Distributed Systems
8L for Part IB

Lecture 5

Dr Robert N. M. Watson

Last time

* Saw physical time can’t be kept exactly in sync; instead use
logical clocks to track ordering between events:
— Defined a— b to mean ‘a happens-before b’

— Easy inside single process, & use causal ordering (send —
receive) to extend relation across processes

— ifsend(m,) — send,(m,) then deliver,(m,) — deliver,(m,)
* Lamport clocks, L(e): an integer

— Increment to (max of (sender, receiver)) + 1 on receipt

— But given L(a) < L(b), know nothing about order of a and b

* Vector clocks: list of Lamport clocks, one per process
— Element V[j] captures #events at P, observed by P,

— Crucially: if V,(a) < Vj(b), can infer thata— b, and
if Vi(a) ~ Vj(b), can infer thata ~ b

20/02/2013



20/02/2013

Vector Clocks: Example

(1,0,0) (2,0,0)

P1 ° >
a b m,
(2,1,0) (2,2,0)
P2 > physical time

(2,2,2)

(0,0,1)
°
€ f
* When P, receives m,, it merges the entries from P,’s clock
— choose the maximum value in each position
* Similarly when P, receives m,, it merges in P,’s clock

— this incorporates the changes from P, that P, already saw

* Vector clocks explicitly track the transitive causal order: f's
timestamp captures the history of a, b, c & d

P3

Consistent Global State

* We have the notion of “a happens-before b” (a— b)
or “a is concurrent with b” (a ~ b)

* What about ‘instantaneous’ system-wide state?
— distributed debugging, GC, deadlock detection, ...

* Chandy/Lamport introduced consistent cuts:
— draw a (possibly wiggly) line across all processes

— this is a consistent cut if the set of events (on the |hs) is
closed under the happens-before relationship

— i.e. if the cut includes event x, then it also includes all
events e which happened before x

* In practical terms, this means every delivered message
included in the cut was also sent within the cut




Consistent Cuts: Example

Pl —o—e- - —_—
a : ‘\\ \ / I’
P2 : - ," ®—> physical time
h f \‘\ gA h p y
P3 — = >

1

i ' k !

* Vertical cuts are always consistent (due to the way we

draw these diagrams), but some curves are ok too:

— providing we don’t include any receive events without
their corresponding send events

* |Intuition is that a consistent cut could have occurred
during execution (depending on scheduling etc),

<< Observing Consistent Cuts >>

* Chandy/Lamport Snapshot Algorithm (1985):
— Distributed algorithm for generating a ‘snapshot’ of
relevant system-wide state (e.g. all memory, locks held, ...)
— Based on flooding special marker message M to all
processes; causal order of flood defines the cut
— If P, receives M from P; and it has yet to snapshot:
* It pauses all communication, takes local snapshot & sets C;to {}

* Then sends M to all other processes P, and starts recording C; =
{ set of all post local snapshot messages received from P, }

— If P, receives M from some P, after taking snapshot
* Stops recording C,, and saves alongside local snapshot

— Global snapshot comprises all local snapshots & C;
— Assumes reliable, in-order messages, & no failures

20/02/2013



Process Groups

* Often useful to build distributed systems around the notion
of a process group
— Set of processes on some number of machines
— Possible to multicast messages to all members
— Allows fault-tolerant systems even if some processes fail
* Membership can be fixed or dynamic
— if dynamic, have explicit join() and leave() primitives
* Groups can be open or closed:
— Closed groups only allow messages from members
* Internally can be structured (e.g. coordinator and set of
slaves), or symmetric (peer-to-peer)
— Coordinator makes e.g. concurrent join/leave easier...
— ... but may require extra work to elect coordinator

Group Communication: Assumptions

* Assume we have ability to send a message to
multiple (or all) members of a group

— Don’t care if ‘true’ multicast (single packet sent,
received by multiple recipients) or “netcast” (send set
of messages, one to each recipient)

* Assume also that message delivery is reliable,
and that messages arrive in bounded time

— But may take different amounts of time to reach
different recipients

* Assume (for now) that processes don’t crash
* What delivery orderings can we enforce?

20/02/2013



FIFO Ordering

m, m,

P1

>
P2 7 ) S
\\‘ mzt \ \ / > physical time

P3
P4 \ \‘ —m/ >

* With FIFO ordering, messages from a particular process P, must be
received at all other processes P; in the order they were sent

— e.g.in the above, everyone must see m, before m,
— (ordering of m, and m, is not constrained)

* Seems easy but not trivial in case of delays / retransmissions
— e.g. what if message m, to P2 takes a loooong time?

* Hence receivers may need to buffer messages to ensure order

Receiving versus DeIivering

* Group communication middleware provides
extra features above ‘basic’ communication

— e.g. providing reliability and/or ordering guarantees
on top of IP multicast or netcast

» Assume that OS provides receive() primitive:
— returns with a packet when one arrives on wire

* Received messages either delivered or held back:
— “delivered” means inserted into delivery queue
— “held back” means inserted into hold-back queue

— held-back messages are delivered later as the result of
the receipt of another message...

20/02/2013



Implementing FIFO Ordering

receive(M from pi) { .| _messages consumed by application
s = SegNo(M);

if (s == (Sji+l) ) {
deliver(M);

s = flush(hbq); anything deljvergpye»
Sji = s; I A
} else holdback(M); %. hold-back queue
}

* Each process P, maintains a message sequence number (SeqNo) S,

* Every message sent by P, includes S;, incremented after each send
— not including retransmissions!

* P;maintains S; : the SeqNo of the last delivered message from P,
— If receive message from P; with SeqNo # (S;+1), hold back

— When receive message with SeqNo = (S;+1), deliver it ... and also
deliver any consecutive messages in hold back queue ... and update S;

add M to delivery Q delivery queue

11

Stronger Orderings

* Can also implement FIFO ordering by just using a reliable
FIFO transport like TCP/IP ;-)

* But the general ‘receive versus deliver’ model also allows
us to provide stronger orderings:

— Causal ordering: if event multicast(g, m;) — multicast(g, m,),
then all processes will see m, before m,

— Total ordering: if any processes delivers a message m, before
m,, then all processes will deliver m; before m,

* Causal ordering implies FIFO ordering, since any two
multicasts by the same process are related by —

* Total ordering (as defined) does not imply FIFO (or causal)
ordering, just says that all processes must agree
— In reality often want FIFO-total ordering (combines the two)

20/02/2013



Causal Ordering

m, m,

P1

Zs
2; m \ \ / > physical time
\ \ o / g

P4

* Same example as previously, but now causal ordering means that
(a) everyone must see m, before m, (as with FIFO), and
(b) everyone must see m; before m, (due to happens-before)
* Is this ok?
— No!'m; —m,, but P2 sees m, before m,
— To be correct, must hold back (delay) delivery of m, at P2
— But how do we know this?

Implementing Causal Ordering

e Turns out this is pretty easy!
— Start with receive algorithm for FIFO multicast...
— and replace sequence numbers with vector clocks

P1 Have (1,0,1) != (0,0,+1), so
must hold back m,

P2 Once receive m,, can

p3 deliver m; and then m,

* Need some care with dynamic groups

— must encode variable-length vector clock, typically using
positional notation, and deal with joins and leaves

20/02/2013



Total Ordering

* Sometimes we want all processes to see exactly the
same, FIFO, sequence of messages

— particularly for state machine replication (see later)
* One way is to have a ‘can send’ token:

— Token passed round-robin between processes

— Only process with token can send (if he wants)
* Or use a dedicated sequencer process

— Other processes ask for global sequence no. (GSN), and
then send with this in packet

— Use FIFO ordering algorithm, but on GSNs

* Can also build non-FIFO total order multicast by having
processes generate GSNs themselves and resolving ties

Ordering and Asynchrony

* FIFO ordering allows quite a lot of asynchrony

— e.g. any process can delay sending a message until it has a
batch (to improve performance)

— or can just tolerate variable and/or long delays
* Causal ordering also allows some asynchrony
— But must be careful queues don’t grow too large!
* Traditional total order multicast not so good:

— Since every message delivery transitively depends on
every other one, delays holds up the entire system

— Instead tend to an (almost) synchronous model, but this
performs poorly, particularly over the wide area ;-)

— Some clever work on virtual synchrony (for the interested)

20/02/2013



Distributed Mutual Exclusion

* In first part of course, saw need to coordinate
concurrent processes / threads

— In particular considered how to ensure mutual exclusion:
allow only 1 thread in a critical section

* A variety of schemes possible:

— test-and-set locks; semaphores; event counts and
sequencers; monitors; and active objects

* But most of these ultimately rely on hardware support
(atomic operations, or disabling interrupts...)
— not available across an entire distributed system

* Assuming we have some shared distributed resources,
how can we provide mutual exclusion in this case?

Solution #1: Central Lock Server

P1

>
rd

...execute critical section
P2

\ |
AV ATV S

Nominate one process C as coordinator

— If P, wants to enter critical section, simply sends lock message to
C, and waits for a reply

— If resource free, C replies to P, with a grant message; otherwise
C adds P, to a wait queue

— When finished, P, sends unlock message to C
— Csends grant message to first process in wait queue

v

physical time

gran tL
/ W
9raney)

20/02/2013



Central Lock Server: Pros and Cons

* Central lock server has some good properties:
— simple to understand and verify
— live (providing delays are bounded, and no failure)

— fair (if queue is fair, e.g. FIFO), and easily supports
priorities if we want them

— decent performance: lock acquire takes one round-
trip, and release is ‘free’ with asynchronous messages

* But C can become a performance bottleneck...

 ...and can’t distinguish crash of C from long wait
— can add additional messages, at some cost

19

Solution #2: Token Passing

y

Initial token 6 e
generated by PO Passes clockwise
around ‘ring’
If e.g. P4 wants to e
enter CS, holds onto
token for duration e G
* Avoid central bottleneck
* Arrange processes in a logical ring
— Each process knows its predecessor & successor

— Single token passes continuously around ring

— Can only enter critical section when possess token; pass
token on when finished (or if don’t need to enter CS)

20

20/02/2013

10



Token Passing: Pros and Cons

» Several advantages :

— Simple to understand: only 1 process ever has token =>
mutual exclusion guaranteed by construction

— No central server bottleneck
— Liveness guaranteed (in the absence of failure)

— So-so performance (between 0 and N messages until a
waiting process enters, 1 message to leave)

* But:
— Doesn’t guarantee fairness (FIFO order)
— If a process crashes must repair ring (route around)
— And worse: may need to regenerate token — tricky!
* And constant network traffic: an advantage???

21

Solution #3: Totally-Ordered Multicast

* Scheme due to Ricart & Agrawala (1981)

* Consider N processes, where each process maintains local
variable state which is one of { FREE, WANT, HELD }

* To obtain lock, a process P, sets state:= WANT, and then
multicasts lock request to all other processes

* When a process P; receives a request from P;:
— If P/s local state is FREE, then P; replies immediately with Ok
— If P/s local state is HELD, P; queues the request to reply later

* Arequesting process P, waits for Ok from N-1 processes
— Once received, sets state:= HELD, and enters critical section

— Once done, sets state:= FREE, & replies to any queued requests

* What about concurrent requests?

22

20/02/2013

11



