# Topic 7: The Datacenter (DC/Data Center/Data Center/Lata Centre/....)

### Our goals:

- Datacenters are the new Internet; regular Internet has become mature (ossified); datacenter along with wireless are a leading edge of new problems and new solutions
- · Architectures and thoughts
  - Where do we start?
  - old ideas are new again: VL2
  - c-Through, Flyways, and all that jazz
- Transport layer obsessions:
  - TCP for the Datacenter (DCTCP)
  - recycling an idea (Multipath TCP)
  - Stragglers and Incast

2







### Data warehouse?

If you have a Petabyte, you might have a datacenter

If your paged at 3am because you only have a few Petabyte left,

you might have a data warehouse

Luiz Barroso (Google), 2009

The slide most likely to get out of date...







# Some Differences Between Commodity DC Networking and Internet/WAN

| Internet/WAN             | Commodity Datacenter                                                                            |
|--------------------------|-------------------------------------------------------------------------------------------------|
| Milliseconds to Seconds  | Microseconds                                                                                    |
| Kilobits to Megabits/s   | Gigabits to 10's of Gbits/s                                                                     |
| Congestion, link errors, | Congestion                                                                                      |
| Distributed              | Central, single domain                                                                          |
| Significant              | Minimal, 1-2 flows dominate links                                                               |
| Rare                     | Frequent, due to synchronized responses                                                         |
|                          | Milliseconds to Seconds Kilobits to Megabits/s Congestion, link errors, Distributed Significant |

| Coping with Perfo<br>Lower latency to DRAM<br>Higher bandwidth to local disl | rman<br>M in anoth<br>k than to [ | ce in A<br>er server th<br>DRAM in an | Array han local di nother serve |
|------------------------------------------------------------------------------|-----------------------------------|---------------------------------------|---------------------------------|
|                                                                              | Local                             | Rack                                  | Array                           |
| Racks                                                                        |                                   | 1                                     | 30                              |
| Servers                                                                      | 1                                 | 80                                    | 2400                            |
| Cores (Processors)                                                           | 8                                 | 640                                   | 19,200                          |
| DRAM Capacity (GB)                                                           | 16                                | 1,280                                 | 38,400                          |
| Disk Capacity (GB)                                                           | 4,000                             | 320,000                               | 9,600,000                       |
| DRAM Latency (microseconds)                                                  | 0.1                               | 100                                   | 300                             |
| Disk Latency (microseconds)                                                  | 10,000                            | 11,000                                | 12,000                          |
| DRAM Bandwidth (MB/sec)                                                      | 20,000                            | 100                                   | 10                              |

200

Disk Bandwidth (MB/sec)

## **Datacenter design 101**

- · Naive topologies are tree-based same boxes, and same b/w links
  - Poor performance
  - Not fault tolerant
- An early solution; speed hierarchy (fewer expensive boxes at the top)
  - Boxes at the top run out of capacity (bandwidth)
  - but even the \$ boxes needed \$\$\$ abilities (forwarding table size)



This is not the only solution...

bandwidth



100

10

### Latency-sensitive Apps

- Request for 4MB of data sharded across 16 servers (256KB each)
- How long does it take for all of the 4MB of data to return?





### Applications Sensitive to 200ms TCP Timeouts

- "Drive-bys" affecting single-flow request/ response
- Barrier-Sync workloads
  - Parallel cluster filesystems (Incast workloads)
  - Massive multi-server queries
    - · Latency-sensitive, customer-facing

The last result delivered is referred to as a straggler.

Stragglers can be caused by one off (drive-by) events but also by incast congestion which may occur for every map-reduce or database record retrieve or distributed









Topic 7 5

























# Multipath TCP Primer (IETF MPTCP WG) A drop in replacement for TCP Spreads application data over multiple sub flows For each ACK on sub-flow r, increase the window w, by min(a/w<sub>total</sub>, 1/w<sub>r</sub>) For each loss on sub-flow r, decrease the window w, by w,/2























### Data Center: Challenges

- From a large cluster used for data mining and identified distinctive traffic patterns
- Traffic patterns are highly volatile
- A large number of distinctive patterns even in a day
- Traffic patterns are unpredictable
- Correlation between patterns very weak

46

### **Data Center: Opportunities**

- DC controller knows everything about hosts
- Host OS's are easily customizable
- Probabilistic flow distribution would work well enough, because ...
  - Flows are numerous and not huge no elephants!
  - Commodity switch-to-switch links are substantially thicker (~ 10x) than the maximum thickness of a flow

47











| Optical circuit switching v.s.<br>Electrical packet switching |                                           |                                                     |  |
|---------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|--|
|                                                               | Electrical packet switching               | Optical circuit switching                           |  |
| Switching technology                                          | Store and forward                         | Circuit switching                                   |  |
| Switching capacity                                            | 16x40Gbps at high end<br>e.g. Cisco CRS-1 | 320x100Gbps on market, e.g.<br>Calient FiberConnect |  |
| Switching time                                                | Packet granularity                        | Less than 10ms                                      |  |
| Switching<br>traffic                                          | For bursty, uniform traffic               | For stable, pair-wise traffic                       |  |
|                                                               |                                           | 53<br>53                                            |  |













### Other problems

Special class problems/Solutions?

Datacenters are computers too...

What do datacenters to anyway?

- Special class problems
- Special class data-structures
- Special class languages
- Special class hardware
- Special class operating systems
- Special class networks
- Special class day-to-day operations









