case, no backup is made (the original file cannot, of course, be determined) and processing
proceeds fromSTDIN to STDOUTas might be expected.

−Idirectory
Directories specified by−I are prepended to the search path for modules (@INC), and also tells the C
preprocessor where to search for include files. The C preprocessor is invoked with −P; by default it
searches /usr/include and /usr/lib/perl.

−l[octnum]
enables automatic line-ending processing. It has two separate effects. First,it automatically chomps
$/ (the input record separator) when used with−n or −p. Second, it assigns$\ (the output record
separator) to have the value ofoctnumso that any print statements will have that separator added
back on. If octnumis omitted, sets$\ to the current value of$/ . For instance, to trim lines to 80
columns:

perl −lpe 'substr($_, 80) = ""'

Note that the assignment$\ = $/ is done when the switch is processed, so the input record
separator can be different than the output record separator if the−l switch is followed by a−0 switch:

gnufind / −print0 | perl −ln0e 'print "found $_" if −p'

This sets$\ to newline and then sets$/ to the null character.

−m[−]module
−M [−]module
−M [−]’module ...’
−[mM] [−]module=arg[,arg]...

−mmoduleexecutesuse module(); before executing your program.

−Mmoduleexecutesuse module; before executing your program.You can use quotes to add extra
code after the module name, e.g.,'−Mmodule qw(foo bar)' .

If the first character after the−M or −m is a dash (−) then the ’use’ is replaced with ’no’.

A l ittle builtin syntactic sugar means you can also say−mmodule=foo,baror −Mmodule=foo,bar as

190 2007-12-18 perl v5.10.0

PERLRUN(1) PerlProgrammers Reference Guide PERLRUN(1)

a shortcut for '−Mmodule qw(foo bar)' . This avoids the need to use quotes when importing
symbols. The actual code generated by−Mmodule=foo,bar is use module
split(/,/,q{foo,bar}) . Note that the= form removes the distinction between−m and−M .

A consequence of this is that−MFoo=number never does a version check (unless
Foo::import() itself is set up to do a version check, which could happen for example if Foo
inherits from Exporter.)

−n causes Perl to assume the following loop around your program, which makes it iterate over filename
arguments somewhat likesed −nor awk:

LINE:
while (<>) {

... # your program goes here
}

Note that the lines are not printed by default. See−p to have lines printed. If a file named by an
argument cannot be opened for some reason, Perl warns you about it and moves on to the next file.

Here is an efficient way to delete all files that haven’t been modified for at least a week:

find . −mtime +7 −print | perl −nle unlink

This is faster than using the−execswitch offind because you don’t hav eto start a process on every
filename found. It does suffer from the bug of mishandling newlines in pathnames, which you can fix
if you follow the example under−0.

BEGIN andENDblocks may be used to capture control before or after the implicit program loop, just
as inawk.

−p causes Perl to assume the following loop around your program, which makes it iterate over filename
arguments somewhat likesed:

LINE:
while (<>) {

... # your program goes here
} c ontinue {

print or die "−p destination: $!\n";
}

If a file named by an argument cannot be opened for some reason, Perl warns you about it, and moves
on to the next file.Note that the lines are printed automatically. An error occurring during printing is
treated as fatal. To suppress printing use the−n switch. A−p overrides a−n switch.

BEGIN andENDblocks may be used to capture control before or after the implicit loop, just as in
awk.

−P NOTE: Use of −P is strongly discouraged because of its inherent problems, including poor
portability . It is deprecated and will be removed in a futur e version of Perl.

This option causes your program to be run through the C preprocessor before compilation by Perl.
Because both comments andcpp directives begin with the # character, you should avoid starting
comments with any words recognized by the C preprocessor such as"if" , "else" , or "define" .

If you’re considering using−P, you might also want to look at the Filter::cpp module fromCPAN.

The problems of −P include, but are not limited to:

• The#! line is stripped, so any switches there don’t apply.

• A −P on a#! line doesn’t work.

• All lines that begin with (whitespace and) a# but do not look like cpp commands, are
stripped, including anything inside Perl strings, regular expressions, and here-docs .

• In some platforms the C preprocessor knows too much: it knows about the C++ −style
until-end-of-line comments starting with"//" . This will cause problems with common
Perl constructs like

perl v5.10.0 2007-12-18 191

PERLRUN(1) PerlProgrammers Reference Guide PERLRUN(1)

s/foo//;

because after −P this will became illegal code

s/foo

The workaround is to use some other quoting separator than"/" , like for example"!" :

s!foo!!;

• It requires not only a working C preprocessor but also a working sed. If not on UNIX ,
you are probably out of luck on this.

• Script line numbers are not preserved.

• The−x does not work with−P.

−s enables rudimentary switch parsing for switches on the command line after the program name but
before any filename arguments (or before an argument of−−). Any switch found there is removed
from @ARGVand sets the corresponding variable in the Perl program. The following program prints
‘‘ 1’’ if t he program is invoked with a−xyz switch, and ‘‘abc’’ if it is i nv oked with −xyz=abc.

#!/usr/bin/perl −s
if ($xyz) { print "$xyz\n" }

Do note that a switch like −−help creates the variable ${−help}, which is not compliant with
strict refs . Also, when using this option on a script with warnings enabled you may get a lot
of spurious ‘‘used only once’’ warnings.

−S makes Perl use thePATH environment variable to search for the program (unless the name of the
program contains directory separators).

On some platforms, this also makes Perl append suffixes to the filename while searching for it.For
example, on Win32 platforms, the ‘‘.bat’’ and ‘‘.cmd’’ suffixes are appended if a lookup for the
original name fails, and if the name does not already end in one of those suffixes. If your Perl was
compiled with DEBUGGING turned on, using the −Dp switch to Perl shows how the search
progresses.

Typically this is used to emulate #! startup on platforms that don’t support #!. Its also convenient
when debugging a script that uses #!, and is thus normally found by the shell’s $PATH search
mechanism.

This example works on many platforms that have a shell compatible with Bourne shell:

#!/usr/bin/perl
eval 'exec /usr/bin/perl −wS $0 ${1+"$@"}'

if $running_under_some_shell;

The system ignores the first line and feeds the program to/bin/sh, which proceeds to try to execute
the Perl program as a shell script. The shell executes the second line as a normal shell command, and
thus starts up the Perl interpreter. On some systems$0 doesn’t always contain the full pathname, so
the−S tells Perl to search for the program if necessary. After Perl locates the program, it parses the
lines and ignores them because the variable$running_under_some_shell is never true. If the
program will be interpreted by csh, you will need to replace${1+"$@"} with $* , even though that
doesn’t understand embedded spaces (and such) in the argument list.To start up sh rather than csh,
some systems may have to replace the #! line with a line containing just a colon, which will be
politely ignored by Perl. Other systems can’t control that, and need a totally devious construct that
will work under any of csh, sh, or Perl, such as the following:

eval '(exit $?0)' && eval 'exec perl −wS $0 ${1+"$@"}'
& eval 'exec /usr/bin/perl −wS $0 $argv:q'

if $running_under_some_shell;

If the filename supplied contains directory separators (i.e., is an absolute or relative pathname), and if
that file is not found, platforms that append file extensions will do so and try to look for the file with
those extensions added, one by one.

On DOS-like platforms, if the program does not contain directory separators, it will first be searched
for in the current directory before being searched for on thePATH. On Unix platforms, the program

192 2007-12-18 perl v5.10.0

PERLRUN(1) PerlProgrammers Reference Guide PERLRUN(1)

will be searched for strictly on thePATH.

−t Like −T, but taint checks will issue warnings rather than fatal errors. These warnings can be
controlled normally withno warnings qw(taint) .

NOTE: this is not a substitute for −T. This is meant only to be used as a temporary development aid
while securing legacy code: for real production code and for new secure code written from scratch
always use the real−T.

−T forces ‘‘taint’’ checks to be turned on so you can test them. Ordinarily these checks are done only
when running setuid or setgid.It’s a good idea to turn them on explicitly for programs that run on
behalf of someone else whom you might not necessarily trust, such asCGI programs or any internet
servers you might write in Perl. See perlsec for details.For security reasons, this option must be
seen by Perl quite early; usually this means it must appear early on the command line or in the #! line
for systems which support that construct.

−u This obsolete switch causes Perl to dump core after compiling your program.You can then in theory
take this core dump and turn it into an executable file by using theundump program (not supplied).
This speeds startup at the expense of some disk space (which you can minimize by stripping the
executable). (Still,a ‘‘hello world’’ executable comes out to about 200K on my machine.)If you
want to execute a portion of your program before dumping, use thedump()operator instead.Note:
availability of undump is platform specific and may not be available for a specific port of Perl.

−U allows Perl to do unsafe operations.Currently the only ‘‘unsafe’’ operations are attempting to unlink
directories while running as superuser, and running setuid programs with fatal taint checks turned
into warnings. Notethat the−w switch (or the$ˆW variable) must be used along with this option to
actuallygeneratethe taint-check warnings.

−v prints the version and patchlevel of your perl executable.

−V prints summary of the major perl configuration values and the current values of@INC.

−V:configvar
Prints to STDOUT the value of the named configuration variable(s), with multiples when your
configvar argument looks like a regex (has non-letters).For example:

$ perl −V:libc
libc='/lib/libc−2.2.4.so';

$ perl −V:lib.
libs='−lnsl −lgdbm −ldb −ldl −lm −lcrypt −lutil −lc';
libc='/lib/libc−2.2.4.so';

$ perl −V:lib.*
libpth='/usr/local/lib /lib /usr/lib';
libs='−lnsl −lgdbm −ldb −ldl −lm −lcrypt −lutil −lc';
lib_ext='.a';
libc='/lib/libc−2.2.4.so';
libperl='libperl.a';
....

Additionally, extra colons can be used to control formatting.A trailing colon suppresses the linefeed
and terminator ’;’, allowing you to embed queries into shell commands.(mnemonic:PATH separator
’:’.)

$ echo "compression−vars: " `perl −V:z.*: ` " are here !"
compression−vars: zcat='' zip='zip' are here !

A leading colon removes the ’name=’ part of the response, this allows you to map to the name you
need. (mnemonic:empty label)

$ echo "goodvfork="`./perl −Ilib −V::usevfork`
goodvfork=false;

Leading and trailing colons can be used together if you need positional parameter values without the
names. Notethat in the case below, thePERL_APIparams are returned in alphabetical order.

perl v5.10.0 2007-12-18 193

PERLRUN(1) PerlProgrammers Reference Guide PERLRUN(1)

$ echo building_on `perl −V::osname: −V::PERL_API_.*:` now
building_on 'linux' '5' '1' '9' now

−w prints warnings about dubious constructs, such as variable names that are mentioned only once and
scalar variables that are used before being set, redefined subroutines, references to undefined
filehandles or filehandles opened read-only that you are attempting to write on, values used as a
number that don’t look like numbers, using an array as though it were a scalar, if your subroutines
recurse more than 100 deep, and innumerable other things.

This switch really just enables the internal$ˆW variable. You can disable or promote into fatal errors
specific warnings using_ _WARN_ _hooks, as described in perlvar and ‘‘warn’’ in perlfunc. Seealso
perldiag and perltrap.A new, fine-grained warning facility is also available if you want to manipulate
entire classes of warnings; see warnings or perllexwarn.

−W Enables all warnings regardless ofno warnings or $ˆW. See perllexwarn.

−X Disables all warnings regardless ofuse warnings or $ˆW. See perllexwarn.

−x
−xdirectory

tells Perl that the program is embedded in a larger chunk of unrelatedASCII text, such as in a mail
message. Leadinggarbage will be discarded until the first line that starts with #! and contains the
string ‘‘perl’’. Any meaningful switches on that line will be applied. If a directory name is specified,
Perl will switch to that directory before running the program.The −x switch controls only the
disposal of leading garbage. Theprogram must be terminated with_ _END_ _ if there is trailing
garbage to be ignored (the program can process any or all of the trailing garbage via theDATA
filehandle if desired).

The directory, if specified, must appear immediately following the−x with no intervening
whitespace.

ENVIRONMENT
HOME Used if chdir has no argument.

LOGDIR Used if chdir has no argument andHOME is not set.

PATH Used in executing subprocesses, and in finding the program if−S is used.

PERL5LIB A l ist of directories in which to look for Perl library files before looking in the standard
library and the current directory. Any architecture-specific directories under the specified
locations are automatically included if they exist (this lookup being done at interpreter
startup time.)

If PERL5LIB is not defined,PERLLIB is used. Directories are separated (like in PATH) by a
colon on unixish platforms and by a semicolon on Windows (the proper path separator being
given by the commandperl −V:path_sep).

When running taint checks (either because the program was running setuid or setgid, or the
−T or −t switch was specified), neither variable is used. The program should instead say:

use lib "/my/directory";

PERL5OPT Command-line options (switches).Switches in this variable are taken as if they were on
ev ery Perl command line. Only the−[CDIMUdmtw] switches are allowed. Whenrunning
taint checks (because the program was running setuid or setgid, or the−T switch was used),
this variable is ignored.If PERL5OPTbegins with −T, tainting will be enabled, and any
subsequent options ignored.

PERLIO A space (or colon) separated list of PerlIO layers. If perl is built to use PerlIO system forIO
(the default) these layers effect perl’sIO.

It is conventional to start layer names with a colon e.g.:perlio to emphasise their
similarity to variable ‘‘attributes’’. But the code that parses layer specification strings (which
is also used to decode thePERLIOenvironment variable) treats the colon as a separator.

An unset or emptyPERLIO is equivalent to the default set of layers for your platform, for
example :unix:perlio on UNIX-like systems and:unix:crlf on Windows and
other DOS-like systems.

194 2007-12-18 perl v5.10.0

PERLRUN(1) PerlProgrammers Reference Guide PERLRUN(1)

The list becomes the default forall perl’s IO. Consequently only built-in layers can appear in
this list, as external layers (such as :encoding()) needIO in orderto load them!. See ‘‘open
pragma’’ f or how to add external encodings as defaults.

The layers that it makes sense to include in thePERLIO environment variable are briefly
summarised below. For more details see PerlIO.

:bytes Apseudolayer that turnsoff the :utf8 flag for the layer below. Unlikely to be
useful on its own in the globalPERLIO environment variable. You perhaps were
thinking of :crlf:bytes or :perlio:bytes .

:crlf A layer which doesCRLF to ‘‘\n’ ’ t ranslation distinguishing ‘‘text’’ and ‘‘binary’’
files in the manner of MS-DOS and similar operating systems. (It currently does
not mimic MS-DOS as far as treating of Control-Z as being an end-of-file marker.)

:mmap Alayer which implements ‘‘reading’’ of fi les by usingmmap() to make (whole)
file appear in the process’s address space, and then using that as PerlIO’s ‘‘buffer’’.

:perlio Thisis a re-implementation of ‘‘stdio-like’’ buffering written as a PerlIO ‘‘layer’’.
As such it will call whatever layer is below it for its operations (typically:unix).

:pop Anexperimental pseudolayer that removes the topmost layer. Use with the same
care as is reserved for nitroglycerin.

:raw A pseudolayer that manipulates other layers. Applying the:raw layer is
equivalent to callingbinmode($fh) . It makes the stream pass each byte as-is
without any translation. InparticularCRLF translation, and/or :utf8 intuited from
locale are disabled.

Unlike in the earlier versions of Perl:raw is not just the inverse of :crlf −
other layers which would affect the binary nature of the stream are also removed
or disabled.

:stdio Thislayer provides PerlIO interface by wrapping system’s ANSI C ‘‘stdio’’ l ibrary
calls. The layer provides both buffering andIO. Note that:stdio layer doesnot
do CRLF translation even if that is platforms normal behaviour. You will need a
:crlf layer above it to do that.

:unix Low lev el layer which callsread , write andlseek etc.

:utf8 A pseudolayer that turns on a flag on the layer below to tell perl that output should
be in utf8 and that input should be regarded as already in valid utf8 form. It does
not check for validity and as such should be handled with caution for input.
Generally:encoding(utf8) is the best option when readingUTF−8 encoded
data.

:win32 OnWin32 platforms thisexperimentallayer uses native ‘‘handle’’ IO rather than
unix-like numeric file descriptor layer. Known to be buggy in this release.

On all platforms the default set of layers should give acceptable results.

For UNIX platforms that will equivalent of ‘‘unix perlio’’ or ‘ ‘stdio’’. Configureis setup to
prefer ‘‘stdio’’ i mplementation if system’s library provides for fast access to the buffer,
otherwise it uses the ‘‘unix perlio’’ i mplementation.

On Win32 the default in this release is ‘‘unix crlf’’ . Win32’s ‘‘stdio’’ has a number of
bugs/mis−features for perlIO which are somewhat C compiler vendor/version dependent.
Using our own crlf layer as the buffer avoids those issues and makes things more uniform.
Thecrlf layer providesCRLF to/from ‘‘\n’’ conversion as well as buffering.

This release usesunix as the bottom layer on Win32 and so still uses C compiler’s numeric
file descriptor routines. There is an experimental native win32 layer which is expected to be
enhanced and should eventually be the default under Win32.

PERLIO_DEBUG
If set to the name of a file or device then certain operations of PerlIO sub-system will be
logged to that file (opened as append). Typical uses areUNIX:

perl v5.10.0 2007-12-18 195

PERLRUN(1) PerlProgrammers Reference Guide PERLRUN(1)

PERLIO_DEBUG=/dev/tty perl script ...

and Win32 approximate equivalent:

set PERLIO_DEBUG=CON
perl script ...

This functionality is disabled for setuid scripts and for scripts run with−T.

PERLLIB A l ist of directories in which to look for Perl library files before looking in the standard
library and the current directory. If PERL5LIB is defined,PERLLIB is not used.

PERL5DB The command used to load the debugger code. The default is:

BEGIN { require 'perl5db.pl' }

PERL5DB_THREADED
If set to a true value, indicates to the debugger that the code being debugged uses threads.

PERL5SHELL(specific to the Win32 port)
May be set to an alternative shell that perl must use internally for executing ‘‘backtick’’
commands or system(). Default is cmd.exe /x/d/c on WindowsNT and
command.com /c on Windows95. Thevalue is considered to be space-separated.
Precede any character that needs to be protected (like a space or backslash) with a backslash.

Note that Perl doesn’t useCOMSPECfor this purpose becauseCOMSPEChas a high degree
of variability among users, leading to portability concerns.Besides, perl can use a shell that
may not be fit for interactive use, and settingCOMSPECto such a shell may interfere with
the proper functioning of other programs (which usually look inCOMSPECto find a shell fit
for interactive use).

PERL_ALLOW_NON_IFS_LSP(specific to the Win32 port)
Set to 1 to allow the use of non-IFS compatibleLSP’s. Perl normally searches for an IFS-
compatibleLSP because this is required for its emulation of Windows sockets as real
filehandles. However, this may cause problems if you have a firewall such as McAfee
Guardian which requires all applications to use itsLSPwhich is not IFS-compatible, because
clearly Perl will normally avoid using such anLSP. Setting this environment variable to 1
means that Perl will simply use the first suitableLSPenumerated in the catalog, which keeps
McAfee Guardian happy (and in that particular case Perl still works too because McAfee
Guardian’sLSP actually plays some other games which allow applications requiringIFS
compatibility to work).

PERL_DEBUG_MSTATS
Relevant only if perl is compiled with the malloc included with the perl distribution (that is,
if perl −V:d_mymalloc is ’define’). If set, this causes memory statistics to be dumped
after execution. If set to an integer greater than one, also causes memory statistics to be
dumped after compilation.

PERL_DESTRUCT_LEVEL
Relevant only if your perl executable was built with−DDEBUGGING , this controls the
behavior of global destruction of objects and other references.See
‘‘ PERL_DESTRUCT_LEVEL’’ i n perlhack for more information.

PERL_DL_NONLAZY
Set to one to have perl resolve all undefined symbols when it loads a dynamic library. The
default behaviour is to resolve symbols when they are used. Setting this variable is useful
during testing of extensions as it ensures that you get an error on misspelled function names
ev en if the test suite doesn’t call it.

PERL_ENCODING
If using theencoding pragma without an explicit encoding name, thePERL_ENCODING
environment variable is consulted for an encoding name.

PERL_HASH_SEED
(Since Perl 5.8.1.) Used to randomise perl’s internal hash function.To emulate the
pre−5.8.1 behaviour, set to an integer (zero means exactly the same order as 5.8.0).
‘‘ Pre−5.8.1’’ means, among other things, that hash keys will always have the same ordering

196 2007-12-18 perl v5.10.0

PERLRUN(1) PerlProgrammers Reference Guide PERLRUN(1)

between different runs of perl.

Most hashes return elements in the same order as Perl 5.8.0 by default. Ona hash by hash
basis, if pathological data is detected during a hash key insertion, then that hash will switch
to an alternative random hash seed.

The default behaviour is to randomise unless thePERL_HASH_SEEDis set. If perl has been
compiled with −DUSE_HASH_SEED_EXPLICIT, the default behaviour isnot to
randomise unless thePERL_HASH_SEEDis set.

If PERL_HASH_SEEDis unset or set to a non-numeric string, perl uses the pseudorandom
seed supplied by the operating system and libraries.

Please note that the hash seed is sensitive information . Hashes are randomized to protect
against local and remote attacks against Perl code. By manually setting a seed this protection
may be partially or completely lost.

See ‘‘A lgorithmic Complexity Attacks’’ in perlsec and ‘‘PERL_HASH_SEED_DEBUG’’ f or
more information.

PERL_HASH_SEED_DEBUG
(Since Perl 5.8.1.) Set to one to display (toSTDERR) the value of the hash seed at the
beginning of execution. This,combined with ‘‘PERL_HASH_SEED’’ i s intended to aid in
debugging nondeterministic behavior caused by hash randomization.

Note that the hash seed is sensitive information : by knowing it one can craft a denial-of-
service attack against Perl code, even remotely, see ‘‘A lgorithmic Complexity Attacks’’ i n
perlsec for more information.Do not disclose the hash seedto people who don’t need to
know it. Seealsohash_seed()of Hash::Util.

PERL_ROOT(specific to theVMS port)
A translation concealed rooted logical name that contains perl and the logical device for the
@INCpath onVMS only. Other logical names that affect perl onVMS includePERLSHR,
PERL_ENV_TABLES, and SYS$TIMEZONE_DIFFERENTIALbut are optional and discussed
further in perlvms and inREADME.vmsin the Perl source distribution.

PERL_SIGNALS
In Perls 5.8.1 and later. If set tounsafe the pre−Perl−5.8.0 signals behaviour (immediate
but unsafe) is restored. If set tosafe the safe (or deferred) signals are used. See ‘‘Deferred
Signals (Safe Signals)’’ in perlipc.

PERL_UNICODE
Equivalent to the−C command-line switch. Note that this is not a boolean variable —
setting this to"1" is not the right way to ‘‘enable Unicode’’ (whatever that would mean).
You can use"0" to ‘‘disable Unicode’’, though (or alternatively unsetPERL_UNICODEin
your shell before starting Perl). See the description of the−C switch for more information.

SYS$LOGIN(specific to theVMS port)
Used if chdir has no argument andHOME andLOGDIR are not set.

Perl also has environment variables that control how Perl handles data specific to particular natural
languages. Seeperllocale.

Apart from these, Perl uses no other environment variables, except to make them available to the program
being executed, and to child processes.However, programs running setuid would do well to execute the
following lines before doing anything else, just to keep people honest:

$ENV{PATH} = '/bin:/usr/bin'; # or whatever you need
$ENV{SHELL} = '/bin/sh' if exists $ENV{SHELL};
delete @ENV{qw(IFS CDPATH ENV BASH_ENV)};

perl v5.10.0 2007-12-18 197

PERLREFTUT(1) PerlProgrammers Reference Guide PERLREFTUT(1)

NAME
perlreftut − Mark’s very short tutorial about references

DESCRIPTION
One of the most important new features in Perl 5 was the capability to manage complicated data structures
like multidimensional arrays and nested hashes.To enable these, Perl 5 introduced a feature called
‘references’, and using references is the key to managing complicated, structured data in Perl.
Unfortunately, there’s a lot of funny syntax to learn, and the main manual page can be hard to follow. The
manual is quite complete, and sometimes people find that a problem, because it can be hard to tell what is
important and what isn’t.

Fortunately, you only need to know 10% of what’s in the main page to get 90% of the benefit. This page
will show you that 10%.

Who Needs Complicated Data Structures?
One problem that came up all the time in Perl 4 was how to represent a hash whose values were lists.Perl
4 had hashes, of course, but the values had to be scalars; they couldn’t be lists.

Why would you want a hash of lists?Let’s take a simple example: You have a file of city and country
names, like this:

Chicago, USA
Frankfurt, Germany
Berlin, Germany
Washington, USA
Helsinki, Finland
New York, USA

and you want to produce an output like this, with each country mentioned once, and then an alphabetical
list of the cities in that country:

Finland: Helsinki.
Germany: Berlin, Frankfurt.
USA: Chicago, New York, Washington.

The natural way to do this is to have a hash whose keys are country names. Associated with each country
name key is a list of the cities in that country. Each time you read a line of input, split it into a country and
a city, look up the list of cities already known to be in that country, and append the new city to the list.
When you’re done reading the input, iterate over the hash as usual, sorting each list of cities before you
print it out.

If hash values can’t be lists, you lose. In Perl 4, hash values can’t be lists; they can only be strings.You
lose. You’d probably have to combine all the cities into a single string somehow, and then when time came
to write the output, you’d hav eto break the string into a list, sort the list, and turn it back into a string.This
is messy and error-prone. Andit’s frustrating, because Perl already has perfectly good lists that would
solve the problem if only you could use them.

The Solution
By the time Perl 5 rolled around, we were already stuck with this design: Hash values must be scalars.The
solution to this is references.

A reference is a scalar value thatrefers to an entire array or an entire hash (or to just about anything else).
Names are one kind of reference that you’re already familiar with.Think of the President of the United
States: a messy, inconvenient bag of blood and bones.But to talk about him, or to represent him in a
computer program, all you need is the easy, convenient scalar string ‘‘George Bush’’.

References in Perl are like names for arrays and hashes.They’re Perl’s private, internal names, so you can
be sure they’re unambiguous.Unlike ‘‘George Bush’’, a reference only refers to one thing, and you always
know what it refers to. If you have a reference to an array, you can recover the entire array from it. If you
have a reference to a hash, you can recover the entire hash.But the reference is still an easy, compact scalar
value.

You can’t hav ea hash whose values are arrays; hash values can only be scalars.We’re stuck with that. But
a single reference can refer to an entire array, and references are scalars, so you can have a hash of
references to arrays, and it’ll act a lot like a hash of arrays, and it’ll be just as useful as a hash of arrays.

We’l l come back to this city-country problem later, after we’ve seen some syntax for managing references.

198 2007-12-18 perl v5.10.0

PERLREFTUT(1) PerlProgrammers Reference Guide PERLREFTUT(1)

Syntax
There are just two ways to make a reference, and just two ways to use it once you have it.

Making References

Make Rule 1

If you put a\ in front of a variable, you get a reference to that variable.

$aref = \@array; # $aref now holds a reference to @array
$href = \%hash; # $href now holds a reference to %hash
$sref = \$scalar; # $sref now holds a reference to $scalar

Once the reference is stored in a variable like $aref or $href , you can copy it or store it just the same as
any other scalar value:

$xy = $aref; # $xy now holds a reference to @array
$p[3] = $href; # $p[3] now holds a reference to %hash
$z = $p[3]; # $z n ow holds a reference to %hash

These examples show how to make references to variables with names. Sometimes you want to make an
array or a hash that doesn’t hav ea name. Thisis analogous to the way you like to be able to use the string
"\n" or the number 80 without having to store it in a named variable first.

Make Rule 2

[I TEMS] makes a new, anonymous array, and returns a reference to that array. { I TEMS } makes a
new, anonymous hash, and returns a reference to that hash.

$aref = [1, "foo", undef, 13];
$aref now holds a reference to an array

$href = { APR => 4, AUG => 8 };
$href now holds a reference to a hash

The references you get from rule 2 are the same kind of references that you get from rule 1:

This:
$aref = [1, 2, 3];

Does the same as this:
@array = (1, 2, 3);
$aref = \@array;

The first line is an abbreviation for the following two lines, except that it doesn’t create the superfluous
array variable@array .

If you write just[] , you get a new, empty anonymous array. If you write just{} , you get a new, empty
anonymous hash.

Using References

What can you do with a reference once you have it? It’s a scalar value, and we’ve seen that you can store it
as a scalar and get it back again just like any scalar. There are just two more ways to use it:

Use Rule 1

You can always use an array reference, in curly braces, in place of the name of an array. For example,
@{$aref} instead of@array .

Here are some examples of that:

Arrays:

@a @{$aref} An array
reverse @a reverse @{$aref} Reverse the array
$a[3] ${$aref}[3] An element of the array
$a[3] = 17; ${$aref}[3] = 17 Assigning an element

On each line are two expressions that do the same thing. The left-hand versions operate on the array@a.
The right-hand versions operate on the array that is referred to by$aref . Once they find the array they’re

perl v5.10.0 2007-12-18 199

PERLREFTUT(1) PerlProgrammers Reference Guide PERLREFTUT(1)

operating on, both versions do the same things to the arrays.

Using a hash reference isexactly the same:

%h %{$href} A hash
keys %h keys %{$href} Get the keys from the hash
$h{'red'} ${$href}{'red'} An element of the hash
$h{'red'} = 17 ${$href}{'red'} = 17 Assigning an element

Whatever you want to do with a reference,Use Rule 1tells you how to do it. You just write the Perl code
that you would have written for doing the same thing to a regular array or hash, and then replace the array
or hash name with{$reference} . ‘‘How do I loop over an array when all I have is a reference?’’ Well,
to loop over an array, you would write

for my $element (@array) {
...

}

so replace the array name,@array , with the reference:

for my $element (@{$aref}) {
...

}

‘‘ How do I print out the contents of a hash when all I have is a reference?’’ First write the code for printing
out a hash:

for my $key (keys %hash) {
print "$key => $hash{$key}\n";

}

And then replace the hash name with the reference:

for my $key (keys %{$href}) {
print "$key => ${$href}{$key}\n";

}

Use Rule 2

Use Rule 1is all you really need, because it tells you how to do absolutely everything you ever need to do
with references. But the most common thing to do with an array or a hash is to extract a single element,
and theUse Rule 1notation is cumbersome. So there is an abbreviation.

${$aref}[3] is too hard to read, so you can write$aref−>[3] instead.

${$href}{red} is too hard to read, so you can write$href−>{red} instead.

If $aref holds a reference to an array, then $aref−>[3] is the fourth element of the array. Don’t
confuse this with$aref[3] , which is the fourth element of a totally different array, one deceptively
named@aref . $aref and@aref are unrelated the same way that$item and@item are.

Similarly, $href−>{'red'} is part of the hash referred to by the scalar variable$href , perhaps even
one with no name.$href{'red'} is part of the deceptively named%href hash. It’s easy to forget to
leave out the−>, and if you do, you’ll get bizarre results when your program gets array and hash elements
out of totally unexpected hashes and arrays that weren’t the ones you wanted to use.

An Example

Let’s see a quick example of how all this is useful.

First, remember that[1, 2, 3] makes an anonymous array containing(1, 2, 3) , and gives you a
reference to that array.

Now think about

@a = ([1, 2, 3],
[4, 5, 6],
[7, 8, 9]

);

@ais an array with three elements, and each one is a reference to another array.

200 2007-12-18 perl v5.10.0

PERLREFTUT(1) PerlProgrammers Reference Guide PERLREFTUT(1)

$a[1] is one of these references. It refers to an array, the array containing(4, 5, 6) , and because it is
a reference to an array, Use Rule 2says that we can write$a[1]−>[2] to get the third element from that
array. $a[1]−>[2] is the 6. Similarly, $a[0]−>[1] is the 2. What we have here is like a two-
dimensional array; you can write$a[ROW]−>[COLUMN] to get or set the element in any row and any
column of the array.

The notation still looks a little cumbersome, so there’s one more abbreviation:

Arr ow Rule

In between twosubscripts, the arrow is optional.

Instead of$a[1]−>[2] , we can write$a[1][2] ; it means the same thing. Instead of$a[0]−>[1] =
23 , we can write$a[0][1] = 23 ; it means the same thing.

Now it really looks like two-dimensional arrays!

You can see why the arrows are important.Without them, we would have had to write${$a[1]}[2]
instead of$a[1][2] . For three-dimensional arrays, they let us write$x[2][3][5] instead of the
unreadable${${$x[2]}[3]}[5] .

Solution
Here’s the answer to the problem I posed earlier, of reformatting a file of city and country names.

1 my %table;

2 while (<>) {
3 c homp;
4 my ($city, $country) = split /, /;
5 $table{$country} = [] unless exists $table{$country};
6 push @{$table{$country}}, $city;
7 }

8 f oreach $country (sort keys %table) {
9 print "$country: ";

10 my @cities = @{$table{$country}};
11 print join ', ', sort @cities;
12 print ".\n";
13 }

The program has two pieces: Lines 2−−7 read the input and build a data structure, and lines 8−13 analyze
the data and print out the report.We’re going to have a hash,%table , whose keys are country names, and
whose values are references to arrays of city names. The data structure will look like this:

%table
+−−−−−−−+−−−+
| | | + −−−−−−−−−−−+−−−−−−−−+
|Germany| *−−−−>| Frankfurt | Berlin |
| | | + −−−−−−−−−−−+−−−−−−−−+
+−−−−−−−+−−−+
| | | + −−−−−−−−−−+
|Finland| *−−−−>| Helsinki |
| | | + −−−−−−−−−−+
+−−−−−−−+−−−+
| | | + −−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−+
| U SA | *−−−−>| Chicago | Washington | New York |
| | | + −−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−+
+−−−−−−−+−−−+

We’l l look at output first. Supposing we already have this structure, how do we print it out?

perl v5.10.0 2007-12-18 201

PERLREFTUT(1) PerlProgrammers Reference Guide PERLREFTUT(1)

8 f oreach $country (sort keys %table) {
9 print "$country: ";

10 my @cities = @{$table{$country}};
11 print join ', ', sort @cities;
12 print ".\n";
13 }

%table is an ordinary hash, and we get a list of keys from it, sort the keys, and loop over the keys as
usual. Theonly use of references is in line 10.$table{$country} looks up the key $country in the
hash and gets the value, which is a reference to an array of cities in that country. Use Rule 1says that we
can recover the array by saying@{$table{$country}} . Line 10 is just like

@cities = @array;

except that the namearray has been replaced by the reference{$table{$country}} . The @tells
Perl to get the entire array. Having gotten the list of cities, we sort it, join it, and print it out as usual.

Lines 2−7 are responsible for building the structure in the first place. Here they are again:

2 while (<>) {
3 c homp;
4 my ($city, $country) = split /, /;
5 $table{$country} = [] unless exists $table{$country};
6 push @{$table{$country}}, $city;
7 }

Lines 2−4 acquire a city and country name. Line 5 looks to see if the country is already present as a key in
the hash. If it’s not, the program uses the[] notation (Make Rule 2) to manufacture a new, empty
anonymous array of cities, and installs a reference to it into the hash under the appropriate key.

Line 6 installs the city name into the appropriate array. $table{$country} now holds a reference to
the array of cities seen in that country so far. Line 6 is exactly like

push @array, $city;

except that the namearray has been replaced by the reference{$table{$country}} . The push
adds a city name to the end of the referred-to array.

There’s one fine point I skipped. Line 5 is unnecessary, and we can get rid of it.

2 while (<>) {
3 c homp;
4 my ($city, $country) = split /, /;
5 #### $table{$country} = [] u nless exists $table{$country};
6 push @{$table{$country}}, $city;
7 }

If there’s already an entry in%table for the current$country , then nothing is different. Line6 will
locate the value in$table{$country} , which is a reference to an array, and push$city into the
array. But what does it do when$country holds a key, sayGreece , that is not yet in%table ?

This is Perl, so it does the exact right thing. It sees that you want to pushAthens onto an array that
doesn’t exist, so it helpfully makes a new, empty, anonymous array for you, installs it into%table , and
then pushesAthens onto it. This is called ‘autovivification’−−bringing things to life automatically. Perl
saw that they key wasn’t in the hash, so it created a new hash entry automatically. Perl saw that you wanted
to use the hash value as an array, so it created a new empty array and installed a reference to it in the hash
automatically. And as usual, Perl made the array one element longer to hold the new city name.

The Rest
I promised to give you 90% of the benefit with 10% of the details, and that means I left out 90% of the
details. Now that you have an overview of the important parts, it should be easier to read the perlref
manual page, which discusses 100% of the details.

Some of the highlights of perlref:

• You can make references to anything, including scalars, functions, and other references.

• In Use Rule 1, you can omit the curly brackets whenever the thing inside them is an atomic scalar
variable like $aref . For example,@$aref is the same as@{$aref} , and $$aref[1] is the same

202 2007-12-18 perl v5.10.0

PERLREFTUT(1) PerlProgrammers Reference Guide PERLREFTUT(1)

as${$aref}[1] . If you’re just starting out, you may want to adopt the habit of always including
the curly brackets.

• This doesn’t copy the underlying array:

$aref2 = $aref1;

You get two references to the same array. If you modify $aref1−>[23] and then look at
$aref2−>[23] you’ll see the change.

To copy the array, use

$aref2 = [@{$aref1}];

This uses[...] notation to create a new anonymous array, and $aref2 is assigned a reference to
the new array. The new array is initialized with the contents of the array referred to by$aref1 .

Similarly, to copy an anonymous hash, you can use

$href2 = {%{$href1}};

• To see if a variable contains a reference, use theref function. It returns true if its argument is a
reference. Actuallyit’s a little better than that: It returnsHASHfor hash references andARRAYfor
array references.

• If you try to use a reference like a string, you get strings like

ARRAY(0x80f5dec) or HASH(0x826afc0)

If you ever see a string that looks like this, you’ll know you printed out a reference by mistake.

A side effect of this representation is that you can useeq to see if two references refer to the same
thing. (Butyou should usually use== instead because it’s much faster.)

• You can use a string as if it were a reference.If you use the string"foo" as an array reference, it’s
taken to be a reference to the array@foo. This is called asoft referenceor symbolic reference. The
declarationuse strict 'refs' disables this feature, which can cause all sorts of trouble if you
use it by accident.

You might prefer to go on to perllol instead of perlref; it discusses lists of lists and multidimensional arrays
in detail. After that, you should move on to perldsc; it’s a Data Structure Cookbook that shows recipes for
using and printing out arrays of hashes, hashes of arrays, and other kinds of data.

Summary
Everyone needs compound data structures, and in Perl the way you get them is with references.There are
four important rules for managing references: Two for making references and two for using them.Once
you know these rules you can do most of the important things you need to do with references.

Credits
Author: Mark Jason Dominus, Plover Systems (mjd−perl−ref+@plover.com)

This article originally appeared inThe Perl Journal (http://www.tpj.com/) volume 3, #2. Reprinted with
permission.

The original title wasUnderstand References Today.

Distribution Conditions

Copyright 1998 The Perl Journal.

This documentation is free; you can redistribute it and/or modify it under the same terms as Perl itself.

Irrespective of i ts distribution, all code examples in these files are hereby placed into the public domain.
You are permitted and encouraged to use this code in your own programs for fun or for profit as you see fit.
A simple comment in the code giving credit would be courteous but is not required.

perl v5.10.0 2007-12-18 203

PERLDSC(1) PerlProgrammers Reference Guide PERLDSC(1)

NAME
perldsc − Perl Data Structures Cookbook

DESCRIPTION
The single feature most sorely lacking in the Perl programming language prior to its 5.0 release was
complex data structures.Even without direct language support, some valiant programmers did manage to
emulate them, but it was hard work and not for the faint of heart.You could occasionally get away with the
$m{$AoA,$b} notation borrowed fromawk in which the keys are actually more like a single
concatenated string"AoAb" , but traversal and sorting were difficult. Moredesperate programmers even
hacked Perl’s internal symbol table directly, a strategy that proved hard to develop and maintain— to put it
mildly.

The 5.0 release of Perl let us have complex data structures.You may now write something like this and all
of a sudden, you’d hav ean array with three dimensions!

for $x (1 .. 10) {
for $y (1 .. 10) {

for $z (1 .. 10) {
$AoA[$x][$y][$z] =

$x ** $y + $z;
}

}
}

Alas, however simple this may appear, underneath it’s a much more elaborate construct than meets the eye!

How do you print it out?Why can’t you say justprint @AoA ? How do you sort it? How can you pass
it to a function or get one of these back from a function?Is it an object? Can you save it to disk to read
back later? How do you access whole rows or columns of that matrix? Do all the values have to be
numeric?

As you see, it’s quite easy to become confused. While some small portion of the blame for this can be
attributed to the reference-based implementation, it’s really more due to a lack of existing documentation
with examples designed for the beginner.

This document is meant to be a detailed but understandable treatment of the many different sorts of data
structures you might want to develop. It should also serve as a cookbook of examples. Thatway, when you
need to create one of these complex data structures, you can just pinch, pilfer, or purloin a drop-in example
from here.

Let’s look at each of these possible constructs in detail. There are separate sections on each of the
following:

• arrays of arrays

• hashes of arrays

• arrays of hashes

• hashes of hashes

• more elaborate constructs

But for now, let’s look at general issues common to all these types of data structures.

REFERENCES
The most important thing to understand about all data structures in Perl— including multidimensional
arrays — isthat even though they might appear otherwise, Perl@ARRAYs and %HASHes are all internally
one-dimensional. They can hold only scalar values (meaning a string, number, or a reference). They
cannot directly contain other arrays or hashes, but instead containreferencesto other arrays or hashes.

You can’t use a reference to an array or hash in quite the same way that you would a real array or hash.For
C or C++ programmers unused to distinguishing between arrays and pointers to the same, this can be
confusing. Ifso, just think of it as the difference between a structure and a pointer to a structure.

You can (and should) read more about references in theperlref(1) man page.Briefly, references are rather
like pointers that know what they point to. (Objects are also a kind of reference, but we won’t be needing
them right away — if ever.) This means that when you have something which looks to you like an access to
a two-or-more-dimensional array and/or hash, what’s really going on is that the base type is merely a one-

204 2007-12-18 perl v5.10.0

PERLDSC(1) PerlProgrammers Reference Guide PERLDSC(1)

dimensional entity that contains references to the next level. It’s just that you canuseit as though it were a
two-dimensional one. This is actually the way almost all C multidimensional arrays work as well.

$array[7][12] # array of arrays
$array[7]{string} # array of hashes
$hash{string}[7] # hash of arrays
$hash{string}{'another string'} # hash of hashes

Now, because the top level contains only references, if you try to print out your array in with a simple
print() function, you’ll get something that doesn’t look very nice, like this:

@AoA = ([2, 3], [4, 5, 7], [0]);
print $AoA[1][2];

7
print @AoA;

ARRAY(0x83c38)ARRAY(0x8b194)ARRAY(0x8b1d0)

That’s because Perl doesn’t (ev er) implicitly dereference your variables. Ifyou want to get at the thing a
reference is referring to, then you have to do this yourself using either prefix typing indicators, like
${$blah} , @{$blah} , @{$blah[$i]} , or else postfix pointer arrows, like $a−>[3] , $h−>{fred} ,
or even $ob−>method()−>[3] .

COMMON MISTAKES
The two most common mistakes made in constructing something like an array of arrays is either
accidentally counting the number of elements or else taking a reference to the same memory location
repeatedly. Here’s the case where you just get the count instead of a nested array:

for $i (1..10) {
@array = somefunc($i);
$AoA[$i] = @array; # WRONG!

}

That’s just the simple case of assigning an array to a scalar and getting its element count. If that’s what you
really and truly want, then you might do well to consider being a tad more explicit about it, like this:

for $i (1..10) {
@array = somefunc($i);
$counts[$i] = scalar @array;

}

Here’s the case of taking a reference to the same memory location again and again:

for $i (1..10) {
@array = somefunc($i);
$AoA[$i] = \@array; # WRONG!

}

So, what’s the big problem with that? It looks right, doesn’t it? After all, I just told you that you need an
array of references, so by golly, you’ve made me one!

Unfortunately, while this is true, it’s still broken. All the references in@AoArefer to thevery same place,
and they will therefore all hold whatever was last in@array ! I t’s similar to the problem demonstrated in
the following C program:

#include <pwd.h>
main() {

struct passwd *getpwnam(), *rp, *dp;
rp = getpwnam("root");
dp = getpwnam("daemon");

printf("daemon name is %s\nroot name is %s\n",
dp−>pw_name, rp−>pw_name);

}

Which will print

perl v5.10.0 2007-12-18 205

PERLDSC(1) PerlProgrammers Reference Guide PERLDSC(1)

daemon name is daemon
root name is daemon

The problem is that bothrp and dp are pointers to the same location in memory! In C, you’d hav e to
remember tomalloc() yourself some new memory. In Perl, you’ll want to use the array constructor[] or
the hash constructor{} instead. Here’s the right way to do the preceding broken code fragments:

for $i (1..10) {
@array = somefunc($i);
$AoA[$i] = [@array];

}

The square brackets make a reference to a new array with acopyof what’s in @array at the time of the
assignment. Thisis what you want.

Note that this will produce something similar, but it’s much harder to read:

for $i (1..10) {
@array = 0 .. $i;
@{$AoA[$i]} = @array;

}

Is it the same?Well, maybe so— and maybe not. The subtle difference is that when you assign something
in square brackets, you know for sure it’s always a brand new reference with a new copy of the data.
Something else could be going on in this new case with the@{$AoA[$i]} dereference on the left-hand-
side of the assignment. It all depends on whether$AoA[$i] had been undefined to start with, or whether
it already contained a reference. If you had already populated@AoAwith references, as in

$AoA[3] = \@another_array;

Then the assignment with the indirection on the left-hand-side would use the existing reference that was
already there:

@{$AoA[3]} = @array;

Of course, thiswould have the ‘‘interesting’’ effect of clobbering@another_array . (Have you ever
noticed how when a programmer says something is ‘‘interesting’’, that rather than meaning ‘‘intriguing’’,
they’re disturbingly more apt to mean that it’s ‘‘annoying’’, ‘‘difficult’’, or both? :−)

So just remember always to use the array or hash constructors with[] or {} , and you’ll be fine, although
it’s not always optimally efficient.

Surprisingly, the following dangerous-looking construct will actually work out fine:

for $i (1..10) {
my @array = somefunc($i);
$AoA[$i] = \@array;

}

That’s becausemy() is more of a run-time statement than it is a compile-time declarationper se. This
means that themy() variable is remade afresh each time through the loop. So even though it looks as
though you stored the same variable reference each time, you actually did not!This is a subtle distinction
that can produce more efficient code at the risk of misleading all but the most experienced of programmers.
So I usually advise against teaching it to beginners. Infact, except for passing arguments to functions, I
seldom like to see the gimme-a-reference operator (backslash) used much at all in code.Instead, I advise
beginners that they (and most of the rest of us) should try to use the much more easily understood
constructors[] and{} instead of relying upon lexical (or dynamic) scoping and hidden reference-counting
to do the right thing behind the scenes.

In summary:

$AoA[$i] = [@array]; # usually best
$AoA[$i] = \@array; # perilous; just how my() was that array?
@{ $AoA[$i] } = @array; # way too tricky for most programmers

CAVEAT ON PRECEDENCE
Speaking of things like@{$AoA[$i]} , the following are actually the same thing:

206 2007-12-18 perl v5.10.0

PERLDSC(1) PerlProgrammers Reference Guide PERLDSC(1)

$aref−>[2][2] # clear
$$aref[2][2] # confusing

That’s because Perl’s precedence rules on its five prefix dereferencers (which look like someone swearing:
$ @ * % &) make them bind more tightly than the postfix subscripting brackets or braces! This will no
doubt come as a great shock to the C or C++ programmer, who is quite accustomed to using*a[i] to mean
what’s pointed to by thei’th element ofa. That is, they first take the subscript, and only then dereference
the thing at that subscript. That’s fine in C, but this isn’t C.

The seemingly equivalent construct in Perl,$$aref[$i] first does the deref of$aref , making it take
$aref as a reference to an array, and then dereference that, and finally tell you thei’th value of the array
pointed to by$AoA. If you wanted the C notion, you’d hav e to write ${$AoA[$i]} to force the
$AoA[$i] to get evaluated first before the leading$ dereferencer.

WHY YOU SHOULD AL WA YS use strict
If this is starting to sound scarier than it’s worth, relax. Perl has some features to help you avoid its most
common pitfalls. Thebest way to avoid getting confused is to start every program like this:

#!/usr/bin/perl −w
use strict;

This way, you’ll be forced to declare all your variables withmy() and also disallow accidental ‘‘symbolic
dereferencing’’. Thereforeif you’d done this:

my $aref = [
[" fred", "barney", "pebbles", "bambam", "dino",],
[" homer", "bart", "marge", "maggie",],
[" george", "jane", "elroy", "judy",],

];

print $aref[2][2];

The compiler would immediately flag that as an errorat compile time, because you were accidentally
accessing@aref , an undeclared variable, and it would thereby remind you to write instead:

print $aref−>[2][2]

DEBUGGING
Before version 5.002, the standard Perl debugger didn’t do a very nice job of printing out complex data
structures. With 5.002 or above, the debugger includes several new features, including command line
editing as well as thex command to dump out complex data structures.For example, given the assignment
to $AoA above, here’s the debugger output:

DB<1> x $AoA
$AoA = ARRAY(0x13b5a0)

0 ARRAY(0x1f0a24)
0 ' fred'
1 ' barney'
2 ' pebbles'
3 ' bambam'
4 ' dino'

1 ARRAY(0x13b558)
0 ' homer'
1 ' bart'
2 ' marge'
3 ' maggie'

2 ARRAY(0x13b540)
0 ' george'
1 ' jane'
2 ' elroy'
3 ' judy'

CODE EXAMPLES
Presented with little comment (these will get their own manpages someday) here are short code examples
illustrating access of various types of data structures.

perl v5.10.0 2007-12-18 207

PERLDSC(1) PerlProgrammers Reference Guide PERLDSC(1)

ARRAYS OF ARRAYS
Declaration of anARRAY OF ARRAYS

@AoA = (
[" fred", "barney"],
[" george", "jane", "elroy"],
[" homer", "marge", "bart"],

);

Generation of anARRAY OF ARRAYS

r eading from file
while (<>) {

push @AoA, [split];
}

c alling a function
for $i (1 .. 10) {

$AoA[$i] = [somefunc($i)];
}

using temp vars
for $i (1 .. 10) {

@tmp = somefunc($i);
$AoA[$i] = [@tmp];

}

add to an existing row
push @{ $AoA[0] }, "wilma", "betty";

Access and Printing of anARRAY OF ARRAYS

one element
$AoA[0][0] = "Fred";

another element
$AoA[1][1] =˜ s/(\w)/\u$1/;

print the whole thing with refs
for $aref (@AoA) {

print "\t [@$aref],\n";
}

print the whole thing with indices
for $i (0 .. $#AoA) {

print "\t [@{$AoA[$i]}],\n";
}

print the whole thing one at a time
for $i (0 .. $#AoA) {

for $j (0 .. $#{ $AoA[$i] }) {
print "elt $i $j is $AoA[$i][$j]\n";

}
}

HASHES OF ARRAYS

208 2007-12-18 perl v5.10.0

PERLDSC(1) PerlProgrammers Reference Guide PERLDSC(1)

Declaration of aHASH OF ARRAYS

%HoA = (
flintstones => [" fred", "barney"],
jetsons => [" george", "jane", "elroy"],
simpsons => [" homer", "marge", "bart"],

);

Generation of aHASH OF ARRAYS

r eading from file
f lintstones: fred barney wilma dino
while (<>) {

next unless s/ˆ(.*?):\s*//;
$HoA{$1} = [split];

}

r eading from file; more temps
f lintstones: fred barney wilma dino
while ($line = <>) {

($who, $rest) = split /:\s*/, $line, 2;
@fields = split ' ', $rest;
$HoA{$who} = [@fields];

}

c alling a function that returns a list
for $group ("simpsons", "jetsons", "flintstones") {

$HoA{$group} = [get_family($group)];
}

l ikewise, but using temps
for $group ("simpsons", "jetsons", "flintstones") {

@members = get_family($group);
$HoA{$group} = [@members];

}

append new members to an existing family
push @{ $HoA{"flintstones"} }, "wilma", "betty";

Access and Printing of aHASH OF ARRAYS

one element
$HoA{flintstones}[0] = "Fred";

another element
$HoA{simpsons}[1] =˜ s/(\w)/\u$1/;

print the whole thing
foreach $family (keys %HoA) {

print "$family: @{ $HoA{$family} }\n"
}

print the whole thing with indices
foreach $family (keys %HoA) {

print "family: ";
foreach $i (0 .. $#{ $HoA{$family} }) {

print " $i = $HoA{$family}[$i]";
}
print "\n";

}

perl v5.10.0 2007-12-18 209

PERLDSC(1) PerlProgrammers Reference Guide PERLDSC(1)

print the whole thing sorted by number of members
foreach $family (sort { @{$HoA{$b}} <=> @{$HoA{$a}} } keys %HoA) {

print "$family: @{ $HoA{$family} }\n"
}

print the whole thing sorted by number of members and name
foreach $family (sort {

@{$HoA{$b}} <=> @{$HoA{$a}}
||

$a cmp $b
} k eys %HoA)

{
print "$family: ", join(", ", sort @{ $HoA{$family} }), "\n";

}

ARRAYS OF HASHES
Declaration of anARRAY OF HASHES

@AoH = (
{

Lead => "fred",
Friend => "barney",

},
{

Lead => "george",
Wife => "jane",
Son => "elroy",

},
{

Lead => "homer",
Wife => "marge",
Son => "bart",

}
);

Generation of anARRAY OF HASHES

r eading from file
f ormat: LEAD=fred FRIEND=barney
while (<>) {

$rec = {};
for $field (split) {

($key, $value) = split /=/, $field;
$rec−>{$key} = $value;

}
push @AoH, $rec;

}

r eading from file
f ormat: LEAD=fred FRIEND=barney
no t emp
while (<>) {

push @AoH, { split /[\s+=]/ };
}

c alling a function that returns a key/value pair list, like
" lead","fred","daughter","pebbles"
while (%fields = getnextpairset()) {

push @AoH, { %fields };
}

210 2007-12-18 perl v5.10.0

PERLDSC(1) PerlProgrammers Reference Guide PERLDSC(1)

l ikewise, but using no temp vars
while (<>) {

push @AoH, { parsepairs($_) };
}

add key/value to an element
$AoH[0]{pet} = "dino";
$AoH[2]{pet} = "santa's little helper";

Access and Printing of anARRAY OF HASHES

one element
$AoH[0]{lead} = "fred";

another element
$AoH[1]{lead} =˜ s/(\w)/\u$1/;

print the whole thing with refs
for $href (@AoH) {

print "{ ";
for $role (keys %$href) {

print "$role=$href−>{$role} ";
}
print "}\n";

}

print the whole thing with indices
for $i (0 .. $#AoH) {

print "$i is { ";
for $role (keys %{ $AoH[$i] }) {

print "$role=$AoH[$i]{$role} ";
}
print "}\n";

}

print the whole thing one at a time
for $i (0 .. $#AoH) {

for $role (keys %{ $AoH[$i] }) {
print "elt $i $role is $AoH[$i]{$role}\n";

}
}

HASHES OF HASHES
Declaration of aHASH OF HASHES

%HoH = (
flintstones => {

lead => "fred",
pal => "barney",

},
jetsons => {

lead => "george",
wife => "jane",
"his boy" => "elroy",

},
simpsons => {

lead => "homer",
wife => "marge",
kid => "bart",

},

perl v5.10.0 2007-12-18 211

PERLDSC(1) PerlProgrammers Reference Guide PERLDSC(1)

);

Generation of aHASH OF HASHES

r eading from file
f lintstones: lead=fred pal=barney wife=wilma pet=dino
while (<>) {

next unless s/ˆ(.*?):\s*//;
$who = $1;
for $field (split) {

($key, $value) = split /=/, $field;
$HoH{$who}{$key} = $value;

}

r eading from file; more temps
while (<>) {

next unless s/ˆ(.*?):\s*//;
$who = $1;
$rec = {};
$HoH{$who} = $rec;
for $field (split) {

($key, $value) = split /=/, $field;
$rec−>{$key} = $value;

}
}

c alling a function that returns a key,value hash
for $group ("simpsons", "jetsons", "flintstones") {

$HoH{$group} = { get_family($group) };
}

l ikewise, but using temps
for $group ("simpsons", "jetsons", "flintstones") {

%members = get_family($group);
$HoH{$group} = { %members };

}

append new members to an existing family
%new_folks = (

wife => "wilma",
pet => "dino",

);

for $what (keys %new_folks) {
$HoH{flintstones}{$what} = $new_folks{$what};

}

Access and Printing of aHASH OF HASHES

one element
$HoH{flintstones}{wife} = "wilma";

another element
$HoH{simpsons}{lead} =˜ s/(\w)/\u$1/;

print the whole thing
foreach $family (keys %HoH) {

print "$family: { ";
for $role (keys %{ $HoH{$family} }) {

212 2007-12-18 perl v5.10.0

PERLDSC(1) PerlProgrammers Reference Guide PERLDSC(1)

print "$role=$HoH{$family}{$role} ";
}
print "}\n";

}

print the whole thing somewhat sorted
foreach $family (sort keys %HoH) {

print "$family: { ";
for $role (sort keys %{ $HoH{$family} }) {

print "$role=$HoH{$family}{$role} ";
}
print "}\n";

}

print the whole thing sorted by number of members
foreach $family (sort { keys %{$HoH{$b}} <=> keys %{$HoH{$a}} } keys %HoH) {

print "$family: { ";
for $role (sort keys %{ $HoH{$family} }) {

print "$role=$HoH{$family}{$role} ";
}
print "}\n";

}

establish a sort order (rank) for each role
$i = 0;
for (qw(lead wife son daughter pal pet)) { $rank{$_} = ++$i }

now print the whole thing sorted by number of members
foreach $family (sort { keys %{ $HoH{$b} } <=> keys %{ $HoH{$a} } } keys %HoH) {

print "$family: { ";
and print these according to rank order
for $role (sort { $rank{$a} <=> $rank{$b} } keys %{ $HoH{$family} }) {

print "$role=$HoH{$family}{$role} ";
}
print "}\n";

}

MORE ELABORATE RECORDS
Declaration of MORE ELABORATE RECORDS

Here’s a sample showing how to create and use a record whose fields are of many different sorts:

$rec = {
TEXT => $string,
SEQUENCE => [@old_values],
LOOKUP => { %some_table },
THATCODE => \&some_function,
THISCODE => sub { $_[0] ** $_[1] },
HANDLE => *STDOUT,

};

print $rec−>{TEXT};

print $rec−>{SEQUENCE}[0];
$last = pop @ { $rec−>{SEQUENCE} };

print $rec−>{LOOKUP}{"key"};
($first_k, $first_v) = each %{ $rec−>{LOOKUP} };

perl v5.10.0 2007-12-18 213

PERLDSC(1) PerlProgrammers Reference Guide PERLDSC(1)

$answer = $rec−>{THATCODE}−>($arg);
$answer = $rec−>{THISCODE}−>($arg1, $arg2);

c areful of extra block braces on fh ref
print { $rec−>{HANDLE} } "a string\n";

use FileHandle;
$rec−>{HANDLE}−>autoflush(1);
$rec−>{HANDLE}−>print(" a string\n");

Declaration of aHASH OF COMPLEX RECORDS

%TV = (
flintstones => {

series => "flintstones",
nights => [q w(monday thursday friday)],
members => [

{ n ame => "fred", role => "lead", age => 36, },
{ n ame => "wilma", role => "wife", age => 31, },
{ n ame => "pebbles", role => "kid", age => 4, },

],
},

jetsons => {
series => "jetsons",
nights => [q w(wednesday saturday)],
members => [

{ n ame => "george", role => "lead", age => 41, },
{ n ame => "jane", role => "wife", age => 39, },
{ n ame => "elroy", role => "kid", age => 9, },

],
},

simpsons => {
series => "simpsons",
nights => [q w(monday)],
members => [

{ n ame => "homer", role => "lead", age => 34, },
{ n ame => "marge", role => "wife", age => 37, },
{ n ame => "bart", role => "kid", age => 11, },

],
},

);

Generation of aHASH OF COMPLEX RECORDS

r eading from file
t his is most easily done by having the file itself be
in t he raw data format as shown above. perl is happy
to p arse complex data structures if declared as data, so
s ometimes it's easiest to do that

here's a piece by piece build up
$rec = {};
$rec−>{series} = "flintstones";
$rec−>{nights} = [find_days()];

@members = ();
assume this file in field=value syntax
while (<>) {

214 2007-12-18 perl v5.10.0

PERLDSC(1) PerlProgrammers Reference Guide PERLDSC(1)

%fields = split /[\s=]+/;
push @members, { %fields };

}
$rec−>{members} = [@members];

now remember the whole thing
$TV{ $rec−>{series} } = $rec;

###
now, you might want to make interesting extra fields that
i nclude pointers back into the same data structure so if
c hange one piece, it changes everywhere, like for example
if y ou wanted a {kids} field that was a reference
to an a rray of the kids' records without having duplicate
r ecords and thus update problems.
###
foreach $family (keys %TV) {

$rec = $TV{$family}; # temp pointer
@kids = ();
for $person (@{ $rec−>{members} }) {

if ($person−>{role} =˜ /kid|son|daughter/) {
push @kids, $person;

}
}
REMEMBER: $rec and $TV{$family} point to same data!!
$rec−>{kids} = [@kids];

}

y ou copied the array, but the array itself contains pointers
to u ncopied objects. this means that if you make bart get
older via

$TV{simpsons}{kids}[0]{age}++;

t hen this would also change in
print $TV{simpsons}{members}[2]{age};

because $TV{simpsons}{kids}[0] and $TV{simpsons}{members}[2]
both point to the same underlying anonymous hash table

print the whole thing
foreach $family (keys %TV) {

print "the $family";
print " is on during @{ $TV{$family}{nights} }\n";
print "its members are:\n";
for $who (@{ $TV{$family}{members} }) {

print " $who−>{name} ($who−>{role}), age $who−>{age}\n";
}
print "it turns out that $TV{$family}{lead} has ";
print scalar (@{ $TV{$family}{kids} }), " kids named ";
print join (", ", map { $_−>{name} } @{ $TV{$family}{kids} });
print "\n";

}

Database Ties
You cannot easily tie a multilevel data structure (such as a hash of hashes) to a dbm file. The first problem
is that all but GDBM and Berkeley DB have size limitations, but beyond that, you also have problems with
how references are to be represented on disk. One experimental module that does partially attempt to
address this need is theMLDBM module. Checkyour nearestCPAN site as described in perlmodlib for

perl v5.10.0 2007-12-18 215

PERLDSC(1) PerlProgrammers Reference Guide PERLDSC(1)

source code toMLDBM .

SEE ALSO
perlref(1), perllol (1), perldata(1), perlobj(1)

AUTHOR
Tom Christiansen <tchrist@perl.com>

Last update: Wed Oct 23 04:57:50MET DST1996

216 2007-12-18 perl v5.10.0

PERLREQUICK(1) PerlProgrammers Reference Guide PERLREQUICK(1)

NAME
perlrequick − Perl regular expressions quick start

DESCRIPTION
This page covers the very basics of understanding, creating and using regular expressions (’regexes’) in
Perl.

The Guide
Simple word matching

The simplest regex is simply a word, or more generally, a string of characters.A regex consisting of a word
matches any string that contains that word:

"Hello World" =˜ /World/; # matches

In this statement,World is a regex and the// enclosing/World/ tells perl to search a string for a match.
The operator=˜ associates the string with the regex match and produces a true value if the regex matched,
or false if the regex did not match. In our case,World matches the second word in"Hello World" , so
the expression is true. This idea has several variations.

Expressions like this are useful in conditionals:

print "It matches\n" if "Hello World" =˜ /World/;

The sense of the match can be reversed by using!˜ operator:

print "It doesn't match\n" if "Hello World" !˜ /World/;

The literal string in the regex can be replaced by a variable:

$greeting = "World";
print "It matches\n" if "Hello World" =˜ /$greeting/;

If you’re matching against$_ , the$_ =˜ part can be omitted:

$_ = "Hello World";
print "It matches\n" if /World/;

Finally, the // default delimiters for a match can be changed to arbitrary delimiters by putting an'm' out
front:

"Hello World" =˜ m!World!; # matches, delimited by '!'
"Hello World" =˜ m{World}; # matches, note the matching '{}'
"/usr/bin/perl" =˜ m"/perl"; # matches after '/usr/bin',

' /' becomes an ordinary char

Regexes must match a part of the stringexactly in order for the statement to be true:

"Hello World" =˜ /world/; # doesn't match, case sensitive
"Hello World" =˜ /o W/; # matches, ' ' is an ordinary char
"Hello World" =˜ /World /; # doesn't match, no ' ' at end

perl will always match at the earliest possible point in the string:

"Hello World" =˜ /o/; # matches 'o' in 'Hello'
"That hat is red" =˜ /hat/; # matches 'hat' in 'That'

Not all characters can be used ’as is’ in a match. Some characters, calledmetacharacters, are reserved for
use in regex notation. Themetacharacters are

{}[]()ˆ$.|*+?\

A metacharacter can be matched by putting a backslash before it:

"2+2=4" =˜ /2+2/; # doesn't match, + is a metacharacter
"2+2=4" =˜ /2\+2/; # matches, \+ is treated like an ordinary +
'C:\WIN32' =˜ /C:\\WIN/; # matches
"/usr/bin/perl" =˜ /\/usr\/bin\/perl/; # matches

In the last regex, the forward slash'/' is also backslashed, because it is used to delimit the regex.

Non-printableASCII characters are represented byescape sequences. Common examples are\t for a tab,
\n for a newline, and\r for a carriage return.Arbitrary bytes are represented by octal escape sequences,
e.g.,\033 , or hexadecimal escape sequences, e.g.,\x1B :

perl v5.10.0 2007-12-18 217

PERLREQUICK(1) PerlProgrammers Reference Guide PERLREQUICK(1)

"1000\t2000" =˜ m(0\t2) # matches
"cat" =˜ /\143\x61\x74/ # matches, but a weird way to spell cat

Regexes are treated mostly as double quoted strings, so variable substitution works:

$foo = 'house';
'cathouse' =˜ /cat$foo/; # matches
'housecat' =˜ /${foo}cat/; # matches

With all of the regexes above, if the regex matched anywhere in the string, it was considered a match.To
specify where it should match, we would use theanchor metacharacterŝ and $. The anchor̂ means
match at the beginning of the string and the anchor$ means match at the end of the string, or before a
newline at the end of the string. Some examples:

"housekeeper" =˜ /keeper/; # matches
"housekeeper" =˜ /ˆkeeper/; # doesn't match
"housekeeper" =˜ /keeper$/; # matches
"housekeeper\n" =˜ /keeper$/; # matches
"housekeeper" =˜ /ˆhousekeeper$/; # matches

Using character classes

A character classallows a set of possible characters, rather than just a single character, to match at a
particular point in a regex. Characterclasses are denoted by brackets[...] , with the set of characters to
be possibly matched inside. Here are some examples:

/cat/; # matches 'cat'
/[bcr]at/; # matches 'bat', 'cat', or 'rat'
"abc" =˜ /[cab]/; # matches 'a'

In the last statement, even though'c' is the first character in the class, the earliest point at which the regex
can match is'a' .

/[yY][eE][sS]/; # match 'yes' in a case−insensitive way
' yes', 'Yes', 'YES', etc.

/yes/i; # also match 'yes' in a case−insensitive way

The last example shows a match with an'i' modifier, which makes the match case-insensitive.

Character classes also have ordinary and special characters, but the sets of ordinary and special characters
inside a character class are different than those outside a character class. The special characters for a
character class are−]\ˆ$ and are matched using an escape:

/[\]c]def/; # matches ']def' or 'cdef'
$x = 'bcr';
/[$x]at/; # matches 'bat, 'cat', or 'rat'
/[\$x]at/; # matches '$at' or 'xat'
/[\\$x]at/; # matches '\at', 'bat, 'cat', or 'rat'

The special character'−' acts as a range operator within character classes, so that the unwieldy
[0123456789] and[abc...xyz] become the svelte[0−9] and[a−z] :

/item[0−9]/; # matches 'item0' or ... or 'item9'
/[0−9a−fA−F]/; # matches a hexadecimal digit

If '−' is the first or last character in a character class, it is treated as an ordinary character.

The special characterˆ in the first position of a character class denotes anegated character class, which
matches any character but those in the brackets. Both[...] and[ˆ...] must match a character, or the
match fails. Then

/[ˆa]at/; # doesn't match 'aat' or 'at', but matches
all other 'bat', 'cat, '0at', '%at', etc.

/[ˆ0−9]/; # matches a non−numeric character
/[aˆ]at/; # matches 'aat' or 'ˆat'; here 'ˆ' is ordinary

Perl has several abbreviations for common character classes:

• \d is a digit and represents

218 2007-12-18 perl v5.10.0

PERLREQUICK(1) PerlProgrammers Reference Guide PERLREQUICK(1)

[0−9]

• \s is a whitespace character and represents

[\ \t\r\n\f]

• \w is a word character (alphanumeric or _) and represents

[0−9a−zA−Z_]

• \D is a neg ated \d; it represents any character but a digit

[ˆ0−9]

• \S is a neg ated \s; it represents any non-whitespace character

[ˆ\s]

• \W is a neg ated \w; it represents any non-word character

[ˆ\w]

• The period ’.’ matches any character but ‘‘\n’’

The \d\s\w\D\S\W abbreviations can be used both inside and outside of character classes.Here are
some in use:

/\d\d:\d\d:\d\d/; # matches a hh:mm:ss time format
/[\d\s]/; # matches any digit or whitespace character
/\w\W\w/; # matches a word char, followed by a

non−word char, followed by a word char
/..rt/; # matches any two chars, followed by 'rt'
/end\./; # matches 'end.'
/end[.]/; # same thing, matches 'end.'

The word anchor \b matches a boundary between a word character and a non-word character\w\W or
\W\w :

$x = "Housecat catenates house and cat";
$x =˜ /\bcat/; # matches cat in 'catenates'
$x =˜ /cat\b/; # matches cat in 'housecat'
$x =˜ /\bcat\b/; # matches 'cat' at end of string

In the last example, the end of the string is considered a word boundary.

Matching this or that

We can match different character strings with thealternation metacharacter'|' . To matchdog or cat ,
we form the regexdog|cat . As before, perl will try to match the regex at the earliest possible point in the
string. At each character position, perl will first try to match the first alternative, dog . If dog doesn’t
match, perl will then try the next alternative, cat . If cat doesn’t match either, then the match fails and
perl moves to the next position in the string. Some examples:

"cats and dogs" =˜ /cat|dog|bird/; # matches "cat"
"cats and dogs" =˜ /dog|cat|bird/; # matches "cat"

Even thoughdog is the first alternative in the second regex,cat is able to match earlier in the string.

"cats" =˜ /c|ca|cat|cats/; # matches "c"
"cats" =˜ /cats|cat|ca|c/; # matches "cats"

At a given character position, the first alternative that allows the regex match to succeed will be the one that
matches. Here, all the alternatives match at the first string position, so the first matches.

Grouping things and hierarchical matching

Thegrouping metacharacters() allow a part of a regex to be treated as a single unit.Parts of a regex are
grouped by enclosing them in parentheses. The regex house(cat|keeper) means matchhouse
followed by eithercat or keeper . Some more examples are

perl v5.10.0 2007-12-18 219

PERLREQUICK(1) PerlProgrammers Reference Guide PERLREQUICK(1)

/(a|b)b/; # matches 'ab' or 'bb'
/(ˆa|b)c/; # matches 'ac' at start of string or 'bc' anywhere

/house(cat|)/; # matches either 'housecat' or 'house'
/house(cat(s|)|)/; # matches either 'housecats' or 'housecat' or

' house'. Note groups can be nested.

"20" =˜ /(19|20|)\d\d/; # matches the null alternative '()\d\d',
because '20\d\d' can't match

Extracting matches

The grouping metacharacters() also allow the extraction of the parts of a string that matched.For each
grouping, the part that matched inside goes into the special variables$1 , $2 , etc. They can be used just as
ordinary variables:

extract hours, minutes, seconds
$time =˜ /(\d\d):(\d\d):(\d\d)/; # match hh:mm:ss format
$hours = $1;
$minutes = $2;
$seconds = $3;

In list context, a match/regex/ with groupings will return the list of matched values($1,$2,...) .
So we could rewrite it as

($hours, $minutes, $second) = ($time =˜ /(\d\d):(\d\d):(\d\d)/);

If the groupings in a regex are nested,$1 gets the group with the leftmost opening parenthesis,$2 the next
opening parenthesis, etc.For example, here is a complex regex and the matching variables indicated below
it:

/(ab(cd|ef)((gi)|j))/;
1 2 3 4

Associated with the matching variables$1 , $2 , ... are thebackreferences\1 , \2 , ... Backreferencesare
matching variables that can be usedinsidea regex:

/(\w\w\w)\s\1/; # find sequences like 'the the' in string

$1 , $2 , ... should only be used outside of a regex, and\1 , \2 , ... only inside a regex.

Matching repetitions

Thequantifier metacharacters?, * , +, and {} allow us to determine the number of repeats of a portion of
a regex we consider to be a match.Quantifiers are put immediately after the character, character class, or
grouping that we want to specify. They hav ethe following meanings:

• a? = match ’a’ 1 or 0 times

• a* = match ’a’ 0 or more times, i.e., any number of times

• a+ = match ’a’ 1 or more times, i.e., at least once

• a{n,m} = match at leastn times, but not more thanmtimes.

• a{n,} = match at leastn or more times

• a{n} = match exactlyn times

Here are some examples:

/[a−z]+\s+\d*/; # match a lowercase word, at least some space, and
any number of digits

/(\w+)\s+\1/; # match doubled words of arbitrary length
$year =˜ /\d{2,4}/; # make sure year is at least 2 but not more

t han 4 digits
$year =˜ /\d{4}|\d{2}/; # better match; throw out 3 digit dates

These quantifiers will try to match as much of the string as possible, while still allowing the regex to match.
So we have

220 2007-12-18 perl v5.10.0

PERLREQUICK(1) PerlProgrammers Reference Guide PERLREQUICK(1)

$x = 'the cat in the hat';
$x =˜ /ˆ(.*)(at)(.*)$/; # matches,

$1 = ' the cat in the h'
$2 = ' at'
$3 = ' ' (0 matches)

The first quantifier.* grabs as much of the string as possible while still having the regex match. The
second quantifier.* has no string left to it, so it matches 0 times.

Mor e matching

There are a few more things you might want to know about matching operators. In the code

$pattern = 'Seuss';
while (<>) {

print if /$pattern/;
}

perl has to re-evaluate$pattern each time through the loop.If $pattern won’t be changing, use the
//o modifier, to only perform variable substitutions once.If you don’t want any substitutions at all, use
the special delimiterm'' :

@pattern = ('Seuss');
m/@pattern/; # matches 'Seuss'
m'@pattern'; # matches the literal string '@pattern'

The global modifier//g allows the matching operator to match within a string as many times as possible.
In scalar context, successive matches against a string will have //g jump from match to match, keeping
track of position in the string as it goes along.You can get or set the position with thepos() function.
For example,

$x = "cat dog house"; # 3 words
while ($x =˜ /(\w+)/g) {

print "Word is $1, ends at position ", pos $x, "\n";
}

prints

Word is cat, ends at position 3
Word is dog, ends at position 7
Word is house, ends at position 13

A failed match or changing the target string resets the position. If you don’t want the position reset after
failure to match, add the//c , as in /regex/gc .

In list context, //g returns a list of matched groupings, or if there are no groupings, a list of matches to the
whole regex. So

@words = ($x =˜ /(\w+)/g); # matches,
$word[0] = 'cat'
$word[1] = 'dog'
$word[2] = 'house'

Search and replace

Search and replace is performed usings/regex/replacement/modifiers . The replacement is
a Perl double quoted string that replaces in the string whatever is matched with theregex . The operator
=˜ is also used here to associate a string withs/// . If matching against$_ , the$_ =˜ can be dropped.
If there is a match,s/// returns the number of substitutions made, otherwise it returns false. Hereare a
few examples:

$x = "Time to feed the cat!";
$x =˜ s/cat/hacker/; # $x c ontains "Time to feed the hacker!"
$y = "'quoted words'";
$y =˜ s/ˆ'(.*)'$/$1/; # s trip single quotes,

$y c ontains "quoted words"

With the s/// operator, the matched variables$1 , $2 , etc. areimmediately available for use in the

perl v5.10.0 2007-12-18 221

PERLREQUICK(1) PerlProgrammers Reference Guide PERLREQUICK(1)

replacement expression. With the global modifier, s///g will search and replace all occurrences of the
regex in the string:

$x = "I batted 4 for 4";
$x =˜ s/4/four/; # $x c ontains "I batted four for 4"
$x = "I batted 4 for 4";
$x =˜ s/4/four/g; # $x c ontains "I batted four for four"

The evaluation modifiers///e wraps aneval{...} around the replacement string and the evaluated
result is substituted for the matched substring. Some examples:

r everse all the words in a string
$x = "the cat in the hat";
$x =˜ s/(\w+)/reverse $1/ge; # $x c ontains "eht tac ni eht tah"

c onvert percentage to decimal
$x = "A 39% hit rate";
$x =˜ s!(\d+)%!$1/100!e; # $x c ontains "A 0.39 hit rate"

The last example shows thats/// can use other delimiters, such ass!!! ands{}{} , and even s{}// .
If single quotes are useds''' , then the regex and replacement are treated as single quoted strings.

The split operator

split /regex/, string splits string into a list of substrings and returns that list. The regex
determines the character sequence thatstring is split with respect to.For example, to split a string into
words, use

$x = "Calvin and Hobbes";
@word = split /\s+/, $x; # $word[0] = 'Calvin'

$word[1] = 'and'
$word[2] = 'Hobbes'

To extract a comma-delimited list of numbers, use

$x = "1.618,2.718, 3.142";
@const = split /,\s*/, $x; # $const[0] = '1.618'

$const[1] = '2.718'
$const[2] = '3.142'

If the empty regex // is used, the string is split into individual characters. If the regex has groupings, then
the list produced contains the matched substrings from the groupings as well:

$x = "/usr/bin";
@parts = split m!(/)!, $x; # $parts[0] = ''

$parts[1] = '/'
$parts[2] = 'usr'
$parts[3] = '/'
$parts[4] = 'bin'

Since the first character of$x matched the regex,split prepended an empty initial element to the list.

BUGS
None.

SEE ALSO
This is just a quick start guide.For a more in-depth tutorial on regexes, see perlretut and for the reference
page, see perlre.

AUTHOR AND COPYRIGHT
Copyright (c) 2000 Mark Kvale All rights reserved.

This document may be distributed under the same terms as Perl itself.

222 2007-12-18 perl v5.10.0

PERLREQUICK(1) PerlProgrammers Reference Guide PERLREQUICK(1)

Acknowledgments

The author would like to thank Mark-Jason Dominus, Tom Christiansen, Ilya Zakharevich, Brad Hughes,
and Mike Giroux for all their helpful comments.

perl v5.10.0 2007-12-18 223

PERLSTYLE(1) PerlProgrammers Reference Guide PERLSTYLE(1)

NAME
perlstyle − Perl style guide

DESCRIPTION
Each programmer will, of course, have his or her own preferences in regards to formatting, but there are
some general guidelines that will make your programs easier to read, understand, and maintain.

The most important thing is to run your programs under the−w flag at all times.You may turn it off
explicitly for particular portions of code via theno warnings pragma or the$ˆW variable if you must.
You should also always run underuse strict or know the reason why not. Theuse sigtrap and
ev en use diagnostics pragmas may also prove useful.

Regarding aesthetics of code lay out, about the only thing Larry cares strongly about is that the closing
curly bracket of a multi-lineBLOCK should line up with the keyword that started the construct.Beyond
that, he has other preferences that aren’t so strong:

• 4−column indent.

• Opening curly on same line as keyword, if possible, otherwise line up.

• Space before the opening curly of a multi-lineBLOCK.

• One-lineBLOCK may be put on one line, including curlies.

• No space before the semicolon.

• Semicolon omitted in ‘‘short’’ one-lineBLOCK.

• Space around most operators.

• Space around a ‘‘complex’’ subscript (inside brackets).

• Blank lines between chunks that do different things.

• Uncuddled elses.

• No space between function name and its opening parenthesis.

• Space after each comma.

• Long lines broken after an operator (exceptand andor).

• Space after last parenthesis matching on current line.

• Line up corresponding items vertically.

• Omit redundant punctuation as long as clarity doesn’t suffer.

Larry has his reasons for each of these things, but he doesn’t claim that everyone else’s mind works the
same as his does.

Here are some other more substantive style issues to think about:

• Just because youCAN do something a particular way doesn’t mean that youSHOULDdo it that way.
Perl is designed to give you several ways to do anything, so consider picking the most readable one.
For instance

open(FOO,$foo) || die "Can't open $foo: $!";

is better than

die "Can't open $foo: $!" unless open(FOO,$foo);

because the second way hides the main point of the statement in a modifier. On the other hand

print "Starting analysis\n" if $verbose;

is better than

$verbose && print "Starting analysis\n";

because the main point isn’t whether the user typed−v or not.

Similarly, just because an operator lets you assume default arguments doesn’t mean that you have to
make use of the defaults. Thedefaults are there for lazy systems programmers writing one-shot
programs. Ifyou want your program to be readable, consider supplying the argument.

224 2007-12-18 perl v5.10.0

PERLSTYLE(1) PerlProgrammers Reference Guide PERLSTYLE(1)

Along the same lines, just because youCAN omit parentheses in many places doesn’t mean that you
ought to:

return print reverse sort num values %array;
return print(reverse(sort num (values(%array))));

When in doubt, parenthesize. At the very least it will let some poor schmuck bounce on the % key in
vi.

Even if you aren’t in doubt, consider the mental welfare of the person who has to maintain the code
after you, and who will probably put parentheses in the wrong place.

• Don’t go through silly contortions to exit a loop at the top or the bottom, when Perl provides thelast
operator so you can exit in the middle. Just ‘‘outdent’’ it a l ittle to make it more visible:

LINE:
for (;;) {

statements;
last LINE if $foo;

next LINE if /ˆ#/;
statements;

}

• Don’t be afraid to use loop labels— they’re there to enhance readability as well as to allow multilevel
loop breaks. See the previous example.

• Avoid usinggrep() (or map()) or ‘backticks‘ in a void context, that is, when you just throw away
their return values. Thosefunctions all have return values, so use them. Otherwise use aforeach()
loop or thesystem() function instead.

• For portability, when using features that may not be implemented on every machine, test the construct
in an eval to see if it fails. If you know what version or patchlevel a particular feature was
implemented, you can test$] ($PERL_VERSIONin English) to see if it will be there. The
Config module will also let you interrogate values determined by theConfigure program when Perl
was installed.

• Choose mnemonic identifiers. If you can’t remember what mnemonic means, you’ve got a problem.

• While short identifiers like $gotit are probably ok, use underscores to separate words in longer
identifiers. Itis generally easier to read$var_names_like_this than$VarNamesLikeThis ,
especially for non-native speakers of English. It’s also a simple rule that works consistently with
VAR_NAMES_LIKE_THIS.

Package names are sometimes an exception to this rule. Perl informally reserves lowercase module
names for ‘‘pragma’’ modules like integer and strict . Other modules should begin with a
capital letter and use mixed case, but probably without underscores due to limitations in primitive file
systems’ representations of module names as files that must fit into a few sparse bytes.

• You may find it helpful to use letter case to indicate the scope or nature of a variable. For example:

$ALL_CAPS_HERE constants only (beware clashes with perl vars!)
$Some_Caps_Here package−wide global/static
$no_caps_here function scope my() or local() variables

Function and method names seem to work best as all lowercase. E.g.,$obj−>as_string() .

You can use a leading underscore to indicate that a variable or function should not be used outside the
package that defined it.

• If you have a really hairy regular expression, use the/x modifier and put in some whitespace to make
it look a little less like line noise. Don’t use slash as a delimiter when your regexp has slashes or
backslashes.

• Use the new and and or operators to avoid having to parenthesize list operators so much, and to
reduce the incidence of punctuation operators like && and || . Call your subroutines as if they were
functions or list operators to avoid excessive ampersands and parentheses.

• Use here documents instead of repeatedprint() statements.

perl v5.10.0 2007-12-18 225

PERLSTYLE(1) PerlProgrammers Reference Guide PERLSTYLE(1)

• Line up corresponding things vertically, especially if it’d be too long to fit on one line anyway.

$IDX = $ST_MTIME;
$IDX = $ST_ATIME if $opt_u;
$IDX = $ST_CTIME if $opt_c;
$IDX = $ST_SIZE if $opt_s;

mkdir $tmpdir, 0700 or die "can't mkdir $tmpdir: $!";
chdir($tmpdir) or die "can't chdir $tmpdir: $!";
mkdir 'tmp', 0777 or die "can't mkdir $tmpdir/tmp: $!";

• Always check the return codes of system calls. Good error messages should go toSTDERR, include
which program caused the problem, what the failed system call and arguments were, and (VERY
IMPORTANT) should contain the standard system error message for what went wrong.Here’s a simple
but sufficient example:

opendir(D, $dir) or die "can't opendir $dir: $!";

• Line up your transliterations when it makes sense:

tr [abc]
[xyz];

• Think about reusability. Why waste brainpower on a one-shot when you might want to do something
like it again? Considergeneralizing your code. Consider writing a module or object class.Consider
making your code run cleanly withuse strict anduse warnings (or −w) in effect. Consider
giving away your code. Consider changing your whole world view. Consider... oh, never mind.

• Try to document your code and use Pod formatting in a consistent way. Here are commonly expected
conventions:

• use C<> for function, variable and module names (and more generally anything that can be
considered part of code, like filehandles or specific values). Note that function names are
considered more readable with parentheses after their name, that isfunction() .

• useB<> for commands names likecat or grep.

• useF<> or C<> for file names.F<> should be the only Pod code for file names, but as most Pod
formatters render it as italic, Unix and Windows paths with their slashes and backslashes may be
less readable, and better rendered withC<>.

• Be consistent.

• Be nice.

226 2007-12-18 perl v5.10.0

PERLTRAP(1) PerlProgrammers Reference Guide PERLTRAP(1)

NAME
perltrap − Perl traps for the unwary

DESCRIPTION
The biggest trap of all is forgetting touse warnings or use the−w switch; see perllexwarn and perlrun.
The second biggest trap is not making your entire program runnable underuse strict . The third
biggest trap is not reading the list of changes in this version of Perl; see perldelta.

Awk Traps

Accustomedawk users should take special note of the following:

• A Perl program executes only once, not once for each input line.You can do an implicit loop with−n
or −p.

• The English module, loaded via

use English;

allows you to refer to special variables (like $/) with names (like $RS), as though they were inawk;
see perlvar for details.

• Semicolons are required after all simple statements in Perl (except at the end of a block).Newline is
not a statement delimiter.

• Curly brackets are required onif s andwhile s.

• Variables begin with ‘‘$’’, ‘‘@’’ or ‘ ‘%’’ in Perl.

• Arrays index from 0. Likewise string positions insubstr()andindex().

• You have to decide whether your array has numeric or string indices.

• Hash values do not spring into existence upon mere reference.

• You have to decide whether you want to use string or numeric comparisons.

• Reading an input line does not split it for you.You get to split it to an array yourself. And thesplit()
operator has different arguments thanawk’s.

• The current input line is normally in$_ , not $0 . It generally does not have the newline stripped.($0
is the name of the program executed.) Seeperlvar.

• $<digit> does not refer to fields— it refers to substrings matched by the last match pattern.

• Theprint() statement does not add field and record separators unless you set$, and$\ . You can set
$OFSand$ORSif you’re using the English module.

• You must open your files before you print to them.

• The range operator is ‘‘..’’ , not comma. The comma operator works as in C.

• The match operator is ‘‘=˜’’, not ‘‘˜’’. (‘ ‘˜’ ’ is the one’s complement operator, as in C.)

• The exponentiation operator is ‘‘**’ ’, not ‘‘ˆ’ ’. ‘ ‘ˆ’ ’ is the XOR operator, as in C. (You know, one
could get the feeling thatawk is basically incompatible with C.)

• The concatenation operator is ‘‘.’’ , not the null string. (Using the null string would render/pat/
/pat/ unparsable, because the third slash would be interpreted as a division operator— the tokenizer
is in fact slightly context sensitive for operators like ‘‘/’ ’, ‘ ‘?’’, and ‘‘>’ ’. And in fact, ‘‘.’’ i tself can be
the beginning of a number.)

• Thenext , exit , andcontinue keywords work differently.

• The following variables work differently:

perl v5.10.0 2007-12-18 227

PERLTRAP(1) PerlProgrammers Reference Guide PERLTRAP(1)

Awk Perl
ARGC scalar @ARGV (compare with $#ARGV)
ARGV[0] $0
FILENAME $ARGV
FNR $. − something
FS (whatever you like)
NF $#Fld, or some such
NR $.
OFMT $#
OFS $,
ORS $\
RLENGTH length($&)
RS $/
RSTART length($`)
SUBSEP $;

• You cannot set$RS to a pattern, only a string.

• When in doubt, run theawk construct througha2pand see what it gives you.

C/C++ Tr aps

Cerebral C and C++programmers should take note of the following:

• Curly brackets are required onif ’s andwhile ’s.

• You must useelsif rather thanelse if .

• Thebreak andcontinue keywords from C become in Perllast andnext , respectively. Unlike
in C, these donotwork within ado { } while construct. See‘‘ Loop Control’’ in perlsyn.

• There’s no switch statement. (But it’s easy to build one on the fly, see ‘‘Basic BLOCKs and Switch
Statements’’ in perlsyn)

• Variables begin with ‘‘$’’, ‘‘@’’ or ‘ ‘%’’ in Perl.

• Comments begin with ‘‘#’ ’, not ‘‘/*’ ’ or ‘‘//’ ’. Perl may interpret C/C++ comments as division
operators, unterminated regular expressions or the defined-or operator.

• You can’t take the address of anything, although a similar operator in Perl is the backslash, which
creates a reference.

• ARGVmust be capitalized.$ARGV[0] is C’sargv[1] , andargv[0] ends up in$0 .

• System calls such aslink(), unlink(), rename(), etc. return nonzero for success, not 0. (system(),
however, returns zero for success.)

• Signal handlers deal with signal names, not numbers.Use kill −l to find their names on your
system.

Sed Traps

Seasonedsedprogrammers should take note of the following:

• A Perl program executes only once, not once for each input line.You can do an implicit loop with−n
or −p.

• Backreferences in substitutions use ‘‘$’’ rather than ‘‘\’’.

• The pattern matching metacharacters ‘‘(’’, ‘‘)’’, and ‘‘|’’ do not have backslashes in front.

• The range operator is... , rather than comma.

Shell Traps

Sharp shell programmers should take note of the following:

• The backtick operator does variable interpolation without regard to the presence of single quotes in the
command.

• The backtick operator does no translation of the return value, unlikecsh.

228 2007-12-18 perl v5.10.0

PERLTRAP(1) PerlProgrammers Reference Guide PERLTRAP(1)

• Shells (especiallycsh) do sev eral levels of substitution on each command line.Perl does substitution
in only certain constructs such as double quotes, backticks, angle brackets, and search patterns.

• Shells interpret scripts a little bit at a time. Perl compiles the entire program before executing it
(except forBEGINblocks, which execute at compile time).

• The arguments are available via@ARGV, not $1 , $2 , etc.

• The environment is not automatically made available as separate scalar variables.

• The shell’s test uses ‘‘=’ ’, ‘ ‘!=’ ’, ‘ ‘<’ ’ etc for string comparisons and ‘‘−eq’’, ‘ ‘−ne’’, ‘ ‘−lt’ ’ etc for
numeric comparisons. This is the reverse of Perl, which useseq , ne , lt for string comparisons, and
==, != < etc for numeric comparisons.

Perl Traps

Practicing Perl Programmers should take note of the following:

• Remember that many operations behave differently in a list context than they do in a scalar one.See
perldata for details.

• Avoid barewords if you can, especially all lowercase ones.You can’t tell by just looking at it whether
a bareword is a function or a string.By using quotes on strings and parentheses on function calls, you
won’t ever get them confused.

• You cannot discern from mere inspection which builtins are unary operators (like chop() andchdir())
and which are list operators (like print() andunlink()). (Unlessprototyped, user-defined subroutines
canonly be list operators, never unary ones.) See perlop and perlsub.

• People have a hard time remembering that some functions default to$_ , or @ARGV, or whatever, but
that others which you might expect to do not.

• The <FH> construct is not the name of the filehandle, it is a readline operation on that handle.The
data read is assigned to$_ only if the file read is the sole condition in a while loop:

while (<FH>) { }
while (defined($_ = <FH>)) { }..
<FH>; # data discarded!

• Remember not to use= when you need=˜ ; these two constructs are quite different:

$x = /foo/;
$x =˜ /foo/;

• Thedo {} construct isn’t a real loop that you can use loop control on.

• Use my() for local variables whenever you can get away with it (but see perlform for where you
can’t). Using local() actually gives a local value to a global variable, which leaves you open to
unforeseen side-effects of dynamic scoping.

• If you localize an exported variable in a module, its exported value will not change. The local name
becomes an alias to a new value but the external name is still an alias for the original.

Perl4 to Perl5 Traps

Practicing Perl4 Programmers should take note of the following Perl4−to−Perl5 specific traps.

They’re crudely ordered according to the following list:

Discontinuance, Deprecation, and BugFix traps
Anything that’s been fixed as a perl4 bug, removed as a perl4 feature or deprecated as a perl4 feature
with the intent to encourage usage of some other perl5 feature.

Parsing Traps
Traps that appear to stem from the new parser.

Numerical Traps
Traps having to do with numerical or mathematical operators.

General data type traps
Traps involving perl standard data types.

perl v5.10.0 2007-12-18 229

PERLTRAP(1) PerlProgrammers Reference Guide PERLTRAP(1)

Context Traps − scalar, list contexts
Traps related to context within lists, scalar statements/declarations.

Precedence Traps
Traps related to the precedence of parsing, evaluation, and execution of code.

General Regular Expression Traps using s///, etc.
Traps related to the use of pattern matching.

Subroutine, Signal, Sorting Traps
Traps related to the use of signals and signal handlers, general subroutines, and sorting, along with
sorting subroutines.

OSTraps
OS-specific traps.

DBM Traps
Traps specific to the use ofdbmopen() , and specific dbm implementations.

Unclassified Traps
Everything else.

If you find an example of a conversion trap that is not listed here, please submit it to <perlbug@perl.org>
for inclusion. Also note that at least some of these can be caught with theuse warnings pragma or the
−w switch.

Discontinuance, Deprecation, and BugFix traps

Anything that has been discontinued, deprecated, or fixed as a bug from perl4.

• Symbols starting with ‘‘_’’ no longer forced into main

Symbols starting with ‘‘_’ ’ are no longer forced into package main, except for$_ itself (and@_, etc.).

package test;
$_legacy = 1;

package main;
print "\$_legacy is ",$_legacy,"\n";

perl4 prints: $_legacy is 1
perl5 prints: $_legacy is

• Double-colon valid package separator in variable name

Double-colon is now a valid package separator in a variable name. Thus these behave differently in
perl4 vs. perl5, because the packages don’t exist.

$a=1;$b=2;$c=3;$var=4;
print "$a::$b::$c ";
print "$var::abc::xyz\n";

perl4 prints: 1::2::3 4::abc::xyz
perl5 prints: 3

Given that :: is now the preferred package delimiter, it is debatable whether this should be classed as
a bug or not. (The older package delimiter, ’ ,is used here)

$x = 10;
print "x=${'x}\n";

perl4 prints: x=10
perl5 prints: Can't find string terminator "'" anywhere before EOF

You can avoid this problem, and remain compatible with perl4, if you always explicitly include the
package name:

230 2007-12-18 perl v5.10.0

PERLTRAP(1) PerlProgrammers Reference Guide PERLTRAP(1)

$x = 10;
print "x=${main'x}\n";

Also see precedence traps, for parsing$: .

• 2nd and 3rd args tosplice() are now in scalar context

The second and third arguments ofsplice() are now evaluated in scalar context (as the Camel
says) rather than list context.

sub sub1{return(0,2) } # r eturn a 2−element list
sub sub2{ return(1,2,3)} # r eturn a 3−element list
@a1 = ("a","b","c","d","e");
@a2 = splice(@a1,&sub1,&sub2);
print join(' ',@a2),"\n";

perl4 prints: a b
perl5 prints: c d e

• Can’t do goto into a block that is optimized away

You can’t do agoto into a block that is optimized away. Darn.

goto marker1;

for(1){
marker1:

print "Here I is!\n";
}

perl4 prints: Here I is!
perl5 errors: Can't "goto" into the middle of a foreach loop

• Can’t use whitespace as variable name or quote delimiter

It is no longer syntactically legal to use whitespace as the name of a variable, or as a delimiter for any
kind of quote construct. Double darn.

$a = ("foo bar");
$b = q baz;
print "a is $a, b is $b\n";

perl4 prints: a is foo bar, b is baz
perl5 errors: Bareword found where operator expected

• while/if BLOCK BLOCK gone

The archaic while/ifBLOCK BLOCK syntax is no longer supported.

if { 1 } {
print "True!";

}
else {

print "False!";
}

perl4 prints: True!
perl5 errors: syntax error at test.pl line 1, near "if {"

• ** binds tighter than unary minus

The ** operator now binds more tightly than unary minus. It was documented to work this way
before, but didn’t.

print −4**2,"\n";

perl4 prints: 16

perl v5.10.0 2007-12-18 231

PERLTRAP(1) PerlProgrammers Reference Guide PERLTRAP(1)

perl5 prints: −16

• foreach changed when iterating over a list

The meaning offoreach{} has changed slightly when it is iterating over a list which is not an array.
This used to assign the list to a temporary array, but no longer does so (for efficiency). This means
that you’ll now be iterating over the actual values, not over copies of the values. Modificationsto the
loop variable can change the original values.

@list = ('ab','abc','bcd','def');
foreach $var (grep(/ab/,@list)){

$var = 1;
}
print (join(':',@list));

perl4 prints: ab:abc:bcd:def
perl5 prints: 1:1:bcd:def

To retain Perl4 semantics you need to assign your list explicitly to a temporary array and then iterate
over that. For example, you might need to change

foreach $var (grep(/ab/,@list)){

to

foreach $var (@tmp = grep(/ab/,@list)){

Otherwise changing$var will clobber the values of@list . (This most often happens when you use
$_ for the loop variable, and call subroutines in the loop that don’t properly localize$_ .)

• split with no args behavior changed

split with no arguments now behaves like split ' ' (which doesn’t return an initial null field if
$_ starts with whitespace), it used to behave like split /\s+/ (which does).

$_ = ' hi mom';
print join(':', split);

perl4 prints: :hi:mom
perl5 prints: hi:mom

• −ebehavior fixed

Perl 4 would ignore any text which was attached to an−e switch, always taking the code snippet from
the following arg. Additionally, it would silently accept an−eswitch without a following arg. Bothof
these behaviors have been fixed.

perl −e'print "attached to −e"' 'print "separate arg"'

perl4 prints: separate arg
perl5 prints: attached to −e

perl −e

perl4 prints:
perl5 dies: No code specified for −e.

• push returns number of elements in resulting list

In Perl 4 the return value ofpush was undocumented, but it was actually the last value being pushed
onto the target list. In Perl 5 the return value of push is documented, but has changed, it is the
number of elements in the resulting list.

@x = ('existing');
print push(@x, 'first new', 'second new');

perl4 prints: second new
perl5 prints: 3

232 2007-12-18 perl v5.10.0

PERLTRAP(1) PerlProgrammers Reference Guide PERLTRAP(1)

• Some error messages differ

Some error messages will be different.

• split() honors subroutine args

In Perl 4, if in list context the delimiters to the first argument ofsplit() were?? , the result would
be placed in@_as well as being returned. Perl 5 has more respect for your subroutine arguments.

• Bugs removed

Some bugs may have been inadvertently removed. :−)

Parsing Traps

Perl4−to−Perl5 traps from having to do with parsing.

• Space between . and = triggers syntax error

Note the space between . and =

$string . = "more string";
print $string;

perl4 prints: more string
perl5 prints: syntax error at − line 1, near ". ="

• Better parsing in perl 5

Better parsing in perl 5

sub foo {}
&foo
print("hello, world\n");

perl4 prints: hello, world
perl5 prints: syntax error

• Function parsing

‘‘ if it looks like a function, it is a function’’ rule.

print
($foo == 1) ? "is one\n" : "is zero\n";

perl4 prints: is zero
perl5 warns: "Useless use of a constant in void context" if using −w

• String interpolation of$#array differs

String interpolation of the$#array construct differs when braces are to used around the name.

@a = (1..3);
print "${#a}";

perl4 prints: 2
perl5 fails with syntax error

@ = (1..3);
print "$#{a}";

perl4 prints: {a}
perl5 prints: 2

• Perl guesses onmap, grep followed by{ if it startsBLOCK or hash ref

When perl seesmap { (or grep {), it has to guess whether the{ starts aBLOCK or a hash
reference. If it guesses wrong, it will report a syntax error near the} and the missing (or unexpected)
comma.

perl v5.10.0 2007-12-18 233

PERLTRAP(1) PerlProgrammers Reference Guide PERLTRAP(1)

Use unary+ before{ on a hash reference, and unary+ applied to the first thing in aBLOCK (after {),
for perl to guess right all the time. (See ‘‘map’’ in perlfunc.)

Numerical Traps

Perl4−to−Perl5 traps having to do with numerical operators, operands, or output from same.

• Formatted output and significant digits

Formatted output and significant digits.In general, Perl 5 tries to be more precise.For example, on a
Solaris Sparc:

print 7.373504 − 0, "\n";
printf "%20.18f\n", 7.373504 − 0;

Perl4 prints:
7.3750399999999996141
7.375039999999999614

Perl5 prints:
7.373504
7.375039999999999614

Notice how the first result looks better in Perl 5.

Your results may vary, since your floating point formatting routines and even floating point format
may be slightly different.

• Auto-increment operator over signed int limit deleted

This specific item has been deleted. It demonstrated how the auto-increment operator would not
catch when a number went over the signed int limit.Fixed in version 5.003_04. But always be wary
when using large integers. Ifin doubt:

use Math::BigInt;

• Assignment of return values from numeric equality tests doesn’t work

Assignment of return values from numeric equality tests does not work in perl5 when the test
evaluates to false (0). Logical tests now return a null, instead of 0

$p = ($test == 1);
print $p,"\n";

perl4 prints: 0
perl5 prints:

Also see ‘‘//, etc.’’ ‘‘ i n ’’General Regular Expression Traps using s for another example of this new
feature...

• Bitwise string ops

When bitwise operators which can operate upon either numbers or strings (& | ˆ ˜) are given only
strings as arguments, perl4 would treat the operands as bitstrings so long as the program contained a
call to thevec() function. perl5 treats the string operands as bitstrings.(See ‘‘Bitwise String
Operators’’ in perlop for more details.)

$fred = "10";
$barney = "12";
$betty = $fred & $barney;
print "$betty\n";
Uncomment the next line to change perl4's behavior
($dummy) = vec("dummy", 0, 0);

Perl4 prints:
8

234 2007-12-18 perl v5.10.0

PERLTRAP(1) PerlProgrammers Reference Guide PERLTRAP(1)

Perl5 prints:
10

If v ec() is used anywhere in the program, both print:
10

General data type traps

Perl4−to−Perl5 traps involving most data-types, and their usage within certain expressions and/or context.

• Neg ative array subscripts now count from the end of array

Negative array subscripts now count from the end of the array.

@a = (1, 2, 3, 4, 5);
print "The third element of the array is $a[3] also expressed as $a[−2] \n";

perl4 prints: The third element of the array is 4 also expressed as
perl5 prints: The third element of the array is 4 also expressed as 4

• Setting$#array lower now discards array elements

Setting$#array lower now discards array elements, and makes them impossible to recover.

@a = (a,b,c,d,e);
print "Before: ",join('',@a);
$#a =1;
print ", After: ",join('',@a);
$#a =3;
print ", Recovered: ",join('',@a),"\n";

perl4 prints: Before: abcde, After: ab, Recovered: abcd
perl5 prints: Before: abcde, After: ab, Recovered: ab

• Hashes get defined before use

Hashes get defined before use

local($s,@a,%h);
die "scalar \$s defined" if defined($s);
die "array \@a defined" if defined(@a);
die "hash \%h defined" if defined(%h);

perl4 prints:
perl5 dies: hash %h defined

Perl will now generate a warning when it sees defined(@a) and defined(%h).

• Glob assignment from localized variable to variable

glob assignment from variable to variable will fail if the assigned variable is localized subsequent to
the assignment

@a = ("This is Perl 4");
*b = *a;
local(@a);
print @b,"\n";

perl4 prints: This is Perl 4
perl5 prints:

• Assigningundef to glob

Assigningundef to a glob has no effect in Perl 5. In Perl 4 it undefines the associated scalar (but
may have other side effects including SEGVs). Perl 5 will also warn ifundef is assigned to a
typeglob. (Note that assigningundef to a typeglob is different than calling theundef function on a
typeglob (undef *foo), which has quite a few effects.

perl v5.10.0 2007-12-18 235

PERLTRAP(1) PerlProgrammers Reference Guide PERLTRAP(1)

$foo = "bar";
*foo = undef;
print $foo;

perl4 prints:
perl4 warns: "Use of uninitialized variable" if using −w
perl5 prints: bar
perl5 warns: "Undefined value assigned to typeglob" if using −w

• Changes in unary negation (of strings)

Changes in unary negation (of strings) This change effects both the return value and what it does to
auto(magic)increment.

$x = "aaa";
print ++$x," : ";
print −$x," : ";
print ++$x,"\n";

perl4 prints: aab : −0 : 1
perl5 prints: aab : −aab : aac

• Modifying of constants prohibited

perl 4 lets you modify constants:

$foo = "x";
&mod($foo);
for ($x = 0; $x < 3; $x++) {

&mod("a");
}
sub mod {

print "before: $_[0]";
$_[0] = "m";
print " after: $_[0]\n";

}

perl4:
before: x after: m
before: a after: m
before: m after: m
before: m after: m

Perl5:
before: x after: m
Modification of a read−only value attempted at foo.pl line 12.
before: a

• defined $var behavior changed

The behavior is slightly different for:

print "$x", defined $x

perl 4: 1
perl 5: <no output, $x is not called into existence>

• Variable Suicide

Variable suicide behavior is more consistent under Perl 5. Perl5 exhibits the same behavior for
hashes and scalars, that perl4 exhibits for only scalars.

236 2007-12-18 perl v5.10.0

PERLTRAP(1) PerlProgrammers Reference Guide PERLTRAP(1)

$aGlobal{ "aKey" } = "global value";
print "MAIN:", $aGlobal{"aKey"}, "\n";
$GlobalLevel = 0;
&test(*aGlobal);

sub test {
local(*theArgument) = @_;
local(%aNewLocal); # perl 4 != 5.001l,m
$aNewLocal{"aKey"} = "this should never appear";
print "SUB: ", $theArgument{"aKey"}, "\n";
$aNewLocal{"aKey"} = "level $GlobalLevel"; # what should print
$GlobalLevel++;
if($GlobalLevel<4) {

&test(*aNewLocal);
}

}

Perl4:
MAIN:global value
SUB: global value
SUB: level 0
SUB: level 1
SUB: level 2

Perl5:
MAIN:global value
SUB: global value
SUB: this should never appear
SUB: this should never appear
SUB: this should never appear

Context Traps − scalar, list contexts

• Elements of argument lists for formats evaluated in list context

The elements of argument lists for formats are now evaluated in list context. This means you can
interpolate list values now.

@fmt = ("foo","bar","baz");
format STDOUT=
@<<<<< @||||| @>>>>>
@fmt;
.
write;

perl4 errors: Please use commas to separate fields in file
perl5 prints: foo bar baz

• caller() returns false value in scalar context if no caller present

Thecaller() function now returns a false value in a scalar context if there is no caller. This lets
library files determine if they’re being required.

caller() ? (print "You rang?\n") : (print "Got a 0\n");

perl4 errors: There is no caller
perl5 prints: Got a 0

• Comma operator in scalar context gives scalar context to args

The comma operator in a scalar context is now guaranteed to give a scalar context to its arguments.

perl v5.10.0 2007-12-18 237

PERLTRAP(1) PerlProgrammers Reference Guide PERLTRAP(1)

@y= ('a','b','c');
$x = (1, 2, @y);
print "x = $x\n";

Perl4 prints: x = c # T hinks list context interpolates list
Perl5 prints: x = 3 # K nows scalar uses length of list

• sprintf() prototyped as($;@)

sprintf() is prototyped as ($;@), so its first argument is given scalar context. Thus, if passed an
array, it will probably not do what you want, unlike Perl 4:

@z = ('%s%s', 'foo', 'bar');
$x = sprintf(@z);
print $x;

perl4 prints: foobar
perl5 prints: 3

printf() works the same as it did in Perl 4, though:

@z = ('%s%s', 'foo', 'bar');
printf STDOUT (@z);

perl4 prints: foobar
perl5 prints: foobar

Precedence Traps

Perl4−to−Perl5 traps involving precedence order.

Perl 4 has almost the same precedence rules as Perl 5 for the operators that they both have. Perl 4 however,
seems to have had some inconsistencies that made the behavior differ from what was documented.

• LHS vs.RHSof any assignment operator

LHS vs. RHS of any assignment operator. LHS is evaluated first in perl4, second in perl5; this can
affect the relationship between side-effects in sub-expressions.

@arr = ('left', 'right');
$a{shift @arr} = shift @arr;
print join(' ', keys %a);

perl4 prints: left
perl5 prints: right

• Semantic errors introduced due to precedence

These are now semantic errors because of precedence:

@list = (1,2,3,4,5);
%map = ("a",1,"b",2,"c",3,"d",4);
$n = shift @list + 2; # f irst item in list plus 2
print "n is $n, ";
$m = keys %map + 2; # number of items in hash plus 2
print "m is $m\n";

perl4 prints: n is 3, m is 6
perl5 errors and fails to compile

• Precedence of assignment operators same as the precedence of assignment

The precedence of assignment operators is now the same as the precedence of assignment. Perl 4
mistakenly gav ethem the precedence of the associated operator. So you now must parenthesize them
in expressions like

238 2007-12-18 perl v5.10.0

PERLTRAP(1) PerlProgrammers Reference Guide PERLTRAP(1)

/foo/ ? ($a += 2) : ($a −= 2);

Otherwise

/foo/ ? $a += 2 : $a −= 2

would be erroneously parsed as

(/foo/ ? $a += 2 : $a) −= 2;

On the other hand,

$a += /foo/ ? 1 : 2;

now works as a C programmer would expect.

• open requires parentheses around filehandle

open FOO || die;

is now incorrect. You need parentheses around the filehandle. Otherwise, perl5 leaves the statement
as its default precedence:

open(FOO || die);

perl4 opens or dies
perl5 opens FOO, dying only if 'FOO' is false, i.e. never

• $: precedence over $:: gone

perl4 gives the special variable,$: precedence, where perl5 treats$:: as mainpackage

$a = "x"; print "$::a";

perl 4 prints: −:a
perl 5 prints: x

• Precedence of file test operators documented

perl4 had buggy precedence for the file test operators vis-a-vis the assignment operators.Thus,
although the precedence table for perl4 leads one to believe −e $foo .= "q" should parse as
((−e $foo) .= "q") , it actually parses as(−e ($foo .= "q")) . In perl5, the precedence
is as documented.

−e $foo .= "q"

perl4 prints: no output
perl5 prints: Can't modify −e in concatenation

• keys , each , values are regular named unary operators

In perl4,keys(), each()andvalues()were special high-precedence operators that operated on a single
hash, but in perl5, they are regular named unary operators.As documented, named unary operators
have lower precedence than the arithmetic and concatenation operators+ − . , but the perl4 variants
of these operators actually bind tighter than+ − . . Thus, for:

%foo = 1..10;
print keys %foo − 1

perl4 prints: 4
perl5 prints: Type of arg 1 to keys must be hash (not subtraction)

The perl4 behavior was probably more useful, if less consistent.

General Regular Expression Traps using s///, etc.

All types ofRE traps.

• s'lhs'rhs' interpolates on either side

s'lhs'rhs' now does no interpolation on either side.It used to interpolate$lhs but not

perl v5.10.0 2007-12-18 239

PERLTRAP(1) PerlProgrammers Reference Guide PERLTRAP(1)

$rhs . (And still does not match a literal ’$’ in string)

$a=1;$b=2;
$string = '1 2 $a $b';
$string =˜ s'$a'$b';
print $string,"\n";

perl4 prints: $b 2 $a $b
perl5 prints: 1 2 $a $b

• m//g attaches its state to the searched string

m//g now attaches its state to the searched string rather than the regular expression. (Oncethe scope
of a block is left for the sub, the state of the searched string is lost)

$_ = "ababab";
while(m/ab/g){

&doit("blah");
}
sub doit{local($_) = shift; print "Got $_ "}

perl4 prints: Got blah Got blah Got blah Got blah
perl5 prints: infinite loop blah...

• m//o used within an anonymous sub

Currently, if you use them//o qualifier on a regular expression within an anonymous sub,all
closures generated from that anonymous sub will use the regular expression as it was compiled when
it was used the very first time in any such closure.For instance, if you say

sub build_match {
my($left,$right) = @_;
return sub { $_[0] =˜ /$left stuff $right/o; };

}
$good = build_match('foo','bar');
$bad = build_match('baz','blarch');
print $good−>('foo stuff bar') ? "ok\n" : "not ok\n";
print $bad−>('baz stuff blarch') ? "ok\n" : "not ok\n";
print $bad−>('foo stuff bar') ? "not ok\n" : "ok\n";

For most builds of Perl5, this will print: ok not ok not ok

build_match()will always return a sub which matches the contents of$left and$right as they
were thefirst time thatbuild_match()was called, not as they are in the current call.

• $+ isn’t set to whole match

If no parentheses are used in a match, Perl4 sets$+ to the whole match, just like$&. Perl5 does not.

"abcdef" =˜ /b.*e/;
print "\$+ = $+\n";

perl4 prints: bcde
perl5 prints:

• Substitution now returns null string if it fails

substitution now returns the null string if it fails

$string = "test";
$value = ($string =˜ s/foo//);
print $value, "\n";

perl4 prints: 0
perl5 prints:

Also see ‘‘Numerical Traps’’ f or another example of this new feature.

240 2007-12-18 perl v5.10.0

PERLTRAP(1) PerlProgrammers Reference Guide PERLTRAP(1)

• s`lhs`rhs` is now a normal substitution

s`lhs`rhs` (using backticks) is now a normal substitution, with no backtick expansion

$string = "";
$string =˜ s`ˆ`hostname`;
print $string, "\n";

perl4 prints: <the local hostname>
perl5 prints: hostname

• Stricter parsing of variables in regular expressions

Stricter parsing of variables used in regular expressions

s/ˆ([ˆ$grpc]*$grpc[optplus$rep]?)//o;

perl4: compiles w/o error
perl5: with Scalar found where operator expected ..., near "optplus"

an added component of this example, apparently from the same script, is the actual value of the s’d
string after the substitution.[$opt] is a character class in perl4 and an array subscript in perl5

$grpc = 'a';
$opt = 'r';
$_ = 'bar';
s/ˆ([ˆ$grpc]*$grpc[$opt]?)/foo/;
print;

perl4 prints: foo
perl5 prints: foobar

• m?x? matches only once

Under perl5,m?x? matches only once, like ?x? . Under perl4, it matched repeatedly, like /x/ or
m!x! .

$test = "once";
sub match { $test =˜ m?once?; }
&match();
if(&match()) {

m?x? matches more then once
print "perl4\n";

} e lse {
m?x? matches only once
print "perl5\n";

}

perl4 prints: perl4
perl5 prints: perl5

• Failed matches don’t reset the match variables

Unlike in Ruby, failed matches in Perl do not reset the match variables ($1,$2 , ..., $` , ...).

Subroutine, Signal, Sorting Traps

The general group of Perl4−to−Perl5 traps having to do with Signals, Sorting, and their related subroutines,
as well as general subroutine traps. Includes some OS-Specific traps.

• Barewords that used to look like strings look like subroutine calls

Barewords that used to look like strings to Perl will now look like subroutine calls if a subroutine by
that name is defined before the compiler sees them.

perl v5.10.0 2007-12-18 241

PERLTRAP(1) PerlProgrammers Reference Guide PERLTRAP(1)

sub SeeYa { warn"Hasta la vista, baby!" }
$SIG{'TERM'} = SeeYa;
print "SIGTERM is now $SIG{'TERM'}\n";

perl4 prints: SIGTERM is now main'SeeYa
perl5 prints: SIGTERM is now main::1 (and warns "Hasta la vista, baby!")

Use−w to catch this one

• Rev erse is no longer allowed as the name of a sort subroutine

reverse is no longer allowed as the name of a sort subroutine.

sub reverse{ print "yup "; $a <=> $b }
print sort reverse (2,1,3);

perl4 prints: yup yup 123
perl5 prints: 123
perl5 warns (if using −w): Ambiguous call resolved as CORE::reverse()

• warn() won’t let you specify a filehandle.

Although it _always_ printed toSTDERR, warn() would let you specify a filehandle in perl4.With
perl5 it does not.

warn STDERR "Foo!";

perl4 prints: Foo!
perl5 prints: String found where operator expected

OS Tr aps

• SysV resets signal handler correctly

Under HPUX, and some other SysV OSes, one had to reset any signal handler, within the signal
handler function, each time a signal was handled with perl4.With perl5, the reset is now done
correctly. Any code relying on the handler _not_ being reset will have to be rew orked.

Since version 5.002, Perl usessigaction()under SysV.

sub gotit {
print "Got @_... ";

}
$SIG{'INT'} = 'gotit';

$| = 1;
$pid = fork;
if ($pid) {

kill('INT', $pid);
sleep(1);
kill('INT', $pid);

} e lse {
while (1) {sleep(10);}

}

perl4 (HPUX) prints: Got INT...
perl5 (HPUX) prints: Got INT... Got INT...

• SysV seek() appends correctly

Under SysV OSes,seek() on a file opened to append>> now does the right thing w.r.t. thefopen()
manpage. e.g., − When a file is opened for append,it is impossibleto overwrite information already
in the file.

242 2007-12-18 perl v5.10.0

PERLTRAP(1) PerlProgrammers Reference Guide PERLTRAP(1)

open(TEST,">>seek.test");
$start = tell TEST;
foreach(1 .. 9){

print TEST "$_ ";
}
$end = tell TEST;
seek(TEST,$start,0);
print TEST "18 characters here";

perl4 (solaris) seek.test has: 18 characters here
perl5 (solaris) seek.test has: 1 2 3 4 5 6 7 8 9 18 characters here

Interpolation Traps

Perl4−to−Perl5 traps having to do with how things get interpolated within certain expressions, statements,
contexts, or whatever.

• @always interpolates an array in double-quotish strings

@ now always interpolates an array in double-quotish strings.

print "To: someone@somewhere.com\n";

perl4 prints: To:someone@somewhere.com
perl < 5.6.1, error : In string, @somewhere now must be written as \@somewhere
perl >= 5.6.1, warning : Possible unintended interpolation of @somewhere in string

• Double-quoted strings may no longer end with an unescaped $

Double-quoted strings may no longer end with an unescaped $.

$foo = "foo$";
print "foo is $foo\n";

perl4 prints: foo is foo$
perl5 errors: Final $ should be \$ or $name

Note: perl5DOES NOT error on the terminating @ in$bar

• Arbitrary expressions are evaluated inside braces within double quotes

Perl now sometimes evaluates arbitrary expressions inside braces that occur within double quotes
(usually when the opening brace is preceded by$ or @).

@www = "buz";
$foo = "foo";
$bar = "bar";
sub foo { return "bar" };
print "|@{w.w.w}|${main'foo}|";

perl4 prints: |@{w.w.w}|foo|
perl5 prints: |buz|bar|

Note that you canuse strict; to ward off such trappiness under perl5.

• $$x now tries to dereference$x

The construct ‘‘this is $$x’’ used to interpolate the pid at that point, but now tries to dereference$x .
$$ by itself still works fine, however.

$s = "a reference";
$x = *s;
print "this is $$x\n";

perl4 prints: this is XXXx (XXX is the current pid)
perl5 prints: this is a reference

perl v5.10.0 2007-12-18 243

PERLTRAP(1) PerlProgrammers Reference Guide PERLTRAP(1)

• Creation of hashes on the fly witheval "EXPR" requires protection

Creation of hashes on the fly witheval "EXPR" now requires either both$’s to be protected in the
specification of the hash name, or both curlies to be protected.If both curlies are protected, the result
will be compatible with perl4 and perl5. This is a very common practice, and should be changed to
use the block form ofeval{} if possible.

$hashname = "foobar";
$key = "baz";
$value = 1234;
eval "\$$hashname{'$key'} = q|$value|";
(defined($foobar{'baz'})) ? (print "Yup") : (print "Nope");

perl4 prints: Yup
perl5 prints: Nope

Changing

eval "\$$hashname{'$key'} = q|$value|";

to

eval "\$\$hashname{'$key'} = q|$value|";

causes the following result:

perl4 prints: Nope
perl5 prints: Yup

or, changing to

eval "\$$hashname\{'$key'\} = q|$value|";

causes the following result:

perl4 prints: Yup
perl5 prints: Yup
and is compatible for both versions

• Bugs in earlier perl versions

perl4 programs which unconsciously rely on the bugs in earlier perl versions.

perl −e '$bar=q/not/; print "This is $foo{$bar} perl5"'

perl4 prints: This is not perl5
perl5 prints: This is perl5

• Array and hash brackets during interpolation

You also have to be careful about array and hash brackets during interpolation.

print "$foo["

perl 4 prints: [
perl 5 prints: syntax error

print "$foo{"

perl 4 prints: {
perl 5 prints: syntax error

Perl 5 is expecting to find an index or key name following the respective brackets, as well as an
ending bracket of the appropriate type. In order to mimic the behavior of Perl 4, you must escape the
bracket like so.

print "$foo\[";
print "$foo\{";

244 2007-12-18 perl v5.10.0

PERLTRAP(1) PerlProgrammers Reference Guide PERLTRAP(1)

• Interpolation of\$$foo{bar}

Similarly, watch out for:\$$foo{bar}

$foo = "baz";
print "\$$foo{bar}\n";

perl4 prints: $baz{bar}
perl5 prints: $

Perl 5 is looking for$foo{bar} which doesn’t exist, but perl 4 is happy just to expand$foo to
‘‘ baz’’ by i tself. Watch out for this especially ineval ’s.

• qq() string passed toeval will not find string terminator

qq() string passed toeval

eval qq(
foreach \$y (keys %\$x\) {

\$count++;
}

);

perl4 runs this ok
perl5 prints: Can't find string terminator ")"

DBM Tr aps

GeneralDBM traps.

• Perl5 must have been linked with same dbm/ndbm as the default fordbmopen()

Existing dbm databases created under perl4 (or any other dbm/ndbm tool) may cause the same script,
run under perl5, to fail. Thebuild of perl5 must have been linked with the same dbm/ndbm as the
default fordbmopen() to function properly withouttie ’ing to an extension dbm implementation.

dbmopen (%dbm, "file", undef);
print "ok\n";

perl4 prints: ok
perl5 prints: ok (IFF linked with −ldbm or −lndbm)

• DBM exceeding limit on the key/value size will cause perl5 to exit immediately

Existing dbm databases created under perl4 (or any other dbm/ndbm tool) may cause the same script,
run under perl5, to fail. The error generated when exceeding the limit on the key/value size will
cause perl5 to exit immediately.

dbmopen(DB, "testdb",0600) || die "couldn't open db! $!";
$DB{'trap'} = "x" x 1024; # v alue too large for most dbm/ndbm
print "YUP\n";

perl4 prints:
dbm store returned −1, errno 28, key "trap" at − line 3.
YUP

perl5 prints:
dbm store returned −1, errno 28, key "trap" at − line 3.

Unclassified Traps

Everything else.

• require /do trap using returned value

If the file doit.pl has:

perl v5.10.0 2007-12-18 245

PERLTRAP(1) PerlProgrammers Reference Guide PERLTRAP(1)

sub foo {
$rc = do "./do.pl";
return 8;

}
print &foo, "\n";

And the do.pl file has the following single line:

return 3;

Running doit.pl gives the following:

perl 4 prints: 3 (aborts the subroutine early)
perl 5 prints: 8

Same behavior if you replacedo with require .

• split on empty string withLIMIT specified

$string = '';
@list = split(/foo/, $string, 2)

Perl4 returns a one element list containing the empty string but Perl5 returns an empty list.

As always, if any of these are ever officially declared as bugs, they’ll be fixed and removed.

246 2007-12-18 perl v5.10.0

PERLBOOK(1) PerlProgrammers Reference Guide PERLBOOK(1)

NAME
perlbook − Perl book information

DESCRIPTION
The Camel Book, officially known asProgramming Perl, Third Edition, by Larry Wall et al, is the definitive
reference work covering nearly all of Perl. You can order it and other Perl books from O’Reilly &
Associates, 1−800−998−9938.Local/overseas is +1 707 829 0515.If you can locate an O’Reilly order
form, you can also fax to +1 707 829 0104. If you’re web-connected, you can even mosey on over to
<http://www.oreilly.com/> for an online order form.

Other Perl books from various publishers and authors can be found listed in perlfaq2 or on the web at
<http://books.perl.org/>.

perl v5.10.0 2007-12-18 247

