Latent Variable Models and
Hidden Markov Models

Mark Gales

Lent 2011

Machine Learning for Language Processing: Lecture 4

MPhil in Advanced Computer Science

MPhil in Advanced Computer Science

Module L101: Machine Learning for Language Processing

Latent Variable Models

e The models generated to date have “meaning” for each variable

— for topic detection, topic and words in text

e |t is possible to introduce latent variables into the model

— do not have to have anf “meaning”

— these variables are never observed in test (possibly in training)

— marginalised over to get probabilities

— may be discrete (mixture models, HMMs), continuous (factor-analysis)

e [his lecture will concentrate on two forms model

— mixture models
— hidden Markov models

MPhil in Advanced Computer Science

Module L101: Machine Learning for Language Processing

" Static” Latent Variable Models

q, q q
AN
X X X

Factor Analysis Gaussian Mixture Model Discrete Mixture Model

e Consider three forms of Byesian Network (BN) for an observation x

— indicator variable ¢ (or q) shows value of continuous z or discrete c,, space
— probability found by marginalising over the latent variable

factor analysis [p(x|z)p(z)dz
Gaussian mixture models Zi\le P(cm)p(x|cm)
discrete mixture model Z%Zl P(cm)P(x|cm)

— these models are extensively used in many machine learning applications

MPhil in Advanced Computer Science

Module L101: Machine Learning for Language Processing

Gaussian Mixture Models

e Gaussian mixture models (GMMS) are based on (multivariate) Gaussians

— form of the Gaussian distribution:

1 1 —
P(@) = N D) = e (5@ p) S @ p)

e For GMM each component modelled using a Gaussian distribution

p(x) =) Plcp)p(@lcnm) =Y P(cm)N(T; o, Tin)

m=1

— component prior: P(c,,)
— component distribution: p(x|c.,) = N (x; tm, X))

e Highly flexible model, able to model wide-range of distributions

MPhil in Advanced Computer Science

Module L101: Machine Learning for Language Processing

Classifying Doughnut Data using GMMs

MPhil in Advanced Computer Science

Module L101: Machine Learning for Language Processing

Sequence Mixture Models

W : -
/ \ e Add latent variable to a sequence classifier
Y — sequence x1,...,T3, (xo start x4 end)
G 4 % % | G — feature additionally dependent on latent
Y \/ Y Y \/ Varlable]]
Xo—= Xy —= X Xs—= X, — latent variable is not observed
e Consider conditional independence and marginalising over the latent variable
P(xi’xow"7332'—17(]07"'7(12'7(*03') — P(xz’xz—MQZ)
M
P(xi|lxi—1,wj) = Z P(cm|w;j)P(xilzi—1, cm)
m=1

e So the overall probability (similar to a mixture-model class-dependent LM)

MPhil in Advanced Computer Science 5

Module L101: Machine Learning for Language Processing

Mixture Language Model

e The general form of a mixture language model (for a trigram) is:

P(wg|w;, w;) = A P (Wi |wi, w5); Ay = Pcm)

NS

— M is the number of mixture components
— P, (wg|w;, w;) is the language model probability for component m
— A\ is the language model component prior (tuned for the task) - note

M
Y Am=1 An>0

m=1

e Each of the individual component language is trained on a different sources

e Component prior, \,,, tuned for a particular task using development data

MPhil in Advanced Computer Science

Module L101: Machine Learning for Language Processing

Hidden Markov Models
e An important model for sequence data is the hidden Markov model (HMM)

— an example of a dynamic Bayesian network (DBN)
— consider a sequence of multi-dimensional observations x1, ..., xr

e add discrete latent variables

’ q[- q+ 1T ™ . :
— q; describes discrete state-space

i i — conditional independence assumptions

P(qtlqo, - -y q—1) = P(a|qi—1)
@ @ p(wt’mla”'7wt—17QO7"'7Qt> :p(thQt)
e [he likelihood of the data is

p(x1,....x7) = > P(@)p(x1,...,orlq) = > Plqo) | | Plalge—1)p(xilgr)

qeEQT qeEQT t=1

q =1qo,---,q9r+1} and Qr is all possible state sequences for T' observations

MPhil in Advanced Computer Science 7

Module L101: Machine Learning for Language Processing

HMM Parameters

e Two types of states are often defined for HMMs (total N states)

— emitting states: produce the observation sequence
— non-emitting states: used to define valid state and end states

e The parameters are normally split into two (assume s; and sy are non-
emitting)

— transition matrix A:
a;; = P(q: = sj|qi—1 = s;) is the probability of transitioning from state s;
to state s;

— state output probability {ba(x¢),...,bn_1(x¢)}:
bi(x:) = p(x¢|q: = s;) is the output distribution for state s;

e The estimation of the parameters A = {A,ba(x¢),...,bn_1(xs)} will be
discussed later in the course

— usually trained using Expectation-Maximisation (EM)

Cambridge University

: - MPhil in Advanced Computer Science 8
Engineering Department

Module L101: Machine Learning for Language Processing

Hidden Markov Model

X, X, X5 X, X
Voo ‘

CRre T gl) -
b,() : 7 bf) b,0)/

) A3 Y4 @

e To design a classifier need to determine:
— transition matrix: discrete state-space and allowed transitions (diagram left)
— state output distribution: form of distribution p(x:|q:)

e Can then be used as a generative classifier

w = argmax { P(w|x1,...,x7)} = argmax { P(w)p(x1, ..., z7|w)}

need to be able to compute p(x1,...,xr|w) efficiently

Cambridge University

: - MPhil in Advanced Computer Science 9
Engineering Department

Module L101: Machine Learning for Language Processing

Viterbi Approximation

e An important technique for HMMs (and other models) is the Viterbi Algorithm

— here the likelihood is approximated as (ignoring dependence on class w)

p(xy,...,x7) = Z p(xy,....,x7,q) =~ p(x1,...,27,q)
qeEQT

where

qd=1{qo,...,qr+1} = argmax {p(x1,...,T7r,q)}
qeQr

e This yields:

— an approximate likelihood (lower bound) for the model
— the best state-sequence through the discrete-state space

Cambridge University

: - MPhil in Advanced Computer Science 10
Engineering Department

Module L101: Machine Learning for Language Processing

Viterbi Algorithm

e Need an efficient approach to obtaining the best state-sequence, q,

— simply searching through all possible state-sequences impractical ...

A O
D X,
\‘\ A /4 A /4 /4 (r— (O —(—(—
SV ANy) / / / / /
. @ / / / / /
1 ¥ C 323@3334 QC 45 o o o o/ o
2y A3 Yy L
Time }
e Consider generating the observation sequence x4, ..., x7
— HMM topology - 3 emitting states with strict left-to-right topology (left)
— representation of all possible state sequences on the right
Cambridge University MPhil in Advanced Computer Science 11

Engineering Department

Module L101: Machine Learning for Language Processing

Extending Partial Paths with Time

\ ©
O—0C—0—0 >J>
o / / / / /
g O—0—0—=0—=0 e Red partial path to time 4

/ / / / / e Green possible extensions

Time
e Partial path state sequence {1,2,2,3,3} with cost ¢3(4): now extend path

— cost of staying in state s3 and generating observation x5: log(assbs(xs))
— cost of moving to state s4 and generating observation x5: log(assbs(xs))

o Hence: ¢3(5) = ¢3(4) + log(assbs(xs)) and ¢4(5) = ¢3(4) + log(azsbs(xs))

Cambndge University MPhil in Advanced Computer Science
Engineering Department

12

Module L101: Machine Learning for Language Processing

Best Partial Path to a State/Time

A ©
o —0 -~6—-0 >J>
% / / / /
& e 0 -0 -0 -0 e Red possible partial paths

/ / / / / e Green state of interest

Time
e Require best partial path to state s, at time 5 (with associated cost ¢4(5))

— cost of moving from state s3 and generating observation x5: log(assbs(xs))
— cost of staying in state s, and generating observation x5: log(a44b4(25))

e Select "best: ¢4(5) = max {¢p3(4) + log(assbs(xs)), p4(4) + log(assbs(xs))}

Cambridge University MPhil in Advanced Computer Science 13

Engineering Department

Module L101: Machine Learning for Language Processing

Viterbi Algorithm for HMMs

e The Viterbi algorithm for HMMs can then be expressed as:

— Initialisation: (LZERO= log(0))
$1(0) = 0.0, ¢;(0) =LZERD,1 < j < N,
é1(t) = LZERO,1 < ¢t < T

— Recursion:
fort=1,...,T
for j=2,.... N —1
¢;(t) = maxi<p<n {Pk(t — 1) +log(ag;)} + log(b;(x¢))

— Termination:
log(p(z1, ..., 271, q)) = maxick<n {Pr(T) + log(arn)}

e Can also store the best previous state to allow best sequence ¢ to be found.

Cambridge University

: - MPhil in Advanced Computer Science
Engineering Department

14

Module L101: Machine Learning for Language Processing

State-Space

e The state-space can define many different attributes e.g.

— sub-parts of phones/words/sentences in a speech recognition system
— part-of-speech tags

— word-alignments in machine translation

— named entities

e HMMs can be combined together to form models of sequences of labels

— many “classes’ can be formed from combining sub-classes together
— for examples words into phones

speech task = /s/ /p/ /iy/ /ch/ /t/ /ae/ /s/ /k/

— number of observations and labels do not need to be the same

Cambridge University

: - MPhil in Advanced Computer Science
Engineering Department

15

