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Course overview 

 Building shared memory data structures 

 Lists, queues, hashtables, … 

 Why? 

 Used directly by applications (e.g., in C/C++, Java, C#, …) 

 Used in the language runtime system (e.g., management of 
work, implementations of message passing, …) 

 Used in traditional operating systems (e.g., synchronization 
between top/bottom-half code) 

 Why not? 

 Don’t think of “threads + shared data structures” as a 
default/good/complete/desirable programming model 

 It’s better to have shared memory and not need it… 

 
Non-blocking data structures and transactional memory 2 03/11/2011 



What do we care about? 
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How fast 
is it? 

Is it correct? How easy is it 
to write? 

When  
can I  

use it? 

How does it 
scale? 

What does it mean  
to be correct? 

e.g., if multiple concurrent 
threads are using iterators on a 

shared data structure at the 
same time? 
Does it matter?  Who is the 

target audience?  How much 
effort can they put into it?  Is 

implementing a data structure 
an undergrad programming 

exercise?  …or a research 
paper? 

Between threads in the same 
process?  Between processes 
sharing memory?  Within an 

interrupt handler?  
With/without some kind of 
runtime system support? 

Suppose I have a sequential 
implementation (no 

concurrency control at all): is 
the new implementation 5% 

slower?  5x slower? 100x 
slower? 

How does performance change 
as we increase the number of 

threads?  When does the 
implementation add or avoid 

synchronization? 
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What should we do? 

1. Be explicit about goals and trade-offs 

 A benefit in one dimension often has costs in another 

 Does a perf increase prevent a data structure being used in 
some particular setting? 

 Does a technique to make something easier to write make the 
implementation slower? 

 Do we care?  It depends on the setting 

2. Remember, parallel programming is rarely a recreational 
activity 

 The ultimate goal is to increase perf (time, or resources used) 

 Does an implementation scale well enough to out-perform a 
good sequential implementation? 
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Suggested reading 

 “The art of multiprocessor programming”, Herlihy & Shavit 
– excellent coverage of shared memory data structures, 
from both practical and theoretical perspectives 

 “Transactional memory, 2nd edition”, Harris, Larus, Rajwar – 
recently revamped survey of TM work, with 350+ references 

 “NOrec: streamlining STM by abolishing ownership 
records”, Dalessandro, Spear, Scott, PPoPP 2010 

 “Simplifying concurrent algorithms by exploiting 
transactional memory”, Dice, Lev, Marathe, Moir, 
Nussbaum, Olszewski, SPAA 2010 
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System model 
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Shared physical memory 

Cache(s) Cache(s) Cache(s) 

H/W 
threads 

H/W 
threads 

Multiple h/w threads (whether 
separate cores, or SMT) 

Shared physical memory with 
hardware cache coherence 

S/W threads multiplexed over 
h/w threads under OS control 

03/11/2011 



 
 
 

Multi-threaded 
single core 

ALU 

ALU 

Main memory 

1 

2 

3 

4 

5 

... 

Multi-threaded h/w 

1 

2 

3 

4 

5 

... 

1 

2 

3 

4 

5 

... 

 Multiple threads in a workload 
with: 

- Poor spatial locality 

- Frequent memory accesses 

L2 cache (4MB) 

L1 cache (64KB) 
... 

Non-blocking data structures and transactional memory 8 03/11/2011 



 
 
 

Multi-threaded 
single core 

Main memory 

1 

2 

3 

4 

5 

... 

Multi-threaded h/w 

1 

2 

3 

4 

5 

... 

 Multiple threads with synergistic 
resource needs 

 

L2 cache (4MB) 

L1 cache (64KB) 

  

  ALU 

ALU 

Non-blocking data structures and transactional memory 9 03/11/2011 



Core 
 
 

1 

2 

3 

4 

5 

... 

Multi-core h/w – common L2 

1 

2 

3 

4 

5 

... 
L2 cache 

Core 
 
 

Main memory 

L1 cache L1 cache 

ALU 

ALU 

ALU 

ALU 

Non-blocking data structures and transactional memory 10 03/11/2011 



Single-
threaded 

core 

1 

2 

3 

4 

5 

... 

Multi-core h/w – common L2 

1 

2 

3 

4 

5 

... 
L2 cache 

Single-
threaded 

core 

Main memory 

L1 cache L1 cache 

Read 

Non-blocking data structures and transactional memory 11 03/11/2011 



Single-
threaded 

core 

1 

2 

3 

4 

5 

... 

Multi-core h/w – common L2 

1 

2 

3 

4 

5 

... 
L2 cache 

Single-
threaded 

core 

Main memory 

L1 cache L1 cache 

S 

Read 

Non-blocking data structures and transactional memory 12 03/11/2011 



Single-
threaded 

core 

1 

2 

3 

4 

5 

... 

Multi-core h/w – common L2 

1 

2 

3 

4 

5 

... 
L2 cache 

Single-
threaded 

core 

Main memory 

L1 cache L1 cache 

S 

S 

Read 

Non-blocking data structures and transactional memory 13 03/11/2011 



Single-
threaded 

core 

1 

2 

3 

4 

5 

... 

Multi-core h/w – common L2 

1 

2 

3 

4 

5 

... 
L2 cache 

Single-
threaded 

core 

Main memory 

L1 cache L1 cache 

S 

S 

Read 

Non-blocking data structures and transactional memory 14 03/11/2011 



Single-
threaded 

core 

1 

2 

3 

4 

5 

... 

Multi-core h/w – common L2 

1 

2 

3 

4 

5 

... 
L2 cache 

Single-
threaded 

core 

Main memory 

L1 cache L1 cache 

S 

S S 

Read 

Non-blocking data structures and transactional memory 15 03/11/2011 



Single-
threaded 

core 

1 

2 

3 

4 

5 

... 

Multi-core h/w – common L2 

1 

2 

3 

4 

5 

... 
L2 cache 

Single-
threaded 

core 

Main memory 

L1 cache L1 cache 

S 

S S 

Write 

Non-blocking data structures and transactional memory 16 03/11/2011 



Single-
threaded 

core 

1 

2 

3 

4 

5 

... 

Multi-core h/w – common L2 

1 

2 

3 

4 

5 

... 
L2 cache 

Single-
threaded 

core 

Main memory 

L1 cache L1 cache 

S 

... S 

Write 

Non-blocking data structures and transactional memory 17 03/11/2011 



Single-
threaded 

core 

1 

2 

3 

4 

5 

... 

Multi-core h/w – common L2 

1 

2 

3 

4 

5 

... 
L2 cache 

Single-
threaded 

core 

Main memory 

L1 cache L1 cache 

... 

... S 

Write 

Non-blocking data structures and transactional memory 18 03/11/2011 



Single-
threaded 

core 

1 

2 

3 

4 

5 

... 

Multi-core h/w – common L2 

1 

2 

3 

4 

5 

... 
L2 cache 

Single-
threaded 

core 

Main memory 

L1 cache L1 cache 

... 

... I 

Write 

Non-blocking data structures and transactional memory 19 03/11/2011 



Single-
threaded 

core 

1 

2 

3 

4 

5 

... 

Multi-core h/w – common L2 

1 

2 

3 

4 

5 

... 
L2 cache 

Single-
threaded 

core 

Main memory 

L1 cache L1 cache 

E 

M I 

Write 

Non-blocking data structures and transactional memory 20 03/11/2011 



Single-
threaded 

core 

1 

2 

3 

4 

5 

... 

Multi-core h/w – common L2 

1 

2 

3 

4 

5 

... 
L2 cache 

Single-
threaded 

core 

Main memory 

L1 cache L1 cache 

E 

M I 

Write 

Non-blocking data structures and transactional memory 21 03/11/2011 



Single-
threaded 

core 

1 

2 

3 

4 

5 

... 

Multi-core h/w – common L2 

1 

2 

3 

4 

5 

... 
L2 cache 

Single-
threaded 

core 

Main memory 

L1 cache L1 cache 

E 

M ... 

Write 

Non-blocking data structures and transactional memory 22 03/11/2011 



Single-
threaded 

core 

1 

2 

3 

4 

5 

... 

Multi-core h/w – common L2 

1 

2 

3 

4 

5 

... 
L2 cache 

Single-
threaded 

core 

Main memory 

L1 cache L1 cache 

... 

M ... 

Write 

Non-blocking data structures and transactional memory 23 03/11/2011 



Single-
threaded 

core 

1 

2 

3 

4 

5 

... 

Multi-core h/w – common L2 

1 

2 

3 

4 

5 

... 
L2 cache 

Single-
threaded 

core 

Main memory 

L1 cache L1 cache 

M 

I ... 

Write 

Non-blocking data structures and transactional memory 24 03/11/2011 



Single-
threaded 

core 

1 

2 

3 

4 

5 

... 

Multi-core h/w – common L2 

1 

2 

3 

4 

5 

... 
L2 cache 

Single-
threaded 

core 

Main memory 

L1 cache L1 cache I E 

Write 

M 

Non-blocking data structures and transactional memory 25 03/11/2011 



Single-
threaded 

core 

1 

2 

3 

4 

5 

... 

Multi-core h/w – separate L2 

1 

2 

3 

4 

5 

... 

L1 cache 

Single-
threaded 

core 

L1 cache 

Main memory 

L2 cache L2 cache 

Non-blocking data structures and transactional memory 26 03/11/2011 



1 

2 

3 

4 

5 

... 

Multi-core h/w – additional L3 

1 

2 

3 

4 

5 

... 

Main memory 

Single-
threaded 

core 

L1 cache 

Single-
threaded 

core 

L1 cache 

L2 cache L2 cache 

L3 cache 

Non-blocking data structures and transactional memory 27 03/11/2011 



1 

2 

3 

4 

5 

... 

Multi-threaded multi-core h/w 

1 

2 

3 

4 

5 

... 

Main memory 

1 

2 

3 

4 

5 

... 

1 

2 

3 

4 

5 

... 

Single-
threaded 

core 

L1 cache 

Single-
threaded 

core 

L1 cache 

L2 cache L2 cache 

L3 cache 

Non-blocking data structures and transactional memory 28 03/11/2011 



SMP multiprocessor 

Single-
threaded 

core 

1 

2 

3 

4 

5 
... 

1 

2 

3 

4 

5 
... 

L1 cache 

Single-
threaded 

core 

L1 cache 

L2 cache L2 cache 

Main memory 

Non-blocking data structures and transactional memory 29 03/11/2011 



Interconnect 
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Three kinds of parallel hardware 

 Multi-threaded cores 

 Increase utilization of a core or memory b/w 

 Peak ops/cycle fixed 

 Multiple cores 

 Increase ops/cycle 

 Don’t necessarily scale caches and off-chip resources 
proportionately 

 Multi-processor machines 

 Increase ops/cycle 

 Often scale cache & memory capacities and b/w 
proportionately 
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Course overview: structure 

 Building locks 

 Lock-free programming  

 Transactional memory 
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Test and set (pseudo-code) 

bool testAndSet(bool *b) { 

  bool result; 

  atomic { 

    result = *b; 

    *b = TRUE; 

  } 

  return result; 

} 

Pointer to a location 
holding a boolean 

value (TRUE/FALSE) 

Read the current 
contents of the 

location b points to… 

…set the contents of 
*b to TRUE 
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Test and set 

time 

• Suppose two threads use it at once 

Thread 2: 

Thread 1: 

testAndSet(b)->true 

testAndSet(b)->false 
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FALSE 
lock: 

void acquireLock(bool *lock) { 
    while (testAndSet(lock)) { 
       /* Nothing */ 
    } 
} 

void releaseLock(bool *lock) { 
   *lock = FALSE; 
} 

Test and set lock 

FALSE => lock available 
TRUE => lock held 

Each call tries to acquire 
the lock, returning TRUE 

if it is already held 

NB: all this is pseudo-
code, assuming SC 

memory 
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Test and set lock 

FALSE 
lock: 

void acquireLock(bool *lock) { 
    while (testAndSet(lock)) { 
       /* Nothing */ 
    } 
} 

void releaseLock(bool *lock) { 
   *lock = FALSE; 
} 

Thread 1 

TRUE 

Thread 2 
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What are the problems here? 

testAndSet 
implementation 

causes contention 
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Does this still happen in 
practice?  Do modern 

CPUs avoid fetching the 
line in exclusive mode 

on  failing TAS? 



What are the problems here? 

Spinning may waste 
resources while 

waiting 

No control over 
locking policy 

testAndSet 
implementation 

causes contention 

Only supports mutual 
exclusion: not reader-

writer locking 
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General problem 

 No logical conflict between two failed lock acquires 

 Cache protocol introduces a physical conflict 

 For a good algorithm: only introduce physical conflicts if a 
logical conflict occurs 

 In a lock: successful lock-acquire & failed lock-acquire 

 In a set: successful insert(10) & failed insert(10) 
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Course overview: structure 

 Building locks 

 Test-and-set locks 

 TATAS locks & backoff 

 Queue-based locks 

 Hierarchical locks 

 Reader-writer locks 

 Lock-free programming  

 Transactional memory 
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Test and test and set lock 

FALSE 
lock: 

void acquireLock(bool *lock) { 

  do { 

    while (*lock) { }          

  } while (testAndSet(lock)); 

} 

void releaseLock(bool *lock) { 

   *lock = FALSE; 

} 

FALSE => lock available 
TRUE => lock held 

Spin while the lock is 
held… only do 

testAndSet when it is 
clear 
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Performance 

# Threads 

T
im

e 

Ideal 

TATAS 
TAS 

Based on Fig 7.4, Herlihy & Shavit, “The Art of Multiprocessor Programming” 
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Stampedes 

TRUE 
lock: 

void acquireLock(bool *lock) { 

  do { 

    while (*lock) { }          

  } while (testAndSet(lock)); 

} 

void releaseLock(bool *lock) { 

   *lock = FALSE; 

} 
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Back-off algorithms 

1. Start by spinning, watching the lock for c 

2. If the lock does not become free,  
spin locally for s (without watching the lock) 

What should “c” be? 
What should “s” be? 
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Time spent waiting “c” 

 Lower values: 

 Less time to build up a set of threads that will 
stampede 

 Less contention in the memory system, if 
remote reads incur a cost 

 Risk of a delay in noticing when the lock 
becomes free 

 Higher values: 

 Less likelihood of a delay between a lock being 
released and a waiting thread noticing 
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Local spinning time “s” 

 Lower values: 

 More responsive to the lock becoming available 

 Higher values: 

 If the lock doesn’t become available then the 
thread makes fewer accesses to the shared 
variable 
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Methodical approach 

 For a given workload and performance model: 

 What is the best that an oracle could do (i.e. given 
perfect knowledge of lock demands)? 

 How does a practical algorithm compare with this? 

 Look for an algorithm with a bound between its 
performance and that of the oracle 

 “Competitive spinning” 
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Rule of thumb 

 Spin for a duration that’s comparable with the 
shortest back-off interval 

 Exponentially increase the per-thread back-off 
interval (resetting it when the lock is acquired) 

 Use a maximum back-off interval that is large 
enough that waiting threads don’t interfere with 
the other threads’ performance 
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Course overview: structure 
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 Lock-free programming  

 Transactional memory 
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Queue-based locks 

 Lock holders queue up: immediately provides FCFS 
behavior 

 Each spins locally on a flag in their queue entry: no 
remote memory accesses while waiting 

 A lock release wakes the next thread directly: no 
stampede 
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MCS locks 

lock: 

FALSE FALSE FALSE 

QNode 1 QNode 2 QNode 3 

Head Tail 

Local flag 

Lock 
identifies tail 
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MCS lock acquire 

lock: 

FALSE 
void acquireMCS(mcs *lock, QNode *qn) { 

  QNode *prev; 

  qn->flag = false; 

  qn->next = NULL; 

  while (true) { 

     prev = lock->tail; 

     if (CAS(&lock->tail, prev, qn)) break; 

  } 

  if (prev != NULL) { 

    prev->next = qn; 

    while (!qn->flag) { } // Spin 

} } 

Find previous 
tail node 

Atomically replace 
“prev” with “qn” in 

the lock itself 

Add link within 
the queue 

Non-blocking data structures and transactional memory 03/11/2011 57 



MCS lock release 

lock: 

FALSE 

void releaseMCS(mcs *lock, QNode *qn) { 

  if (lock->tail = qn) { 

     if (CAS(&lock->tail, qn, NULL)) return; 

  } 

  while (qn->next == NULL) { } 

  qn->next->flag = TRUE; 

} 

TRUE 
qn: 

If we were at the tail 
then remove us 

Wait for next lock holder 
to announce themselves; 

signal them 
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Hierarchical locks 

Core 1 Core 2 

Core 3 Core 4 

Shared L2 cache 

Core 5 Core 6 

Core 7 Core 8 

Shared L2 cache 

Memory bus 

Memory 
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Hierarchical locks 

Core 1 Core 2 

Core 3 Core 4 

Shared L2 cache 

Core 5 Core 6 

Core 7 Core 8 

Shared L2 cache 

Memory bus 

Memory 

Pass lock 
“nearby” if 

possible 

Call this a 
“cluster” of 

cores 
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Hierarchical TATAS with backoff 

-1 

lock: 

void acquireLock(bool *lock) { 

  do { 

    holder = *lock; 

    if (holder != -1) { 

       if (holder == MY_CLUSTER) { 

          BackOff(SHORT); 

       } else { 

          BackOff(LONG); 

       } 

    }  

  } while (!CAS(lock, -1, MY_CLUSTER)); 

} 

-1 => lock available 
n => lock held by cluster n 
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Hierarchical locks 

Core 1 Core 2 

Core 3 Core 4 

Shared L2 cache 

Core 5 Core 6 

Core 7 Core 8 

Shared L2 cache 

Memory bus 

Memory 

Avoid this cycle 
repeating, 

starving 5 & 7… 
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Hierarchical CLH queue lock 

Local queue: 

Lock 
identifies tail 

TRUE 

myNode myPred 

NULL 

Flag => successor 
must wait 
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Thread private variables 
represent links implicitly 

Based on hierarchical CLH lock of  
Luchangco, Nussbaum, Shavit 



Hierarchical CLH queue lock 

Local queue: 

Lock 
identifies tail 

TRUE 

myNode myPred 

TRUE 

myNode myPred 

NULL 

Flag => successor 
must wait 
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Hierarchical CLH queue lock 

Local queue: 

TRUE 

myNode myPred 

TRUE 

myNode myPred 

NULL 

myNode myPred 

TRUE 

NULL 
Current lock 

holder 

Cluster master: sees lock is held, so 
waits a “combining delay” 
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Hierarchical CLH queue lock 

Local queue: 

TRUE 

myNode myPred 

TRUE 

myNode myPred 

Global queue: myNode myPred 

TRUE 

NULL 
Splice whole list to 
tail of global queue 

Set “Tail When Spliced” flag: next 
local queue entry will be a new 

cluster master 
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Course overview: structure 

 Building locks 

 Test-and-set locks 

 TATAS locks & backoff 

 Queue-based locks 

 Hierarchical locks 

 Reader-writer locks 

 Lock-free programming  

 Transactional memory 
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Reader-writer locks (TATAS-like) 
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0 

lock: 

void acquireWrite(int *lock) { 

    do { 

       if ((*lock == 0) && 

           (CAS(lock, 0, -1))) { 

        break; 

    } while (1); 

} 

void releaseWrite(int *lock) { 

   *lock = 0; 

} 

-1 => Locked for write 

0 => Lock available 

+n => Locked by n readers 

void acquireRead(int *lock) { 

    do { 

        int oldVal = *lock; 

        if ((oldVal >= 0) && 

            (CAS(lock, oldVal, oldVal+1))) {  

               break; 

    } } while (1); 

} 

void releaseRead(int *lock) { 

   FADD(lock, -1); // Atomic fetch-and-add 

} 
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The problem with readers 
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int readCount() { 

    acquireRead(lock); 

    int result = count; 

    releaseRead(lock); 

    return result; 

} 

void incrementCount() { 

    acquireWrite(lock); 

    count++; 

    releaseWrite(lock); 

} 

 Each acquireRead fetches the cache line holding the lock in 
exclusive mode 

 Again: acquireRead are not logically conflicting, but this 
introduces a physical confliect 

 The time spent managing the lock is likely to vastly 
dominate the actual time looking at the counter 

 Many workloads are read-mostly… 
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Keeping readers separate 

Non-blocking data structures and transactional memory 72 

Owner Flag-1 Flag-2 Flag-3 Flag-N 

Acquire write on core i:  

CAS the owner from 0 to i 

…then spin until all of the 

flags are clear 

…then check that the owner is 0  

(if not then clear own flag and wait) 

Acquire read on core i: set 

own flag to true… 
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Keeping readers separate 

 With care, readers do not need to synchronize with other 
readers 

 Extend the flags to be whole cache lines  

 Pack multiple locks flags for the same thread onto the same 
line  

 Exploit the cache structure in the machine: Dice & Shavit’s 
TLRW byte-lock 

 If “N” threads is very large.. 

 Dedicate the flags to specific important threads 

 Replace the flags with ordinary multi-reader locks 
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Read-Copy-Update (RCU) 
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 Use locking to serialize updates (typically) 
 …but allow readers to operate concurrently with updates 

 Ensure that readers don’t go wrong if they access data  
mid-update 
 Have data structures reachable via a single root pointer: 

update the root pointer rather than updating the data 
structure in-place 

 Ensure that updates don’t affect readers – e.g., initializing 
nodes before splicing them into a list, and retaining “next” 
pointers in deleted nodes 

 Exact semantics offered can be subtle (ongoing research 
direction) 

 Memory management problems common with lock-free 
data structures  
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What do we care about? 
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How fast 
is it? 

Is it correct? How easy is it 
to write? 

When  
can I  

use it? 

How does it 
scale? 
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Course overview: structure 

 Building locks 

 Lock-free programming  

 What’s wrong with locks? 

 Lists without locks, linearizability 

 Lock-free progress 

 Hashtables 

 Skiplists 

 Queues 

 Reducing contention 

 Memory management 

 Transactional memory 
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Ease of use Performance 

Applicability Deadlock 

Difficult to 
get right 

Inhibit 
scaling 

Convoy 
problems 

Cost of some 
implementations 

Non-
composability 

Priority 
inversion 

Blocking 
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What do people say is wrong with locks? 



Course overview: structure 

 Building locks 

 Lock-free programming  

 What’s wrong with locks? 

 Lists without locks, linearizability 

 Lock-free progress 

 Hashtables 

 Skiplists 

 Queues 

 Reducing contention 

 Memory management 

 Transactional memory 
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What we’re building 

 A set of integers, represented by a sorted linked list 
 

 find(int) -> bool 

 insert(int) -> bool 

 delete(int) -> bool 
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The building blocks 

 read(addr) -> val 

 write(addr, val) 

 cas(addr, old-val, new-val) -> bool 

 

 (I’ll assume that memory is sequentially consistent, and 
ignore allocation / de-allocation for the moment) 
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Searching a sorted list 

 find(20): 

H 10 30 T 

20? 

 find(20) -> false 
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Inserting an item with CAS 

 insert(20): 

 

H 10 30 T 

20 

30  20 
 

 insert(20) -> true 
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Inserting an item with CAS 

 insert(20): 

 

H 10 30 T 

20 

30  20 

25 

30  25 

 

 

• insert(25): 
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Searching and finding together 

 find(20) 

H 10 30 T 

 -> false 

 

20 

20? 

• insert(20)  -> true 

 

This thread saw 20 
was not in the set... 

...but this thread 
succeeded in putting 

it in! 

• Is this a correct implementation of a set? 

• Should the programmer be surprised if this happens? 

• What about more complicated mixes of operations? 

Non-blocking data structures and transactional memory 03/11/2011 84 



Correctness criteria 

“If it finds like a set, 
inserts like a set, and 

deletes like a set, then 
let’s call it a set... 
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Sequential specification 

 Ignore the list for the moment, and focus on the set: 

find(int) -> bool 

insert(int) -> bool 

delete(int) -> bool 

10, 20, 30 

10, 15, 20, 30 

10, 15, 30 10, 15, 20, 30 

insert(15)->true 

insert(20)->false delete(20)->true 

Sequential:  we’re only 
considering one operation 

on the set at a time 

Specification:  we’re saying what 
a set does, not what a list does, 

or how it looks in memory 
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Sequential specification 

deleteany() -> int 10, 20, 30 

deleteany()->10 

20, 30 

deleteany()->20 

10, 30 

This is still a sequential spec... just 
not a deterministic one 
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System model 

Shared object (e.g. “set”) 

find/insert/delete 

Thread 1 Thread n ... 
Threads make 

invocations and receive 
responses from the set  

(~method calls/returns) 

Primitive objects (e.g. 
“memory location”) 

read/write/CAS ...the set is 
implemented by 

making invocations and 
responses on memory 
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High level: sequential history 

time 

T
1: in

sert(10
) 

->
 t

ru
e

 

T
2

: in
sert(20

) 

->
 t

ru
e

 

T
1: fin

d
(15) 

->
 f

al
se

 

• No overlapping invocations:  

10 10, 20 10, 20 
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High level: concurrent history 

time 

• Allow overlapping invocations:  

Thread 2: 

Thread 1: 

insert(10)->true insert(20)->true 

find(20)->false 
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Linearizability 

• Is there a correct sequential history: 

• Same results as the concurrent one 

• Consistent with the timing of the 
invocations/responses? 
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Example: linearizable 

time 

Thread 2: 

Thread 1: 

insert(10)->true insert(20)->true 

find(20)->false 
A valid sequential 

history: this concurrent 
execution is OK 
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Example: linearizable 

time 

Thread 2: 

Thread 1: 

insert(10)->true delete(10)->true 

find(10)->false 
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A valid sequential 
history: this concurrent 

execution is OK 



Example: not linearizable 

time 

Thread 2: 

Thread 1: 

insert(10)->true insert(10)->false 

delete(10)->true 
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Returning to our example 

• find(20) 

H 10 30 T 

   -> false 

 

20 

20? 

• insert(20)  -> true 

 

Thread 2: 

Thread 1: 

insert(20)->true 

find(20)->false 

A valid sequential history: 
this concurrent execution 

is OK 
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Recurring technique 

 For updates: 

 Perform an essential step of an operation by a single atomic 
instruction 

 E.g. CAS to insert an item into a list 

 This forms a “linearization point” 

 For reads:  

 Identify a point during the operation’s execution when the 
result is valid  

 Not always a specific instruction 

Non-blocking data structures and transactional memory 03/11/2011 96 



Correctness (informal) 
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10, 20 

H 10 20 T 

15 

10, 15, 
20 

Abstraction 
function maps the 

concrete list to 
the abstract set’s 

contents 
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Correctness (informal) 
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time 

L
o

o
ku

p
(20

) 

Tru
e

 

In
sert(15) 

Tru
e

 

High-level operation 

Primitive step 
(read/write/CAS) 

H H->10 10->20 H H->10 New CAS  
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Correctness (informal) 
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time 

L
o

o
ku

p
(20

) 

Tru
e

 

In
sert(15) 

Tru
e

 

H H->10 10->20 H H->10 New CAS  

A left mover commutes with 
operations immediately before it 

A right mover commutes with 
operations immediately after it 

1. Show operations before linearization  
point are right movers 

2. Show operations after linearization point 
 are left movers 

3. Show linearization point updates abstract state  
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Correctness (informal) 
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time 

L
o

o
ku

p
(20

) 

Tru
e

 

In
sert(15) 

Tru
e

 

H H->10 10->20 H H->10 New CAS  

A left mover commutes with 
operations immediately before it 

A right mover commutes with 
operations immediately after it 

Move these right 
over the read of the 

10->20 link 
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Adding “delete” 

 First attempt: just use CAS 
delete(10): 

 

H 10 30 T 

10  30  
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Delete and insert: 

 delete(10) & insert(20): 

 

H 10 30 T 

10  30  

20 

30  20  

 
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Logical vs physical deletion 

H 10 30 T 

20 

10  30 
 

30  30X 
 

 

30  20  

 
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 Use a ‘spare’ bit to indicate logically deleted nodes: 



Delete-greater-than-or-equal 

 DeleteGE(int x) -> int 

 Remove “x”, or next element above “x” 

H 10 30 T 

• DeleteGE(20) -> 30 

H 10 T 
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Does this work: DeleteGE(20) 

H 10 30 T 

1. Walk down the list, as in a 
normal delete, find 30 as 

next-after-20 

2. Do the deletion as normal: 
set the mark bit in 30, then 

physically unlink 
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Delete-greater-than-or-equal 

time 

Thread 2: 

Thread 1: 

insert(25)->true insert(30)->false 

deleteGE(20)->30 

A B 

C 

A must be after C 
(otherwise C should 

have returned 15) 

C must be after B 
(otherwise B should 

have succeeded) 

B must be after A 
(thread order) 
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How to realise this is wrong 

 See operation which determines result 

 Consider a delay at that point 

 Is the result still valid? 

 Delayed read: is the memory still accessible (more of this next 
week) 

 Delayed write: is the write still correct to perform? 

 Delayed CAS: does the value checked by the CAS determine 
the result? 
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Course overview: structure 

 Building locks 

 Lock-free programming  

 What’s wrong with locks? 

 Lists without locks, linearizability 

 Lock-free progress 

 Hashtables 

 Skiplists 

 Queues 

 Reducing contention 

 Memory management 

 Transactional memory 
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static volatile int MY_LIST = 0; 

 

bool find(int key) { 

 

  // Wait until list available 

  while (CAS(&MY_LIST, 0, 1) == 1) {  

  } 

 

  ...  

 

  // Release list 

  MY_LIST = 0; 

} 

OK, we’re not calling 
pthread_mutex_lock... but 
we’re essentially doing the 

same thing 
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Progress: is this a good “lock-free” list? 



“Lock-free” 

 A specific kind of non-blocking progress guarantee 

 Precludes the use of typical locks 

 From libraries 

 Or “hand rolled” 

 Often mis-used informally as a synonym for 

 Free from calls to a locking function 

 Fast 

 Scalable 
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time 

Wait-free 

 A thread finishes its own operation if it continues executing steps 

S
tart 

F
in

ish
 

F
in

ish
 

S
tart 

F
in

ish
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Implementing wait-free algorithms 

 General construction techniques exist (“universal 
constructions”) 

 In practice, often used in hybrid settings (e.g., wait-free 
find) 

 Queuing and helping strategies: everyone ensures oldest 
operation makes progress 

 Niches, e.g., bounded-wait-free in real-time systems 
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time 

Lock-free 

 Some thread finishes its operation if threads continue taking 
steps 

S
tart 

S
tart 

F
in

ish
 

F
in

ish
 

S
tart 

S
tart 

F
in

ish
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A (poor) lock-free counter 
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int getNext(int *counter) { 
   while (true) { 
       int result = *counter; 
       if (CAS(counter, result, result+1)) { 
           return result; 
       } 
   } 
} 

Not wait free: no 
guarantee that any 

particular thread will 
succeed 
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Implementing lock-free algorithms 

 Ensure that one thread (A) only has to repeat work if some 
other thread (B) has made “real progress” 

 e.g., insert(x) starts again if it finds that a conflicting update 
has occurred 

 Use helping to let one thread finish another’s work 

 e.g., physically deleting a node on its behalf 
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time 

Obstruction-free 

 A thread finishes its own operation if it runs in isolation 

S
tart 

S
tart 

F
in

ish
 Interference here can prevent 

any operation finishing 
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A (poor) obstruction-free counter 
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int getNext(int *counter) { 
   while (true) { 
       int result = LL(counter); 
       if (SC(counter, result+1)) { 
           return result; 
       } 
   } 
} 

Weak load-linked (LL) 
store-conditional (SC): LL 
on one thread will prevent 
an SC on another thread 

succeeding 
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Building obstruction-free algorithms 

 Ensure that none of the low-level steps leave a data 
structure “broken” 

 On detecting a conflict: 

 Help the other party finish 

 Get the other party out of the way 

 Use contention management to reduce likelihood of live-
lock  
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Course overview: structure 

 Building locks 

 Lock-free programming  

 What’s wrong with locks? 

 Lists without locks, linearizability 

 Lock-free progress 

 Hashtables 

 Skiplists 

 Queues 

 Reducing contention 

 Memory management 

 Transactional memory 
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Hash tables 

0 16 24 

5 

3 11 

Bucket array: 
8 entries in 

example 

List of items with  
hash val modulo 8 == 0 
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Hash tables: Contains(16) 

0 16 24 

5 

3 11 

1. Hash 16.  
Use bucket 0 

2. Use normal 
list operations 
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Hash tables: Delete(11) 

0 16 24 

5 

3 11 

1. Hash 11.  
Use bucket 3 

2. Use normal 
list operations 
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Lessons from this hashtable 

 Informal correctness argument: 

 Operations on different buckets don’t conflict: no extra 
concurrency control needed 

 Operations appear to occur atomically at the point where the 
underlying list operation occurs 

 (Not specific to lock-free lists: could use whole-table lock, 
or per-list locks, etc.) 
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Practical difficulties: 

 Key-value mapping 

 Population count 

 Iteration 

 Resizing the bucket array 

Options to consider when  
implementing a “difficult” operation: 

 
 
 
 
 
 
 
 
 

Relax the semantics  
(e.g., non-exact count, or non-linearizable count) 

Fall back to a simple implementation if permitted 
(e.g., lock the whole table for resize) 

Design a clever implementation 
(e.g., split-ordered lists) 

Use a different data structure 
(e.g., skip lists) 
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Course overview: structure 

 Building locks 

 Lock-free programming  

 What’s wrong with locks? 

 Lists without locks, linearizability 

 Lock-free progress 

 Hashtables 

 Skiplists 

 Queues 

 Reducing contention 

 Memory management 

 Transactional memory 
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Skip lists 

5 11 16 24 0 3 

Each node is a “tower” of 
random size.  High levels 

skip over lower levels 

All items in a single list: 
this defines the set’s 

contents 
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Skip lists: Delete(11) 

5 11 16 24 0 3 

Principle: lowest list is the truth 

1. Find “11” node, mark it 
logically deleted 

2. Link by link remove “11” 
from the towers 

3. Finally, remove “11” 
from lowest list 
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Course overview: structure 

 Building locks 

 Lock-free programming  

 What’s wrong with locks? 

 Lists without locks, linearizability 

 Lock-free progress 

 Hashtables 

 Skiplists 

 Queues 

 Reducing contention 

 Memory management 

 Transactional memory 
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Work stealing queues 

PushBottom(Item) 
PopBottom() -> Item 

PopTop() -> Item 

Add/remove items, 
PopBottom must return 
an item if the queue is 

not empty 

Try to steal an item.  
May sometimes return 

nothing “spuriously” 1. Semantics relaxed for “PopTop” 

2. Restriction: only one thread ever calls “Push/PopBottom” 

3. Implementation costs skewed toward “PopTop” complex 
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0 

1 

2 

3 

4 

Bounded deque 

Top / V0 

Bottom “Bottom” is a normal 
integer, updated only by 

the local end of the queue 

Items between the 
indices are present in the 

queue “Top” has a version 
number, updated 
atomically with it 
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Arora, Blumofe, Plaxton 



0 

1 

2 

3 

4 

Bounded deque 

Top / V0 

Bottom 

void pushBottom(Item i){ 

   tasks[bottom] = i; 

   bottom++; 

} 
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0 

1 

2 

3 

4 

Bounded deque 

Top / V0 

Bottom 

void pushBottom(Item i){ 

   tasks[bottom] = i; 

   bottom++; 

} 

Item popBottom() { 

  if (bottom ==0) return null; 

  bottom--;  

  result = tasks[bottom]; 

  <tmp_top,tmp_v> = <top,version>; 

  if (bottom > tmp_top) return result; 

  …. 

  return null; 

} 
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Top / V1 

0 

1 

2 

3 

4 

Bounded deque 

Top / V0 

Bottom 

void pushBottom(Item i){ 

   tasks[bottom] = i; 

   bottom++; 

} 

Item popBottom() { 

  if (bottom ==0) return null; 

  bottom--;  

  result = tasks[bottom]; 

  <tmp_top,tmp_v> = <top,version>; 

  if (bottom > tmp_top) return result; 

  …. 

  return null; 

} 

if (bottom==top) { 

  bottom = 0; 

  if (CAS( &<top,version>, 

 <tmp_top,tmp_v>, 

 <0,v+1>)) { 

    return result; 

  } 

} 

<top,version>=<0,v+1> 

Item popTop() { 

  if (bottom <= top) return null; 

  <tmp_top,tmp_v> = <top, version>; 

  result = tasks[tmp_top]; 

  if (CAS( &<top,version>, 

 <tmp_top, tmp_v>, 

 <tmp_top+1, v+1>)) { 

    return result; 

  } 

  return null; 

} 
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0 

1 

2 

3 

4 

Bounded deque 

Top / V0 

Bottom 

void pushBottom(Item i){ 

   tasks[bottom] = i; 

   bottom++; 

} 

Item popBottom() { 

  if (bottom ==0) return null; 

  bottom--;  

  result = tasks[bottom]; 

  <tmp_top,tmp_v> = <top,version>; 

  if (bottom > tmp_top) return result; 

  …. 

  return null; 

} 

if (bottom==top) { 

  bottom = 0; 

  if (CAS( &<top,version>, 

 <tmp_top,tmp_v>, 

 <0,v+1>)) { 

    return result; 

  } 

} 

<top,version>=<0,v+1> 

Item popTop() { 

  if (bottom <= top) return null; 

  <tmp_top,tmp_v> = <top, version>; 

  result = tasks[tmp_top]; 

  if (CAS( &<top,version>, 

 <tmp_top, tmp_v>, 

 <tmp_top+1, v+1>)) { 

    return result; 

  } 

  return null; 

} 
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ABA problems 

0 

1 

2 

3 

4 

Top 

Item popTop() { 

  if (bottom <= top) return null; 

  tmp_top = top; 

  result = tasks[tmp_top]; 

  if (CAS(&top, top, top+1)) { 

      return result; 

  } 

  return null; 

} 

AAA 

BBB 

CCC 

Bottom 

result = CCC 

FFF 

EEE 

DDD 
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General techniques 

 Local operations designed to avoid CAS 

 Traditionally slower, less so now 

 Costs of memory fences can be important (“Idempotent work 
stealing”, Michael et al) 

 Local operations just use read and write 

 Only one accessor, check for interference 

 Use CAS: 

 Resolve conflicts between stealers  

 Resolve local/stealer conflicts 

 Version number to ensure conflicts seen 
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Course overview: structure 

 Building locks 

 Lock-free programming  

 What’s wrong with locks? 

 Lists without locks, linearizability 

 Lock-free progress 

 Hashtables 

 Skiplists 

 Queues 

 Reducing contention 

 Memory management 

 Transactional memory 
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Reducing contention 

 Suppose you’re implementing a shared counter with the 
following sequential spec: 
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void increment(int *counter) { 

   atomic { 

       (*counter) ++; 

   } 

} 

How well can this scale? 

void decrement(int *counter) { 

   atomic { 

       (*counter) --; 

   } 

} 

bool isZero(int *counter) { 

   atomic { 

       return (*counter) == 0; 

   } 

} 
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SNZI trees 
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SNZI 

(10,100) 

SNZI 

(2,230) 

SNZI 

(5,250) 

T2 T1 T3 T5 T4 T6 

Child SNZI forwards 
inc/dec to parent when 

the child changes 
to/from zero 

Each node holds a value 
and a version number 

(updated together with 
CAS)  

03/11/2011 

SNZI: Scalable NonZero Indicators, Ellen et al 



SNZI trees, linearizability on 0->1 change 
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SNZI 

(0,100) 

SNZI 

(0,230) 

T2 T1 

1. T1 calls increment 
2. T1 increments child to 1 
3. T2 calls increment 
4. T2 increments child to 2 
5. T2 completes 
6. Tx calls isZero 
7. Tx sees 0 at parent 
8. T1 calls increment on parent 
9. T1 completes 

 

Tx 
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SNZI trees 
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void increment(snzi *s) { 

   bool done=false; 

   int undo=0; 

   while(!done) { 

      <val,ver> = read(s->state); 

      if (val >= 1 && CAS(s->state, <val,ver>, <val+1,ver>)) { done = true; } 

      if (val == 0 && CAS(s->state, <val,ver>, <½, ver+1>)) {  

          done = true;  val=½; ver=ver+1 

      } 

      if (val == ½) { 

          increment(s->parent); 

          if (!CAS(s->state, <val, ver>, <1, ver)) { undo ++; } 

      } 

   } 

   while (undo > 0) { 

      decrement(s->parent); 

   } 

} 
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Reducing contention: stack 
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A scalable lock-free stack algorithm, Hendler et al 

Existing lock-free stack 
(e.g., Treiber’s): good 

performance under low 
contention, poor 

scalability 
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Pairing up operations 
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Back-off elimination array 
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Stack 

Elimination array 

Contention on  
the stack?  Try  
the array 

Don’t get  
eliminated?  

Try the stack 

03/11/2011 

Operation record: Thread, Push/Pop, … 



Course overview: structure 

 Building locks 

 Lock-free programming  

 What’s wrong with locks? 

 Lists without locks, linearizability 

 Lock-free progress 

 Hashtables 

 Skiplists 

 Queues 

 Reducing contention 

 Memory management 

 Transactional memory 
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Lock-free data structures in C 

 Pseudo-code, Java, C#: 

 Explicit memory allocation 

 Deallocation by GC 

 C/C++: 

 Explicit memory allocation & deallocation 

 When is it safe to deallocate a piece of memory? 
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Deletion revisited: Delete(10) 

H 10 30 T 

H 10 30 T 

H 10 30 T 
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De-allocate to the OS? 

H 30 T 10 

Search(20) 
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Re-use as something else? 

H 30 T 10 100 200 

Search(20) 
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Re-use as a list node? 

H 30 T 10 

H 30 T 

20 

Search(20) 
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H 10 30 T 

Reference counting 

1 1 1 1 

1. Decide what to access 
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H 10 30 T 

Reference counting 

2 1 1 1 

1. Decide what to access 
2. Increment reference count 
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H 10 30 T 

Reference counting 

2 1 1 1 

1. Decide what to access 
2. Increment reference count 
3. Check access still OK 

Non-blocking data structures and transactional memory 03/11/2011 153 



H 10 30 T 

Reference counting 

2 2 1 1 

1. Decide what to access 
2. Increment reference count 
3. Check access still OK 
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H 10 30 T 

Reference counting 

1 2 1 1 

1. Decide what to access 
2. Increment reference count 
3. Check access still OK 
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H 10 30 T 

Reference counting 

1 1 1 1 

1. Decide what to access 
2. Increment reference count 
3. Check access still OK 
4. Defer deallocation until count 0 
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Epoch mechanisms 
Global epoch: 1000 
Thread 1 epoch: - 
Thread 2 epoch: - 

H 10 30 T 
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H 10 30 T 

Epoch mechanisms 
Global epoch: 1000 

Thread 1 epoch: 1000 
Thread 2 epoch: - 

1. Record global epoch at start of 
operation 
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H 10 30 T 

Epoch mechanisms 
Global epoch: 1000 

Thread 1 epoch: 1000 
Thread 2 epoch: 1000 

1. Record global epoch at start of 
operation 

2. Keep per-epoch deferred 
deallocation lists 

Deallocate @ 1000 
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H 10 30 T 

Epoch mechanisms 
Global epoch: 1001 

Thread 1 epoch: 1000 
Thread 2 epoch: - 

1. Record global epoch at start of 
operation 

2. Keep per-epoch deferred 
deallocation lists 

3. Increment global epoch at end 
of operation (or periodically) 
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Epoch mechanisms 
Global epoch: 1002 
Thread 1 epoch: - 
Thread 2 epoch: - 

1. Record global epoch at start of 
operation 

2. Keep per-epoch deferred 
deallocation lists 

3. Increment global epoch at end 
of operation (or periodically) 

4. Free when everyone past epoch 

10 

Deallocate @ 1000 
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The “repeat offender problem” 
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Free: ready for 
allocation 

Allocated and 
linked in to a data 

structure 

Escaping: unlinked, 
but possibly 

temporarily in use 
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Re-use via ROP 

1. Decide what to access 
2. Set guard 
3. Check access still OK 

Thread 1 
guards 
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Re-use via ROP 

1. Decide what to access 
2. Set guard 
3. Check access still OK 

Thread 1 
guards 
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Re-use via ROP 

1. Decide what to access 
2. Set guard 
3. Check access still OK 

Thread 1 
guards 
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Re-use via ROP 

1. Decide what to access 
2. Set guard 
3. Check access still OK 

Thread 1 
guards 
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Re-use via ROP 

1. Decide what to access 
2. Set guard 
3. Check access still OK 

Thread 1 
guards 
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Re-use via ROP 

1. Decide what to access 
2. Set guard 
3. Check access still OK 

Thread 1 
guards 
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Re-use via ROP 

H 10 30 T 

1. Decide what to access 
2. Set guard 
3. Check access still OK 
4. Batch deallocations and defer on 

objects while guards are present 

Thread 1 
guards 
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See also:  “Safe 
memory reclamation” 

& hazard pointers, 
Maged Michael 



What do we care about? 
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How fast 
is it? 

Is it correct? How easy is it 
to write? 

When  
can I  

use it? 

How does it 
scale? 

03/11/2011 



Course overview: structure 

 Building locks 

 Lock-free programming  

 Transactional memory 

 TM and composability 

 STM internals 

 Integration into a language runtime system 

 Sandboxing & strong isolation 

 Current performance and my perspective on TM 
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What we want 

Hardware 

Concurrency primitives 

Library Library Library 

Library 

Library 
Library 

Library 

Libraries build layered 
concurrency 
abstractions  
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Library 

Locks and condition 
variables  
(a) are hard to use and  
(b) do not compose 

Hardware 

What we have 
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Atomic blocks 

Atomic blocks built over transactional memory.  
In Haskell: 3 primitives: atomic, retry, orElse 

Library Library Library 

Library 

Library 
Library 

Library 

Hardware 
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Atomic memory transactions 

 To a first approximation, just write the sequential code, and 
wrap atomic around it 

 All-or-nothing semantics: Atomic commit 

 Atomic block executes in Isolation 

 Cannot deadlock (there are no locks!) 

 Atomicity makes error recovery easy  
(e.g. exception thrown inside the PopLeft code) 

Item PopLeft() { 

 atomic { ... sequential code ... } 

} 

Like database 
transactions 

ACID 
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Atomic blocks compose (locks do not) 

 Guarantees to get two consecutive items 

 PopLeft() is unchanged  

 Cannot be achieved with locks (except by 
breaking the PopLeft abstraction) 

void GetTwo() { 

 atomic {  

  i1 = PopLeft();  

  i2 = PopLeft();  

 } 

 DoSomething( i1, i2 ); 

} 

Composition 
is THE way we 

build big 
programs 
that work 
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 retry means “abandon execution of the atomic block and re-
run it (when there is a chance it’ll complete)” 

 No lost wake-ups 

 No consequential change to GetTwo(), even though GetTwo 
must wait for there to be two items in the queue 

Item PopLeft() { 

 atomic { 

  if (leftSentinel.right==rightSentinel)  {  

   retry;  

  } else { ...remove item from queue... } 

} } 

Blocking: how does PopLeft wait for data? 
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 do {...this...} orelse {...that...} tries to run “this” 

 If “this” retries, it runs “that” instead 

 If both retry, the do-block retries.  GetEither() will thereby wait 
for there to be an item in either queue 

void GetEither() { 

 atomic { 

 

  do { i = Q1.Get(); } 

  orelse { i = Q2.Get(); } 

 

  R.Put( i ); 

} } 

Q1 Q2 

R 

Choice: waiting for either of two queues 
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Programming with atomic blocks 
With locks, you think about: 

 Which lock protects which data?  What data can be mutated 
when by other threads? Which condition variables must be 
notified when?  

 None of this is explicit in the source code 
 

With atomic blocks you think about 

 What are the invariants (e.g. the tree is balanced)? 

 Each atomic block maintains the invariants 

 Purely sequential reasoning within a block, which is dramatically 
easier 

 Much easier setting for static analysis tools 
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Summary so far 

 Atomic blocks (atomic, retry, orElse) are a real step forward 

 It’s like using a high-level language instead of assembly 
code: whole classes of low-level errors are eliminated. 

 Not a silver bullet:  

 you can still write buggy programs;  

 concurrent programs are still harder to write than sequential 
ones;  

 just aimed at shared memory. 

 But the improvement is very substantial 
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STM 5 years ago 
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Sequential 
baseline (1.00x) 

Coarse-grained 
locking (1.13x) 

Fine-grained 
locking (2.57x) Early STM (5.69x) 

Workload: operations on a 
red-black tree, 1 thread, 

6:1:1 lookup:insert:delete 
mix with keys 0..65535 
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Implementation techniques 
 Direct-update STM 

 Allow transactions to make updates in place in the heap 
 Avoids reads needing to search the log to see earlier writes that the 

transaction has made 
 Makes successful commit operations faster at the cost of extra work 

on contention or when a transaction aborts 

 Compiler integration 
 Decompose the transactional memory operations into primitives 
 Expose the primitives to compiler optimization (e.g. to hoist 

concurrency control operations out of a loop) 

 Runtime system integration 
 Integration with the garbage collector or runtime system 

components to scale to atomic blocks containing 100M memory 
accesses 

 Memory management system used to detect conflicts between 
transactional and non-transactional accesses 
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Results: concurrency control overhead 
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Sequential 
baseline (1.00x) 

Coarse-grained 
locking (1.13x) 

Fine-grained 
locking (2.57x) 

Direct-update 
STM (2.04x) 

Direct-update STM + 
compiler integration 

(1.46x) 

Traditional STM 
(5.69x) 

Workload: operations on a 
red-black tree, 1 thread, 

6:1:1 lookup:insert:delete 
mix with keys 0..65535 

Scalable to multicore 
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Course overview: structure 

 Building locks 

 Lock-free programming  

 Transactional memory 

 Atomic transactions and composability 

 STM internals 

 Integration into a language runtime system 

 Sandboxing & strong isolation 

 Current performance and my perspective on TM 
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Atomic blocks 

Class Q { 
  QElem leftSentinel; 
  QElem rightSentinel; 
 
  void pushLeft(int item) { 
    atomic { 
      QElem e = new QElem(item); 
      e.right = this.leftSentinel.right; 
      e.left = this.leftSentinel; 
      this.leftSentinel.right.left = e; 
      this.leftSentinel.right = e; 
    } 
  } 
 
  ... 
} 

Class Q { 
  QElem leftSentinel; 
  QElem rightSentinel; 
 
  void pushLeft(int item) { 
    do { 
      tx = TxStart(); 
      QElem e = new QElem(item); 
      TxWrite(tx, &e.right, TxRead(tx, &this.leftSentinel.right)); 
      TxWrite(tx, &e.left, this.leftSentinel); 
      TxWrite(tx, &TxRead(tx, &this.leftSentinel.right).left, e); 
      TxWrite(tx, &this.leftSentinel.right, e); 
    } while (!TxCommit()); 
  } 
 
  ... 
} 
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Bartok-STM 

 Use per-object meta-data (“TMWs”) 

 Each TMW is either: 

 Locked, holding a pointer to the transaction that has the 
object open for update 

 Available, holding a version number indicating how many 
times the object has been locked 

 Writers eagerly lock TMWs to gain access to the object, 
using eager version management 

 Maintain an undo log in case of roll-back 

 Readers log the version numbers they see and perform lazy 
conflict detection at commit time 
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Example: uncontended swap 
a: 

v150 

1000 

v250 

2000 

b: 

void Swap(int *a, int *b) { 

  do { 

    tx = TxStart(); 

    va = TxRead(tx, &a); 

    vb = TxRead(tx, &b); 

    TxWrite(tx, &a, vb); 

    TxWrite(tx, &b, va); 

  } while (!TxCommit()); 

} 
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Example: uncontended swap 
a: 

v150 

1000 

v250 

2000 

b: 

void Swap(int *a, int *b) { 

  do { 

    tx = TxStart(); 

    va = TxRead(tx, &a); 

    vb = TxRead(tx, &b); 

    TxWrite(tx, &a, vb); 

    TxWrite(tx, &b, va); 

  } while (!TxCommit()); 

} 

Tx1 Objects read 

Objects updated 

Values 

overwritten 
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Example: uncontended swap 
a: 

v150 

1000 

v250 

2000 

a: v150 

b: 

void Swap(int *a, int *b) { 

  do { 

    tx = TxStart(); 

    va = TxRead(tx, &a); 

    vb = TxRead(tx, &b); 

    TxWrite(tx, &a, vb); 

    TxWrite(tx, &b, va); 

  } while (!TxCommit()); 

} 

Tx1 Objects read 

Objects updated 

Values 

overwritten 
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Example: uncontended swap 
a: 

v150 

1000 

v250 

2000 

a: v150 
b: v250 

b: 

void Swap(int *a, int *b) { 

  do { 

    tx = TxStart(); 

    va = TxRead(tx, &a); 

    vb = TxRead(tx, &b); 

    TxWrite(tx, &a, vb); 

    TxWrite(tx, &b, va); 

  } while (!TxCommit()); 

} 

Tx1 Objects read 

Objects updated 

Values 

overwritten 
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Example: uncontended swap 
a: 

Tx1 

2000 

v250 

2000 

a: v150 
b: v250 

a: v150 

a.val = 1000 

b: 

void Swap(int *a, int *b) { 

  do { 

    tx = TxStart(); 

    va = TxRead(tx, &a); 

    vb = TxRead(tx, &b); 

    TxWrite(tx, &a, vb); 

    TxWrite(tx, &b, va); 

  } while (!TxCommit()); 

} 

Tx1 Objects read 

Objects updated 

Values 

overwritten 
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Example: uncontended swap 
a: 

Tx1 

2000 

Tx1 

1000 

a: v150 
b: v250 

a: v150 
b: v250 

a.val = 1000 
b.val = 2000 

b: 

void Swap(int *a, int *b) { 

  do { 

    tx = TxStart(); 

    va = TxRead(tx, &a); 

    vb = TxRead(tx, &b); 

    TxWrite(tx, &a, vb); 

    TxWrite(tx, &b, va); 

  } while (!TxCommit()); 

} 

Tx1 Objects read 

Objects updated 

Values 

overwritten 
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Commit in Bartok-STM 

Iterate over 
the read set: 

Current TMW 
matches logged 

version? 

Current TMW 
shows we locked 

the object? 

Abort 

Logged TMW 
matches version in 

our write set? 

Abort 

Yes 

Yes Yes 

No 

No No 

OK so far 

OK so far 
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Correctness sketch 

time 

Open obj1 for read Open obj2 
for update 

Commit: validate 
obj1 version 

Commit: 
unlock obj2 

Lock prevents concurrent updates 

Validation checks no updates 

Tx appears atomic after 
last “Open” and before 

first validation step 
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Example: uncontended swap 
a: 

Tx1 

2000 

Tx1 

1000 

a: v150 
b: v250 

a: v150 
b: v250 

a.val = 1000 
b.val = 2000 

b: 

void Swap(int *a, int *b) { 

  do { 

    tx = TxStart(); 

    va = TxRead(tx, &a); 

    vb = TxRead(tx, &b); 

    TxWrite(tx, &a, vb); 

    TxWrite(tx, &b, va); 

  } while (!TxCommit()); 

} 

Tx1 Objects read 

Objects updated 

Values 

overwritten 

“We locked the 
object...” 

“...and no-one 
else got there 

first!” 
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Example: uncontended swap 
a: 

v151 

2000 

Tx1 

1000 

a: v150 
b: v250 

a: v150 
b: v250 

a.val = 1000 
b.val = 2000 

b: 

void Swap(int *a, int *b) { 

  do { 

    tx = TxStart(); 

    va = TxRead(tx, &a); 

    vb = TxRead(tx, &b); 

    TxWrite(tx, &a, vb); 

    TxWrite(tx, &b, va); 

  } while (!TxCommit()); 

} 

Tx1 Objects read 

Objects updated 

Values 

overwritten 
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Example: uncontended swap 
a: 

v151 

2000 

v251 

1000 

a: v150 
b: v250 

a: v150 
b: v250 

a.val = 1000 
b.val = 2000 

b: 

void Swap(int *a, int *b) { 

  do { 

    tx = TxStart(); 

    va = TxRead(tx, &a); 

    vb = TxRead(tx, &b); 

    TxWrite(tx, &a, vb); 

    TxWrite(tx, &b, va); 

  } while (!TxCommit()); 

} 

Tx1 Objects read 

Values 

overwritten 

Non-blocking data structures and transactional memory 03/11/2011 197 

Objects updated 



Example: uncontended swap 
a: 

v151 

2000 

v251 

1000 

b: 

void Swap(int *a, int *b) { 

  do { 

    tx = TxStart(); 

    va = TxRead(tx, &a); 

    vb = TxRead(tx, &b); 

    TxWrite(tx, &a, vb); 

    TxWrite(tx, &b, va); 

  } while (!TxCommit()); 

} 
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Tx-tx interaction in Bartok-STM 

 Read-read: no problem, both readers see the same version 
number and verify it at commit time 

 Read-write: reader sees that the writer has the object 
locked.  Reader always defers to writer 

 Write-write: competition for lock serializes writers (drop 
locks, then spin to avoid deadlock) 
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 Gold standard: 

 During execution a transaction runs against a consistent view 
of memory 

 Won’t be “tricked” into looping, etc. 

 “Opacity”  

 What are the advantages / disadvantages when compared 
with an implementation giving weaker guarantees? 

Non-blocking data structures and transactional memory 03/11/2011 200 

Taxonomy: consistency during tx 



 We need some way to manage the tentative updates that a 
transaction is making  

 Where are they stored? 

 How does the implementation find them (so a transaction’s 
read sees an earlier write)? 

 Lazy versioning: only make “real” updates when a 
transaction commits 

 Eager versioning: make updates as a transaction runs, roll 
them back on abort 

 What are the advantages, disadvantages? 
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 We need to detect when two transactions conflict with one 
another 

 Lazy conflict detection: detect conflicts at commit time 

 Eager conflict detection: detect conflicts as transactions 
run 

 Again, what are the advantages, disadvantages? 
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Taxonomy: word/object based 

 What granularity are conflicts detected at? 

 Object-based: 

 Access to programmer-defined structures (e.g. objects) 

 Word-based: 

 Access to words (or sets of words, e.g. cache lines) 

 Possibly after mapping under a hash function 

 What are the advantages and disadvantages of these 
approaches? 
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Bartok-STM 

 Designed to work well on low-contention workloads 

 Eager version management to reduce commit costs 

 Eager locking to support eager version management 

 Primitives do not guarantee that transactions see a 
consistent view of the heap while running 

 Can be sandboxed in managed code... 

 ...harder in native code 
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Course overview: structure 

 Building locks 

 Lock-free programming  

 Transactional memory 

 TM and composability 

 STM internals 

 Integration into a language runtime system 

 Sandboxing & strong isolation 

 Current performance and my perspective on TM 
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Atomic blocks 

Class Q { 
  QElem leftSentinel; 
  QElem rightSentinel; 
 
  void pushLeft(int item) { 
    atomic { 
      QElem e = new QElem(item); 
      e.right = this.leftSentinel.right; 
      e.left = this.leftSentinel; 
      this.leftSentinel.right.left = e; 
      this.leftSentinel.right = e; 
    } 
  } 
 
  ... 
} 

Class Q { 
  QElem leftSentinel; 
  QElem rightSentinel; 
 
  void pushLeft(int item) { 
    do { 
      TxStart(); 
      QElem e = new QElem(item); 
      TxWrite(&e.right, TxRead(&this.leftSentinel.right)); 
      TxWrite(&e.left, this.leftSentinel); 
      TxWrite(&TxRead(&this.leftSentinel.right).left, e); 
      TxWrite(&this.leftSentinel.right, e); 
    } while (!TxCommit()); 
  } 
 
  ... 
} 
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Compilation 

Source 
code 

MSIL 
bytecode 

Native 
code 

Source to bytecode compiler; 
typically “csc” in C#, “javac” for 

Java 

Bytecode-to-native compiler; 
JIT or traditional compilation 
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Why divide things this way? 

 Little information loss from 

source code to bytecode 

 Source-to-bytecode works a 

file at a time, bytecode-to-native  

can see the whole program (or, 

at least, see all of the parts 

needed so far in execution) 

 Lower level transformations 

possible at bytecode-to-native 

 Integration between the STM and 

other parts of the runtime system 

void Swap(Pair p) { 
  try { 
    va = p.a; 
    vb = p.b; 
    p.a = vb; 
    p.b = va; 
  } catch (AtomicException) { 
  } 
} 
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Boilerplate around transactions 

void Swap(Pair p) { 
   do { 
    done = true; 
    try { 
      try { 
        tx = StartTx(); 
        va = p.a; 
        vb = p.b; 
        p.a = vb; 
        p.b = va; 
      } finally { 
        CommitTx(); 
      } 
    } catch (TxInvalid) { 
      done = false; 
    } 
  } while (!done); 
} 

Keep running the 
atomic block in a 

fresh tx each time 

Commit (on 
normal or exn exit) 

Commit fails by raising 
a TxInvalid exception; 

re-execute 

(I’m using source code 
examples for clarity; in 
reality this would be in 
the compiler’s internal 

intermediate code) 
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 Naïve expansion of data accesses 

void Swap(Pair p) { 
   do { 
    done = true; 
    try { 
      try { 
        tx = StartTx(); 
        TxWrite(tx, &va, TxRead(tx, &p.a)); 
        TxWrite(tx, &vb, TxRead(tx, &p.b)); 
        TxWrite(tx, &p.a, TxRead(tx, &vb)); 
        TxWrite(tx, &p.b, TxRead(tx, &va)); 
      } finally { 
        CommitTx(); 
      } 
    } catch (TxInvalid) { 
      done = false; 
    } 
  } while (!done); 
} 
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What are the problems here? 

 Using the STM for thread-private local variables 

 Repeatedly mapping from addresses to concurrency 
control info 

 Duplicating concurrency control work if it’s implemented at 
a per-object granularity 
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Decomposed STM primitive API 

 OpenForRead(tx, obj) 

 OpenForRead(tx, addr) 

 OpenForUpdate(tx, obj) 

 OpenForUpdate(tx, addr) 

 

 LogForUndo(tx, addr) 

Indicate intent to read from 
an object or from a given 

address 

Indicate intent to update 
a specific address (& 

optional size) 
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Using the decomposed API 

x = p.a; 
OpenForRead(tx, p); 
x = p.a; 

p.b = y; 
OpenForUpdate(tx, p); 
LogForUndo(tx, &p.b); 
p.b = y; 
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... 
OpenForUpdate(tx, p); 
OpenForRead(tx, p); 
va = p.a; 
OpenForRead(tx, p); 
Vb = p.b; 
OpenForUpdate(tx, p); 
LogForUndo(tx, &p.a); 
p.a = vb; 
OpenForUpdate(tx, p); 
LogForUndo(tx, &p.b); 
p.b = va; 
... 

Second OpenForRead 
made unnecessary by first 

Second OpenForUpdate 
made unnecessary by first 

Always need update 
access: get it first 

Non-blocking data structures and transactional memory 03/11/2011 214 

Implementation using decomposed API 



 Improved expansion of data accesses 

void Swap(Pair p) { 
   do { 
    done = true; 
    try { 
      try { 
        tx = StartTx(); 
        OpenForUpdate(tx, p); 
        va = p.a; 
        vb = p.b; 
        LogForUndo(tx, &p.a); 
        p.a = vb; 
        LogForUndo(tx, &p.b); 
        p.b = va; 
      } finally { 
        CommitTx(); 
      } 
    } catch (TxInvalid) { 
      done = false; 
    } 
  } while (!done); 
} 
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Are we done? 

 Local variables 

 By-ref parameters 

 Method calls 
 

 Keeping optimizations safe 

 GC integration 

 Finalizers 

 Condition synchronization 

Non-blocking data structures and transactional memory 03/11/2011 216 



Keeping optimizations safe 

 
void Clear_tx(Pair p) { 
  for (int i = 0; i < 10; i ++) { 
    p.a = 10; 
    p.b = i; 
  } 
}   

Original (contrived) source code 
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Keeping optimizations safe 

 
void Clear_tx(Pair p) { 
  for (int i = 0; i < 10; i ++) { 
    OpenForUpdate(tx, p); 
    LogForUndo(tx, &p.a); 
    p.a = 10; 
    LogForUndo(tx, &p.b); 
    p.b = i; 
  } 
}   

Expanded with decomposed API operations 
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Keeping optimizations safe 

 
void Clear_tx(Pair p) { 
  p.a = 10; 
  for (int i = 0; i < 10; i ++) { 
    OpenForUpdate(tx, p); 
    LogForUndo(tx, &p.a); 
    LogForUndo(tx, &p.b); 
    p.b = i; 
  } 
}   

Hoisting loop-invariant code 
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Keeping optimizations safe 

 
void Clear_tx(Pair p) { 
for (int i = 0; i < 10; i ++) { 
    tmp1 = OpenForUpdate(tx, p); 
    tmp2 = LogForUndo(tx, &p.a) <tmp1>; 
    p.a = 10 <tmp2>; 
    tmp3 = LogForUndo(tx, &p.b) <tmp1>; 
    p.b = i <tmp3>; 
  } 
}   

Introduce dependencies 
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Keeping optimizations safe 

 
void Clear_tx(Pair p) { 
  tmp1 = OpenForUpdate(tx, p); 
  tmp2 = LogForUndo(tx, &p.a) <tmp1>; 
  tmp3 = LogForUndo(tx, &p.a) <tmp1>; 
  p.a = 10 <tmp2>; 
  for (int i = 0; i < 10; i ++) { 
    p.b = i <tmp3>; 
  } 
}   

Transformations must respect dependencies 
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GC integration 

 
void Temp() { 
  Pair result; 
  atomic { 
  for (int i = 0; i < 100000; i ++) { 
    result = new Pair(); 
    result.a = i; 
  } 
  return result; 
} } 

Another contrived program 

Lots of temporary objects are 
allocated as the atomic block 

runs 
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GC integration 

 Abort all running tx on GC? 

 Not ideal: long running tx will not be able to commit 

 Is there a precedent for language features with this kind of 
perf? 

 Treat all the references from the logs as roots? 

 Not ideal: we’d keep all those temporaries 
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GC integration 

 Principle: 

 Consider the possible heaps based on whether tx commit or 
abort 

 Retain an object if it is alive in any of these cases (ideally “iff”) 

 Do we need to consider 2n possibilities with n running tx? 

 No: validate all the tx first so we know they are not conflicting 

 Consider the world if they all commit, consider the world if 
they all roll back 
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Example heap 

Normal 
heap 

pointer 

Overwritten pointer 
in undo log 
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Conservative algorithm 

Normal 
heap 

pointer 

Overwritten pointer 
in undo log 

1. Validate tx 

2. Trace heap as 
normal 
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Conservative algorithm 

Normal 
heap 

pointer 

Overwritten pointer 
in undo log 

1. Validate tx 

2. Trace heap as 
normal 

3. Grey targets of 
overwritten ptrs 
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Conservative algorithm 

Normal 
heap 

pointer 

Overwritten pointer 
in undo log 

1. Validate tx 

2. Trace heap as 
normal 

3. Grey targets of 
overwritten ptrs 

4. Trace from new 
grey objects  
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Conservative algorithm 

Normal 
heap 

pointer 

Overwritten pointer 
in undo log 

1. Validate tx 

2. Trace heap as 
normal 

3. Grey targets of 
overwritten ptrs 

4. Trace from new 
grey objects  

5. Reclaim white 
objects 
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Precise algorithm 

Normal 
heap 

pointer 

Overwritten pointer 
in undo log 

1. Validate tx 

2. Trace heap as 
normal 
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Precise algorithm 

Normal 
heap 

pointer 

Overwritten pointer 
in undo log 

1. Validate tx 

2. Trace heap as 
normal 

3. Roll-back, re-gray 
updated black  obj 
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Precise algorithm 

Normal 
heap 

pointer 

Overwritten pointer 
in undo log 

1. Validate tx 

2. Trace heap as 
normal 

3. Roll-back, re-gray 
updated black  obj 

4. Trace from gray 
objects 
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Precise algorithm 

Normal 
heap 

pointer 

Overwritten pointer 
in undo log 

1. Validate tx 

2. Trace heap as 
normal 

3. Roll-back, re-gray 
updated black  obj 

4. Trace from gray 
objects 

5. Reclaim white 
objects 
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Precise algorithm 

Normal 
heap 

pointer 

Overwritten pointer 
in undo log 

1. Validate tx 

2. Trace heap as 
normal 

3. Roll-back, re-gray 
updated black  obj 

4. Trace from gray 
objects 

5. Reclaim white 
objects 

6. Restore heap 
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Finalizers 

Pair p; 
atomic { 
 p = new Pair(); 
} 

Class Pair {  
  void Finalize() { 
    Console.Out.WriteLine(“Hello world\n”); 
  } 
} 

Suppose this block is 
attempted twice 

How many times is 
this printed?  (Or is 

this program wrong?) 
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Finalizers 

 Remember the intended semantics: 

 Exactly once execution 

 Transactionally-allocated objects are only eligible for 
finalization when the tx commits 

 Tentative allocation, non-finalization, and (re-)execution 
remains entirely transparent 
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Condition synchronization 

 Semantically: in STM-Haskell we required the scheduler to 
only run atomic blocks when they succeed without calling 
“retry” 

atomic { 
  buffer.data = 42; 
  buffer.full = true; 
} 

atomic { 
  if (!buffer.full) { 
    retry; 
  } 
  result = buffer.data; 
  buffer.full = false; 
} 

This atomic block is 
only ready to run when 

buffer.full is true 
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Primitive for synchronization 

 void WaitTX(tx) 

 Semantically equivalent to AbortTx 

 Implementation may assume caller will immediately re-
execute a (deterministic) tx 

 Implementation may introduce a delay to avoid unnecessary 
spinning 

 Intuition:  

 No point re-executing the consumer until the producer has 
run 
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Compiling “retry” to “WaitTx” 

atomic { 
  if (!buffer.full) { 
    retry; 
  } 
  result = buffer.data; 
  buffer.full = false; 
} 

void Consume(Buffer b) { 
   do { 
    done = true; 
    try { 
      try { 
        tx = StartTx(); 
        OpenForRead(tx, b); 
        if (!b.full) { 
          WaitTx(); 
        } 
        OpenForUpdate(tx, b); 
        result = b.data; 
        LogForUndo(tx, &b.full); 
        b.full = false; 
      } finally { 
        CommitTx(); 
      } 
    } catch (TxInvalid) { 
      done = false; 
    } 
  } while (!done); 
} 
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Implementing WaitTx 

buffer: v150 

Val=0 

Full=false 
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Implementing WaitTx 

buffer: v150 

Val=0 

null 

Full=false 

1. Extend object header 
with list of waiters 
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Implementing WaitTx 

buffer: v150 

Val=0 

null 

Full=false 

1. Extend object header 
with list of waiters 

2. Extend tx records with 
a mutex & condvar pair 

Consume
r tx 

Mutex 

Condvar 
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Implementing WaitTx 

buffer: v150 

Val=0 

Full=false 

1. Extend object header 
with list of waiters 

2. Extend tx records with 
a mutex & condvar pair 

Consume
r tx 

Mutex 

Condvar 

3. WaitTx links the 
consumer to the lists in 

its read set 
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Implementing WaitTx 

buffer: v150 

Val=0 

Full=false 

1. Extend object header 
with list of waiters 

2. Extend tx records with 
a mutex & condvar pair 

Consume
r tx 

Mutex 

Condvar 

3. WaitTx links the 
consumer to the lists in 

its read set 

4. WaitTx validates, locks 
the mutex, updates its 

status, blocks 
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Implementing WaitTx 

buffer: v150 

Val=0 

Full=false 

1. Extend object header 
with list of waiters 

2. Extend tx records with 
a mutex & condvar pair 

Consume
r tx 

Mutex 

Condvar 

3. WaitTx links the 
consumer to the lists in 

its read set 

4. WaitTx validates, locks 
the mutex, updates its 

status, blocks 

5. CommitTx wakes 
waiters on objects in its 

write set 
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Implementing WaitTx 

buffer: v150 

Val=0 

Full=false 

1. Extend object header 
with list of waiters 

2. Extend tx records with 
a mutex & condvar pair 

Consume
r tx 

Mutex 

Condvar 

3. WaitTx links the 
consumer to the lists in 

its read set 

4. WaitTx validates, locks 
the mutex, updates its 

status, blocks 

5. CommitTx wakes 
waiters on objects in its 

write set 

Use “thin locks” style 
tricks to avoid fixed 

header word allocation 

NB: many-to-many 
relationship, so probably use 

separate doubly linked list 

Use latch in the header for 
concurrency control on the 

list 
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Course overview: structure 

 Building locks 

 Lock-free programming  

 Transactional memory 

 TM and composability 

 STM internals 

 Integration into a language runtime system 

 Sandboxing & strong isolation 

 Current performance and my perspective on TM 
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Sandboxing zombie transactions 

 Those that have become invalid 
but don’t yet know it 

 May access memory 

 May raise exceptions 

 May attempt system 
calls etc 

 General principle – validate  
before revealing any tx’s effects 
outside the STM world 

Non-blocking data structures and transactional memory 03/11/2011 248 



Looping / slow zombies 

 Method2 runs between Method1’s memory 
accesses 

 The transaction running Method1 becomes a 
zombie... but never attempts to commit 

void Method1(Pair p) { 
  atomic { 
    ta = p.a; 
 
 
 
    tb = p.b; 
    if (ta != tb) { 
      while (true) { 
} } } } 

 
void Method2(Pair p) { 
  atomic {  
    p.a = 100; 
    p.b = 100; 
} } 
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Looping / slow zombies 

 Add new API function “ValidationTick” 

 ValidationTick guarantees: it will 

eventually detect if its calling 

transaction is invalid 

 Call it in any loop not otherwise calling 

a TM API function 

 Optimize ValidationTick so it only does 

“real” validation occasionally 

 (Could also optimize the placement of 

ValidationTick calls) 

OpenForRead(p); 
ta = p.a; 
tb = p.b; 
if (ta != tb) { 
  while (true) { 
    ValidationTick(); 
} } 
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Strong isolation 

 Add a mechanism to detect conflicts between tx and normal 
accesses 

 We would like: 

 No overhead on direct accesses 

 Predictable performance 

 Little overhead over weak atomicity 
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Strong isolation: implementation 

Physical 
address 

space 

Virtual 
address 

space 

Tx-heap Normal-heap 

Normal 
memory 
accesses 

Memory 
accesses 

from 
atomic 
blocks 
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Writes from atomic blocks 

Physical 
address 

space 

Virtual 
address 

space 

Tx-heap Normal-heap 

Normal 
memory 
accesses 

Memory 
accesses 

from 
atomic 
blocks 

1. Atomic block 
attempts to write to a 

field of an object 
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Writes from atomic blocks 

Physical 
address 

space 

Virtual 
address 

space 

Tx-heap Normal-heap 
 

Normal 
memory 
accesses 

Memory 
accesses 

from 
atomic 
blocks 

2. Revoke direct access 
to the page holding the 
direct view of the object 
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Writes from atomic blocks 

Physical 
address 

space 

Virtual 
address 

space 

Tx-heap Normal-heap 

Normal 
memory 
accesses 

Memory 
accesses 

from 
atomic 
blocks 

3. Use underlying STM 
write primitives 
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Writes from atomic blocks 

Physical 
address 

space 

Virtual 
address 

space 

Tx-heap Normal-heap 

Normal 
memory 
accesses 

Memory 
accesses 

from 
atomic 
blocks 

4A. Restore direct 
access once the 

underlying transaction 
has finished 
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Conflicting normal access 

Physical 
address 

space 

Virtual 
address 

space 

Tx-heap Direct-heap 

Normal 
memory 
accesses 

Memory 
accesses 

from 
atomic 
blocks 

4B. Access violation 
(AV) delivered to a 

normal thread accessing 
that page: wait for TX 
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Separate tx / non-tx allocations 

Physical 
address 

space 

Virtual 
address 

space 

Tx-heap Normal-heap 

Normal alloc Tx alloc 
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Make page protections lazily 

Physical 
address 

space 

Virtual 
address 

space 

Tx-heap Normal-heap 

Normal 
memory 
accesses 

Memory 
accesses 

from 
atomic 
blocks 

RW RW RW RW 
1. Table shadows 

intended page state 
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Make page protections lazily 

Physical 
address 

space 

Virtual 
address 

space 

Tx-heap Normal-heap 

Normal 
memory 
accesses 

Memory 
accesses 

from 
atomic 
blocks 

RW - RW RW 

2. Atomic block attempts 
to write to a field of an 
object; revoke access, 

update table 
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Make page protections lazily 

Physical 
address 

space 

Virtual 
address 

space 

Tx-heap Normal-heap 

Normal 
memory 
accesses 

Memory 
accesses 

from 
atomic 
blocks 

RW RW RW RW 

3. On commit, just 
update the table 
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Make page protections lazily 

Physical 
address 

space 

Virtual 
address 

space 

Tx-heap Normal-heap 

Normal 
memory 
accesses 

Memory 
accesses 

from 
atomic 
blocks 

RW - RW RW 

4. Subsequent atomic 
block just updates the 

table 
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Course overview: structure 

 Building locks 

 Lock-free programming  

 Transactional memory 

 TM and composability 

 STM internals 

 Integration into a language runtime system 

 Sandboxing & strong isolation 

 Combining TM with libraries, locking, and IO 

 Current performance and my perspective on TM 
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Performance figures depend on... 

 Workload : What do the atomic blocks do?  How long is spent inside 
them? 

 Baseline implementation: Mature existing compiler, or prototype? 

 Intended semantics: Support static separation?  Violation freedom 
(TDRF)?   

 STM implementation: In-place updates, deferred updates, eager/lazy 
conflict detection, visible/invisible readers? 

 STM-specific optimizations: e.g. to remove or downgrade redundant TM 
operations 

 Integration: e.g. dynamically between the GC and the STM, or inlining of 
STM functions during compilation 

 Implementation effort: low-level perf tweaks, tuning, etc. 

 Hardware: e.g. performance of CAS and memory system 
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Labyrinth 

 STAMP v0.9.10 

 256x256x3 grid 

 Routing 256 paths 

 Almost all execution inside atomic 
blocks 

 Atomic blocks can attempt 100K+ 
updates 

 C# version derived from original C 

 Compiled using Bartok, whole 
program mode, C# -> x86 (~80% 
perf of original C with VS2008) 

 Overhead results with Core2 Duo 
running Windows Vista 

s1 

e1 

“STAMP: Stanford Transactional Applications for Multi-Processing” 
Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, Kunle Olukotun , IISWC 2008 
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Sequential overhead 

STM implementation supporting static separation 
In-place updates 

Lazy conflict detection 
Per-object STM metadata 

Addition of read/write barriers before accesses 
Read: log per-object metadata word 

Update: CAS on per-object metadata word 
Update: log value being overwritten 
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Sequential overhead 
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Dynamic filtering to remove redundant logging 
 

Log size grows with #locations accessed 
Consequential reduction in validation time 

1st level: per-thread hashtable (1024 entries) 
2nd level: per-object bitmap of updated fields 
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Sequential overhead 
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Data-flow optimizations 
 

Remove repeated log operations 
Open-for-read/update on a per-object basis 

Log-old-value on a per-field basis 
Remove concurrency control on newly-allocated objects 
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Sequential overhead 

11.86 

3.14 

1.99 1.71 1.71 

0

2

4

6

8

10

12

14

STM Dynamic
filtering

Dataflow
opts

Filter opts Re-use logs

1-
th

re
a

d
, 

n
o

rm
a

li
ze

d
 t

o
 s

e
q

. 
b

a
se

li
n

e
 

Inline optimized filter operations 
 
 
 
 
 

Re-use table_base between filter operations 
Avoids caller save/restore on filter hits 

mov eax <- obj_addr 
and eax <- eax, 0xffc 
mov ebx <- [table_base + eax] 
cmp ebx, obj_addr 
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Sequential overhead 
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Re-use STM logs between transactions 
 

Reduces pressure on per-page allocation lock 
Reduces time spent in GC 
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Scaling – Labyrinth 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1 2 3 4 5 6 7 8

E
x

e
cu

ti
o

n
 t

im
e

  /
 s

e
q

. b
a

se
li

n
e

 

#Threads 

Static separation 
strong isolation 

1.0 = wall-clock execution time 
of sequential code without 

concurrency control 
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Scaling – Genome 
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#Threads 

Static separation 
strong isolation 

Non-blocking data structures and transactional memory 03/11/2011 274 



Granularity 

Distributed, large-scale 
atomic actions 

Composable shared  
memory data structures 

“Leaf” shared memory 
data structures 

General purpose atomic 
actions in a program 
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Programming abstraction 

Lock elision 

The program’s semantics is 
defined using locks.  TM is used 
as an implementation 
mechanism. 

Speculation 

Semantics defined by speculative 
execution, commit, etc. (either  
implicitly, or explicitly) 

Atomic 

Semantics defined by atomic 
execution (e.g. “atomic { X }”).  
Speculation, if used, is 
abstracted by the 
implementation. 

Non-blocking data structures and transactional memory 03/11/2011 276 



Purpose 

Makes software easier 
to develop /  

verify /  
maintain / … 

Faster: better than 
alternatives, 

irrespective of 
complexity 
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Design points that I like 

HW DCAS / 3-CAS / … 
Granularity: leaf data structures 

Abstraction: atomic multi-word CAS 
Purpose: faster 

HTM with limited guarantees (~ASF) 
Granularity: leaf data structures 
Abstraction: short transactions 

Purpose: faster 

Static separation (e.g., STM-Haskell) 
Granularity: composable data structures 

Abstraction: atomic actions 
Purpose: easier, decent perf 

Non-blocking data structures and transactional memory 03/11/2011 278 



Design points I am sceptical about 

Speculative lock elision on general-purpose s/w 

“atomic” blocks over normal data in a high-level language 
(C#/Java) 

(prove me wrong, I would like either of these to work!) 
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What do we care about? 
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How fast 
is it? 

Is it correct? How easy is it 
to write? 

When  
can I  

use it? 

How does it 
scale? 
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