
MULTI-CORE
PROGRAMMING

Tim Harris

Course overview

 Building shared memory data structures

 Lists, queues, hashtables, …

 Why?

 Used directly by applications (e.g., in C/C++, Java, C#, …)

 Used in the language runtime system (e.g., management of
work, implementations of message passing, …)

 Used in traditional operating systems (e.g., synchronization
between top/bottom-half code)

 Why not?

 Don’t think of “threads + shared data structures” as a
default/good/complete/desirable programming model

 It’s better to have shared memory and not need it…

Non-blocking data structures and transactional memory 2 03/11/2011

What do we care about?

Non-blocking data structures and transactional memory 3

How fast
is it?

Is it correct? How easy is it
to write?

When
can I

use it?

How does it
scale?

What does it mean
to be correct?

e.g., if multiple concurrent
threads are using iterators on a

shared data structure at the
same time?
Does it matter? Who is the

target audience? How much
effort can they put into it? Is

implementing a data structure
an undergrad programming

exercise? …or a research
paper?

Between threads in the same
process? Between processes
sharing memory? Within an

interrupt handler?
With/without some kind of
runtime system support?

Suppose I have a sequential
implementation (no

concurrency control at all): is
the new implementation 5%

slower? 5x slower? 100x
slower?

How does performance change
as we increase the number of

threads? When does the
implementation add or avoid

synchronization?

03/11/2011

What do we care about?

Non-blocking data structures and transactional memory 4

How fast
is it?

Is it correct? How easy is it
to write?

When
can I

use it?

How does it
scale?

03/11/2011

What should we do?

1. Be explicit about goals and trade-offs

 A benefit in one dimension often has costs in another

 Does a perf increase prevent a data structure being used in
some particular setting?

 Does a technique to make something easier to write make the
implementation slower?

 Do we care? It depends on the setting

2. Remember, parallel programming is rarely a recreational
activity

 The ultimate goal is to increase perf (time, or resources used)

 Does an implementation scale well enough to out-perform a
good sequential implementation?

Non-blocking data structures and transactional memory 5 03/11/2011

Suggested reading

 “The art of multiprocessor programming”, Herlihy & Shavit
– excellent coverage of shared memory data structures,
from both practical and theoretical perspectives

 “Transactional memory, 2nd edition”, Harris, Larus, Rajwar –
recently revamped survey of TM work, with 350+ references

 “NOrec: streamlining STM by abolishing ownership
records”, Dalessandro, Spear, Scott, PPoPP 2010

 “Simplifying concurrent algorithms by exploiting
transactional memory”, Dice, Lev, Marathe, Moir,
Nussbaum, Olszewski, SPAA 2010

Non-blocking data structures and transactional memory 6 03/11/2011

System model

Non-blocking data structures and transactional memory 7

Shared physical memory

Cache(s) Cache(s) Cache(s)

H/W
threads

H/W
threads

Multiple h/w threads (whether
separate cores, or SMT)

Shared physical memory with
hardware cache coherence

S/W threads multiplexed over
h/w threads under OS control

03/11/2011

Multi-threaded
single core

ALU

ALU

Main memory

1

2

3

4

5

...

Multi-threaded h/w

1

2

3

4

5

...

1

2

3

4

5

...

 Multiple threads in a workload
with:

- Poor spatial locality

- Frequent memory accesses

L2 cache (4MB)

L1 cache (64KB)
...

Non-blocking data structures and transactional memory 8 03/11/2011

Multi-threaded
single core

Main memory

1

2

3

4

5

...

Multi-threaded h/w

1

2

3

4

5

...

 Multiple threads with synergistic
resource needs

L2 cache (4MB)

L1 cache (64KB)

 ALU

ALU

Non-blocking data structures and transactional memory 9 03/11/2011

Core

1

2

3

4

5

...

Multi-core h/w – common L2

1

2

3

4

5

...
L2 cache

Core

Main memory

L1 cache L1 cache

ALU

ALU

ALU

ALU

Non-blocking data structures and transactional memory 10 03/11/2011

Single-
threaded

core

1

2

3

4

5

...

Multi-core h/w – common L2

1

2

3

4

5

...
L2 cache

Single-
threaded

core

Main memory

L1 cache L1 cache

Read

Non-blocking data structures and transactional memory 11 03/11/2011

Single-
threaded

core

1

2

3

4

5

...

Multi-core h/w – common L2

1

2

3

4

5

...
L2 cache

Single-
threaded

core

Main memory

L1 cache L1 cache

S

Read

Non-blocking data structures and transactional memory 12 03/11/2011

Single-
threaded

core

1

2

3

4

5

...

Multi-core h/w – common L2

1

2

3

4

5

...
L2 cache

Single-
threaded

core

Main memory

L1 cache L1 cache

S

S

Read

Non-blocking data structures and transactional memory 13 03/11/2011

Single-
threaded

core

1

2

3

4

5

...

Multi-core h/w – common L2

1

2

3

4

5

...
L2 cache

Single-
threaded

core

Main memory

L1 cache L1 cache

S

S

Read

Non-blocking data structures and transactional memory 14 03/11/2011

Single-
threaded

core

1

2

3

4

5

...

Multi-core h/w – common L2

1

2

3

4

5

...
L2 cache

Single-
threaded

core

Main memory

L1 cache L1 cache

S

S S

Read

Non-blocking data structures and transactional memory 15 03/11/2011

Single-
threaded

core

1

2

3

4

5

...

Multi-core h/w – common L2

1

2

3

4

5

...
L2 cache

Single-
threaded

core

Main memory

L1 cache L1 cache

S

S S

Write

Non-blocking data structures and transactional memory 16 03/11/2011

Single-
threaded

core

1

2

3

4

5

...

Multi-core h/w – common L2

1

2

3

4

5

...
L2 cache

Single-
threaded

core

Main memory

L1 cache L1 cache

S

... S

Write

Non-blocking data structures and transactional memory 17 03/11/2011

Single-
threaded

core

1

2

3

4

5

...

Multi-core h/w – common L2

1

2

3

4

5

...
L2 cache

Single-
threaded

core

Main memory

L1 cache L1 cache

...

... S

Write

Non-blocking data structures and transactional memory 18 03/11/2011

Single-
threaded

core

1

2

3

4

5

...

Multi-core h/w – common L2

1

2

3

4

5

...
L2 cache

Single-
threaded

core

Main memory

L1 cache L1 cache

...

... I

Write

Non-blocking data structures and transactional memory 19 03/11/2011

Single-
threaded

core

1

2

3

4

5

...

Multi-core h/w – common L2

1

2

3

4

5

...
L2 cache

Single-
threaded

core

Main memory

L1 cache L1 cache

E

M I

Write

Non-blocking data structures and transactional memory 20 03/11/2011

Single-
threaded

core

1

2

3

4

5

...

Multi-core h/w – common L2

1

2

3

4

5

...
L2 cache

Single-
threaded

core

Main memory

L1 cache L1 cache

E

M I

Write

Non-blocking data structures and transactional memory 21 03/11/2011

Single-
threaded

core

1

2

3

4

5

...

Multi-core h/w – common L2

1

2

3

4

5

...
L2 cache

Single-
threaded

core

Main memory

L1 cache L1 cache

E

M ...

Write

Non-blocking data structures and transactional memory 22 03/11/2011

Single-
threaded

core

1

2

3

4

5

...

Multi-core h/w – common L2

1

2

3

4

5

...
L2 cache

Single-
threaded

core

Main memory

L1 cache L1 cache

...

M ...

Write

Non-blocking data structures and transactional memory 23 03/11/2011

Single-
threaded

core

1

2

3

4

5

...

Multi-core h/w – common L2

1

2

3

4

5

...
L2 cache

Single-
threaded

core

Main memory

L1 cache L1 cache

M

I ...

Write

Non-blocking data structures and transactional memory 24 03/11/2011

Single-
threaded

core

1

2

3

4

5

...

Multi-core h/w – common L2

1

2

3

4

5

...
L2 cache

Single-
threaded

core

Main memory

L1 cache L1 cache I E

Write

M

Non-blocking data structures and transactional memory 25 03/11/2011

Single-
threaded

core

1

2

3

4

5

...

Multi-core h/w – separate L2

1

2

3

4

5

...

L1 cache

Single-
threaded

core

L1 cache

Main memory

L2 cache L2 cache

Non-blocking data structures and transactional memory 26 03/11/2011

1

2

3

4

5

...

Multi-core h/w – additional L3

1

2

3

4

5

...

Main memory

Single-
threaded

core

L1 cache

Single-
threaded

core

L1 cache

L2 cache L2 cache

L3 cache

Non-blocking data structures and transactional memory 27 03/11/2011

1

2

3

4

5

...

Multi-threaded multi-core h/w

1

2

3

4

5

...

Main memory

1

2

3

4

5

...

1

2

3

4

5

...

Single-
threaded

core

L1 cache

Single-
threaded

core

L1 cache

L2 cache L2 cache

L3 cache

Non-blocking data structures and transactional memory 28 03/11/2011

SMP multiprocessor

Single-
threaded

core

1

2

3

4

5
...

1

2

3

4

5
...

L1 cache

Single-
threaded

core

L1 cache

L2 cache L2 cache

Main memory

Non-blocking data structures and transactional memory 29 03/11/2011

Interconnect

NUMA multiprocessor

Single-
threaded

core

L1 cache

Single-
threaded

core

L1 cache

Memory & directory

L2 cache L2 cache

Single-
threaded

core

L1 cache

Single-
threaded

core

L1 cache

Memory & directory

L2 cache L2 cache

Single-
threaded

core

L1 cache

Single-
threaded

core

L1 cache

Memory & directory

L2 cache L2 cache

Single-
threaded

core

L1 cache

Single-
threaded

core

L1 cache

Memory & directory

L2 cache L2 cache

Non-blocking data structures and transactional memory 30 03/11/2011

Three kinds of parallel hardware

 Multi-threaded cores

 Increase utilization of a core or memory b/w

 Peak ops/cycle fixed

 Multiple cores

 Increase ops/cycle

 Don’t necessarily scale caches and off-chip resources
proportionately

 Multi-processor machines

 Increase ops/cycle

 Often scale cache & memory capacities and b/w
proportionately

Non-blocking data structures and transactional memory 31 03/11/2011

Course overview: structure

 Building locks

 Lock-free programming

 Transactional memory

Non-blocking data structures and transactional memory 32 03/11/2011

Course overview: structure

 Building locks

 Test-and-set locks

 TATAS locks & backoff

 Queue-based locks

 Hierarchical locks

 Reader-writer locks

 Lock-free programming

 Transactional memory

Non-blocking data structures and transactional memory 33 03/11/2011

Test and set (pseudo-code)

bool testAndSet(bool *b) {

 bool result;

 atomic {

 result = *b;

 *b = TRUE;

 }

 return result;

}

Pointer to a location
holding a boolean

value (TRUE/FALSE)

Read the current
contents of the

location b points to…

…set the contents of
*b to TRUE

Non-blocking data structures and transactional memory 03/11/2011 34

Test and set

time

• Suppose two threads use it at once

Thread 2:

Thread 1:

testAndSet(b)->true

testAndSet(b)->false

Non-blocking data structures and transactional memory 03/11/2011 35

FALSE
lock:

void acquireLock(bool *lock) {
 while (testAndSet(lock)) {
 /* Nothing */
 }
}

void releaseLock(bool *lock) {
 *lock = FALSE;
}

Test and set lock

FALSE => lock available
TRUE => lock held

Each call tries to acquire
the lock, returning TRUE

if it is already held

NB: all this is pseudo-
code, assuming SC

memory

Non-blocking data structures and transactional memory 03/11/2011 36

Test and set lock

FALSE
lock:

void acquireLock(bool *lock) {
 while (testAndSet(lock)) {
 /* Nothing */
 }
}

void releaseLock(bool *lock) {
 *lock = FALSE;
}

Thread 1

TRUE

Thread 2

Non-blocking data structures and transactional memory 03/11/2011 37

What are the problems here?

testAndSet
implementation

causes contention

Non-blocking data structures and transactional memory 03/11/2011 38

Single-
threaded

core

Contention from testAndSet

L1 cache

Single-
threaded

core

L1 cache

Main memory

L2 cache L2 cache

Non-blocking data structures and transactional memory 03/11/2011 39

Single-
threaded

core

L1 cache

Single-
threaded

core

L1 cache

Main memory

L2 cache L2 cache

Multi-core h/w – separate L2

testAndSet(k)

k

k

Non-blocking data structures and transactional memory 03/11/2011 40

Single-
threaded

core

L1 cache

Single-
threaded

core

L1 cache

Main memory

L2 cache L2 cache

Multi-core h/w – separate L2

testAndSet(k)

k

k

Non-blocking data structures and transactional memory 03/11/2011 41

Single-
threaded

core

L1 cache

Single-
threaded

core

L1 cache

Main memory

L2 cache L2 cache

Multi-core h/w – separate L2

testAndSet(k)

k

k

Non-blocking data structures and transactional memory 03/11/2011 42

Does this still happen in
practice? Do modern

CPUs avoid fetching the
line in exclusive mode

on failing TAS?

What are the problems here?

Spinning may waste
resources while

waiting

No control over
locking policy

testAndSet
implementation

causes contention

Only supports mutual
exclusion: not reader-

writer locking

Non-blocking data structures and transactional memory 03/11/2011 43

General problem

 No logical conflict between two failed lock acquires

 Cache protocol introduces a physical conflict

 For a good algorithm: only introduce physical conflicts if a
logical conflict occurs

 In a lock: successful lock-acquire & failed lock-acquire

 In a set: successful insert(10) & failed insert(10)

Non-blocking data structures and transactional memory 03/11/2011 44

Course overview: structure

 Building locks

 Test-and-set locks

 TATAS locks & backoff

 Queue-based locks

 Hierarchical locks

 Reader-writer locks

 Lock-free programming

 Transactional memory

Non-blocking data structures and transactional memory 45 03/11/2011

Test and test and set lock

FALSE
lock:

void acquireLock(bool *lock) {

 do {

 while (*lock) { }

 } while (testAndSet(lock));

}

void releaseLock(bool *lock) {

 *lock = FALSE;

}

FALSE => lock available
TRUE => lock held

Spin while the lock is
held… only do

testAndSet when it is
clear

Non-blocking data structures and transactional memory 03/11/2011 46

Performance

Threads

T
im

e

Ideal

TATAS
TAS

Based on Fig 7.4, Herlihy & Shavit, “The Art of Multiprocessor Programming”

Non-blocking data structures and transactional memory 03/11/2011 47

Stampedes

TRUE
lock:

void acquireLock(bool *lock) {

 do {

 while (*lock) { }

 } while (testAndSet(lock));

}

void releaseLock(bool *lock) {

 *lock = FALSE;

}

Non-blocking data structures and transactional memory 03/11/2011 48

Back-off algorithms

1. Start by spinning, watching the lock for c

2. If the lock does not become free,
spin locally for s (without watching the lock)

What should “c” be?
What should “s” be?

Non-blocking data structures and transactional memory 03/11/2011 49

Time spent waiting “c”

 Lower values:

 Less time to build up a set of threads that will
stampede

 Less contention in the memory system, if
remote reads incur a cost

 Risk of a delay in noticing when the lock
becomes free

 Higher values:

 Less likelihood of a delay between a lock being
released and a waiting thread noticing

Non-blocking data structures and transactional memory 03/11/2011 50

Local spinning time “s”

 Lower values:

 More responsive to the lock becoming available

 Higher values:

 If the lock doesn’t become available then the
thread makes fewer accesses to the shared
variable

Non-blocking data structures and transactional memory 03/11/2011 51

Methodical approach

 For a given workload and performance model:

 What is the best that an oracle could do (i.e. given
perfect knowledge of lock demands)?

 How does a practical algorithm compare with this?

 Look for an algorithm with a bound between its
performance and that of the oracle

 “Competitive spinning”

Non-blocking data structures and transactional memory 03/11/2011 52

Rule of thumb

 Spin for a duration that’s comparable with the
shortest back-off interval

 Exponentially increase the per-thread back-off
interval (resetting it when the lock is acquired)

 Use a maximum back-off interval that is large
enough that waiting threads don’t interfere with
the other threads’ performance

Non-blocking data structures and transactional memory 03/11/2011 53

Course overview: structure

 Building locks

 Test-and-set locks

 TATAS locks & backoff

 Queue-based locks

 Hierarchical locks

 Reader-writer locks

 Lock-free programming

 Transactional memory

Non-blocking data structures and transactional memory 54 03/11/2011

Queue-based locks

 Lock holders queue up: immediately provides FCFS
behavior

 Each spins locally on a flag in their queue entry: no
remote memory accesses while waiting

 A lock release wakes the next thread directly: no
stampede

Non-blocking data structures and transactional memory 03/11/2011 55

MCS locks

lock:

FALSE FALSE FALSE

QNode 1 QNode 2 QNode 3

Head Tail

Local flag

Lock
identifies tail

Non-blocking data structures and transactional memory 03/11/2011 56

MCS lock acquire

lock:

FALSE
void acquireMCS(mcs *lock, QNode *qn) {

 QNode *prev;

 qn->flag = false;

 qn->next = NULL;

 while (true) {

 prev = lock->tail;

 if (CAS(&lock->tail, prev, qn)) break;

 }

 if (prev != NULL) {

 prev->next = qn;

 while (!qn->flag) { } // Spin

} }

Find previous
tail node

Atomically replace
“prev” with “qn” in

the lock itself

Add link within
the queue

Non-blocking data structures and transactional memory 03/11/2011 57

MCS lock release

lock:

FALSE

void releaseMCS(mcs *lock, QNode *qn) {

 if (lock->tail = qn) {

 if (CAS(&lock->tail, qn, NULL)) return;

 }

 while (qn->next == NULL) { }

 qn->next->flag = TRUE;

}

TRUE
qn:

If we were at the tail
then remove us

Wait for next lock holder
to announce themselves;

signal them

Non-blocking data structures and transactional memory 03/11/2011 58

Course overview: structure

 Building locks

 Test-and-set locks

 TATAS locks & backoff

 Queue-based locks

 Hierarchical locks

 Reader-writer locks

 Lock-free programming

 Transactional memory

Non-blocking data structures and transactional memory 59 03/11/2011

Hierarchical locks

Core 1 Core 2

Core 3 Core 4

Shared L2 cache

Core 5 Core 6

Core 7 Core 8

Shared L2 cache

Memory bus

Memory

Non-blocking data structures and transactional memory 03/11/2011 60

Hierarchical locks

Core 1 Core 2

Core 3 Core 4

Shared L2 cache

Core 5 Core 6

Core 7 Core 8

Shared L2 cache

Memory bus

Memory

Non-blocking data structures and transactional memory 03/11/2011 61

Hierarchical locks

Core 1 Core 2

Core 3 Core 4

Shared L2 cache

Core 5 Core 6

Core 7 Core 8

Shared L2 cache

Memory bus

Memory

Pass lock
“nearby” if

possible

Call this a
“cluster” of

cores

Non-blocking data structures and transactional memory 03/11/2011 62

Hierarchical TATAS with backoff

-1

lock:

void acquireLock(bool *lock) {

 do {

 holder = *lock;

 if (holder != -1) {

 if (holder == MY_CLUSTER) {

 BackOff(SHORT);

 } else {

 BackOff(LONG);

 }

 }

 } while (!CAS(lock, -1, MY_CLUSTER));

}

-1 => lock available
n => lock held by cluster n

Non-blocking data structures and transactional memory 03/11/2011 63

Hierarchical locks

Core 1 Core 2

Core 3 Core 4

Shared L2 cache

Core 5 Core 6

Core 7 Core 8

Shared L2 cache

Memory bus

Memory

Avoid this cycle
repeating,

starving 5 & 7…

Non-blocking data structures and transactional memory 03/11/2011 64

Hierarchical CLH queue lock

Local queue:

Lock
identifies tail

TRUE

myNode myPred

NULL

Flag => successor
must wait

Non-blocking data structures and transactional memory 03/11/2011 65

Thread private variables
represent links implicitly

Based on hierarchical CLH lock of
Luchangco, Nussbaum, Shavit

Hierarchical CLH queue lock

Local queue:

Lock
identifies tail

TRUE

myNode myPred

TRUE

myNode myPred

NULL

Flag => successor
must wait

Non-blocking data structures and transactional memory 03/11/2011 66

Hierarchical CLH queue lock

Local queue:

TRUE

myNode myPred

TRUE

myNode myPred

NULL

myNode myPred

TRUE

NULL
Current lock

holder

Cluster master: sees lock is held, so
waits a “combining delay”

Non-blocking data structures and transactional memory 03/11/2011 67

Global queue:

Hierarchical CLH queue lock

Local queue:

TRUE

myNode myPred

TRUE

myNode myPred

Global queue: myNode myPred

TRUE

NULL
Splice whole list to
tail of global queue

Set “Tail When Spliced” flag: next
local queue entry will be a new

cluster master

Non-blocking data structures and transactional memory 03/11/2011 68

Course overview: structure

 Building locks

 Test-and-set locks

 TATAS locks & backoff

 Queue-based locks

 Hierarchical locks

 Reader-writer locks

 Lock-free programming

 Transactional memory

Non-blocking data structures and transactional memory 69 03/11/2011

Reader-writer locks (TATAS-like)

Non-blocking data structures and transactional memory 70

0

lock:

void acquireWrite(int *lock) {

 do {

 if ((*lock == 0) &&

 (CAS(lock, 0, -1))) {

 break;

 } while (1);

}

void releaseWrite(int *lock) {

 *lock = 0;

}

-1 => Locked for write

0 => Lock available

+n => Locked by n readers

void acquireRead(int *lock) {

 do {

 int oldVal = *lock;

 if ((oldVal >= 0) &&

 (CAS(lock, oldVal, oldVal+1))) {

 break;

 } } while (1);

}

void releaseRead(int *lock) {

 FADD(lock, -1); // Atomic fetch-and-add

}

03/11/2011

The problem with readers

Non-blocking data structures and transactional memory 71

int readCount() {

 acquireRead(lock);

 int result = count;

 releaseRead(lock);

 return result;

}

void incrementCount() {

 acquireWrite(lock);

 count++;

 releaseWrite(lock);

}

 Each acquireRead fetches the cache line holding the lock in
exclusive mode

 Again: acquireRead are not logically conflicting, but this
introduces a physical confliect

 The time spent managing the lock is likely to vastly
dominate the actual time looking at the counter

 Many workloads are read-mostly…

03/11/2011

Keeping readers separate

Non-blocking data structures and transactional memory 72

Owner Flag-1 Flag-2 Flag-3 Flag-N

Acquire write on core i:

CAS the owner from 0 to i

…then spin until all of the

flags are clear

…then check that the owner is 0

(if not then clear own flag and wait)

Acquire read on core i: set

own flag to true…

03/11/2011

Keeping readers separate

 With care, readers do not need to synchronize with other
readers

 Extend the flags to be whole cache lines

 Pack multiple locks flags for the same thread onto the same
line

 Exploit the cache structure in the machine: Dice & Shavit’s
TLRW byte-lock

 If “N” threads is very large..

 Dedicate the flags to specific important threads

 Replace the flags with ordinary multi-reader locks

Non-blocking data structures and transactional memory 73 03/11/2011

Read-Copy-Update (RCU)

Non-blocking data structures and transactional memory 74

 Use locking to serialize updates (typically)
 …but allow readers to operate concurrently with updates

 Ensure that readers don’t go wrong if they access data
mid-update
 Have data structures reachable via a single root pointer:

update the root pointer rather than updating the data
structure in-place

 Ensure that updates don’t affect readers – e.g., initializing
nodes before splicing them into a list, and retaining “next”
pointers in deleted nodes

 Exact semantics offered can be subtle (ongoing research
direction)

 Memory management problems common with lock-free
data structures

03/11/2011

What do we care about?

Non-blocking data structures and transactional memory 75

How fast
is it?

Is it correct? How easy is it
to write?

When
can I

use it?

How does it
scale?

03/11/2011

Course overview: structure

 Building locks

 Lock-free programming

 What’s wrong with locks?

 Lists without locks, linearizability

 Lock-free progress

 Hashtables

 Skiplists

 Queues

 Reducing contention

 Memory management

 Transactional memory

Non-blocking data structures and transactional memory 76 03/11/2011

Ease of use Performance

Applicability Deadlock

Difficult to
get right

Inhibit
scaling

Convoy
problems

Cost of some
implementations

Non-
composability

Priority
inversion

Blocking

Non-blocking data structures and transactional memory 03/11/2011 77

What do people say is wrong with locks?

Course overview: structure

 Building locks

 Lock-free programming

 What’s wrong with locks?

 Lists without locks, linearizability

 Lock-free progress

 Hashtables

 Skiplists

 Queues

 Reducing contention

 Memory management

 Transactional memory

Non-blocking data structures and transactional memory 78 03/11/2011

What we’re building

 A set of integers, represented by a sorted linked list

 find(int) -> bool

 insert(int) -> bool

 delete(int) -> bool

Non-blocking data structures and transactional memory 03/11/2011 79

The building blocks

 read(addr) -> val

 write(addr, val)

 cas(addr, old-val, new-val) -> bool

 (I’ll assume that memory is sequentially consistent, and
ignore allocation / de-allocation for the moment)

Non-blocking data structures and transactional memory 03/11/2011 80

Searching a sorted list

 find(20):

H 10 30 T

20?

 find(20) -> false

Non-blocking data structures and transactional memory 03/11/2011 81

Inserting an item with CAS

 insert(20):

H 10 30 T

20

30  20


 insert(20) -> true

Non-blocking data structures and transactional memory 03/11/2011 82

Inserting an item with CAS

 insert(20):

H 10 30 T

20

30  20

25

30  25





• insert(25):

Non-blocking data structures and transactional memory 03/11/2011 83

Searching and finding together

 find(20)

H 10 30 T

 -> false

20

20?

• insert(20) -> true

This thread saw 20
was not in the set...

...but this thread
succeeded in putting

it in!

• Is this a correct implementation of a set?

• Should the programmer be surprised if this happens?

• What about more complicated mixes of operations?

Non-blocking data structures and transactional memory 03/11/2011 84

Correctness criteria

“If it finds like a set,
inserts like a set, and

deletes like a set, then
let’s call it a set...

Non-blocking data structures and transactional memory 03/11/2011 85

Sequential specification

 Ignore the list for the moment, and focus on the set:

find(int) -> bool

insert(int) -> bool

delete(int) -> bool

10, 20, 30

10, 15, 20, 30

10, 15, 30 10, 15, 20, 30

insert(15)->true

insert(20)->false delete(20)->true

Sequential: we’re only
considering one operation

on the set at a time

Specification: we’re saying what
a set does, not what a list does,

or how it looks in memory

Non-blocking data structures and transactional memory 03/11/2011 86

Sequential specification

deleteany() -> int 10, 20, 30

deleteany()->10

20, 30

deleteany()->20

10, 30

This is still a sequential spec... just
not a deterministic one

Non-blocking data structures and transactional memory 03/11/2011 87

System model

Shared object (e.g. “set”)

find/insert/delete

Thread 1 Thread n ...
Threads make

invocations and receive
responses from the set

(~method calls/returns)

Primitive objects (e.g.
“memory location”)

read/write/CAS ...the set is
implemented by

making invocations and
responses on memory

Non-blocking data structures and transactional memory 03/11/2011 88

High level: sequential history

time

T
1: in

sert(10
)

->
 t

ru
e

T
2

: in
sert(20

)

->
 t

ru
e

T
1: fin

d
(15)

->
 f

al
se

• No overlapping invocations:

10 10, 20 10, 20

Non-blocking data structures and transactional memory 03/11/2011 89

High level: concurrent history

time

• Allow overlapping invocations:

Thread 2:

Thread 1:

insert(10)->true insert(20)->true

find(20)->false

Non-blocking data structures and transactional memory 03/11/2011 90

Linearizability

• Is there a correct sequential history:

• Same results as the concurrent one

• Consistent with the timing of the
invocations/responses?

Non-blocking data structures and transactional memory 03/11/2011 91

Example: linearizable

time

Thread 2:

Thread 1:

insert(10)->true insert(20)->true

find(20)->false
A valid sequential

history: this concurrent
execution is OK

Non-blocking data structures and transactional memory 03/11/2011 92

Example: linearizable

time

Thread 2:

Thread 1:

insert(10)->true delete(10)->true

find(10)->false

Non-blocking data structures and transactional memory 03/11/2011 93

A valid sequential
history: this concurrent

execution is OK

Example: not linearizable

time

Thread 2:

Thread 1:

insert(10)->true insert(10)->false

delete(10)->true

Non-blocking data structures and transactional memory 03/11/2011 94

Returning to our example

• find(20)

H 10 30 T

 -> false

20

20?

• insert(20) -> true

Thread 2:

Thread 1:

insert(20)->true

find(20)->false

A valid sequential history:
this concurrent execution

is OK

Non-blocking data structures and transactional memory 03/11/2011 95

Recurring technique

 For updates:

 Perform an essential step of an operation by a single atomic
instruction

 E.g. CAS to insert an item into a list

 This forms a “linearization point”

 For reads:

 Identify a point during the operation’s execution when the
result is valid

 Not always a specific instruction

Non-blocking data structures and transactional memory 03/11/2011 96

Correctness (informal)

Non-blocking data structures and transactional memory 97

10, 20

H 10 20 T

15

10, 15,
20

Abstraction
function maps the

concrete list to
the abstract set’s

contents

03/11/2011

Correctness (informal)

Non-blocking data structures and transactional memory 98

time

L
o

o
ku

p
(20

)

Tru
e

In
sert(15)

Tru
e

High-level operation

Primitive step
(read/write/CAS)

H H->10 10->20 H H->10 New CAS

03/11/2011

Correctness (informal)

Non-blocking data structures and transactional memory 99

time

L
o

o
ku

p
(20

)

Tru
e

In
sert(15)

Tru
e

H H->10 10->20 H H->10 New CAS

A left mover commutes with
operations immediately before it

A right mover commutes with
operations immediately after it

1. Show operations before linearization
point are right movers

2. Show operations after linearization point
 are left movers

3. Show linearization point updates abstract state

03/11/2011

Correctness (informal)

Non-blocking data structures and transactional memory 100

time

L
o

o
ku

p
(20

)

Tru
e

In
sert(15)

Tru
e

H H->10 10->20 H H->10 New CAS

A left mover commutes with
operations immediately before it

A right mover commutes with
operations immediately after it

Move these right
over the read of the

10->20 link

03/11/2011

Adding “delete”

 First attempt: just use CAS
delete(10):

H 10 30 T

10  30 

Non-blocking data structures and transactional memory 03/11/2011 101

Delete and insert:

 delete(10) & insert(20):

H 10 30 T

10  30 

20

30  20 



Non-blocking data structures and transactional memory 03/11/2011 102

Logical vs physical deletion

H 10 30 T

20

10  30


30  30X




30  20 



Non-blocking data structures and transactional memory 03/11/2011 103

 Use a ‘spare’ bit to indicate logically deleted nodes:

Delete-greater-than-or-equal

 DeleteGE(int x) -> int

 Remove “x”, or next element above “x”

H 10 30 T

• DeleteGE(20) -> 30

H 10 T

Non-blocking data structures and transactional memory 03/11/2011 104

Does this work: DeleteGE(20)

H 10 30 T

1. Walk down the list, as in a
normal delete, find 30 as

next-after-20

2. Do the deletion as normal:
set the mark bit in 30, then

physically unlink

Non-blocking data structures and transactional memory 03/11/2011 105

Delete-greater-than-or-equal

time

Thread 2:

Thread 1:

insert(25)->true insert(30)->false

deleteGE(20)->30

A B

C

A must be after C
(otherwise C should

have returned 15)

C must be after B
(otherwise B should

have succeeded)

B must be after A
(thread order)

Non-blocking data structures and transactional memory 03/11/2011 106

How to realise this is wrong

 See operation which determines result

 Consider a delay at that point

 Is the result still valid?

 Delayed read: is the memory still accessible (more of this next
week)

 Delayed write: is the write still correct to perform?

 Delayed CAS: does the value checked by the CAS determine
the result?

Non-blocking data structures and transactional memory 03/11/2011 107

Course overview: structure

 Building locks

 Lock-free programming

 What’s wrong with locks?

 Lists without locks, linearizability

 Lock-free progress

 Hashtables

 Skiplists

 Queues

 Reducing contention

 Memory management

 Transactional memory

Non-blocking data structures and transactional memory 108 03/11/2011

static volatile int MY_LIST = 0;

bool find(int key) {

 // Wait until list available

 while (CAS(&MY_LIST, 0, 1) == 1) {

 }

 ...

 // Release list

 MY_LIST = 0;

}

OK, we’re not calling
pthread_mutex_lock... but
we’re essentially doing the

same thing

Non-blocking data structures and transactional memory 03/11/2011 109

Progress: is this a good “lock-free” list?

“Lock-free”

 A specific kind of non-blocking progress guarantee

 Precludes the use of typical locks

 From libraries

 Or “hand rolled”

 Often mis-used informally as a synonym for

 Free from calls to a locking function

 Fast

 Scalable

Non-blocking data structures and transactional memory 03/11/2011 110

time

Wait-free

 A thread finishes its own operation if it continues executing steps

S
tart

F
in

ish

F
in

ish

S
tart

F
in

ish

Non-blocking data structures and transactional memory 03/11/2011 111

S
tart

Implementing wait-free algorithms

 General construction techniques exist (“universal
constructions”)

 In practice, often used in hybrid settings (e.g., wait-free
find)

 Queuing and helping strategies: everyone ensures oldest
operation makes progress

 Niches, e.g., bounded-wait-free in real-time systems

Non-blocking data structures and transactional memory 03/11/2011 112

time

Lock-free

 Some thread finishes its operation if threads continue taking
steps

S
tart

S
tart

F
in

ish

F
in

ish

S
tart

S
tart

F
in

ish

Non-blocking data structures and transactional memory 03/11/2011 113

A (poor) lock-free counter

Non-blocking data structures and transactional memory 114

int getNext(int *counter) {
 while (true) {
 int result = *counter;
 if (CAS(counter, result, result+1)) {
 return result;
 }
 }
}

Not wait free: no
guarantee that any

particular thread will
succeed

03/11/2011

Implementing lock-free algorithms

 Ensure that one thread (A) only has to repeat work if some
other thread (B) has made “real progress”

 e.g., insert(x) starts again if it finds that a conflicting update
has occurred

 Use helping to let one thread finish another’s work

 e.g., physically deleting a node on its behalf

Non-blocking data structures and transactional memory 03/11/2011 115

time

Obstruction-free

 A thread finishes its own operation if it runs in isolation

S
tart

S
tart

F
in

ish
 Interference here can prevent

any operation finishing

Non-blocking data structures and transactional memory 03/11/2011 116

A (poor) obstruction-free counter

Non-blocking data structures and transactional memory 117

int getNext(int *counter) {
 while (true) {
 int result = LL(counter);
 if (SC(counter, result+1)) {
 return result;
 }
 }
}

Weak load-linked (LL)
store-conditional (SC): LL
on one thread will prevent
an SC on another thread

succeeding

03/11/2011

Building obstruction-free algorithms

 Ensure that none of the low-level steps leave a data
structure “broken”

 On detecting a conflict:

 Help the other party finish

 Get the other party out of the way

 Use contention management to reduce likelihood of live-
lock

Non-blocking data structures and transactional memory 03/11/2011 118

Course overview: structure

 Building locks

 Lock-free programming

 What’s wrong with locks?

 Lists without locks, linearizability

 Lock-free progress

 Hashtables

 Skiplists

 Queues

 Reducing contention

 Memory management

 Transactional memory

Non-blocking data structures and transactional memory 119 03/11/2011

Hash tables

0 16 24

5

3 11

Bucket array:
8 entries in

example

List of items with
hash val modulo 8 == 0

Non-blocking data structures and transactional memory 03/11/2011 120

Hash tables: Contains(16)

0 16 24

5

3 11

1. Hash 16.
Use bucket 0

2. Use normal
list operations

Non-blocking data structures and transactional memory 03/11/2011 121

Hash tables: Delete(11)

0 16 24

5

3 11

1. Hash 11.
Use bucket 3

2. Use normal
list operations

Non-blocking data structures and transactional memory 03/11/2011 122

Lessons from this hashtable

 Informal correctness argument:

 Operations on different buckets don’t conflict: no extra
concurrency control needed

 Operations appear to occur atomically at the point where the
underlying list operation occurs

 (Not specific to lock-free lists: could use whole-table lock,
or per-list locks, etc.)

Non-blocking data structures and transactional memory 03/11/2011 123

Practical difficulties:

 Key-value mapping

 Population count

 Iteration

 Resizing the bucket array

Options to consider when
implementing a “difficult” operation:

Relax the semantics
(e.g., non-exact count, or non-linearizable count)

Fall back to a simple implementation if permitted
(e.g., lock the whole table for resize)

Design a clever implementation
(e.g., split-ordered lists)

Use a different data structure
(e.g., skip lists)

Non-blocking data structures and transactional memory 03/11/2011 124

Course overview: structure

 Building locks

 Lock-free programming

 What’s wrong with locks?

 Lists without locks, linearizability

 Lock-free progress

 Hashtables

 Skiplists

 Queues

 Reducing contention

 Memory management

 Transactional memory

Non-blocking data structures and transactional memory 125 03/11/2011

Skip lists

5 11 16 24 0 3

Each node is a “tower” of
random size. High levels

skip over lower levels

All items in a single list:
this defines the set’s

contents

Non-blocking data structures and transactional memory 03/11/2011 126

Skip lists: Delete(11)

5 11 16 24 0 3

Principle: lowest list is the truth

1. Find “11” node, mark it
logically deleted

2. Link by link remove “11”
from the towers

3. Finally, remove “11”
from lowest list

Non-blocking data structures and transactional memory 03/11/2011 127

Course overview: structure

 Building locks

 Lock-free programming

 What’s wrong with locks?

 Lists without locks, linearizability

 Lock-free progress

 Hashtables

 Skiplists

 Queues

 Reducing contention

 Memory management

 Transactional memory

Non-blocking data structures and transactional memory 128 03/11/2011

Work stealing queues

PushBottom(Item)
PopBottom() -> Item

PopTop() -> Item

Add/remove items,
PopBottom must return
an item if the queue is

not empty

Try to steal an item.
May sometimes return

nothing “spuriously” 1. Semantics relaxed for “PopTop”

2. Restriction: only one thread ever calls “Push/PopBottom”

3. Implementation costs skewed toward “PopTop” complex

Non-blocking data structures and transactional memory 03/11/2011 129

0

1

2

3

4

Bounded deque

Top / V0

Bottom “Bottom” is a normal
integer, updated only by

the local end of the queue

Items between the
indices are present in the

queue “Top” has a version
number, updated
atomically with it

Non-blocking data structures and transactional memory 03/11/2011 130

Arora, Blumofe, Plaxton

0

1

2

3

4

Bounded deque

Top / V0

Bottom

void pushBottom(Item i){

 tasks[bottom] = i;

 bottom++;

}

Non-blocking data structures and transactional memory 03/11/2011 131

0

1

2

3

4

Bounded deque

Top / V0

Bottom

void pushBottom(Item i){

 tasks[bottom] = i;

 bottom++;

}

Item popBottom() {

 if (bottom ==0) return null;

 bottom--;

 result = tasks[bottom];

 <tmp_top,tmp_v> = <top,version>;

 if (bottom > tmp_top) return result;

 ….

 return null;

}

Non-blocking data structures and transactional memory 03/11/2011 132

Top / V1

0

1

2

3

4

Bounded deque

Top / V0

Bottom

void pushBottom(Item i){

 tasks[bottom] = i;

 bottom++;

}

Item popBottom() {

 if (bottom ==0) return null;

 bottom--;

 result = tasks[bottom];

 <tmp_top,tmp_v> = <top,version>;

 if (bottom > tmp_top) return result;

 ….

 return null;

}

if (bottom==top) {

 bottom = 0;

 if (CAS(&<top,version>,

 <tmp_top,tmp_v>,

 <0,v+1>)) {

 return result;

 }

}

<top,version>=<0,v+1>

Item popTop() {

 if (bottom <= top) return null;

 <tmp_top,tmp_v> = <top, version>;

 result = tasks[tmp_top];

 if (CAS(&<top,version>,

 <tmp_top, tmp_v>,

 <tmp_top+1, v+1>)) {

 return result;

 }

 return null;

}

Non-blocking data structures and transactional memory 03/11/2011 133

0

1

2

3

4

Bounded deque

Top / V0

Bottom

void pushBottom(Item i){

 tasks[bottom] = i;

 bottom++;

}

Item popBottom() {

 if (bottom ==0) return null;

 bottom--;

 result = tasks[bottom];

 <tmp_top,tmp_v> = <top,version>;

 if (bottom > tmp_top) return result;

 ….

 return null;

}

if (bottom==top) {

 bottom = 0;

 if (CAS(&<top,version>,

 <tmp_top,tmp_v>,

 <0,v+1>)) {

 return result;

 }

}

<top,version>=<0,v+1>

Item popTop() {

 if (bottom <= top) return null;

 <tmp_top,tmp_v> = <top, version>;

 result = tasks[tmp_top];

 if (CAS(&<top,version>,

 <tmp_top, tmp_v>,

 <tmp_top+1, v+1>)) {

 return result;

 }

 return null;

}

Non-blocking data structures and transactional memory 03/11/2011 134

ABA problems

0

1

2

3

4

Top

Item popTop() {

 if (bottom <= top) return null;

 tmp_top = top;

 result = tasks[tmp_top];

 if (CAS(&top, top, top+1)) {

 return result;

 }

 return null;

}

AAA

BBB

CCC

Bottom

result = CCC

FFF

EEE

DDD

Non-blocking data structures and transactional memory 03/11/2011 135

General techniques

 Local operations designed to avoid CAS

 Traditionally slower, less so now

 Costs of memory fences can be important (“Idempotent work
stealing”, Michael et al)

 Local operations just use read and write

 Only one accessor, check for interference

 Use CAS:

 Resolve conflicts between stealers

 Resolve local/stealer conflicts

 Version number to ensure conflicts seen

Non-blocking data structures and transactional memory 03/11/2011 136

Course overview: structure

 Building locks

 Lock-free programming

 What’s wrong with locks?

 Lists without locks, linearizability

 Lock-free progress

 Hashtables

 Skiplists

 Queues

 Reducing contention

 Memory management

 Transactional memory

Non-blocking data structures and transactional memory 137 03/11/2011

Reducing contention

 Suppose you’re implementing a shared counter with the
following sequential spec:

Non-blocking data structures and transactional memory 138

void increment(int *counter) {

 atomic {

 (*counter) ++;

 }

}

How well can this scale?

void decrement(int *counter) {

 atomic {

 (*counter) --;

 }

}

bool isZero(int *counter) {

 atomic {

 return (*counter) == 0;

 }

}

03/11/2011

SNZI trees

Non-blocking data structures and transactional memory 139

SNZI

(10,100)

SNZI

(2,230)

SNZI

(5,250)

T2 T1 T3 T5 T4 T6

Child SNZI forwards
inc/dec to parent when

the child changes
to/from zero

Each node holds a value
and a version number

(updated together with
CAS)

03/11/2011

SNZI: Scalable NonZero Indicators, Ellen et al

SNZI trees, linearizability on 0->1 change

Non-blocking data structures and transactional memory 140

SNZI

(0,100)

SNZI

(0,230)

T2 T1

1. T1 calls increment
2. T1 increments child to 1
3. T2 calls increment
4. T2 increments child to 2
5. T2 completes
6. Tx calls isZero
7. Tx sees 0 at parent
8. T1 calls increment on parent
9. T1 completes

Tx

03/11/2011

SNZI trees

Non-blocking data structures and transactional memory 141

void increment(snzi *s) {

 bool done=false;

 int undo=0;

 while(!done) {

 <val,ver> = read(s->state);

 if (val >= 1 && CAS(s->state, <val,ver>, <val+1,ver>)) { done = true; }

 if (val == 0 && CAS(s->state, <val,ver>, <½, ver+1>)) {

 done = true; val=½; ver=ver+1

 }

 if (val == ½) {

 increment(s->parent);

 if (!CAS(s->state, <val, ver>, <1, ver)) { undo ++; }

 }

 }

 while (undo > 0) {

 decrement(s->parent);

 }

}

03/11/2011

Reducing contention: stack

Non-blocking data structures and transactional memory 142

A scalable lock-free stack algorithm, Hendler et al

Existing lock-free stack
(e.g., Treiber’s): good

performance under low
contention, poor

scalability

P
u

sh

P
o

p

P
o

p

P
u

sh

P
u

sh

03/11/2011

Pairing up operations

Non-blocking data structures and transactional memory 143

P
u

sh
(10

)

P
u

sh
(20

)

P
u

sh
(30

)

P
o

p

20

P
o

p

10

03/11/2011

Back-off elimination array

Non-blocking data structures and transactional memory 144

Stack

Elimination array

Contention on
the stack? Try
the array

Don’t get
eliminated?

Try the stack

03/11/2011

Operation record: Thread, Push/Pop, …

Course overview: structure

 Building locks

 Lock-free programming

 What’s wrong with locks?

 Lists without locks, linearizability

 Lock-free progress

 Hashtables

 Skiplists

 Queues

 Reducing contention

 Memory management

 Transactional memory

Non-blocking data structures and transactional memory 145 03/11/2011

Lock-free data structures in C

 Pseudo-code, Java, C#:

 Explicit memory allocation

 Deallocation by GC

 C/C++:

 Explicit memory allocation & deallocation

 When is it safe to deallocate a piece of memory?

Non-blocking data structures and transactional memory 03/11/2011 146

Deletion revisited: Delete(10)

H 10 30 T

H 10 30 T

H 10 30 T

Non-blocking data structures and transactional memory 03/11/2011 147

De-allocate to the OS?

H 30 T 10

Search(20)

Non-blocking data structures and transactional memory 03/11/2011 148

Re-use as something else?

H 30 T 10 100 200

Search(20)

Non-blocking data structures and transactional memory 03/11/2011 149

Re-use as a list node?

H 30 T 10

H 30 T

20

Search(20)

Non-blocking data structures and transactional memory 03/11/2011 150

H 10 30 T

Reference counting

1 1 1 1

1. Decide what to access

Non-blocking data structures and transactional memory 03/11/2011 151

H 10 30 T

Reference counting

2 1 1 1

1. Decide what to access
2. Increment reference count

Non-blocking data structures and transactional memory 03/11/2011 152

H 10 30 T

Reference counting

2 1 1 1

1. Decide what to access
2. Increment reference count
3. Check access still OK

Non-blocking data structures and transactional memory 03/11/2011 153

H 10 30 T

Reference counting

2 2 1 1

1. Decide what to access
2. Increment reference count
3. Check access still OK

Non-blocking data structures and transactional memory 03/11/2011 154

H 10 30 T

Reference counting

1 2 1 1

1. Decide what to access
2. Increment reference count
3. Check access still OK

Non-blocking data structures and transactional memory 03/11/2011 155

H 10 30 T

Reference counting

1 1 1 1

1. Decide what to access
2. Increment reference count
3. Check access still OK
4. Defer deallocation until count 0

Non-blocking data structures and transactional memory 03/11/2011 156

Epoch mechanisms
Global epoch: 1000
Thread 1 epoch: -
Thread 2 epoch: -

H 10 30 T

Non-blocking data structures and transactional memory 03/11/2011 157

H 10 30 T

Epoch mechanisms
Global epoch: 1000

Thread 1 epoch: 1000
Thread 2 epoch: -

1. Record global epoch at start of
operation

Non-blocking data structures and transactional memory 03/11/2011 158

H 10 30 T

Epoch mechanisms
Global epoch: 1000

Thread 1 epoch: 1000
Thread 2 epoch: 1000

1. Record global epoch at start of
operation

2. Keep per-epoch deferred
deallocation lists

Deallocate @ 1000

Non-blocking data structures and transactional memory 03/11/2011 159

H 10 30 T

Epoch mechanisms
Global epoch: 1001

Thread 1 epoch: 1000
Thread 2 epoch: -

1. Record global epoch at start of
operation

2. Keep per-epoch deferred
deallocation lists

3. Increment global epoch at end
of operation (or periodically)

Non-blocking data structures and transactional memory 03/11/2011 160

Deallocate @ 1000

Epoch mechanisms
Global epoch: 1002
Thread 1 epoch: -
Thread 2 epoch: -

1. Record global epoch at start of
operation

2. Keep per-epoch deferred
deallocation lists

3. Increment global epoch at end
of operation (or periodically)

4. Free when everyone past epoch

10

Deallocate @ 1000

Non-blocking data structures and transactional memory 03/11/2011 161

H 30 T

The “repeat offender problem”

Non-blocking data structures and transactional memory 162

Free: ready for
allocation

Allocated and
linked in to a data

structure

Escaping: unlinked,
but possibly

temporarily in use

03/11/2011

Re-use via ROP

1. Decide what to access
2. Set guard
3. Check access still OK

Thread 1
guards

Non-blocking data structures and transactional memory 03/11/2011 163

H 10 30 T

Re-use via ROP

1. Decide what to access
2. Set guard
3. Check access still OK

Thread 1
guards

Non-blocking data structures and transactional memory 03/11/2011 164

H 10 30 T

Re-use via ROP

1. Decide what to access
2. Set guard
3. Check access still OK

Thread 1
guards

Non-blocking data structures and transactional memory 03/11/2011 165

H 10 30 T

Re-use via ROP

1. Decide what to access
2. Set guard
3. Check access still OK

Thread 1
guards

Non-blocking data structures and transactional memory 03/11/2011 166

H 10 30 T

Re-use via ROP

1. Decide what to access
2. Set guard
3. Check access still OK

Thread 1
guards

Non-blocking data structures and transactional memory 03/11/2011 167

H 10 30 T

Re-use via ROP

1. Decide what to access
2. Set guard
3. Check access still OK

Thread 1
guards

Non-blocking data structures and transactional memory 03/11/2011 168

H 10 30 T

Re-use via ROP

H 10 30 T

1. Decide what to access
2. Set guard
3. Check access still OK
4. Batch deallocations and defer on

objects while guards are present

Thread 1
guards

Non-blocking data structures and transactional memory 03/11/2011 169

See also: “Safe
memory reclamation”

& hazard pointers,
Maged Michael

What do we care about?

Non-blocking data structures and transactional memory 170

How fast
is it?

Is it correct? How easy is it
to write?

When
can I

use it?

How does it
scale?

03/11/2011

Course overview: structure

 Building locks

 Lock-free programming

 Transactional memory

 TM and composability

 STM internals

 Integration into a language runtime system

 Sandboxing & strong isolation

 Current performance and my perspective on TM

Non-blocking data structures and transactional memory 171 03/11/2011

What we want

Hardware

Concurrency primitives

Library Library Library

Library

Library
Library

Library

Libraries build layered
concurrency
abstractions

Non-blocking data structures and transactional memory 172 03/11/2011

Library

Locks and condition
variables
(a) are hard to use and
(b) do not compose

Hardware

What we have

Non-blocking data structures and transactional memory 173 03/11/2011

Atomic blocks

Atomic blocks built over transactional memory.
In Haskell: 3 primitives: atomic, retry, orElse

Library Library Library

Library

Library
Library

Library

Hardware

Non-blocking data structures and transactional memory 174 03/11/2011

Atomic memory transactions

 To a first approximation, just write the sequential code, and
wrap atomic around it

 All-or-nothing semantics: Atomic commit

 Atomic block executes in Isolation

 Cannot deadlock (there are no locks!)

 Atomicity makes error recovery easy
(e.g. exception thrown inside the PopLeft code)

Item PopLeft() {

 atomic { ... sequential code ... }

}

Like database
transactions

ACID

Non-blocking data structures and transactional memory 175 03/11/2011

Atomic blocks compose (locks do not)

 Guarantees to get two consecutive items

 PopLeft() is unchanged

 Cannot be achieved with locks (except by
breaking the PopLeft abstraction)

void GetTwo() {

 atomic {

 i1 = PopLeft();

 i2 = PopLeft();

 }

 DoSomething(i1, i2);

}

Composition
is THE way we

build big
programs
that work

Non-blocking data structures and transactional memory 176 03/11/2011

 retry means “abandon execution of the atomic block and re-
run it (when there is a chance it’ll complete)”

 No lost wake-ups

 No consequential change to GetTwo(), even though GetTwo
must wait for there to be two items in the queue

Item PopLeft() {

 atomic {

 if (leftSentinel.right==rightSentinel) {

 retry;

 } else { ...remove item from queue... }

} }

Blocking: how does PopLeft wait for data?

Non-blocking data structures and transactional memory 177 03/11/2011

 do {...this...} orelse {...that...} tries to run “this”

 If “this” retries, it runs “that” instead

 If both retry, the do-block retries. GetEither() will thereby wait
for there to be an item in either queue

void GetEither() {

 atomic {

 do { i = Q1.Get(); }

 orelse { i = Q2.Get(); }

 R.Put(i);

} }

Q1 Q2

R

Choice: waiting for either of two queues

Non-blocking data structures and transactional memory 178 03/11/2011

Programming with atomic blocks
With locks, you think about:

 Which lock protects which data? What data can be mutated
when by other threads? Which condition variables must be
notified when?

 None of this is explicit in the source code

With atomic blocks you think about

 What are the invariants (e.g. the tree is balanced)?

 Each atomic block maintains the invariants

 Purely sequential reasoning within a block, which is dramatically
easier

 Much easier setting for static analysis tools

Non-blocking data structures and transactional memory 179 03/11/2011

Summary so far

 Atomic blocks (atomic, retry, orElse) are a real step forward

 It’s like using a high-level language instead of assembly
code: whole classes of low-level errors are eliminated.

 Not a silver bullet:

 you can still write buggy programs;

 concurrent programs are still harder to write than sequential
ones;

 just aimed at shared memory.

 But the improvement is very substantial

Non-blocking data structures and transactional memory 180 03/11/2011

STM 5 years ago

0

1

2

3

N
o

rm
al

is
ed

 e
xe

cu
ti

o
n

 t
im

e

Sequential
baseline (1.00x)

Coarse-grained
locking (1.13x)

Fine-grained
locking (2.57x) Early STM (5.69x)

Workload: operations on a
red-black tree, 1 thread,

6:1:1 lookup:insert:delete
mix with keys 0..65535

Non-blocking data structures and transactional memory 181 03/11/2011

Implementation techniques
 Direct-update STM

 Allow transactions to make updates in place in the heap
 Avoids reads needing to search the log to see earlier writes that the

transaction has made
 Makes successful commit operations faster at the cost of extra work

on contention or when a transaction aborts

 Compiler integration
 Decompose the transactional memory operations into primitives
 Expose the primitives to compiler optimization (e.g. to hoist

concurrency control operations out of a loop)

 Runtime system integration
 Integration with the garbage collector or runtime system

components to scale to atomic blocks containing 100M memory
accesses

 Memory management system used to detect conflicts between
transactional and non-transactional accesses

Non-blocking data structures and transactional memory 182 03/11/2011

Results: concurrency control overhead

0

1

2

3

N
o

rm
al

is
ed

 e
xe

cu
ti

o
n

 t
im

e

Sequential
baseline (1.00x)

Coarse-grained
locking (1.13x)

Fine-grained
locking (2.57x)

Direct-update
STM (2.04x)

Direct-update STM +
compiler integration

(1.46x)

Traditional STM
(5.69x)

Workload: operations on a
red-black tree, 1 thread,

6:1:1 lookup:insert:delete
mix with keys 0..65535

Scalable to multicore

Non-blocking data structures and transactional memory 183 03/11/2011

Course overview: structure

 Building locks

 Lock-free programming

 Transactional memory

 Atomic transactions and composability

 STM internals

 Integration into a language runtime system

 Sandboxing & strong isolation

 Current performance and my perspective on TM

Non-blocking data structures and transactional memory 184 03/11/2011

Atomic blocks

Class Q {
 QElem leftSentinel;
 QElem rightSentinel;

 void pushLeft(int item) {
 atomic {
 QElem e = new QElem(item);
 e.right = this.leftSentinel.right;
 e.left = this.leftSentinel;
 this.leftSentinel.right.left = e;
 this.leftSentinel.right = e;
 }
 }

 ...
}

Class Q {
 QElem leftSentinel;
 QElem rightSentinel;

 void pushLeft(int item) {
 do {
 tx = TxStart();
 QElem e = new QElem(item);
 TxWrite(tx, &e.right, TxRead(tx, &this.leftSentinel.right));
 TxWrite(tx, &e.left, this.leftSentinel);
 TxWrite(tx, &TxRead(tx, &this.leftSentinel.right).left, e);
 TxWrite(tx, &this.leftSentinel.right, e);
 } while (!TxCommit());
 }

 ...
}

Non-blocking data structures and transactional memory 03/11/2011 185

Bartok-STM

 Use per-object meta-data (“TMWs”)

 Each TMW is either:

 Locked, holding a pointer to the transaction that has the
object open for update

 Available, holding a version number indicating how many
times the object has been locked

 Writers eagerly lock TMWs to gain access to the object,
using eager version management

 Maintain an undo log in case of roll-back

 Readers log the version numbers they see and perform lazy
conflict detection at commit time

Non-blocking data structures and transactional memory 03/11/2011 186

Example: uncontended swap
a:

v150

1000

v250

2000

b:

void Swap(int *a, int *b) {

 do {

 tx = TxStart();

 va = TxRead(tx, &a);

 vb = TxRead(tx, &b);

 TxWrite(tx, &a, vb);

 TxWrite(tx, &b, va);

 } while (!TxCommit());

}

Non-blocking data structures and transactional memory 03/11/2011 187

Example: uncontended swap
a:

v150

1000

v250

2000

b:

void Swap(int *a, int *b) {

 do {

 tx = TxStart();

 va = TxRead(tx, &a);

 vb = TxRead(tx, &b);

 TxWrite(tx, &a, vb);

 TxWrite(tx, &b, va);

 } while (!TxCommit());

}

Tx1 Objects read

Objects updated

Values

overwritten

Non-blocking data structures and transactional memory 03/11/2011 188

Example: uncontended swap
a:

v150

1000

v250

2000

a: v150

b:

void Swap(int *a, int *b) {

 do {

 tx = TxStart();

 va = TxRead(tx, &a);

 vb = TxRead(tx, &b);

 TxWrite(tx, &a, vb);

 TxWrite(tx, &b, va);

 } while (!TxCommit());

}

Tx1 Objects read

Objects updated

Values

overwritten

Non-blocking data structures and transactional memory 03/11/2011 189

Example: uncontended swap
a:

v150

1000

v250

2000

a: v150
b: v250

b:

void Swap(int *a, int *b) {

 do {

 tx = TxStart();

 va = TxRead(tx, &a);

 vb = TxRead(tx, &b);

 TxWrite(tx, &a, vb);

 TxWrite(tx, &b, va);

 } while (!TxCommit());

}

Tx1 Objects read

Objects updated

Values

overwritten

Non-blocking data structures and transactional memory 03/11/2011 190

Example: uncontended swap
a:

Tx1

2000

v250

2000

a: v150
b: v250

a: v150

a.val = 1000

b:

void Swap(int *a, int *b) {

 do {

 tx = TxStart();

 va = TxRead(tx, &a);

 vb = TxRead(tx, &b);

 TxWrite(tx, &a, vb);

 TxWrite(tx, &b, va);

 } while (!TxCommit());

}

Tx1 Objects read

Objects updated

Values

overwritten

Non-blocking data structures and transactional memory 03/11/2011 191

Example: uncontended swap
a:

Tx1

2000

Tx1

1000

a: v150
b: v250

a: v150
b: v250

a.val = 1000
b.val = 2000

b:

void Swap(int *a, int *b) {

 do {

 tx = TxStart();

 va = TxRead(tx, &a);

 vb = TxRead(tx, &b);

 TxWrite(tx, &a, vb);

 TxWrite(tx, &b, va);

 } while (!TxCommit());

}

Tx1 Objects read

Objects updated

Values

overwritten

Non-blocking data structures and transactional memory 03/11/2011 192

Commit in Bartok-STM

Iterate over
the read set:

Current TMW
matches logged

version?

Current TMW
shows we locked

the object?

Abort

Logged TMW
matches version in

our write set?

Abort

Yes

Yes Yes

No

No No

OK so far

OK so far

Non-blocking data structures and transactional memory 03/11/2011 193

Correctness sketch

time

Open obj1 for read Open obj2
for update

Commit: validate
obj1 version

Commit:
unlock obj2

Lock prevents concurrent updates

Validation checks no updates

Tx appears atomic after
last “Open” and before

first validation step

Non-blocking data structures and transactional memory 03/11/2011 194

Example: uncontended swap
a:

Tx1

2000

Tx1

1000

a: v150
b: v250

a: v150
b: v250

a.val = 1000
b.val = 2000

b:

void Swap(int *a, int *b) {

 do {

 tx = TxStart();

 va = TxRead(tx, &a);

 vb = TxRead(tx, &b);

 TxWrite(tx, &a, vb);

 TxWrite(tx, &b, va);

 } while (!TxCommit());

}

Tx1 Objects read

Objects updated

Values

overwritten

“We locked the
object...”

“...and no-one
else got there

first!”

Non-blocking data structures and transactional memory 03/11/2011 195

Example: uncontended swap
a:

v151

2000

Tx1

1000

a: v150
b: v250

a: v150
b: v250

a.val = 1000
b.val = 2000

b:

void Swap(int *a, int *b) {

 do {

 tx = TxStart();

 va = TxRead(tx, &a);

 vb = TxRead(tx, &b);

 TxWrite(tx, &a, vb);

 TxWrite(tx, &b, va);

 } while (!TxCommit());

}

Tx1 Objects read

Objects updated

Values

overwritten

Non-blocking data structures and transactional memory 03/11/2011 196

Example: uncontended swap
a:

v151

2000

v251

1000

a: v150
b: v250

a: v150
b: v250

a.val = 1000
b.val = 2000

b:

void Swap(int *a, int *b) {

 do {

 tx = TxStart();

 va = TxRead(tx, &a);

 vb = TxRead(tx, &b);

 TxWrite(tx, &a, vb);

 TxWrite(tx, &b, va);

 } while (!TxCommit());

}

Tx1 Objects read

Values

overwritten

Non-blocking data structures and transactional memory 03/11/2011 197

Objects updated

Example: uncontended swap
a:

v151

2000

v251

1000

b:

void Swap(int *a, int *b) {

 do {

 tx = TxStart();

 va = TxRead(tx, &a);

 vb = TxRead(tx, &b);

 TxWrite(tx, &a, vb);

 TxWrite(tx, &b, va);

 } while (!TxCommit());

}

Non-blocking data structures and transactional memory 03/11/2011 198

Tx-tx interaction in Bartok-STM

 Read-read: no problem, both readers see the same version
number and verify it at commit time

 Read-write: reader sees that the writer has the object
locked. Reader always defers to writer

 Write-write: competition for lock serializes writers (drop
locks, then spin to avoid deadlock)

Non-blocking data structures and transactional memory 03/11/2011 199

 Gold standard:

 During execution a transaction runs against a consistent view
of memory

 Won’t be “tricked” into looping, etc.

 “Opacity”

 What are the advantages / disadvantages when compared
with an implementation giving weaker guarantees?

Non-blocking data structures and transactional memory 03/11/2011 200

Taxonomy: consistency during tx

 We need some way to manage the tentative updates that a
transaction is making

 Where are they stored?

 How does the implementation find them (so a transaction’s
read sees an earlier write)?

 Lazy versioning: only make “real” updates when a
transaction commits

 Eager versioning: make updates as a transaction runs, roll
them back on abort

 What are the advantages, disadvantages?

Non-blocking data structures and transactional memory 03/11/2011 201

Taxonomy: lazy/eager versioning

 We need to detect when two transactions conflict with one
another

 Lazy conflict detection: detect conflicts at commit time

 Eager conflict detection: detect conflicts as transactions
run

 Again, what are the advantages, disadvantages?

Non-blocking data structures and transactional memory 03/11/2011 202

Taxonomy: lazy/eager conflict detection

Taxonomy: word/object based

 What granularity are conflicts detected at?

 Object-based:

 Access to programmer-defined structures (e.g. objects)

 Word-based:

 Access to words (or sets of words, e.g. cache lines)

 Possibly after mapping under a hash function

 What are the advantages and disadvantages of these
approaches?

Non-blocking data structures and transactional memory 03/11/2011 203

Bartok-STM

 Designed to work well on low-contention workloads

 Eager version management to reduce commit costs

 Eager locking to support eager version management

 Primitives do not guarantee that transactions see a
consistent view of the heap while running

 Can be sandboxed in managed code...

 ...harder in native code

Non-blocking data structures and transactional memory 03/11/2011 204

Course overview: structure

 Building locks

 Lock-free programming

 Transactional memory

 TM and composability

 STM internals

 Integration into a language runtime system

 Sandboxing & strong isolation

 Current performance and my perspective on TM

Non-blocking data structures and transactional memory 205 03/11/2011

Atomic blocks

Class Q {
 QElem leftSentinel;
 QElem rightSentinel;

 void pushLeft(int item) {
 atomic {
 QElem e = new QElem(item);
 e.right = this.leftSentinel.right;
 e.left = this.leftSentinel;
 this.leftSentinel.right.left = e;
 this.leftSentinel.right = e;
 }
 }

 ...
}

Class Q {
 QElem leftSentinel;
 QElem rightSentinel;

 void pushLeft(int item) {
 do {
 TxStart();
 QElem e = new QElem(item);
 TxWrite(&e.right, TxRead(&this.leftSentinel.right));
 TxWrite(&e.left, this.leftSentinel);
 TxWrite(&TxRead(&this.leftSentinel.right).left, e);
 TxWrite(&this.leftSentinel.right, e);
 } while (!TxCommit());
 }

 ...
}

Non-blocking data structures and transactional memory 03/11/2011 206

Compilation

Source
code

MSIL
bytecode

Native
code

Source to bytecode compiler;
typically “csc” in C#, “javac” for

Java

Bytecode-to-native compiler;
JIT or traditional compilation

Non-blocking data structures and transactional memory 03/11/2011 207

Why divide things this way?

 Little information loss from

source code to bytecode

 Source-to-bytecode works a

file at a time, bytecode-to-native

can see the whole program (or,

at least, see all of the parts

needed so far in execution)

 Lower level transformations

possible at bytecode-to-native

 Integration between the STM and

other parts of the runtime system

void Swap(Pair p) {
 try {
 va = p.a;
 vb = p.b;
 p.a = vb;
 p.b = va;
 } catch (AtomicException) {
 }
}

Non-blocking data structures and transactional memory 03/11/2011 208

Boilerplate around transactions

void Swap(Pair p) {
 do {
 done = true;
 try {
 try {
 tx = StartTx();
 va = p.a;
 vb = p.b;
 p.a = vb;
 p.b = va;
 } finally {
 CommitTx();
 }
 } catch (TxInvalid) {
 done = false;
 }
 } while (!done);
}

Keep running the
atomic block in a

fresh tx each time

Commit (on
normal or exn exit)

Commit fails by raising
a TxInvalid exception;

re-execute

(I’m using source code
examples for clarity; in
reality this would be in
the compiler’s internal

intermediate code)

Non-blocking data structures and transactional memory 03/11/2011 209

 Naïve expansion of data accesses

void Swap(Pair p) {
 do {
 done = true;
 try {
 try {
 tx = StartTx();
 TxWrite(tx, &va, TxRead(tx, &p.a));
 TxWrite(tx, &vb, TxRead(tx, &p.b));
 TxWrite(tx, &p.a, TxRead(tx, &vb));
 TxWrite(tx, &p.b, TxRead(tx, &va));
 } finally {
 CommitTx();
 }
 } catch (TxInvalid) {
 done = false;
 }
 } while (!done);
}

Non-blocking data structures and transactional memory 03/11/2011 210

What are the problems here?

 Using the STM for thread-private local variables

 Repeatedly mapping from addresses to concurrency
control info

 Duplicating concurrency control work if it’s implemented at
a per-object granularity

Non-blocking data structures and transactional memory 03/11/2011 211

Decomposed STM primitive API

 OpenForRead(tx, obj)

 OpenForRead(tx, addr)

 OpenForUpdate(tx, obj)

 OpenForUpdate(tx, addr)

 LogForUndo(tx, addr)

Indicate intent to read from
an object or from a given

address

Indicate intent to update
a specific address (&

optional size)

Non-blocking data structures and transactional memory 03/11/2011 212

Using the decomposed API

x = p.a;
OpenForRead(tx, p);
x = p.a;

p.b = y;
OpenForUpdate(tx, p);
LogForUndo(tx, &p.b);
p.b = y;

Non-blocking data structures and transactional memory 03/11/2011 213

...
OpenForUpdate(tx, p);
OpenForRead(tx, p);
va = p.a;
OpenForRead(tx, p);
Vb = p.b;
OpenForUpdate(tx, p);
LogForUndo(tx, &p.a);
p.a = vb;
OpenForUpdate(tx, p);
LogForUndo(tx, &p.b);
p.b = va;
...

Second OpenForRead
made unnecessary by first

Second OpenForUpdate
made unnecessary by first

Always need update
access: get it first

Non-blocking data structures and transactional memory 03/11/2011 214

Implementation using decomposed API

 Improved expansion of data accesses

void Swap(Pair p) {
 do {
 done = true;
 try {
 try {
 tx = StartTx();
 OpenForUpdate(tx, p);
 va = p.a;
 vb = p.b;
 LogForUndo(tx, &p.a);
 p.a = vb;
 LogForUndo(tx, &p.b);
 p.b = va;
 } finally {
 CommitTx();
 }
 } catch (TxInvalid) {
 done = false;
 }
 } while (!done);
}

Non-blocking data structures and transactional memory 03/11/2011 215

Are we done?

 Local variables

 By-ref parameters

 Method calls

 Keeping optimizations safe

 GC integration

 Finalizers

 Condition synchronization

Non-blocking data structures and transactional memory 03/11/2011 216

Keeping optimizations safe

void Clear_tx(Pair p) {
 for (int i = 0; i < 10; i ++) {
 p.a = 10;
 p.b = i;
 }
}

Original (contrived) source code

Non-blocking data structures and transactional memory 03/11/2011 217

Keeping optimizations safe

void Clear_tx(Pair p) {
 for (int i = 0; i < 10; i ++) {
 OpenForUpdate(tx, p);
 LogForUndo(tx, &p.a);
 p.a = 10;
 LogForUndo(tx, &p.b);
 p.b = i;
 }
}

Expanded with decomposed API operations

Non-blocking data structures and transactional memory 03/11/2011 218

Keeping optimizations safe

void Clear_tx(Pair p) {
 p.a = 10;
 for (int i = 0; i < 10; i ++) {
 OpenForUpdate(tx, p);
 LogForUndo(tx, &p.a);
 LogForUndo(tx, &p.b);
 p.b = i;
 }
}

Hoisting loop-invariant code

Non-blocking data structures and transactional memory 03/11/2011 219

Keeping optimizations safe

void Clear_tx(Pair p) {
for (int i = 0; i < 10; i ++) {
 tmp1 = OpenForUpdate(tx, p);
 tmp2 = LogForUndo(tx, &p.a) <tmp1>;
 p.a = 10 <tmp2>;
 tmp3 = LogForUndo(tx, &p.b) <tmp1>;
 p.b = i <tmp3>;
 }
}

Introduce dependencies

Non-blocking data structures and transactional memory 03/11/2011 220

Keeping optimizations safe

void Clear_tx(Pair p) {
 tmp1 = OpenForUpdate(tx, p);
 tmp2 = LogForUndo(tx, &p.a) <tmp1>;
 tmp3 = LogForUndo(tx, &p.a) <tmp1>;
 p.a = 10 <tmp2>;
 for (int i = 0; i < 10; i ++) {
 p.b = i <tmp3>;
 }
}

Transformations must respect dependencies

Non-blocking data structures and transactional memory 03/11/2011 221

GC integration

void Temp() {
 Pair result;
 atomic {
 for (int i = 0; i < 100000; i ++) {
 result = new Pair();
 result.a = i;
 }
 return result;
} }

Another contrived program

Lots of temporary objects are
allocated as the atomic block

runs

Non-blocking data structures and transactional memory 03/11/2011 222

GC integration

 Abort all running tx on GC?

 Not ideal: long running tx will not be able to commit

 Is there a precedent for language features with this kind of
perf?

 Treat all the references from the logs as roots?

 Not ideal: we’d keep all those temporaries

Non-blocking data structures and transactional memory 03/11/2011 223

GC integration

 Principle:

 Consider the possible heaps based on whether tx commit or
abort

 Retain an object if it is alive in any of these cases (ideally “iff”)

 Do we need to consider 2n possibilities with n running tx?

 No: validate all the tx first so we know they are not conflicting

 Consider the world if they all commit, consider the world if
they all roll back

Non-blocking data structures and transactional memory 03/11/2011 224

Example heap

Normal
heap

pointer

Overwritten pointer
in undo log

Non-blocking data structures and transactional memory 03/11/2011 225

Conservative algorithm

Normal
heap

pointer

Overwritten pointer
in undo log

1. Validate tx

2. Trace heap as
normal

Non-blocking data structures and transactional memory 03/11/2011 226

Conservative algorithm

Normal
heap

pointer

Overwritten pointer
in undo log

1. Validate tx

2. Trace heap as
normal

3. Grey targets of
overwritten ptrs

Non-blocking data structures and transactional memory 03/11/2011 227

Conservative algorithm

Normal
heap

pointer

Overwritten pointer
in undo log

1. Validate tx

2. Trace heap as
normal

3. Grey targets of
overwritten ptrs

4. Trace from new
grey objects

Non-blocking data structures and transactional memory 03/11/2011 228

Conservative algorithm

Normal
heap

pointer

Overwritten pointer
in undo log

1. Validate tx

2. Trace heap as
normal

3. Grey targets of
overwritten ptrs

4. Trace from new
grey objects

5. Reclaim white
objects

Non-blocking data structures and transactional memory 03/11/2011 229

Precise algorithm

Normal
heap

pointer

Overwritten pointer
in undo log

1. Validate tx

2. Trace heap as
normal

Non-blocking data structures and transactional memory 03/11/2011 230

Precise algorithm

Normal
heap

pointer

Overwritten pointer
in undo log

1. Validate tx

2. Trace heap as
normal

3. Roll-back, re-gray
updated black obj

Non-blocking data structures and transactional memory 03/11/2011 231

Precise algorithm

Normal
heap

pointer

Overwritten pointer
in undo log

1. Validate tx

2. Trace heap as
normal

3. Roll-back, re-gray
updated black obj

4. Trace from gray
objects

Non-blocking data structures and transactional memory 03/11/2011 232

Precise algorithm

Normal
heap

pointer

Overwritten pointer
in undo log

1. Validate tx

2. Trace heap as
normal

3. Roll-back, re-gray
updated black obj

4. Trace from gray
objects

5. Reclaim white
objects

Non-blocking data structures and transactional memory 03/11/2011 233

Precise algorithm

Normal
heap

pointer

Overwritten pointer
in undo log

1. Validate tx

2. Trace heap as
normal

3. Roll-back, re-gray
updated black obj

4. Trace from gray
objects

5. Reclaim white
objects

6. Restore heap

Non-blocking data structures and transactional memory 03/11/2011 234

Finalizers

Pair p;
atomic {
 p = new Pair();
}

Class Pair {
 void Finalize() {
 Console.Out.WriteLine(“Hello world\n”);
 }
}

Suppose this block is
attempted twice

How many times is
this printed? (Or is

this program wrong?)

Non-blocking data structures and transactional memory 03/11/2011 235

Finalizers

 Remember the intended semantics:

 Exactly once execution

 Transactionally-allocated objects are only eligible for
finalization when the tx commits

 Tentative allocation, non-finalization, and (re-)execution
remains entirely transparent

Non-blocking data structures and transactional memory 03/11/2011 236

Condition synchronization

 Semantically: in STM-Haskell we required the scheduler to
only run atomic blocks when they succeed without calling
“retry”

atomic {
 buffer.data = 42;
 buffer.full = true;
}

atomic {
 if (!buffer.full) {
 retry;
 }
 result = buffer.data;
 buffer.full = false;
}

This atomic block is
only ready to run when

buffer.full is true

Non-blocking data structures and transactional memory 03/11/2011 237

Primitive for synchronization

 void WaitTX(tx)

 Semantically equivalent to AbortTx

 Implementation may assume caller will immediately re-
execute a (deterministic) tx

 Implementation may introduce a delay to avoid unnecessary
spinning

 Intuition:

 No point re-executing the consumer until the producer has
run

Non-blocking data structures and transactional memory 03/11/2011 238

Compiling “retry” to “WaitTx”

atomic {
 if (!buffer.full) {
 retry;
 }
 result = buffer.data;
 buffer.full = false;
}

void Consume(Buffer b) {
 do {
 done = true;
 try {
 try {
 tx = StartTx();
 OpenForRead(tx, b);
 if (!b.full) {
 WaitTx();
 }
 OpenForUpdate(tx, b);
 result = b.data;
 LogForUndo(tx, &b.full);
 b.full = false;
 } finally {
 CommitTx();
 }
 } catch (TxInvalid) {
 done = false;
 }
 } while (!done);
}

Non-blocking data structures and transactional memory 03/11/2011 239

Implementing WaitTx

buffer: v150

Val=0

Full=false

Non-blocking data structures and transactional memory 03/11/2011 240

Implementing WaitTx

buffer: v150

Val=0

null

Full=false

1. Extend object header
with list of waiters

Non-blocking data structures and transactional memory 03/11/2011 241

Implementing WaitTx

buffer: v150

Val=0

null

Full=false

1. Extend object header
with list of waiters

2. Extend tx records with
a mutex & condvar pair

Consume
r tx

Mutex

Condvar

Non-blocking data structures and transactional memory 03/11/2011 242

Implementing WaitTx

buffer: v150

Val=0

Full=false

1. Extend object header
with list of waiters

2. Extend tx records with
a mutex & condvar pair

Consume
r tx

Mutex

Condvar

3. WaitTx links the
consumer to the lists in

its read set

Non-blocking data structures and transactional memory 03/11/2011 243

Implementing WaitTx

buffer: v150

Val=0

Full=false

1. Extend object header
with list of waiters

2. Extend tx records with
a mutex & condvar pair

Consume
r tx

Mutex

Condvar

3. WaitTx links the
consumer to the lists in

its read set

4. WaitTx validates, locks
the mutex, updates its

status, blocks

Non-blocking data structures and transactional memory 03/11/2011 244

Implementing WaitTx

buffer: v150

Val=0

Full=false

1. Extend object header
with list of waiters

2. Extend tx records with
a mutex & condvar pair

Consume
r tx

Mutex

Condvar

3. WaitTx links the
consumer to the lists in

its read set

4. WaitTx validates, locks
the mutex, updates its

status, blocks

5. CommitTx wakes
waiters on objects in its

write set

Non-blocking data structures and transactional memory 03/11/2011 245

Implementing WaitTx

buffer: v150

Val=0

Full=false

1. Extend object header
with list of waiters

2. Extend tx records with
a mutex & condvar pair

Consume
r tx

Mutex

Condvar

3. WaitTx links the
consumer to the lists in

its read set

4. WaitTx validates, locks
the mutex, updates its

status, blocks

5. CommitTx wakes
waiters on objects in its

write set

Use “thin locks” style
tricks to avoid fixed

header word allocation

NB: many-to-many
relationship, so probably use

separate doubly linked list

Use latch in the header for
concurrency control on the

list

Non-blocking data structures and transactional memory 03/11/2011 246

Course overview: structure

 Building locks

 Lock-free programming

 Transactional memory

 TM and composability

 STM internals

 Integration into a language runtime system

 Sandboxing & strong isolation

 Current performance and my perspective on TM

Non-blocking data structures and transactional memory 247 03/11/2011

Sandboxing zombie transactions

 Those that have become invalid
but don’t yet know it

 May access memory

 May raise exceptions

 May attempt system
calls etc

 General principle – validate
before revealing any tx’s effects
outside the STM world

Non-blocking data structures and transactional memory 03/11/2011 248

Looping / slow zombies

 Method2 runs between Method1’s memory
accesses

 The transaction running Method1 becomes a
zombie... but never attempts to commit

void Method1(Pair p) {
 atomic {
 ta = p.a;

 tb = p.b;
 if (ta != tb) {
 while (true) {
} } } }

void Method2(Pair p) {
 atomic {
 p.a = 100;
 p.b = 100;
} }

Non-blocking data structures and transactional memory 03/11/2011 249

Looping / slow zombies

 Add new API function “ValidationTick”

 ValidationTick guarantees: it will

eventually detect if its calling

transaction is invalid

 Call it in any loop not otherwise calling

a TM API function

 Optimize ValidationTick so it only does

“real” validation occasionally

 (Could also optimize the placement of

ValidationTick calls)

OpenForRead(p);
ta = p.a;
tb = p.b;
if (ta != tb) {
 while (true) {
 ValidationTick();
} }

Non-blocking data structures and transactional memory 03/11/2011 250

Strong isolation

 Add a mechanism to detect conflicts between tx and normal
accesses

 We would like:

 No overhead on direct accesses

 Predictable performance

 Little overhead over weak atomicity

Non-blocking data structures and transactional memory 03/11/2011 251

Strong isolation: implementation

Physical
address

space

Virtual
address

space

Tx-heap Normal-heap

Normal
memory
accesses

Memory
accesses

from
atomic
blocks

Non-blocking data structures and transactional memory 03/11/2011 252

Writes from atomic blocks

Physical
address

space

Virtual
address

space

Tx-heap Normal-heap

Normal
memory
accesses

Memory
accesses

from
atomic
blocks

1. Atomic block
attempts to write to a

field of an object

Non-blocking data structures and transactional memory 03/11/2011 253

Writes from atomic blocks

Physical
address

space

Virtual
address

space

Tx-heap Normal-heap

Normal
memory
accesses

Memory
accesses

from
atomic
blocks

2. Revoke direct access
to the page holding the
direct view of the object

Non-blocking data structures and transactional memory 03/11/2011 254

Writes from atomic blocks

Physical
address

space

Virtual
address

space

Tx-heap Normal-heap

Normal
memory
accesses

Memory
accesses

from
atomic
blocks

3. Use underlying STM
write primitives

Non-blocking data structures and transactional memory 03/11/2011 255

Writes from atomic blocks

Physical
address

space

Virtual
address

space

Tx-heap Normal-heap

Normal
memory
accesses

Memory
accesses

from
atomic
blocks

4A. Restore direct
access once the

underlying transaction
has finished

Non-blocking data structures and transactional memory 03/11/2011 256

Conflicting normal access

Physical
address

space

Virtual
address

space

Tx-heap Direct-heap

Normal
memory
accesses

Memory
accesses

from
atomic
blocks

4B. Access violation
(AV) delivered to a

normal thread accessing
that page: wait for TX

Non-blocking data structures and transactional memory 03/11/2011 257

Separate tx / non-tx allocations

Physical
address

space

Virtual
address

space

Tx-heap Normal-heap

Normal alloc Tx alloc

Non-blocking data structures and transactional memory 03/11/2011 258

Make page protections lazily

Physical
address

space

Virtual
address

space

Tx-heap Normal-heap

Normal
memory
accesses

Memory
accesses

from
atomic
blocks

RW RW RW RW
1. Table shadows

intended page state

Non-blocking data structures and transactional memory 03/11/2011 259

Make page protections lazily

Physical
address

space

Virtual
address

space

Tx-heap Normal-heap

Normal
memory
accesses

Memory
accesses

from
atomic
blocks

RW - RW RW

2. Atomic block attempts
to write to a field of an
object; revoke access,

update table

Non-blocking data structures and transactional memory 03/11/2011 260

Make page protections lazily

Physical
address

space

Virtual
address

space

Tx-heap Normal-heap

Normal
memory
accesses

Memory
accesses

from
atomic
blocks

RW RW RW RW

3. On commit, just
update the table

Non-blocking data structures and transactional memory 03/11/2011 261

Make page protections lazily

Physical
address

space

Virtual
address

space

Tx-heap Normal-heap

Normal
memory
accesses

Memory
accesses

from
atomic
blocks

RW - RW RW

4. Subsequent atomic
block just updates the

table

Non-blocking data structures and transactional memory 03/11/2011 262

Genome

0

0.5

1

1.5

2

2.5

3

3.5

N
o

rm
a

li
ze

d
 e

x
e

cu
ti

o
n

 t
im

e

Labyrinth

0

0.5

1

1.5

2

2.5

3

3.5

N
o

rm
a

li
ze

d
 e

x
e

cu
ti

o
n

 t
im

e

Course overview: structure

 Building locks

 Lock-free programming

 Transactional memory

 TM and composability

 STM internals

 Integration into a language runtime system

 Sandboxing & strong isolation

 Combining TM with libraries, locking, and IO

 Current performance and my perspective on TM

Non-blocking data structures and transactional memory 265 03/11/2011

Performance figures depend on...

 Workload : What do the atomic blocks do? How long is spent inside
them?

 Baseline implementation: Mature existing compiler, or prototype?

 Intended semantics: Support static separation? Violation freedom
(TDRF)?

 STM implementation: In-place updates, deferred updates, eager/lazy
conflict detection, visible/invisible readers?

 STM-specific optimizations: e.g. to remove or downgrade redundant TM
operations

 Integration: e.g. dynamically between the GC and the STM, or inlining of
STM functions during compilation

 Implementation effort: low-level perf tweaks, tuning, etc.

 Hardware: e.g. performance of CAS and memory system

Non-blocking data structures and transactional memory 03/11/2011 266

Labyrinth

 STAMP v0.9.10

 256x256x3 grid

 Routing 256 paths

 Almost all execution inside atomic
blocks

 Atomic blocks can attempt 100K+
updates

 C# version derived from original C

 Compiled using Bartok, whole
program mode, C# -> x86 (~80%
perf of original C with VS2008)

 Overhead results with Core2 Duo
running Windows Vista

s1

e1

“STAMP: Stanford Transactional Applications for Multi-Processing”
Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, Kunle Olukotun , IISWC 2008

Non-blocking data structures and transactional memory 03/11/2011 267

11.86

3.14

1.99 1.71 1.71

0

2

4

6

8

10

12

14

STM Dynamic
filtering

Dataflow
opts

Filter opts Re-use logs

1-
th

re
a

d
,

n
o

rm
a

li
ze

d
 t

o
 s

e
q

.
b

a
se

li
n

e

Sequential overhead

STM implementation supporting static separation
In-place updates

Lazy conflict detection
Per-object STM metadata

Addition of read/write barriers before accesses
Read: log per-object metadata word

Update: CAS on per-object metadata word
Update: log value being overwritten

Non-blocking data structures and transactional memory 03/11/2011 268

Sequential overhead

11.86

3.14

1.99 1.71 1.71

0

2

4

6

8

10

12

14

STM Dynamic
filtering

Dataflow
opts

Filter opts Re-use logs

1-
th

re
a

d
,

n
o

rm
a

li
ze

d
 t

o
 s

e
q

.
b

a
se

li
n

e

Dynamic filtering to remove redundant logging

Log size grows with #locations accessed
Consequential reduction in validation time

1st level: per-thread hashtable (1024 entries)
2nd level: per-object bitmap of updated fields

Non-blocking data structures and transactional memory 03/11/2011 269

Sequential overhead

11.86

3.14

1.99 1.71 1.71

0

2

4

6

8

10

12

14

STM Dynamic
filtering

Dataflow
opts

Filter opts Re-use logs

1-
th

re
a

d
,

n
o

rm
a

li
ze

d
 t

o
 s

e
q

.
b

a
se

li
n

e

Data-flow optimizations

Remove repeated log operations
Open-for-read/update on a per-object basis

Log-old-value on a per-field basis
Remove concurrency control on newly-allocated objects

Non-blocking data structures and transactional memory 03/11/2011 270

Sequential overhead

11.86

3.14

1.99 1.71 1.71

0

2

4

6

8

10

12

14

STM Dynamic
filtering

Dataflow
opts

Filter opts Re-use logs

1-
th

re
a

d
,

n
o

rm
a

li
ze

d
 t

o
 s

e
q

.
b

a
se

li
n

e

Inline optimized filter operations

Re-use table_base between filter operations
Avoids caller save/restore on filter hits

mov eax <- obj_addr
and eax <- eax, 0xffc
mov ebx <- [table_base + eax]
cmp ebx, obj_addr

Non-blocking data structures and transactional memory 03/11/2011 271

Sequential overhead

11.86

3.14

1.99 1.71 1.71

0

2

4

6

8

10

12

14

STM Dynamic
filtering

Dataflow
opts

Filter opts Re-use logs

1-
th

re
a

d
,

n
o

rm
a

li
ze

d
 t

o
 s

e
q

.
b

a
se

li
n

e

Re-use STM logs between transactions

Reduces pressure on per-page allocation lock
Reduces time spent in GC

Non-blocking data structures and transactional memory 03/11/2011 272

Scaling – Labyrinth

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1 2 3 4 5 6 7 8

E
x

e
cu

ti
o

n
 t

im
e

 /
 s

e
q

. b
a

se
li

n
e

#Threads

Static separation
strong isolation

1.0 = wall-clock execution time
of sequential code without

concurrency control

Non-blocking data structures and transactional memory 03/11/2011 273

Scaling – Genome

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1 2 3 4 5 6 7 8

E
x

e
cu

ti
o

n
 t

im
e

 /
 s

e
q

. b
a

se
li

n
e

#Threads

Static separation
strong isolation

Non-blocking data structures and transactional memory 03/11/2011 274

Granularity

Distributed, large-scale
atomic actions

Composable shared
memory data structures

“Leaf” shared memory
data structures

General purpose atomic
actions in a program

Non-blocking data structures and transactional memory 03/11/2011 275

Programming abstraction

Lock elision

The program’s semantics is
defined using locks. TM is used
as an implementation
mechanism.

Speculation

Semantics defined by speculative
execution, commit, etc. (either
implicitly, or explicitly)

Atomic

Semantics defined by atomic
execution (e.g. “atomic { X }”).
Speculation, if used, is
abstracted by the
implementation.

Non-blocking data structures and transactional memory 03/11/2011 276

Purpose

Makes software easier
to develop /

verify /
maintain / …

Faster: better than
alternatives,

irrespective of
complexity

Non-blocking data structures and transactional memory 03/11/2011 277

Design points that I like

HW DCAS / 3-CAS / …
Granularity: leaf data structures

Abstraction: atomic multi-word CAS
Purpose: faster

HTM with limited guarantees (~ASF)
Granularity: leaf data structures
Abstraction: short transactions

Purpose: faster

Static separation (e.g., STM-Haskell)
Granularity: composable data structures

Abstraction: atomic actions
Purpose: easier, decent perf

Non-blocking data structures and transactional memory 03/11/2011 278

Design points I am sceptical about

Speculative lock elision on general-purpose s/w

“atomic” blocks over normal data in a high-level language
(C#/Java)

(prove me wrong, I would like either of these to work!)

Non-blocking data structures and transactional memory 03/11/2011 279

What do we care about?

Non-blocking data structures and transactional memory 280

How fast
is it?

Is it correct? How easy is it
to write?

When
can I

use it?

How does it
scale?

03/11/2011

©2011 Microsoft Corporation. All rights reserved.
This material is provided for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS
SUMMARY. Microsoft is a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.

www.research.microsoft.com

