
Hints for Computer System Design
Butler W. Larnpson

Computer Science Laboratory
Xerox Palo Alto Research Center

Palo Alto, CA 94304

A b s t r a c t

Experience with the design and implementation of a num-
ber of computer systems, and study of many other sys-
tems, has led to some general hints for system design
which are described here. They are illustrated by a num-
ber of examples, ranging from hardware such as the Alto
and the Dorado to applications programs such as Bravo
and Star.

I . I n t r o d u c t i o n

Designing a computer system is very different from design-
ing an algorithm:

The external interface (i.e., the requirement) is more
complex, less precisely defined, and more subject to
change.

The system has much more internal structure, and
hence many internal interfaces.

The measure of success is much less clear.

The designer usually finds himself floundering in a sea of
possibilities, unclear about how one choice will limit his
freedom to make other choices, or affect the size and per-
formance of the entire system. There probably isn't a best
way to build the system, or even any major part of it;
much more important is to avoid choosing a terrible way,
and to have clear division of responsibilities among the
parts.

I have designed and built a number of computer systems,
some that worked and some that didn't. I have also used

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

(~)1983 ACM 0-89791-115-6/83/010/0033 $00.75

and studied many other systems, both successful and un-
successful. From this experience come some general hints
for designing successful systems. I claim no originality for
them; most are part of the folk wisdom of experienced
designers. Nonetheless, even the expert often forgets, and
after the second system [6] comes the fourth one.

Disclaimer'. These are not

novel (with a few exceptions),

foolproof recipes,

laws of system design or operation,

precisely formulated,

consistent,

always appropriate,

approved by all the leading experts,

or guaranteed to work;

they are just hints. Some are quite general and vague;
others are specific techniques which are more widely
applicable than many people know. Both the hints and the
illustrative examples are necessarily oversimplified. Many
are controversial.

I have tried to avoid exhortations to modularity,
methodologies for top-down, bottom-up or iterative de-
sign, techniques for data abstraction, and other schemes
which have already been widely disseminated. Sometimes
I have pointed out pitfalls in the reckless application of
popular methods for system design.

The hints are illustrated by a number of examples, mostly
drawn from systems I have worked on. They range from
hardware such as the Ethernet local network and the Alto
and Dorado personal computers, through operating sys-
tems such as the SDS 940 and the Alto operating system,
and programming systems such as Lisp and Mesa, to ap-
plications programs such as the Bravo editor and the Star
office system, and network servers such as the Dover
printer and the Grapevine mail system. I have tried to
avoid the most obvious examples, in favor of others which
show unexpected uses for some well-known methods.

33

There are references for nearly all the specific examples,
but for only a few of the the ideas; many of these are part
of the folklore, and it would take a lot of work to track
down their multiple sources.

It seemed appropriate to decorate a guide to the doubtful
process of system design with quotations from Hamlet.
Unless otherwise indicated, they are taken from Polonius'
advice to Laertes (I iii 57-82).

And these few precepts in thy memory
Look thou character.

Some quotations are from other sources, as noted. Each
one is intended to apply to the text which follows it.

Functionality
WHY? Does it work?

WHERE?

Completeness

Interface

Implementation

Separate normal and ,,
worst case I

Do one thing well:'
Don't generalize
Get it right

Don't hide power
Use procedure arguments
Leave it to the client

Keep basic interfaces stable
Keep a place to stand

Plan to throw one away
Keep secrets
Use a good idea again
Divide and conquer

of them depend on the notion of an interface which sepa-
rates an implementation of some abstraction from the
clients who use the abstraction. The interface between two
programs consists of the set of assumptions that each pro-
grammer needs to make about the other program in order
to demonstrate the correctness of his program (paraphras-
ed from [5]). Defining interfaces is the most important part
of system design. Usually it is also the most difficult, since
the interface design must satisfy three conflicting require-
ments: an interface should be simple, it should be com-
plete, and it should admit a sufficiently small and fast
implementation. Alas, all too often the assumptions em-
bodied in an interface turn out to be misconceptions in-
stead. Parnas' classic paper [38] and a more recent one on

Speed Fault-tolerance
Is it fast enough? Does it keep working?

Safety first
Shed load
End-to-end End-to-end

II
• Make it fast End-to-end
Split resou rces Log updates
Static analysis Make actions atomic
Dynamic translation

Cache answers
Use hints
Use brute force
Compute in background
Batc h p rocessing

Make actions atomic
Use hints

Figure 1 : Summary of the slogans

Each hint is summarized by a slogan, which when
properly interpreted reveals its essence. Figure 1 organizes
the slogans along two axes:

Why it helps in making a good system: with
functionality (does it work?), speed (is it fast
enough?), or fault-tolerance (does it keep working?).

Where in the system design it helps: in ensuring com-
pleteness, in choosing interfaces, or in devising im-
plementations.

Double lines connect repetitions of the same slogan, single
lines connect related slogans.

The body of the paper is in three sections, according to
the why headings: functionality (§ 2), spegd (§ 3), and
fault-tolerance (§ 4).

2. F u n c t i o n a l i t y

The most important hints, and the vaguest, have to do
with obtaining the right fimctionality from a system. Most

device interfaces [5] offer excellent practical advice on this
subject.

The main reason that interfaces are difficult to design is
that each interface is a small programming language: it de-
fines a set of objects, and the operations that can be used
to manipulate the objects. Concrete syntax is not an issue,
but every other aspect of programming language design is
present. In the light of this observation, many of Hoare's
hints on programming language design [19] can be read as
a supplement to the present paper.

2.1 Keep it s imple

Perfection is reached, not when there is no longer
anything to add, but when there is no longer anything to
take away. (,4. Saint-Exupery)

Those friends thou hast, and their adoption triec~
Grapple them unto thy soul with hoops of steel;
But do not dull thy palm with entertainment
Of each new-hatch'c~ unfledg'd comrade.

34

• Do one thing at a time, and do it well. An interface
should capture the minimum essentials of an abstraction.
Don't generalize; generalizations are generally wrong.

We are faced with an insurmountable opportunity.
(W. Kelley)

When an interface undezVakes to do too milch, the result is
an implementation which is large, slow and complicated.
An interface is a contract to deliver a certain amount of
service: clients of the interface depend on the function-
ality, which is usually documented in the interface specifi-
cation. They also depend on incurring a reasonable cost
(in time or other scarce resources) for using the interface;
the definition of "reasonable" is usually not documented
anywhere. If there are six levels of abstraction, and each
costs 50% more that is "reasonable", the service delivered
at the top will miss by more than a factor of 10.

I f in doubt, leave it out. (Anonymous)

Exterminate features. (C. Thaeker)

KISS: Keep It Simple, Stupid. (Anonymous)

On the other hand,

Everything shouM be made as simple as possible,
but no simpler. (A. Einstein)

Thus, service must have a fairly predictable cost, and the
interface must not promise more than the implementer
knows how to deliver. Especially, it should not promise fea-
tures needed by only a few clients, unless the implementer
knows how to provide them without penalizing others. A
better implementer, or one who comes along ten years
later when the problem is better understood, might be
able to deliver, but unless the. one you have can do so, it is
wise to reduce your aspirations.

For example, PL/1 got into serious trouble by attempting
to provide consistent meanings for a large number of
generic operations across a wide variety of data types.
Early implementations tended to handle all the cases ineffi-
ciently, but even with the optimizing compilers of 15 years
later, it is hard for the programmer to tell what will be fast
and what will be slow [31]. A language like Pascal or C is
much easier to use, because every construct has a roughly
constant cost which is independent of context or argu-
ments, and in fact most constructs have about the same
cost.

Of course, these observations apply most strongly to inter-
faces which clients use heavily: virtual memory, files, dis-
play handling, arithmetic. A seldom used interface can
sacrifice some performance for functionality: password
checking, interpreting user commands, printing 72 point
characters. (What this really means is that though the cost
must still be predictable, it can be many times the mini-
mum achievable cost.) And such cautious rules don't apply

to research whose object is learning how to make better im-
plementations. But since research may well fail, others
mustn't depend on its success.

Algol 60 was not only an improvement on its predeces-
sors, but also on nearly all its successors. (C. Hoare)

Examples of offering too much are legion. The Alto operat-
ing system [29] has an ordinary read/write-n-bytes inter-
face to files, and was extended for lnterlisp-D [7] with an
ordinary paging system which stores each virtual page on a
dedicated disk page. Both have small implementations
(about 900 lines of code for files, 500 for paging) and are
fast (a page fault takes one disk access and has a constant
computing cost which is a small fraction of the disk access
time, and the client can fairly easily run the disk at full
speed). The Pilot system [42] (which succeeded .the Alto
OS) follows Multics and several other systems in allowing
virtual pages to be mapped to file pages, thus subsuming

• file input/output into the virtual memory system. The im-
plementation is much larger (about 11,000 lines of code)
and slower (it often incurs two disk accesses to handle a
page fault, and cannot run the disk at full speed). The ex-
tra functionality is bought at a high price.

This is not to say that a good implementation of this inter-
face is impossible, merely that it is hard. This system was
designed and coded by several highly competent and ex-
perienced people. Part of the problem is avoiding circular-
ity: the file system would like to use the virtual memory,
but virtual memory depends on files. Quite general ways
are known to solve this problem [22], but they are tricky
and lead easily to greater cost and complication in the
normal case.

And, in this upshot, purposes mistook
Fall'n on th' inventors' heads. (V i i 387)

Another example illustrates how easily generality can lead
to unexpected complexity. The Tenex system [2] has the
following innocent-looking combination of features:

It reports a reference to an unassigned virtual page by
an interrupt to the user program.

A system call is viewed as a machine instruction for
an extended machine, and any reference it makes to
an unassigned virtual page is thus similarly reported
to the user program.

There is a system call CONNECT to obtain access to
another directory; one of its arguments is a string con-
taining the password for the directory. I f the password
is wrong, the call fails after a three second delay, to
prevent guessing passwords at high speed.

35

CONNECT is implemented by a loop of the form
for i= 0 to Length[DirectoryPassword] do

if DirectoryPassword [i]~ PasswordArgumen! [i] then
Wait three seconds; return BadPassword

endloop
Connect to directory; return Success

It is possible to guess a password of length n in 64n tries
on the average, rather than 128"/2 (Tenex uses 7 bit char-
acters in strings), by the following trick. Arrange the Pass-
wordArgument so that its first character is the last character
of a page and the next page. is unassigned, and try each
possible character as the first. If CONNECT reports a
BadPassword, the guess was wrong; if the system reports a
reference to an unassigned page, it was correct. Now ar-
range the PasswordArgument so that its second character is
the last character of the page, and proceed in the obvious
way.

This obscure and amusing bug went unnoticed by the
designers because the interface provided by a Tenex sys-
tem call is quite complex: it includes the possibility of a
reported reference to an unassigned page. Or looked at
another way, the interface provided by an ordinary mem-
ory reference instruction in system code is quite complex:
it includes the possibility that an improper reference will
be reported to the client, without any chance for the sys-
tem code to get control first.

An engineer is a man who can do for a dime what any
fool can do for a dollar. (Anonymous)

There are times, however, When it's worth a lot of work to
make a fast implementation of a clean and powerful inter-
face. If the interface is used widely enough, the effort put
into designing and tuning the implementation can pay off
many times over. But do this only for an interface whose
importance is already known from existing uses. And be
sure that you know how to make it fast.

For example, the BitBlt or RasterOp interface for manipulat-
ing raster images [21, 37] was devised by Dan IngaUs after
several years of experimenting with the Alto's high-resolu-
tion interactive display. Its implementation costs about as
much microcode as the entire emulator for the Alto's stan-
dard instruction set, and required a lot of skill and experi-
ence to construct. But the performance is nearly as good as
the special-purpose character-to-raster operations that pre-
ceded it, and its simplicity and generality has made a big
difference in the ease of building display applications.

The Dorado memory system [8] contains a cache and a
separate high-bandwidth path for fast input/output- It
provides a cache read or write in every 64 ns cycle,
together with 500 MBits/second of i/o bandwidth, virtual
addressing from both cache and i/o, and no special cases
for the microprogrammer to worry about. However, the im-
plementation takes 850 MSI chips, and consumed several

man-years of design time. This could only be justified by
extensive prior experience (30 years!) with this interface,
and the knowledge that. memory access is usually the limit-
ing factor in performance. Even so, it seems in retrospect
that the high i/o bandwidth is not worth the cost; it is
used mainly for displays, and a dual-ported frame buffer
would almost certainly be better.

Finally, lest this advice seem too easy to take,

• Get it right. Neither abstraction nor simplicity is a
substitute for getting it right. In fact, abstraction can be a
source of severe difficulties, as this cautionary tale shows.
Word processing and office information systems usually
have provision for embedding named fields in the
documents they handle. For example, a form letter might
have address and salutation fields. Usually a document is

represented as a sequence of characters, and a field is
encoded by something like {name: contents}. Among other
operations, there is a procedure FindNamedField that finds
the field with a given name. One major commercial system
for some time used a FindNamedField procedure that ran in
time O(n2), where n is the length of the document. This re-
markable result was achieved by first writing a procedure
FindlthField to find the rth field (which must take time
O(n) if there is no auxiliary data structure), and then im-
plementing FindNamedField[name] with the very natural
program

for 1=0 to NumberOfFteldsdo
FlndlthField; if its name is name then exit
endloop

Once the (unwisely chosen) abstraction FindlthField is
available, only a lively awareness of its cost will avoid this
disaster. Of course, this is not an argument against
abstraction, but it is well to be aware of its dangers.

2.2 Corollaries

The rule about simplicity and generalization has many in-
teresting corollaries.

Costly thy habit as thy purse can buy,
But not express'd infancy; rich, not gaudy.

• Make it fast, rather than general or powerful. If it's fast,
the client can program the function it wants, and another
client can program some other function. It is much better
to have basic operations executed quickly than more pow-
erful ones which are slower (of course, a fast, powerful
operation is best, if you know how to get it). The trouble
with slow, powerful operations is that the client who
doesn't want the power pays more for the basic function.
Usually it turns out that the powerful operation is not the
fight one.

Had I but time (as this fell sergeant, death
Is strict in his arrest), O, I couM tell you -
But let it be (V i i 339)

36

For example, many studies [e.g., 23, 51, 52] have shown
that programs spend most of their time doing very simple
things: loads, stores, tests for equality, adding one.
Machines like the 801 [41] or the RISe [39], which have in-
strnctions to do these simple operations quickly, run pro-
grams faster (for the same amount of hardware) than
machines like the VAX, which have more general and
powerful instructions that take longer in the simple cases.
It is easy to lose a factor of two in the running time of a
program, with the same amount of hardware in the imple-
mentation. Machines with still more grandiose ideas about
what the client needs do even worse [18].

To find the places where time is being spent in a large
system, it is necessary to have measurement tools that will
pinpoint the time-consuming code. Few systems are well
enough understood to be properly tuned without such
tools; it is normal for 80% of the time to be spent in 20%
of the code, but a priori analysis or intuition usually can't
find the 20% with any certainty. The performance tuning
of Interlisp-D described in [7] describes one set of useful
tools, and gives many details of how the system was sped
up by a factor of I0.

• Don't hide power. This slogan is closely related to the last
one. When a low level of abstraction allows something to
be done quickly, higher levels should not bury this power
inside something more general. The purpose of abstrac-
tions is to conceal undesirable properties; desirable ones
should not be hidden. Sometimes, of course, an abstrac-
tion is multiplexing a resource, and this necessarily has
some cost. But it should be possible to deliver all or nearly
all of it to a single client with only slight loss of perfor-
mance.

For example, the Alto disk hardware [53] can transfer a
full cylinder at disk speed. The basic file system [29] can
transfer successive file pages to client memory at full disk
speed, with time for the client to do some computing on
each sector, so that with a few sectors of buffering the
entire disk can be scanned at disk speed. This facility has
been used to write a variety of applications, ranging from
a scavenger which reconstructs a broken file system, to
programs which search files for substrings that match a
pattern. The stream level of the file system can read or
write n bytes to or from client memory; any portion of the
n bytes which occupy full disk sectors are transferred at
full disk speed. Loaders, compilers, editors and many
other programs depend for their performance on this
ability to read large files quickly. At this level the client
gives up the facility to see the pages as they arrive; this is
the only price paid for the higher level of abstraction.

• Use procedure arguments to provide flexibility in an
interface. They can be restricted or encoded in various
ways if necessary for protection or portability. This tech-
nique can greatly simplify an interface, eliminating a

jumble of parameters whose function is to provide a small
programming language. A simple example is an enumera-
tion procedure that returns all the elements of a set satisfy-
ing some property. The cleanest interface allows the client
to pass a filter procedure which tests for the property,
rather than defining a special language of patterns or
whatever.

But this theme has many variations. A more interesting ex-
ample is the Spy system monitoring facility in the 940 sys-
tem at Berkeley [10]. This allows a more or less untrusted
user program to plant patches in the code of the super-
visor. A patch is coded in machine language, but the oper-
ation that installs it checks that it does no wild branches,
contains no loops, is not too long, and stores only in a
designated region of memory dedicated to collecting
statistics. Using the Spy, the student of the system can
fine-tune his measurements without any fear of breaking
the system, or even perturbing its operation much.

Another unusual example that illustrates the power of this
method is the FRETURN mechanism in the Cal time-shar-
ing system for the ¢DC 6400 [30]. From any supervisor call
C it is possible to make another one CF which executes ex-
actly like C in the normal case, but sends control to a desig-
nated failure handler if C gives an error return. The CF
operation can do more (e.g., it can extend files on a fast,
limited-capacity storage device to larger files on a slower
device), but it runs as fast as C in the (hopefully) normal
case.

It may be better to have a specialized language, however,
if it is more amenable to static analysis for optimization.
This is a major criterion in the design of database query
languages, for example.

• Leave R to the client. As long as it is cheap to pass con-
trol back and forth, an interface can combine simplicity,
flexibility and high performance together by solving only
one problem and leaving the rest to the client. For exam-
ple, many parsers confine themselves to doing the context-
free recognition, and call client-supplied "semantic rou-
tines" to record the results of the parse. This has obvious
advantages over always building a parse tree which the
client must traverse to find out what happened.

The success of monitors [20, 25] as a synchronization
device is partly due to the fact that the locking and signal-
ing mechanisms do very little, leaving all the real work to
the client programs in the monitor procedures. This sim-
plifies the monitor implementation and keeps it fast; if the
client needs buffer allocation, resource accounting or other
frills, it provides these functions itself, or calls other lib-
rary facilities, and pays for what it needs. The fact that
monitors give no control over the scheduling of processes
waiting on monitor locks or condition variables, often ci-
ted as a drawback, it actually an advantage, since it leaves

37

the client free to provide the scheduling it needs (using a
separate condition variable for each class of process), with-
out having to pay for or fight with some built-in mechan-
ism which is unlikely to do the right thing.

The Unix system [44] encourages the building of small
programs which take one or more character streams as in-
put, produce one or more streams as output, and do one
operation. When this style is imitated properly, each pro-
gram has a simple interface and does one thing well, leav-
ing the client to combine a set of such programs with its
own code and achieve precisely the effect desired.

The end-to-end slogan discussed in § 3 is another corollary
of keeping it simple.

2.3 Continuity

There is a constant tension between the desire to improve
a design, and the need for stability or continuity.

• Keep basic interfaces stable. Since an interface embodies
assumptions which are shared by more than one part of a
system, and sometimes by a great many parts, it is very
desirable not to change the interface. When the system is
programmed in a language without type-checking, it is
nearly out of the question to change any public interface,
because there is no way of tracking down its clients and
checking for elementary imcompatibilities, such as dis-
agreements on the number of arguments, or confusion
between pointers and integers. With a language like Mesa
[15], however, which has complete type-checking and
language support for interfaces, it becomes much easier to
change interfaces without causing the system to collapse.
But even if type-checking can usually detect that an as-
sumption no longer holds, a programmer must still correct
the assumption. When a system grows to more than 250k
lines of code, the amount of change becomes intolerable;
even when there is no doubt about what has to be done, it
takes too long to do it. There .is no choice but to break the
system into smaller pieces are related only by interfaces
which are stable for years. Traditionally, only the interface
defined by a programming language or operating system
kernel is this stable.

• Keep a place to stand, if you do have to change inter-
faces. Here are two rather different examples to illustrate
this idea. One is the compatibility package, which imple-
menus an old interface on top of a new system. This allows
programs that depend on the old interface to continue
working. Many new operating systems (including Tenex
[2] and Cal [50]) have kept old software usable by simula-
ting the supervisor calls of an old system (TOPS-10 and
SCOPE, respectively). Usually these simulators need only a
small amount of effort compared to the cost of reimple-
menting the old software, and it is not hard to get accept-
able performance. At a different level, the II~M 360/370

systems provided emulation of the instruction sets of older
machines like the 1401 and 7090. Taken a little further,
this leads to virtual machines, which simulate (several cop-
ies of) a machine on the machine itself [9].

A rather different example is the world-swap debugger.
This is a debugging system that works by writing the real
memory of the target system (the one being debugged)
onto a secondary storage device, and reading in the
debugging system in its place. The debugger then provides
its user with complete access to the target world, mapping
each target memory address to the proper place on secon-
dary storage. With some care, it is possible to swap the
target back in and continue execution. This is somewhat
clumsy, but allows very low levels of a system to be
debugged conveniently, since the debugger does not de-
pend on the correct function of anything irr the target,
except for the very simple world-swap mechanism. It is
especially useful during bootstrapping. There are many
variations. For instance, the debugger can run on a differ-
ent machine, with a small tele-debugging nub .in the target
world which can interpret ReadWord, WriteWord, Stop and
Go commands arriving from the debugger over a network.
Or if the target is a process in a time-sharing system, the
debugger can run in a different process.

2.4 Making implementations work

Perfection must be reached by degrees; She requires the
slow hand of tim~ (Voltaire)

• Plan to throw one away; you will anyhow [6]. If there is
anything new about the function of a system, the first
implementation will have to be redone completely to
achieve a satisfactory (i.e., acceptably small, fast and main-
tainable) result. It costs a lot less if you plan to have a
prototype. Unfortunately, sometimes two prototypes are
needed, especially if there is a lot of innovation. If you are
lucky, you can copy a lot from a previous system; thus,
Tenex was based on the SDS 940 [2]. This can even work
even if the previous system was too grandiose; Unix took
many ideas from Multics [44].

Even when an implementation is successful, it pays to
revisit old decisions as the system evolves; in particular,
optimizations for particular properties of the load or the
environment (memory size, for example) often come to be
far from optimal.

Give thy thoughts no tongue
Nor any unproportion'd thought his act.

• Keep secrets of the implementation. Secrets are assump-
tions about an implementation that client programs are
not allowed to make (paraphrased from [5]). In other

38

words, they are things that can change; the interface de-
fines the things that cannot change (without simultaneous
changes to both implementation and client). Obviously, it
is easier to program and modify a system if its parts make
fewer assumptions about each other. On the other hand,
the system may not be easier to design-it's hard to design
a good interface. And there is a tension with the desire not
to hide power.

An efficient program is an exercise in logical brinkman-
ship. (E. OUkstra)

There is another danger in keeping secrets. One way to im-
prove performance is to increase the number of assump-
tions that one part of a systems makes about another; the
additional assumptions often allow less work to be done,
sometimes a 10t less. For instance, if a set of size n is
known to be sorted, it is possible to do a membership test
in time log n rather than n. This technique is very im-
portant in the design of algorithms and the tuning of small
modules. In a large system the ability to improve each part
separately is usually more important. But striking the right
balance is an art.

0 throw away the worserpart of it,
And live the purer with the other half. (111 iv 157)

• Divide and conquer. This is a well known method for
solving a hard problem: reduce it to several easier ones.
The resulting program is usually recursive. When resour-
ces are limited the method takes a slightly different form:
bite off as much as will fit, leaving the rest for another
iteration.

A good example of this is in the Alto's Scavenger pro-
gram, which scans the disk and rebuilds the index and
directory structures of the file system from the file iden-
tifier and page number recorded on each disk sector [29].
A recent rewrite of this program has a phase in which it
builds a data structure in main storage, with one entry for
each contiguous run of disk pages that is also a contiguous
set of pages in a file. Normally, files are allocated more or
less contiguously, and this structure is not too large. If the
disk is badly fragmented, however, the structure will not
fit in storage. When this happens, the Scavenger discards
the information for half the files and continues with the
other half. After the index for these files is rebuilt, the
process is repeated for the other files. If necessary the
work is further subdivided; the method fails only if a
single file's index won't fit.

Another interesting example arises in the Dover raster
printer [26, 53], which scan-converts lists of characters and
rectangles into a large mXn array of bits, in which ones
correspond to spots of ink on the paper and zeros to spots
without ink. In this printer m=3300 and n=4200, so the

array contains fourteen million bits and is too large to
store in memory. The printer consumes bits faster than the
available disks can deliver them, so the array cannot be
stored on disk. Instead, the printer electronics contains two
band buffers, each of which can store 16×4200 bits. The
entire array is divided into 16×4200 bit slices called bands,
and the characters and rectangles are sorted into buckets,
one for each band. A bucket receives the objects which
start in the corresponding band. Scan conversion proceeds
by filling one band buffer from its bucket, and then play-
ing it out to the printer and zeroing it while the other buf-
fer is filled from the next bucket. Objects which spill over
the edge of one band are put on a le•over list which is
merged with the contents of the next bucket. This left-over
scheme is the trick which allows the problem to be sub-
divided.

Sometimes it is convenient to artificially limit the resource,
by quantizing it in fixed-size units; this simplifies book-
keeping and prevents one kind of fragmentation. The clas-
sical example of this is the use of fixed-size pages for vir-
tual memory, rather than variable-size segments. In spite
of the apparent advantages of keeping logically related in-
formation together, and transferring it between main stor-
age and backing storage as a unit, paging systems have
worked out better. The reasons for this are complex and
have not been systematically studied.

And makes us rather bear those ills we have
Than fiy to others that we know not of. (I I I i81)

• Use a good idea again, instead of generalizing it. A spe-
cialized implementation of the idea may be much more
effective than a general one. The discussion of caching
below gives several examples bf applying this general prin-
ciple. Another interesting example is the notion of replica-
tion of data for reliability. A small amount of data can
easily be replicated locally by writing it on two or more
disk drives [28]. When the amount of data is large, or it
must be recorded on separate machines, it is not easy to en-
sure that the copies are always the same. Gifford [16]
shows how the problem can be solved by building repli-
cated data on top of a transactional storage system, which
allows an arbitrarily large update to be done as an atomic
operation (see § 4). The transactional storage itself depends
on the simple local replication scheme to store its log
reliably. There is no circularity here, since only the idea is
used twice, not any code. Yet a third possible use of repli-
cation in this context is to store the commit record on
several machines [27].

The user interface for the Star office system [47] has a
small set of operations (type text, move, copy, delete, show
properties) which are applied to nearly all the objects in
the system: text, graphics, file folders and file drawers,
records files, printers, in and out baskets, etc. The exact

39

meaning of an operation varies with the class of object,
within the limits of what the user is likely to consider
natural. For instance, copying a document to an outbasket
causes it to be sent as a message; moving the endpoint o f a
line causes the line to follow like a rubber band. Certainly
the implementations are quite different in many cases. But
the generic operations do not simply m~lke the system
easier to use; they represent a view of what operations are
possible and how the implementation of each class o f ob-
ject should be organized.

2.5 Handling all the cases

Diseases desperate grown,
By desperate appliance are reliev'd,
Or not at all. (I I I vii 9-11)

Th is project
ShouM have a back or second, that might hold,
I f this should blast in proof (IV iii 149-153)

• Handle normal and worst case separately as a rule,
because the requirements for the two are quite different:

the normal case must be fast;

the worst case must make some progress.

In most systems it is all right to schedule unfairly and give
no service to some process, or to deadlock the entire sys-
tem, as long as this event is detected automatically, and
doesn't happen too often. The usual recovery is by crash-
ing some processes, or even the entire system. At first this
sounds terrible, but usually one crash a week is a cheap
price to pay for 20% better performance. Of course the sys-
tem must have decent error recovery (an application of the
end-to-end principle; see § 4), but that is required in any
case, since there are so many other possible causes of a
crash.

Caches and hints (§ 3) are examples of special treatment
for the normal case, but there are many others.

The Interlisp-D and Cedar programing systems use a
referencing-counting garbage collector [11] which has an
important optimization of this kind. Pointers in the local
frames or activation records of procedures are not count-
ed; instead, the frames are scanned whenever garbage is
collected. This saves a lot of reference-counting, since
most pointer assignments are to local variables; also, since
there are not many frames, the time to scan them is small,
and the collector is nearly real-time. Cedar goes farther
and does not keep track of which local variables contain
pointers; instead, it assumes that they all do, so an integer
which happens to contain the address of an object which is
no longer referenced will prevent that object from being
freed. Measurements show that less than 1% of the storage
is incorrectly retained [45].

Reference-counting makes it easy to have an incremental
collector, so that computation need not stop during collec-
tion. However, it cannot reclaim circular structures which
are no longer reachable. Cedar therefore has a conven-
tional trace-and-sweep collector as well. This is not suit-
able for real-time applications, since it stops the entire sys-
tem for many seconds, but in interactive applications it
can be used during coffee breaks to reclaim accumulated
circular structures.

Another problem with reference-counting is that the count
may overflow the space provided for it. This happens very
seldom, since only a few objects have more than two or
three references. It is simple to make the maximum value
sticky. Unfortunately, in some applications the root of a
large structure is referenced from many places; if the root
becomes sticky, a lot of storage will unexpectedly become
permanent. An attractive solution is to have an overflow
count table, which is a hash table keyed on the address of
an object. When the count reaches its limit, it is reduced
by half, the overflow count is increased by one, and an
overflow flag is set in the object. When the count reaches
zero, if the overflow flag is set the process is reversed.
Thus even with as few as four bits, there is room to count
up to seven, and the overflow table is touched only when
the count swings by more than four, which happens very
seldom.

There are many cases when resources are dynamically allo-
cated and freed (e.g., real memory in a paging system),
and sometimes additional recources are needed temporar-
ily to free an item (some table might have to be swapped
in to find out where to write out a page). Normally there
is a cushion (clean pages which can be freed with no
work), but in the worst case the cushion may disappear (all
pages are dirty). The trick here is to keep a little some-
thing in reserve under a mattress, bringing it out only in a
crisis. It is necessary to bound the resources needed to free
one item; this determines the size of the reserve under the
mattress, which must be regarded as a fixed cost o f the
resource multiplexing. When the crisis arrives, only one
item should be freed at a time, so that the entire reserve is
devoted to that job; this may slow things down a lot, but it
ensures that progress will be made.

Sometimes radically different strategies are appropriate in
the normal and worst cases. The Bravo editor [24] uses a
piece table to represent the document being edited. This is
an array of pieces: pointers to strings of characters stored
in a file; each piece contains the file address of the first
character in the string, and its length. The strings are never
modified during normal editing. Instead, when some char-
acters are deleted, for example, the piece containing the
deleted characters is split into two pieces, one pointing to
the first undeleted string and the other to the second.
When characters are inserted from the keyboard, they are

40

appended to the file, and the piece containing the inser-
tion point is split into three pieces: one for the preceding
characters, a second for the inserted characters, and a third
for the following characters. After hours of editing there
are hundreds of pieces and things start to bog down. It is
then time for a cleanup, which writes a new file containing
all the characters of the document in order. Now the piece
table can be replaced by a single piece pointing to the new
file, and editing can continue. Cleanup is a specialized
kind of garbage collection.

3. Speed

This section describes hints for making systems faster, for-
going any further discussion of why this is important.

Neither a borro~ver, nor a lender be;
For loan oft loses both #self and friend
And borrowing dulleth edge of husbandry.

• Split resources in a fixed way if in doubt, rather than
sharing them. It is usually faster to allocate dedicated
resources, it is often faster to access them, and the be-
havior of the allocator is more predictable. The obvious
disadvantage is that more total resources are needed, ignor-
ing multiplexing overheads, than if all come from a com-
mon pool. In many cases, however, the cost of the extra
resources is small, or the overhead is larger than the frag-
mentation, or both.

For example, it is always faster to access information in
the registers of a processor than to get it from memory,
even if the machine has a high-performance cache. Regis-
ters have gotten a bad name because it can be tricky to
allocate them intelligently, and because saving and restor-
ing them across procedure calls may negate their speed ad-
vantages. When programs are written in the approved
modern style, however, with lots of small procedures, 16
registers are nearly always enough for all the local vari-
ables and temporaries, so that there are usually enough
registers and allocation is not a problem. And with n sets
of registers arranged in a stack, saving is needed only
when there are n successive calls without a return [14, 39].

Input/output channels, floating-point co-processors and
similar specialized computing devices are other applica-
tions of this principle. When extra hardware is expensive
these services are provided by multiplexing a single proces-
sor, but as it becomes cheap, static allocation of computing
power for various purposes becomes worthwhile.

The Interlisp virtual memory system mentioned earlier [7]
needs to keep track of the disk address corresponding to
each virtual address. This information could itself be held
in the virtual memory (as it is in several systems, including
Pilot [42]), but the need to avoid circularity makes this

rather complicated. Instead, real memory is dedicated to
this purpose. Unless the disk is ridiculously fragmented,
the space thus consumed is less than the space for the
code to prevent circularity.

• Use static analysis if you can; this is another way of stat-
ing the last slogan. The result of static analysis is known
properties of the program which can usually be used to im-
prove its performance. The hooker is " i f you can;" ,when a
good static analysis is not possible, don't delude yourself
with a bad one, but fall back on a dynamic scheme.

The remarks about registers above depend on the fact that
the compiler can decide how to allocate them, simply by
putting the local variables and temporaries there. Most
machines lack multiple sets of registers o? lack a way of
stacking them efficiently. Efficient allocation is then much
more difficult, requiring an elaborate inter-procedural
analysis which may not succeed, and in any case must be
redone each time the program changes. So a little bit of
dynamic analysis (stacking the registers) goes a long way.
Of course the static analysis can still pay off in a large
procedure if the compiler is clever.

A program can read data much faster when the data is
read sequentially. This makes it easy to predict what da ta
will be needed next and read it ahead into a buffer. Often
the data can be allocated sequentially on a disk, which al-
lows it to be transferred at least an order of magnitude
faster. These performance gains depend on the fact that
the programmer has arranged the data so that it is acces-
sed according to some predictable pattern, i.e. so that static
analysis is possible. Many attempts have been made to
analyse programs after the fact and optimize the disk trans-
fers, but as far as I know this has never worked. The dyna-
mic analysis done by demand paging is always at least as
good.

Some kinds of static analysis exploit the fact that some
invariant is maintained. A system that depends on such
facts may be less robust in the face of hardware failures or
bugs in software which falsify the invariant.

• Dynam& translation from a convenient (compact, easily
modified or easily displayed) representation to one which
can be quickly interpreted is an important variation on the
old idea of compiling. Translating a bit at a time is the
idea behind separate compilation, which goes back at least
to Fortran lI. Incremental compilers do it automatically
when a statement, procedure or whatever is changed.
Mitchell investigated smooth motion on a continuum bet-
ween the convenient and the fast representation [34]. A
simpler version of his scheme is to always do the transla-
tion on demand and cache the result; then only one inter-
preter is required, and no decisions are needed except for
cache replacement,

41

For example, an experimental Smalltalk implementation
[12] uses the bytecodes produced by the standard Small-
talk compiler as the convenient (in this case, compact)
representation, and translates a single procedure from byte
codes into machine language when it is invoked. It keeps a
cache with room for a few thousand instructions of trans-
lated code. For the scheme to pay off, the cache must be
large enough that on the average a procedure is executed
at least n times, where n is the ratio of translation time to
execution time for the untranslated code.

A rather different example is provided by the C-machine
stack cache [14]. In this device, instructions are fetched
into an instruction cache; as they are loaded, any operand
address which is relative to the local frame pointer FP is
converted into an absolute address, using the current value
of FP (which remains constant during execution of the
procedure). In addition, if the resulting address is in the
range of addresses currently in the stack data cache, the
operand is changed to register mode; later execution of
the instruction will then access the register directly in the
data cache. The FP value is concatenated with the instruc-
tion address to form the key of the translated instruction
in the cache, so that multiple activations of the same pro-
cedure will still work.

I f thou did'st ever hold me in thy heart. (Vi i 349)

• Cache answers to expensive computations, rather than
doing them over. By storing the triple ~ x, f(x)] in an asso-
ciative store wi thfand x as keys, we can retriever(x) with
a lookup. This wins if f (x) is needed again before it gets
replaced in the cache, which presumably has limited capa-
city. How much it wins depends on how expensive it is to
compute f(x). A serious problem is that when f i s not func-
tional (can give different results with the same arguments),
we need a way to invalidate or update a cache entry if the
value of f (x) changes. Updating depends on an equation
of the form f (x+A)=g(x , A , f(x)) in which g is much
cheaper to compute than f. For example, x might be an ar-
ray of 1000 numbers, f t h e sum of the array elements, and
A a new value for one of them. Then g(x, y, z) is x + y - z .

If a cache is too small to hold all the "active" values, it
will thrash. If recomputingfis expensive, performance will
suffer badly. Thus it is wise to choose the cache size adapt-
ively, "if possible, increasing it when the hit rate declines,
and reducing it when many entries go unused for a long
time.

The classic example is a hardware cache which speeds up
access to main storage; its entries are triples [Fetch, address,
contents of address]. The Fetch operation is certainly not
functional: Fetch(x) gives a different answer after Store(x)
has been done. Hence the cache must be updated or in-
validated after a store. Virtual memory systems do exactly
the same thing: main storage plays the role of the cache,

disk plays the role of main storage, and the unit of transfer
is the page, segment or whatever. But nearly every non-
trivial system has more specialized applications of caching.

This is especially true for interactive or real-time systems,
in which the basic problem is to incrementally update a
complex state in response to frequent small changes.
Doing this in an ad-hoc way is extremely error-prone. The
best organizing principle is to recompute the entire state
after each change, but cache all the expensive results of
this computation. A change must invalidate at least the
cache entries which it renders invalid; if these are too hard
to identify precisely, it may invalidate more entries, at the
price of more computing to reestablish them. The secret of
success is to organize the cache so that small changes only
invalidate a few entries.

For example, the Bravo editor [24] has a function
DisplayLine[document, characterNumber] which returns the
bitmap for the line of text in the displayed document with
document[characterNurnber] as its first character. It also re-
turns lastCharDisplayed and lastCharUsed, the numbers of
the last character displayed, and the last character exam-
ined in computing the bitmap (these are usually not the
same, since it is necessary to look past the end of the line
in order to choose the line break). This function computes
line breaks, does justification, uses font tables to map
characters into their raster pictures, etc. There is a cache
with an entry for each line currently displayed on the
screen, and sometimes a few lines just above or below. An
edit which changes characters i through j invalidates any
cache entry for which [characterNumber .. lastCharUsed]
intersects [i .. j]. The display is recomputed by

c: =first Char;
loop

[bitMap, tastC,]: = DisptayLine[docurnent. c]; Paint[bitMap];
c; = lastC + 1

endloop
The call of DisplayLine is short-circuited by using the cache
entry for [document, c] if it exists. At the end, any cache
entry which has not been used is discarded; these entries
are not invalid, but they are no longer interesting, because
the line breaks have changed so that a line no longer
begins at these points.

The same idea can be applied in a very different setting.
Bravo allows a document to be structured into paragraphs,
each with specified left and right margins, inter-line lead-
ing, etc. In ordinary page layout, all the information about
the paragraph that is needed to do the layout can be
represented very compactly:

the number of lines;

the height of each line (normally all lines are the
same height);

any keep properties;

the pre and post leading.

4 2

In the usual case this can be encoded in three or four
bytes. A 30 page chapter has perhaps 300 paragraphs, so
about lk bytes are required for all this data. This is less in-
formation than is required to specify the characters on a
page. The layout computation is comparable to the line
layout computation for a page. Therefore it should be pos-
sible to do the pagination for this chapter in less time than
is required to render one page. Layout can be done in-
dependently for each chapter.

What makes this work is a cache of [paragraph,
ParagraphShape(paragraph)] entries. If the paragraph is edit-
ed, the cache entry is invalid and must be recomputed.
This can be done at the time of the edit (reasonable if the
paragraph is on the screen, as is usually the case, but not
so good for a global substitute), in background, or only
when repagination is requested.

For the apparel oft proclaims the man.

• Use hints to speed up normal execution. A hint, like a
cache entry, is the saved result of some computation. It is
different in two ways: it may be wrong, and it is not neces-
sarily reached by an associative lookup. Because a hint
may be wrong, there must be a way to check its correct-
ness before taking any unrecoverable action. It is checked
against the truth, information which must be correct, but
which can be optimized for this purpose and need not be
adequate for efficient execution. Like a cache entry, the
purpose of a hint is to make the system run faster. Usually
this means that it must be correct nearly all the time.

For example, in the Alto [29] and Pilot [42] operating sys-
tems, each file has a unique identifier, and each disk page
has a label field whose contents can be checked before
reading or writing the data, without slowing down the data
transfer. The label contains the identifier of the file which
contains the page, and the number of that page in the file.
Page zero of each file is called the leader page and con-
tains, among other things, the directory in which the file
resides and its string name in that directory. This is the
truth on which the file systems are based, and they take
great pains to keep it correct. With only this information,
however, there is no way to find the identifier of a file
from its name in a directory, or to find the disk address of
page L except to search the entire disk, a method which
works but is unacceptably slow.

Therefore, each system maintains hints to speed up these
operations. For each directory there is a file which con-
tains triples [string name, file identifier, address of first
page]. For each file there is a data structure which maps a
page number into the disk address of the page. In the Alto
system, this structure is a link in each label to the next
label; this makes it fast to get from page n to page n+ L In
Pilot, it is a B-tree which implements the map directly,
taking advantage of the common case in which consecutive

file pages occupy consecutive disk pages. Information ob-
tained from any of these hints is checked when it is used,
by checking the label or reading the file name from the
leader page. I f it proves to be wrong, all of it can be
reconstructed by scanning the disk. Similarly, the bit table
which keeps track of free disk pages is a hint; the truth is
represented by a special value in the label o f a free page,
which is checked when the page is allocated before the
label is overwritten with a file identifier and page number.

Another example of hints is the store and forward muting
first used in the Arpanet [32]. Each node in the network
keeps a table which gives the best route to each other
node. This table is updated by periodic broadcasts in
which each node announces to all the other nodes its
opinion about the quality of its links to its nearest neigh-
bors. These broadcast messages are not synchronized, and
are not guaranteed to be delivered. Thus there is no guar-
antee that the nodes have a consistent view at any instant.
The truth in this case is that each node knows its o w n

identity, and hence knows when it receives a packet des-
tined for itself. For the rest, the routing does the best it
can; when things aren't changing too fast it is nearly op-
timal.

A more curious example is the Ethernet [33], in which lack
of a carrier on the cable is used as a hint that a packet can
be sent. I f two senders take the hint simultaneously, there
is a collision which both can detect, and both stop, delay
for a randomly chosen interval, and then try again. I f n suc-
cessive collisions occur, this is taken as a hint that the num-
ber of senders is 2 n, and each sender lengthens the mean
of his random delay interval accordingly, to ensure that
• e net does not become overloaded.

A very different application of hints is used to speed up ex-
ecution of Smalltalk programs [12]. In Smalltalk the code
executed when a procedure is called is determined dynami-
cally, based on the type of the first argument. Thus Print[x,
format[invokes the Print procedure which is part of the
type of x. Since Smalltalk has no declarations, the type of
x is not known statically. Instead, each object contains a
pointer to a table which contains a set of pairs [procedure
nam~ address of code], and when this call is executed, Print
is looked up in this table for x (I have normalized the un-
usual Smalltalk terminology and syntax, and oversimpli-
fied a bit). This is expensive. It turns out that usually the
type of x is the same as it was last time. So the code for
the call Print[x, format] can be arranged like this:

push format; push x;
push lastType; call lastProc,

and each Print procedure begins with
It: =Pop[]; x: =Pop[]; t: =type of x;
iftC=lt then LookupAndCall[x, "Print"] else the body of the procedure.

Here lastType and lastProc are immediate values stored in
the code. The idea is that LookupAndCall should store the
type of x and the code address it finds back into the

43

lastType and lastProc fields respectively. If the type is the
same next time, the procedure will be called directly.
Measurements show that this cache hits about 96% of the
time. In a machine with an instruction fetch unit, this
scheme has the nice property that the transfer to lastProe
can proceed at full speed; thus, when the hint is correct,
the call is as fast as an ordinary subroutine call. The check
of t~lt can be arranged so that it normally does not
branch.

The same idea in a different guise is used in the S-1 [48],
which has an extra bit for each instruction in its instruc-
tion cache. The bit is cleared when the instruction is load-
ed, set when the instruction causes a branch to be taken,
and used to govern the path that the instruction fetch unit
follows. If the prediction turns out to be wrong, the bit is
changed and the other path is. followed.

• When in doubt, use brute force. Especially as the cost of
hardware declines, a straightforward, easily analyzed solu-
tion which requires a lot of special-purpose computing
cycles is better than a complex, poorly characterized one
which may work well if certain assumptions are satisfied.
For example, Ken Thompson's chess machine, Belle,
relies mainly on special-purpose hardware to generate
moves and evaluate positions, rather than on sophisticated
chess strategies. Belle has won the world computer chess
championships several times. Another instructive-example
is the success of personal computers over time-sharing
systems; the latter include much more cleverness and have
many fewer wasted cycles, but the former are increasingly
recognized as the most cost-effective way of providing
interactive computing.

Even an asymptotically faster algorithm is not necessarily
better. It is known how to multiply two nXn matrices
faster than O(n2'5), but the constant factor is prohibitive.
On a more mundane note, the 7040 Watfor compiler used
linear search to look up symbols; student programs have
so few symbols that the setup time for a better algorithm
couldn't be recovered.

• Compute in background when possible. In an interactive
or real-time system, it is good to do as little work as pos-
sible before responding to a request. The reason is two-
fold: first, a rapid response is better for the users, and
second, the load usually varies a great deal, so that there is
likely to be idle processor time later, which is wasted un-
less there is background work to do. Many kinds of work
can be deferred to background. The Interlisp and Cedar
garbage collectors [7, 11] do nearly all their work this way.
Many paging systems write out dirty pages and prepare
candidates for replacement in background. Electronic mail
can be delivered and retrieved by background processes,
since delivery within an hour or two is usually acceptable.
Many banking systems consolidate the data on accounts at
night and have it ready the next morning. These are four

examples with successively less need for synchronization
between foreground and background tasks. As the amount
of synchronization increases, more care is needed to avoid
subtle errors; an extreme example is the on-the-fly gar-
bage collection algorithm given in [13]. But in most cases a
simple producer-consumer relationship between two
otherwise independent processes is possible.

• Use batch processing if possible. Doing things incremen-
tally almost always costs more, even aside from the fact
that disks and tapes work much better when accessed se-
quentially. And batch processing permits much simpler
error recovery. The Bank of America has an interactive
system which allows tellers to record deposits and check
withdrawals. It is loaded with current account balances in
the morning, and does its best to maintain them during
the day. But the next morning the on-line data is discard-
ed and replaced with the results of night's batch run. This
design made it much easier to meet the bank's require-
ments for trustworthy long-term data, and there is no
significant loss in function.

Be wary then; best safety ties in fear. (I iii 43)

• Safety first. In allocating resources, strive to avoid dis-
aster, rather than to attain an optimum. Many years of ex-
perience with virtual memory, networks, disk allocation,
database layout and other resource allocation problems
has made it clear that a general-purpose system cannot op-
timize the use of resources. On the other hand, it is easy
enough to overload a system and drastically degrade the
service. A system cannot be expected to function well if
the demand for any resource exceeds two-thirds of the
capacity (unless the load can be characterized extremely
well). Fortunately hardware is cheap and getting cheaper;
we can afford to provide excess capacity. Memory is espe-
cially cheap, which is especially fortunate, since to some ex-
tent plenty of memory can allow other resources, such as
processor cycles or communication bandwidth, to be util-
ized more fully.

The sad truth about optimization was brought home when
the first paging systems began to thrash. In those days
memory was very expensive, and people had visions of
squeezing the most out of every byte by clever optimi-
zation of the swapping: putting related procedures on the
same page, predicting the next pages to be referenced
from previous references, running jobs which share data or
code together, etc. No one ever learned how to do this.
Instead, memory got cheaper, and systems spent it to
provide enough cushion that simple demand paging would
work. It was learned that the only important thing is to
avoid thrashing, or too much demand for the available
memory. A system that thrashes spends all its time waiting
for the disk. The only systems-in which cleverness has

44

worked are those with very well-known loads. For in-
stance, the 360/50 APL system [4] had the same size work-
space for each user, and common system code for all of
them. It made all the system code resident, allocated a
contiguous piece of disk for each user, and overlapped a
swap-out and a swap-in with each unit of computation.
This worked fine.

The nicest thing about the Alto is that it doesn't run
faster at night, (J. Morris)

A similar lesson was learned about processor time. With in-
teractive use the response time to a demand for computing
is important, since a person is waiting for it. Many
attempts were made to tune the processor scheduling as a
function of priority of the computation, working set size,
memory loading, past history, likelihood of an i/o request,
etc.; these efforts failed. Only the crudest parameters
produce intelligible effects: e.g., interactive vs non-interac-
tive computations; high, foreground and background pri-
ority. The most successful schemes give a fixed share of
the cycles to each job, and don't allocate more than 100%;
unused cycles are wasted or, with luck, consumed by a
background job. The natural extension of this strategy is
the personal computer, in which each user has at least one
processor to himself.

Give every man thy ear, but few thy voice;
Take each man's censure, but reserve thy judgment.

• Shed load to control demand, rather than allowing the
system to become overloaded. This is a corollary of the
previous rule. There are many ways to shed load. An inter-
active system can refuse new users, or if necessary deny
service to existing ones. A memory manager can limit the
jobs being served so that their total working sets are less
than the available memory. A network can discard packets.
If it comes to the worst, the system can crash and start
over, hopefully with greater prudence.

Bob Morris once suggested that a shared interactive sys-
tem should have a large red button on each terminal,
which the user pushes if he is dissatisfied with the service.
When the button is pushed, the system must either im-
prove the service, or throw the user off; it makes an equi-
table choice over a sufficiently long period. The idea is to
keep people from wasting their time in front of terminals
which are not delivering a useful amount of service.

The original specification for the Arpanet [32] was that a
packet, once accepted by the net, is guaranteed to be
delivered unless the recipient machine is down, or a net-
work node fails while it is holding the packet. This turned
out to be a bad idea. It is very hard to avoid deadlock in
the worst case with this rule, and attempts to obey it lead
to many complications and inefficiencies even in the nor-
mal case. Furthermore, the client does not benefit, since

he still has to deal with packets lost by host or network
failure (see § 4). Eventually the rule was abandoned. The
Pup internet [3], faced with a much more variable set of
transport facilities, has always ruthlessly discarded packets
at the first sign of congestion.

4. Fault-tolerance

The unavoidable price of reliability is simplicity.
(C. Hoare)

Making a system reliable is not really hard, if you .know
how to go about it. But retrofitting reliability to an existing
design is very difficult.

This above all: to thine own self be true
And it must follow, as the night the day,
Thou canst not then be false to any man.

• End-to-end error recovery is absolutely necessary for a
reliable system, and any other error detection or recovery
is not logically necessary, but is strictly for performance.
This observation is due to Saltzer [46], and is very widely
applicable.

For example, consider the operation of transferring a file
from a file system on a disk attached to machine A, to
another file system on another disk attached to machine B.
The minimum procedure which inspires any confidence
that the right bits are really on B's disk, is to read the file
from B's disk, compute a checksum of reasonable length
(say 64 bits), and find that it is equal to a checksum com-
puted by reading the bits from A's disk, Checking the
transfer from A's disk to ,4's memory, from d over the net-
work to B, or from B's memory to B's disk is not sufficient,
since there might be trouble at some other point, or the
bits might be clobbered while sitting in memory, or what-
ever. Furthermore, these other checks are not necessary
either, since if the end-to-end check fails the entire trans-
fer can be repeated. Of course this is a lot of work, and if
errors are frequent, intermediate checks can reduce the
amount of work that must be repeated. But this is strictly a
question of performance, and is irrelevant to the reliability
of the file transfer. Indeed, in the ring-based system at
Cambridge, it is customary to copy an entire disk pack of
58 MBytes with only an end-to-end check; errors are so
infrequent that the 20 minutes of work very seldom needs
to be repeated [36].

Many uses of hints are applications of this idea. In the
Alto file system described earlier, for example, it is the
check of the label on a disk sector before writing the sec-
tor that ensures the disk address for the write is correct.
Any precautions taken to make it more likely that the ad-
dress is correct may be important, or even critical, for per-
formance, but they do not affect the reliability of the file
system.

45

The Pup internet [4] adopts the end-to-end strategy at
several levels. The main service offered by the network is
transport of a data packet from a source to a destination.
The packet may traverse a number of networks with wide-
ly varying error rates and other properties. Internet nodes
which store and forward packets may run short of space
and be forced to discard packets. Only rough estimates of
the best route for a packet are available, and these may be
wildly erroneous when parts of the network fail or resume
operation. In the face of these uncertainties, the Pup inter-
net provides good service with a simple implementation by
attempting only "best efforts" delivery. A packet may be
lost with no notice to the sender, and it may be corrupted
in transit. Clients must provide their own error control to
deal with these problems, and indeed higher-level Pup
protocols provide more complex services such as reliable
byte streams. However, the packet transport does attempt
to report problems to its clients, by providing a modest
amount of error control (a 16-bit checksum), notifying
senders of discarded packets when possible, etc. These
services are intended to improve performance in the face
of unreliable communication and overloading; since they
too are best efforts, they don't complicate the implemen-
tation much.

There are two problems with the end-to-end strategy.
First, it requires a cheap test. for success. Second, it can
lead to working systems with severe performance defects,
which may not appear until the system becomes opera-
tional and is placed under heavy load.

Remember thee?
Yea, from the table of my memory
I'll wipe away all trivial fond record~
All saws of books, all forms, all pleasures past,
That youth and observation copied there;
And thy commandment all alone shall live
Within the book and volume of my brain,
Unmix'd with baser matter. (1 v 97)

• Log updates to record the truth about the state of an ob-
ject. A log is a very simple data structure which can be
reliably written and read, and cheaply forced out onto disk
or other stable storage that can survive a crash. Because it
is append-only, the amount of writing is minimized, and it
is easy to ensure that the log is valid no matter when a
crash occurs. It is easy and cheap to duplicate the log,
write copies on tape, or whatever. Logs have been used for
many years to ensure that information in a data base is not
lost [17], but the idea is a very general one and can be
used in ordinary file systems [35, 49] and in many other
less obvious situations. When a log holds the truth, the cur-
rent state of the object is very much like a hint (it isn't ex-
actly a hint because there is no cheap way to check its
correctness).

To use the technique, record every update to an object as
a log entry, consisting of the name of the update
procedure and its arguments. The procedure must be func-
tional: when applied to the same arguments it must always
have the same effect. In other words, there is no state out-
side the arguments that affects the operation of the proce-
dure. This means that the (procedure call specified by the)
log entry can be re-executed later, and if the object being
updated is in the same state as when the update was first
done, it will end up in the same state as after after the up-
date was first done. By induction, this means that a se-
quence of log entries can be re-executed, starting with the
same objects, and produce the same objects that were
produced in the original execution.

For this to work, two requirements must be satisfied:

• The update procedure must be a true function:

Its result does not depend on any state outside its
arguments;

It has no side effects, except on the object in
whose log it appears.

• The arguments must be values, one of:

Immediate values, such as integers, strings etc.
An immediate value can be a large thing, like an
array or even a list, but the entire value must be
copied into the log entry.

References to immutable objects.

Most objects of course are not immutable, since they are
updated. However, a particular version of an object is im-
mutable; changes made to the object change the version.
A simple way to refer to an object version unambiguously
is with the pair [object identifier, number of updates]. I f
the object identifier leads to the log for that object, then
replaying the specified number of log entries yields the
particular version. Of course, doing this replay may re-
quire finding some other object versions, but as long as
each update refers only to existing versions, there won't be
any cycles and this process will terminate.

For example, in the Bravo editor [24] there are exactly two
update functions for editing a document:

Replace[old: Interval, new: lnterva~
ChangeProperttes[where: Interval, what: FormattingOp]

An Interval is a triple [document version, first character,
last character]. A FormattingOp is a function from proper-
ties to properties; a property might be italic or leflMargin,
and a FormattingOp might be leftMargin: = leftMargin+ 10 or
italic:---TRUE. ThUS only two kinds of log entries are need-
ed. All the editing commands reduce to applications of
these two functions.

Beware
Of entrance to a quarrel, but, being in,
Bear "t that th' opposed may beware of the~

46

• M a k e actions atomic or restartable. An atomic action
(often called a transaction) is one which either completes
or has no effect. For example, in most main storage sys-
tems fetching or storing a word is atomic. The advantages
of atomic actions for fault-tolerance are obvious: if a fail-
ure occurs during the action, it has no effect, so that in
recovering from a failure it is not necessary to deal with
any of the intermediate states of the action [28]. Atomicity
has been provided in database systems for some time [17],
using a log to store the information needed to complete or
cancel an action. The basic idea is to assign a unique iden-
tifier to each atomic action, and use it to label all the log
entries associated with that action. A commit record for the
action [42] tells whether it is in progress, committed (i.e.,
logically complete, even if some cleanup work remains to
be done), or aborted (i.e. logically canceled, even if some
cleanup remains); changes in the state of the commit
record are also recorded as log entries. An action cannot
be committed unless there are log entries for all of its up-
dates. After a failure, recovery applies the log entries for
each comitted action, and undoes the updates for each
aborted action. Many variations on this scheme are pos-
sible [54].

For this to work, a log entry usually needs to be restart-
able. This means that it can be partially executed any num-
ber of times before a complete execution, without chang-
ing the result; sometimes such an action is called idem-
potent. For example, storing a set of values into a set of
variables is a restartable action; incrementing a variable by
one is not. Restartable log entries can be applied to the cur-
rent state of the object; there is no need to recover an old
state.

This basic method can be used for any kind of permanent
storage. If things are simple enough, a rather distorted ver-
sion will work. The Alto file system described above, for
example, in effect uses the disk labels and leader pages as
a log, and rebuilds its other data structures from these if
necessary. Here, as in most file systems, it, is only the file
allocation and directory actions that are atomic; the file sys-
tem does not help the client to make its updates atomic.
The Juniper file system [35, 49] goes much further, allow-
ing each client to make an arbitrary set of updates as a
single atomic action. It uses a trick known as shadow pages,
in which data pages are moved from the log into the files
simply by changing the pointers to them in the B-tree that
implements the map from file addresses to disk addresses;
this trick was first used in the Cal system [50]. Cooperating
clients of an ordinary file system can also implement
atomic actions, by checking whether recovery is needed
before each access to a file, and when it is, carrying out
the entries in specially named log files [40],

Atomic actions are not trivial to implement in general, al-
though the preceding discussion tries to show that they are

not nearly as hard as their public image suggests. Some-
times a weaker but cheaper method will do. The Grape-
vine mail transport and registration system [1], for exam-
ple, maintains a replicated data base of names and distribu-
tion lists on a large number of machines in a nationwide
network. Updates are made at one site, and propagated to
other sites using the mail system itself. This guarantees
that the updates will eventually arrive, but as sites fail and
recover, and the network partitions, the order in which
they arrive may vary greatly. Each update message is time-
stamped, and the latest one wins. After enough time has
passed, all the sites will receive all the updates and will all
agree. During the propagation, however, the sites may dis-
agree, e.g. about whether a person is a member of a cer-
tain distribution list. Such occasional disagreements and
delays are not very important to the usefulness o f this
particular system.

5. Conclusion

Most humbly do I take my leave, my lord

Such a collection of good advice and anecdotes is rather
tiresome to read; perhaps it is best taken in small doses 'at
bedtime. In extenuation I can only plead that I have ig-
nored most o f these rules at least once, and nearly always
regretted it. The references tell fuller stories about the
systems or techniques, which I have only sketched. Many
of them also have more complete rationalizations.

The slogans in the paper are collected in Figure 1.

Acknowledgements

I am indebted to many sympathetic readers of earlier
drafts of this paper, and to the comments of the program
committee.

References

1. Birrell, A.D. et. al. Grapevine: an exercise in distributed comput-
ing. Comm. ACM 25, 4, April 1982, p 260-273.

2. Bobrow, D.G. et. al. Tenex: a paged time-sharing system for the
PDP-10. Com~ ACM 15, 3, March 1972, p 135-143.

3. Boggs, D.R. et. al. Pup: an internetwork architecture. IEEE Tranx
CommunicationsCOM-28, 4, April 1980, p 612-624.

4. Breed, L.M and Lathwell, R.H. The implementation Of APL/360. In
Interactive Systems for Experimental Applied Mathematics, Klerer
and Reinfelds, eds., Academic Press, 1968, p 390-399.

5. Britton, K.H., et. aL A procedure for designing abstract interfaces
for device interface modules. Proc. 5th InI'l. Conf. Software
Engineering, 1981, p 195-204.

6. Brooks, F.B. The Mythical Man-Month. Addison-Wesley, 1975.
7. Burton, R.R. el. al. Interlisp-D overview. In Papers on Interlisp-D,

Technical report SSL-80-4, Xerox Palo Alto Research Center, 1981.

47

8. Clark, D.W. et. al. The memory system of a high-performance per-
sonal computer. IlrEE Trans. Computers TC-30, 10, Oct. 1981, p
715-733.

9. Creasy, R.J. The origin of the VM/370 time-sharing system, lBM£
Rex Develop. 25, 5, Sep. 1981, p 483-491.

10. Deutsch, L.P. and Grant, C.A. A flexible measurement tool for
software systems. Proc IFIP Cong. 1971, North-Holland.

11. Deutsch, L.P. and Bobrow, D.G. An efficient incremental
automatic garbage collector. Comm. aCM 19, 9, Sept 1976.

12. Deutsch, L.P. Private communication, February 1982.
13. Dijkstra, E.W. et. al. On-the-fly garbage collection: an exercise in

cooperation. Com~ aCM 21, 11, Nov. 1978, p 966-975.
14. Ditzel, D.R. and McLellan, H.R. Register allocation for free: the C

machine stack cache, slaet~lV Notices 17, 4, April 1982, p 48-56.
15. Geschke, C.M. et. al. Early experience with Mesa. Comm. ACM 20,

8, Aug. 1977, p 540-553.
16. Gifford, D.K. Weighted voting for replicated data. Operating

Systems Review 13, 5, Dec. 1979, p 150-162.
17. Gray, J. et. al. The recovery manager of the System R database

manager. Comput. Surveys 13, 2, June 1981, p 223-242.
18. Hansen, P.M. et. at. A performance evaluation of the intel iAPX

432. Computer Architecture News 10, 4, June 1982, p 17-26.
19. Hoare, C.A.R. Hints on programming language design.

SIGACT/SIGPLAN Symposium on Principles of Programming
languages, Boston, Oct. 1973.

20. Hoare, C.A.R. Monitors: an operating system structuring concept.
Comm. ACM 17, 10, Oct. 1974, p 549-557.

21. Ingalls, D. The Smalltalk graphics kernel. Byte 6, 8, Aug. 1981, p
168-194.

22. Janson, P.A. Using type-extension to organize virtual-memory
mechanisms. Operating Systems Review 15, 4, Oct. 1981, p 6-38.

23. Knuth, D.E. An empirical study of Fortran programs.
Software- Practice and Experience 1, 2, Mar. 1971, p 105-133.

24. Lampson, B.W. Bravo manual. In Alto Users Handbook, Xerox
Pain Alto Research Center, 1976.

25. Lampson, B.W. and Redell, D.D. Experience with processes and
monitors in Mesa. Comm. aCM 23, 2, Feb. 1980, p 105-117.

26. Lampson, B.W. et. al. Electronic image processing system. U.S.
Patent 4,203,154, May 1980.

27. Lampson, B.W. Replicated commit. Circulated at a workshop on
Fundamental Principles of Distributed Computing, Pala Mesa, Ca.,
Dec. 1980.

28. l_ampson, B.W. Atomic transactions. In Distributed Systems: An
Advanced Course Lecture Notes in Computer Science 10S,
Springer, 1981, p 246-265.

29. Larnpson, B.W. and Sproull, R.S. An open operating system for a
single-user machine. Operating Systems Review 13, 5, Dec. 1979, p
98-105.

30. Lampson, B.W. and Sturgis, H.E. Reflections on an operating sys-
tem design. Comm. ACM 19, 5, May 1976, p 251-265.

31. McNeil, M. and Tracz, W. PL/1 program efficiency, slal,1_aN
Notices 15, 6, June 1980, p 46-60.

32. McQuillan, J.M. and Walden, D.C. The ARPA network design deci-
sions. Comput. Networks 1, Aug. 1977, p 243-289.

33. Metcalfe, R.M. and Boggs, D.R. Ethernet: distributed packet
switching for local computer networks. Comm..4CM 19, 7, July
1976, p 395-404.

34. Mitchell, J.G. Design and Construction of Flexible and Efficient
Interactive Programming Systems. Garland, 1979.

35. Mitchell, J.G. and Dion, J. A comparison of two network-based file
servers. Comm. .4CM 25, 4, April 1982, p 233-245.

36. Needham, R.M. Personal communication. Dec. 1980.

37. Newman, W.M. and SprouU, R.F. Principles oflntemctive
Computer Graphics. 2nd ed., McGraw-Hill, 1979.

38. Parnas, D.L. On the criteria to be used in decomposing systems into
modules. Comm. ,4CM 15, 12, Dec. 1972, p 1053-1058.

39. Patterson, D.A. and Sequin, C.H. RIse I: a reduced instruction set
YES! computer. 8th Syrup. Computer Architecture, Minneapolis,
May 1981, p 443-457.

40. Paxton, W.H. A client-based transaction system to maintain data in-
tegrity. Operating Systems Review 13, 5, Dec. 1979, p 18-23.

41. Radin, G.H. The 801 minicomputer. SIGI'L.4N Notices 17, 4, April
1982, p 39-47.

42. Redell, D.D. et. al. Pilot: an operating system for a personal com-
puter. Comm. .(CM 23, 2, Feb. 1980, p 81-91.

43. Reed, D. Naming and synchronization in a decentralized computer
system, Mrr LOS "rg-205, Sept. 1978,

44. Ritchie, D.M. and Thompson, K. The Unix time-sharing system.
Bell Syst. Tech. £ 57, 6, July 1978, p 1905-1930.

45. Rovner, P. Private communication, Dec. 1982.
46. Saltzer, J.H., et. al. End-to-end arguments in system design. Pro¢;

2nd lnt'l. Conf. Distributed Computing Systems, Paris, April 1981,
p 509-512.

47. Smith, D.C. et. al. Designing the Star user interface. Byte 7, 4, April
1982, p 242-282.

48. Smith, J.E. A study of branch prediction strategies. 8th Symtt
Computer Architecture, Minneapolis, May 1981, p 155-148,

49. Sturgis, H.E. et. al. Issues in the design and use of a distributed file
system. Operating Systems Review 14, 3, July 1980, p 55-69.

50. Sturgis, H.E. A Post-Mortem for a Time-Sharing System. Teehnieal
report CSL-74-I, Xerox Pain Alto Research Center, 1974.

51. Sweet, R., and Sandman, J. Static analysis of the Mesa instruction
SeL SIGPLAN Notices 17, 4, April 1982, p 158-166.

52. Tanenbaum, A. Implications of structured programming for
machine architecture. Comm. aCM 21, 3, March 1978, p 237-246.

53. Thacker, C.P. et. al. Alto: a personal computer. In Computer
Structures: Readings and Examples, 2rid ed., Siewiorek, Bell and
Newell, eds., McGraw-Hill, 1981.

54. Traiger, I.L. Virtual memory management for data base systems.
Operating Systems Review 16, 4, Oct. 1982, p 26-48.

48

