Concurrent Systems
8L for Part IB

Handout 3

Dr Robert Watson



Concurrency without shared data

* The examples so far have involved threads which
can arbitrarily read & write shared data

— A key need for mutual exclusion has been to avoid
race-conditions (i.e. ‘collisions’ on access to this data)

* An alternative approach is to have only one
thread access any particular piece of data

— Different threads can own distinct chunks of data

e Retain concurrency by allowing other threads to
ask for operations to be done on their behalf

— This ‘asking’ of course needs to be concurrency safe...



Example: Active Objects

* A monitor with an associated server thread
— Exports an entry for each operation it provides
— Other (client) threads ‘call’ methods
— Call returns when operation is done

* All complexity bundled up in active object
— Must manage mutual exclusion where needed
— Must queue requests from multiple threads

— May need to delay requests pending conditions
e E.g. if a producer wants to insert but buffer is full



Producer-Consumer in Ada

task-body ProducercConsumer is —
Clause is active only

100p when condition is true

SELECT
when count < buffer-size
ACCEPT insert(item) do
// insert item into buffer

ACCEPT dequeues a
client request and
performs the operation

end;
count++;
or Single thread: no need
when count > 0 for mutual exclusion

ACCEPT consume(item) do
// remove item from buffer

end; | Non-deterministic choice
count--; between a set of
end SELECT

guarded ACCEPT clauses

end loop




I\/Iessage Passing

* Dynamic invocations between threads can be
thought of as general message passing

— Thread X can send a message to Thread Y
— Contents of message can be arbitrary data

e Can be used to build remote procedure call (RPC)

— Message includes name of operation to invoke along
with as any parameters

— Receiving thread checks operation name, and invokes
the relevant code

— Return value(s) sent back as another message
e (Called remote method invocation (RMlI) in Java)



Message Passing Semantics

e Can conceptually view sending a message to be
similar to sending an email:

1. Sender prepares contents locally, and then sends
2. System eventually delivers a copy to receiver
3. Receiver checks for messages

* |n this model, sending is asynchronous:
— Sender doesn’t need to wait for message delivery
— (but he may, of course, choose to wait for a reply)

* Receiving is also asynchronous:
— messages first delivered to a mailbox, later retrieved
— message is a copy of the data (i.e. no actual sharing)



Message Passing Advantages

* Copy semantics avoid race conditions
— At least directly on the data

* Flexible API: e.g.

— Batching: can send K messages before waiting; and
can similarly batch a set of replies.

— Scheduling: can choose when to receive, who to
receive from, and which messages to prioritize

— Broadcast: can send messages to many recipients

* Works both within and between machines
— i.e. same design works for distributed systems

e Explicitly used as basis of some languages...



Example: Linda

* Concurrent programming language based on the
abstraction of the tuple space

— A [distributed] shared store which holds variable
length typed tuples, e.g. “(‘tag’, 17, 2.34, ‘foo’)”

— Allows asynchronous “pub sub” messaging

* Processes can create new tuples, read tuples, or
read-and-remove tuples
ut(<tuple>); // publishes tuple in TS

rd(<pattern>); // reads a tuple matching pattern
in(<pattern>); // as above, but removes tuple

(o)
t
t

 Weird... and difficult to implement efficiently



Example: occam

* Language based on Hoare’s CSP formalism
— A “process algebra” for modeling concurrency

* Processes synchronously communicate via channels

<channel> ? <variable> // an 1nput process
<channel> ! <expression> // an output process

* Build complex processes via SEQ, PAR and ALT, e.g.

ALT
countl < 100 & cl1 ? Data
SEQ
countl:= countl + 1
merged ! data
count2 < 100 & c2 ? Data
SEQ
count2:= count2 + 1
merged ! data



Example: Erlang

* Functional programming language designed in
mid 80’s, made popular more recently

* Actors: lightweight language-level processes
— Can spawn() new processes very cheaply

* Single-assignment: each variable is assigned only
once, and thereafter is immutable
— But values can be sent to other processes

* Guarded Receives (as in Ada, occam)
— Messages delivered in order to local mailbox

10



Producer-Consumer in ErIang

-module(producerconsumer).

-export([start/0]). Invoking start() will
Spawn an actor...

start() ->
spawn(fun() -> Toop() end).

receive matches

Toop() -> messages to patterns
receive
{produce, item } -> explicit tail-recursion is
enter_item(item), required to keep the
lToop(); actor alive...
{consume, Pid } ->
Pid ! remove_item(), ... S0 if send ‘stop’,
Toop(); process will terminate.
stop ->
ok

end.

11



Message Passing: Summary

* A way of sidestepping (at least some of) the
issues with shared memory concurrency

— No direct access to data => no race conditions
— Threads choose actions based on message

* Explicit message passing can be awkward
— Many weird and wonderful languages ;-)

* Can also use with traditional languages, e.g.
— Transparent messaging via RPC/RMI
— Scala, Kilim (actors on Java, or for Java), ...



Composite Operations

e So far have seen various ways to ensure safe
concurrent access to a single object

— e.g. monitors, active objects, message passing
* More generally want to handle composite operations:
— i.e. build systems which act on multiple distinct objects

* As an example, imagine an internal bank system which
allows account access via three method calls:

int amount = getBalance(account);
bool credit(account, amount);
bool debit(account, amount);

e If each is thread-safe, is this sufficient?
 Orare we going to get into trouble???



Composite Operations

* Consider two concurrently executing client threads:

— One wishes to transfer 100 quid from the savings account
to the current account

— The other wishes to learn the combined balance

// thread 1: transfer // thread 2: check balance

100 // from savings- s = getBalance(savings);

>current c = getBalance(current);
debit(savings, 100); tot = s + c;

credit(current, 100);
* |f we're unlucky then:

— Thread 2 could see balance that’s too small
— Thread 1 could crash after doing debit() — ouch!
— Server thread could crash at any point — ouch?



Problems with Composite Operations

* Two separate kinds of problem here

* 1. Insufficient Isolation
— Individual operations being atomic is not enough

— e.g. want the credit & debit making up the transfer to
happen as one operation

— Could fix this particular example with a new transfer()
method, but not very general ...

e 2. Fault Tolerance
— In the real-word, programs (or systems) can fail
— Need to make sure we can recover safely



Transactions

 Want programmer to be able to specify that a set of
operations should happen atomically, e.g.

// transfer amt from A -> B
transaction {
1f (getBalance(A) > amt) {
debit(A, amt);
credit(B, amt);
return true;
} else return false;

}

* A transaction either executes correctly (in which case
we say it commits), or has no effect at all (i.e. it aborts)

e regardless of other transactions, or system crashes!




ACID Properties

 Want committed transactions to satisfy four properties:

* Atomicity: either all or none of the transaction’s operations
are performed

— Programmer doesn’t need to worry about clean up

* Consistency: a transaction transforms the system from one
consistent state to another

— Programmer must ensure e.g. conservation of money

* Isolation: each transaction executes [as if] isolated from
the concurrent effects of others

— Can ignore concurrent transactions (or partial updates)

* Durability: the effects of committed transactions survive
subsequent system failures

— If system reports success, must ensure this is recorded on disk

17



ACID Properties

Can group these into two categories

1. Atomicity & Durability deal with making sure the
system is safe even across failures

— (A) No partially complete txactions

— (D) Txactions previously reported as committed don’t
disappear, even after a system crash

2. Consistency & Isolation ensure correct behavior
even in the face of concurrency

— (C) Can always code as if invariants in place
— (1) Concurrently executing txactions are invisible



Isolation

e To ensure a transaction executes in isolation
could just have a server-wide lock... simple!

// transfer amt from A -> B
transaction { // acquire server lock
1f (getBalance(A) > amt) {

debit(A, amt);

credit(B, amt);

return true;

} else return false;

} // release server lock

* But doesn’t allow any concurrency...

 And doesn’t handle mid-transaction failure (e.g. what if
we are unable to credit the amount to B?)



Isolation — Serializability

* The idea of executing transactions serially (one
after the other) is a useful model

— We want to run transactions concurrently
— But the result should be as if they ran serially

 Consider two transactions, T1 and T2

T1l transaction { T2 transaction {
s = getBalance(S); debit(s, 100);
c = getBalance(C); credit(c, 100);
return (s + c); return true;

} }

* |f assume individual operations are atomic, then there
are six possible ways the operations can interleave...



Isolation — Serializability

Tl:é S.getBalance C.getBalance

T2::

%
Q.
@
o
o
O
(@)
-3
)
Q
=

T1: S.getBalance C.getBalance
r2; S >

* First case is serial and, as expected, all ok

* Second case is not serial ... but result is fine
— Both of T1’s operations happen after T2’s update
— This is a serializable schedule [as is first case]



Isolation — Serializability

72;2 S.debit C.credit =

e Neither of these two executions is ok
e T1 sees inconsistent values:

— (top) sees updated version of C, but old version of S
— (bottom) sees updated S, but original version of C

22



History Graphs

e Can construct a graph for any execution:
— Nodes represent individual operations, and
— Arrows represent “happens-before” relations

e Operations within a given transaction must
happen in program order (i.e. as written)

* Conflicting operations are ordered by the
implementation of the underlying object
— conflicting operations = non-commutative

— e.g. A.credit(), A.debit() commute [don’t conflict],
while A.credit() and A.addInterest() do conflict



Hlstorx Graphs: Good Schedules

T1: S.getBalance . C.getBalance COMMIT
T2: S.debit C.credit COMMIT
T1: S.getBalance . C.getBalance COMMIT

T2: : S.debit C.credit COMMIT

 Same schedules as before (both ok)

* Can easily see that everything in T1 either
happens before everything in T2, or vice versa

— Hence schedule can be serialized

24



Hlstorx Graphs: Bad Schedules

T1: S.getBalance . C.getBalance COMMIT
T2: S.debit C.credit COMMIT
T1: S.getBalance . C.getBalance COMMIT

T2: : S.debit C.credit COMMIT

e Both schedules are bad :-(

— Arrows from T1 to T2 mean “T1 must happen before T2”
— But arrows from T2 to T1 => “T2 must happen before T1”

e Can’t both be true => schedules are not serializable.

25



Causes of Bad Schedules

* Lost Updates

— T1 updates (writes) an object, but this is then overwritten
by concurrently executing T2

— (also called a write-write conflict)

* Dirty Reads

— T1 reads an object which has been updated an
uncommitted transaction T2

— (also called a read-after-write conflict)

* Unrepeatable Reads

— T1 reads an object which is then updated by T2
— Not possible for T1 to read the same value again
— (also called a write-after-read conflict)

26



Isolation and Strict Isolation

* |deally want to avoid all three problems

 Two ways: Strict Isolation and Non-Strict Isolation

— Strict Isolation: guarantee we never experience lost
updates, dirty reads, or unrepeatable reads

— Non-Strict Isolation: let transaction continue to
execute despite potential problems

* Non-strict isolation usually allows more
concurrency but can lead to complications

— e.g. if T1 reads something written by T2 (a “dirty
read”) then T1 cannot commit until T2 commits

— and T1 must abort if T2 aborts: cascading aborts

27



Enforcing Isolation

* |n practice there are a number of techniques
we can use to enforce isolation (of either kind)

e We will look at:

— Two-Phase Locking (2PL);
— Timestamp Ordering (TSO); and
— Optimistic Concurrency Control (OCC)

28



Two Phase Locking (2PL)

e Associate a lock with every object
— Could be mutual exclusion, or MRSW
* Transactions proceed in two phases:

— Expanding Phase: during which locks are acquired but
none are released

— Shrinking Phase: during which locks are released, and
no more are acquired

e Operations on objects occur in either phase,
providing appropriate locks are held

— Should ensure serializable execution



2PL Example

Acquire a read lock

// transfer amt from A -> (shared) before ‘read’ A
transaction {
~ | readLock(A); :
if (getBalance(A) > amt) { Upgrade to a write lock
Expanding _ writeLock(A): (exclusive) before write A
Phase del:_n t(A, amt); Acquire a write lock
W t?LOCk(B) ) (exclusive) before write B
- credit(B, amt);
= writeunlock(B);
- b addInterest(A); Release locks when done
Shrinking writeunlock(A); to allow concurrency
Phase ~ tryCommit(return=true) ;
} else {
_ readunlock(A);
tryCommit(return=false);
}

30



Problems with 2PL

* Requires knowledge of which locks required
— Can be automated in many systems

* Risk of deadlock
— Can attempt to impose a partial order
— Or can detect deadlock and abort, releasing locks
— (this is safe for transactions, which is nice)
* Non-strict Isolation: releasing locks during execution
means others can access those objects

— e.g. T1 updates A, then releases write lock; now T2 can
read or overwrite the uncommitted value

— Hence T2’s fate is tied to T1 (whether commit or abort)
— Can fix with strict 2PL: hold all locks until transaction end



Strict 2PL Example

// transfer amt from A -> B
transaction {
readLock (A);
1f (getBalance(A) > amt) {
Expanding _ writeLock(A);
Phase debit(A, amt);
writeLock(B);
- credit(B, amt);
addInterest(A);

tryCommit(return;;:EZTT“‘~1 I
} else { ’

readunlock(A);
tryCommit(return=false);

} on commit, abort {
Unlock All unlock(A);
Phase unlock(B);

}

32



