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Syntax of LFP

• Any relation symbol of arity k is a predicate expression of arity

k;

• If R is a relation symbol of arity k, x is a tuple of variables of

length k and φ is a formula of LFP in which the symbol R only

occurs positively, then

lfpR,xφ

is a predicate expression of LFP of arity k.

All occurrences of R and variables in x in lfpR,xφ are bound
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Syntax of LFP

• If t1 and t2 are terms, then t1 = t2 is a formula of LFP.

• If P is a predicate expression of LFP of arity k and t is a tuple

of terms of length k, then P (t) is a formula of LFP.

• If φ and ψ are formulas of LFP, then so are φ ∧ ψ, and ¬φ.

• If φ is a formula of LFP and x is a variable then, ∃xφ is a

formula of LFP.
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Semantics of LFP

Let A = (A, I) be a structure with universe A, and an

interpretation I of a fixed vocabulary σ.

Let φ be a formula of LFP, and ı an interpretation in A of all the

free variables (first or second order) of φ.

To each individual variable x, ı associates an element of A, and to

each k-ary relation symbol R in φ that is not in σ, ı associates a

relation ı(R) ⊆ Ak.

ı is extended to terms t in the usual way.

For constants c, ı(c) = I(c).

ı(f(t1, . . . , tn)) = I(f)(ı(t1), . . . , ı(tn))
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Semantics of LFP

• If R is a relation symbol in σ, then ı(R) = I(R).

• If P is a predicate expression of the form lfpR,xφ, then ı(P ) is

the relation that is the least fixed point of the monotone

operator F on Ak defined by:

F (X) = {a ∈ Ak | A |= φ[ı〈X/R,x/a〉],

where ı〈X/R,x/a〉 denotes the interpretation ı′ which is just

like ı except that ı′(R) = X , and ı′(x) = a.
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Semantics of LFP

• If φ is of the form t1 = t2, then A |= φ[ı] if, ı(t1) = ı(t2).

• If φ is of the form R(t1, . . . , tk), then A |= φ[ı] if,

(ı(t1), . . . , ı(tk)) ∈ ı(R).

• If φ is of the form ψ1 ∧ ψ2, then A |= φ[ı] if, A |= ψ1[ı] and

A |= ψ2[ı].

• If φ is of the form ¬ψ then, A |= φ[ı] if, A 6|= ψ[ı].

• If φ is of the form ∃xψ, then A |= φ[ı] if there is an a ∈ A such

that A |= ψ[ı〈x/a〉].
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Transitive Closure

The formula (with free variables u and v)

θ ≡ lfpT,xy[(x = y ∨ ∃z(E(x, z) ∧ T (z, y)))](u, v)

defines the reflexive and transitive closure of the relation E.

Thus ∀u∀v θ defines connectedness.

The expressive power of LFP properly extends that of first-order

logic.
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Greatest Fixed Points

If φ is a formula in which the relation symbol R occurs positively,

then the greatest fixed point of the monotone operator Fφ defined

by φ can be defined by the formula:

¬[lfpR,x¬φ(R/¬R)](x)

where φ(R/¬R) denotes the result of replacing all occurrences of

R in φ by ¬R.

Exercise: Verify!.
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Simultaneous Inductions

We are given two formulas φ1(S, T,x) and φ2(S, T,y),

S is k-ary, T is l-ary.

The pair (φ1, φ2) can be seen as defining a map:

F : Pow(Ak) × Pow(Al) → Pow(Ak) × Pow(Al)

If both formulas are positive in both S and T , then there is a least

fixed point.

(P1, P2)

defined by simultaneous induction on A.
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Simultaneous Inductions

Theorem

For any pair of formulas φ1(S, T ) and φ2(S, T ) of LFP, in which the

symbols S and T appear only positively, there are formulas φS and

φT of LFP which, on any structure A containing at least two

elements, define the two relations that are defined on A by φ1 and

φ2 by simultaneous induction.
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Proof

Assume k ≤ l.

We define P , of arity l + 2 such that:

(c, d, a1, . . . , al) ∈ P if, and only if, either c = d and

(a1, . . . , ak) ∈ P1 or c 6= d and (a1, . . . , al) ∈ P2

For new variables x1 and x2 and a new l + 2-ary symbol R, define

φ′1 and φ′2 by replacing all occurrences of S(t1, . . . , tk) by:

x1 = x2 ∧ ∃yk+1, . . . , ∃ylR(x1, x2, t1, . . . , tk, yk+1, . . . , yl),

and replacing all occurrences of T (t1, . . . , tl) by:

x1 6= x2 ∧R(x1, x2, t1, . . . , tl).
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Proof

Define φ as

(x1 = x2 ∧ φ
′
1) ∨ (x1 6= x2 ∧ φ

′
2).

Then,

(lfpR,x1x2y
φ)(x, x,y)

defines P , so

φS ≡ ∃x∃yk+1, . . . , ∃yl(lfpR,x1x2y
φ)(x, x,y);

and

φT ≡ ∃x1∃x2(x1 6= x2 ∧ lfpR,x1x2y
φ)(x1, x2,y).
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Inflationary Fixed Points

We can associtate with any formula φ(R,x) (even one that is not

monotone in R an inflationary operator

IFφ(P ) = P ∪ Fφ(P ),

On any finite structure A the sequence

IF 0 = ∅

IFn+1 = IFφ(IF
n)

converges to a limit IF∞.

If Fφ is monotone, then this fixed point is, in fact, the least fixed

point of Fφ.
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IFP

We define the logic IFP with a syntax similar to LFP except,

instead of the lfp rule, we have

If R is a relation symbol of arity k, x is a tuple of variables

of length k and φ is any formula of IFP, then

ifpR,xφ

is a predicate expression of IFP of arity k.

Semantics: we say that the predicate expression ifpR,xφ denotes

the relation that is the limit reached by the iteration of the

inflationary operator IFφ.
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IFP

If φ defines a monotone operator, the relation defined by

ifpR,xφ

is the least fixed point of φ.

Thus, the expressive power of IFP is at least as great as that of LFP.

In fact, it is no greater:

Theorem (Gurevich-Shelah)

For every formula of φ of LFP, there is a predicate expression ψ of

LFP such that, on any finite structure A, ψ defines the same

relation as ifpR,xφ.
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Ranks

Let φ(R,x) be a formula defining an operator Fφ and IFφ be the

associated inflationary operator given by

IFφ(S) = S ∪ Fφ(S)

In a structure A, we define for each a ∈ Ak a rank |a|φ.

The least n such that a ∈ IFα, if there is such an n and ∞

otherwise.
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Stage Comparison

We define the two stage comparison relations � and ≺ by:

a � b ⇔ a ∈ IF∞
φ ∧ |a|φ ≤ |b|φ;

a ≺ b ⇔ |a|φ < |b|φ.

These two relations can themselves be defined in IFP.
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Stage Comparison

a � b ⇔ a ∈ IFφ({b
′ | b′ ≺ b}).

a ≺ b ⇔ b 6∈ {a′ | ¬(a � a′)}.

Together, these give:

a � b ⇔ a ∈ IFφ({b
′ | b 6∈ {a′ | ¬(a � b′)}}).

This is an inductive definition of �.

A similar inductive definition is obtained from ≺.
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Stage Comparison in LFP

In the inductive definition of �:

a � b ⇔ a ∈ IFφ({b
′ | b 6∈ {a′ | ¬(a � b′)}}).

we can replace the negative occurrences of a � b with ¬(b ≺ a),

and similarly, in the definition of ≺ replace negative occurrences of

≺ with positive occurrences of �

as long as we can define the maximal rank
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Maximal Rank

There is a formula µ(y), which defines the set of tuples of maximal

rank.

IFφ({b | b � a}) ⊆ IFφ({b | b ≺ a}).

Replace the negative occurrence of b � a by ¬(a ≺ b).
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2. Libkin. Sections 10.2 and 10.3

3. Grädel et al. Section 2.6.
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Complexity of LFP

Any query definable in LFP is decidable by a deterministic machine

in polynomial time.

To be precise, we can show, by induction on the structure of the

formula φ(x) that for each formula φ there is a k such that

A |= φ[a]

is decidable in time O(nt) where n is the number of elements of A.

We prove this by induction on the structure of the formula.
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Complexity of LFP

• Atomic formulas by direct lookup (O(na) time, where a is the

maximum arity of any predicate symbol in σ).

• Boolean connectives are easy.

If A |= φ1 can be decided in time O(nt1) and A |= φ2 in

time O(nt2), then A |= φ1 ∧ φ2 can be decided in time

O(nmax(t1,t2))

• If φ ≡ ∃xψ then for each a ∈ A check whether

(A, c 7→ a) |= ψ[c/x],

where c is a new constant symbol. If A |= ψ can be decided in

time O(nt), then A |= φ can be decided in time O(nt+1).
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Complexity of LFP

Suppose φ ≡ lfpR,xψ(t) (R is l-ary)

To decide A |= φ[a]:

R := ∅

for i := 1 to nl do

R := Fψ(R)

end

if a ∈ R then accept else reject
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Complexity of LFP

To compute Fψ(R)

For every tuple a ∈ Al, determine whether (A, R) |= ψ[a].

If deciding (A, R) |= ψ takes time O(nt), then each assignment to R

inside the loop requires time O(nl+t). The total time taken to

execute the loop is then O(n2l+t). Finally, the last line can be done

by a search through R in time O(nl). The total running time is,

therefore, O(n2l+t).

The space required is O(nl).
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Capturing P

For any φ of LFP, the language {[A]< | A |= φ} is in P.

Suppose ρ is a signature that contains a binary relation symbol <,

possibly along with other symbols.

Let Oρ denote those structures A in which < is a linear order of

the universe.

For any language L ∈ P, there is a sentence φ of LFP that defines

the class of structures

{A ∈ Oρ | [A]<A ∈ L}

(Immerman; Vardi 1982)
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Capturing P

Recall the proof of Fagin’s Theorem, that ESO captures NP.

Given a machine M and an integer k, there is a first-order formula

φM,k such that

A |= ∃ < ∃Tσ1
· · ·Tσs

∃Sq1 · · ·Sqm
∃H φM,k

if, and only if, M accepts [A]< in time nk, for some order <.

If we fix the order < as part of the structure A, we do not need the

outermost quantifier.

Moreover, for a deterministic machine M , the relations

Tσ1
. . . Tσs

, Sq1 . . . Sqm
, H can be defined inductively.
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Capturing P
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Capturing P

Recall the proof of Fagin’s Theorem, that ESO captures NP.

Given a machine M and an integer k, there is a first-order formula

φM,k such that

A |= ∃ < ∃Tσ1
· · ·Tσs

∃Sq1 · · ·Sqm
∃H φM,k

if, and only if, M accepts [A]< in time nk, for some order <.

If we fix the order < as part of the structure A, we do not need the

outermost quantifier.

Moreover, for a deterministic machine M , the relations

Tσ1
. . . Tσs

, Sq1 . . . Sqm
, H can be defined inductively.
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Capturing P

Tapea(x,y) ⇔

(x = 1 ∧ Inita(y))∨

∃t∃h
∨

q

(

x = t + 1 ∧ Stateq(t,h)∧

[(h = y ∧
∨

{b,d,q′|∆(q,b,q′,a,d)} Tapeb(t,y)∨

h 6= y ∧ Tapea(t,y)]
)

;

where Inita(y) is the formula that defines the positions in which

the symbol a appears in the input.
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Capturing P

Stateq(x,y) ⇔

(x = 1 ∧ y = 1 ∧ q = q0)∨

∃t∃h
∨

{a,b,q′|∆(q′,a,q,b,R)}

(

x = t + 1 ∧ Stateq′(t,h)∧

Tapea(t,h) ∧ y = h + 1)
)

∨

{a,b,q′|∆(q′,a,q,b,L)}

(

x = t + 1 ∧ State′q(t,h)∧

Tapea(t,h) ∧ h = y + 1)
)

.
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Unordered Structures

In the absence of an order relation, there are properties in P that

are not definable in LFP.

There is no sentence of LFP which defines the structures with an

even number of elements.
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Evenness

Let E be the collection of all structures in the empty signature.

In order to prove that evenness is not defined by any LFP sentence,

we show the following.

Lemma

For every LFP formula φ there is a first order formula ψ, such that

for all structures A in E , A |= (φ↔ ψ).
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Unordered Structures

Let ψ(x,y) be a first order formula.

lfpR,xψ defines the relation

F∞
ψ,b =

⋃

i∈N

F iψ,b

for a fixed interpretation of the variables y by the tuple of

parameters b.

For each i, there is a first order formula ψi such that on any

structure A,

F iψ,b = {a | A |= ψi[a,b]}.

36

Defining the Stages

These formulas are obtained by induction.

ψ1 is obtained from ψ by replacing all occurrences of

subformulas of the form R(t) by t 6= t.

ψi+1 is obtained by replacing in ψ, all subformulas of the

form R(t) by ψi(t,y)
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Let b be an l-tuple, and a and c two k-tuples in a structure A such

that

there is an automorphism ı of A (i.e. an isomorphism from A to

itself) such that

• ı(b) = b

• ı(a) = c

Then,

a ∈ F iψ,b if, and only if, c ∈ F iψ,b.
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Bounding the Induction

This defines an equivalence relation a ∼b c.

If there are p distinct equivalence classes, then

F∞
ψ,b = F pψ,b

In E there is a uniform bound p, that does not depend on the size

of the structure.

39

Reading List for this Part

1. Libkin. Chapter 10.

2. Grädel et al. Section 3.3.
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Complexity of First-Order Logic

The problem of deciding whether A |= φ for first-order φ is in time

O(lnm) and O(m logn) space.

where n is the size of A, l is the length of φ and m is the quantifier

rank of φ.

We have seen that the problem is PSPACE-complete, even for fixed

A.

For each fixed φ, the problem is in L.
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Is FO contained in an initial segment of P?

Is there a fixed c such that for every first-order φ, Mod(φ)

is decidable in time O(nc)?

If P = PSPACE, then the answer is yes, as the satisfaction relation

is then itself decidable in time O(nc).

Thus, though we expect the answer is no, this would be

difficult to prove.

A more uniform version of the question is:

Is there a constant c and a computable function f so that

the satisfaction relation for first-order logic is decidable in

time O(f(l)nc)?

In this case we say that the satisfaction problem is fixed-parameter

tractable (FPT) with the formula length as parameter.
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Parameterized Problems

Some problems are given a graph G and a positive integer k

Independent Set: does G contain k vertices that are pairwise

distinct and non-adjacent?

Dominating Set: does G contain k vertices such that every

vertex is among them or adjacent to one of them?

Vertex Cover: does G contain k vertices such that every edge

is incident on one of them?

For each fixed value of k, there is a first-order sentence φk such that

G |= φk if, and only if, G contains an independent set of k vertices.

Similarly for dominating set and vertex cover.

44

Parameterized Complexity

FPT—the class of problems of input size n and parameter l which

can be solved in time O(f(l)nc) for some computable function f

and constant c.

There is a hierarchy of intractable classes.

FPT ⊆W [1] ⊆W [2] ⊆ · · · ⊆ AW[⋆]

Vertex Cover is FPT.

Independent Set is W [1]-complete.

Dominating Set is W [2]-complete.
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Parameterized Complexity of First-Order Satisfaction

Writing Πt for those formulas which, in prenex normal form have t

alternating blocks of quantifiers starting with a universal block:

The satisfaction problem restricted to Πt formulas

(parameterized by the length of the formula) is hard for

the class W [t].

The satisfaction relation for first-order logic (A |= φ),

parameterized by the length of φ is AW[⋆]-complete.

Thus, if the satisfaction problem for first-order logic were FPT, this

would collapse the edifice of parameterized complexity theory.
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Restricted Classes

One way to get a handle on the complexity of first-order

satisfaction is to consider restricted classes of structures.

Given: a first-order formula φ and a structure A ∈ C

Decide: if A |= φ

For many interesting classes C, this problem has been shown to be

FPT, even for formulas of MSO.

We say that satisfaction of FO (or MSO) is fixed-paramter tractable

on C.
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Words as Relational Structures

For an alphabet Σ = {a1, . . . , as} let

σΣ = (<,Pa1
, . . . , Pas

)

where

< is binary; and Pa1
, . . . , Pas

are unary.

With each w ∈ Σ∗ we associate the canonical structure

Sw = ({1, . . . , n}, <, Pa1
, . . . , Pas

)

where

• n is the length of w

• < is the natural linear order on {1, . . . , n}.

• i ∈ Pa if, and only if, the ith symbol in w is a.
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Languages Defined by Formulas

The formula φ in the signature σΣ defines:

{w | Sw |= φ}.

The class of structures isomorphic to word models is given by:

lo(<) ∧ ∀x
∨

a∈A

Pa(x) ∧ ∀x
∧

a,b∈A,a 6=b

(Pa(x) → ¬Pb(x)),

where

lo(<) is the formula that states that < is a linear order
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Examples

The set of strings of length 3 or more:

∃x∃y∃z(x 6= y ∧ y 6= z ∧ z 6= z).

The set of strings which begin with an a:

∃x(Pa(x) ∧ ∀yy ≥ x)

The set of strings of even length:

∃X ∀x(∀y y ≤ x) → X(x)∧

∀x∀y (x < y ∧ ∀z(z ≤ x ∨ y ≤ z))

→ (X(x) ↔ ¬X(y))∧

∀x(∀y x ≤ y) → ¬X(x).
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Examples

(ab)∗:

∀x(∀y y ≤ x) → Pa(x)∧

∀x∀y (x < y ∧ ∀z(z ≤ x ∨ y ≤ z))

→ (Pa(x) ↔ Pb(y))∧

∀x(∀y x ≤ y) → Pb(x).
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MSO on Words

Theorem (Büchi-Elgot-Trakhtenbrot)

A language L is defined by a sentence of MSO if, and only if, L is

regular.

Recall that a language L is regular if:

• it is the set of words matching a regular expression; or

equivalently

• it is the set of words accepted by some nondeterministic finite

automaton; or equivalently

• it is the set of words accepted by some deterministic finite

automaton.
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Myhill-Nerode Theorem

Let ∼ be an equivalence relation on Σ∗.

We say ∼ is right invariant if, for all u, v ∈ Σ∗,

if u ∼ v, then for all w ∈ Σ∗, uw ∼ vw.

Theorem (Myhill-Nerode)

The following are equivalent for any language L ⊆ Σ∗:

• L is regular;

• L is the union of equivalence classes of a right invariant

equivalence relation of finite index on Σ∗.
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MSO Equivalence

We write A ≡MSO
m B to denote that, for all MSO sentences φ with

qr(φ) ≤ m,

A |= φ if, and only if, B |= φ.

We count both first and second order quantifiers towards the rank.

The relation ≡MSO
m has finite index for every m.

For any m, there are up to logical equivalence, only finitely

many formulas with quantifier rank at most m, with at

most k free variables.
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Invariance

Suppose u1, u2, v1, v2 are words over an alphabet Σ such that

u1 ≡MSO

m u2 and v1 ≡MSO

m v2

then u1 · v1 ≡MSO
m u2 · v2.

Dulpicator has a winning strategy on the game played on the pair

of words u1 · v1, u2 · v2 that is obtained as a composition of its

strategies in the games on u1, u2 and v1, v2.

It follows that ≡MSO
m is right invariant.

For any MSO sentence φ, the language defiend by φ is the union of

equivalence classes of ≡MSO
m where m is the quantifier rank of φ.
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Regular Expressions to MSO

For the converse, we translate a regular expression r to an MSO

sentence φr.

r = ∅: φr = ∃x(x 6= x).

r = ε: φr = ¬∃x(x = x).

r = a: φr = ∃x∀y(y = x ∧ Pa(x)).

r = s+ t: φr = φs ∨ ψt.

r = st: φr = ∃x(φ<xs ∧ φ≥xt ),

where φ<xs and φ≥xt are obtained from φs and φt by relativising

the first order quantifiers.

That is, every subformula of φs of the form ∃yψ is replaced by

∃y(y < x ∧ ψ<x),

and similarly every subformula ∃yψ of φt by ∃y(y ≥ x ∧ ψ≥x)
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Kleene Star

r = s∗:

φr = φε∨

∃X ∀x(X(x) ∧ ∀y(y < x→ ¬X(y)) → φ<xs )∧

∀x(X(x) ∧ ∀y(y ≥ x→ ¬X(y)) → φ≥xs )∧

∀x∀y (X < y ∧X(x) ∧X(y)∧

∀z(x < z ∧ z < y → ¬X(z))

→ φ≥x,<ys ),

where φ≥x,<ys is obtained from φs by relativising all first order

quantifiers simultaneously with < y and ≥ x.
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First-Order Languages

The class of star-free regular expressions is defined by:

• the strings ∅ and ε are star-free regular expressions;

• for any element a ∈ A, the string a is a star-free regular

expression;

• if r and s are star-free regular expressions, then so are (rs),

(r + s) and (r̄).

A language is defined by a first order sentence if, and only if, it is

denoted by a star-free regular expression.
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Applications

A class of linear orders is definable by a sentence of MSO if, and

only if, its set of cardinalities is eventually periodic.

Some results on graphs:

The class of balanced bipartite graphs is not definable in

MSO.

The class of Hamiltonian graphs is not definable by a

sentence of MSO.
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MSO is FPT on Words

There is a computable function f such that the problem of

deciding, given a word w and an MSO sentence φ whether,

Sw |= φ

can be decided in time O(f(l)n) where l is the length of φ and n is

the length of w.

The algorithm proceeds by constructing, from φ an automaton Aφ

such that the language recognized by Aφ is

{w | Sw |= φ}

then running Aφ on w.
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The automaton Aφ

The states of Aφ are the equivalence classes of ≡MSO
m where m is

the quantifier rank of φ.

We write TypeMSO

m (A) for the set of all formulas φ with qr(φ) ≤ m

such that A |= φ.

A ≡MSO
m B is equivalent to

TypeMSO

m (A) = TypeMSO

m (B)

There is a single formula θA that characterizes TypeMSO

m (A).

It turns out that we can compute θSw·a
from θSw

.
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Trees

An (undirected) forest is an acyclic graph and a tree is a connected

forest.

We next aim to show that there is an algorithm that decides, given

a tree T and an MSO sentence φ whether

T |= φ

and runs in time O(f(l)n where l is the length of φ and n is the

size of T .
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Rooted Directed Trees

A rooted, directed tree (T, a) is a directed graph with a

distinguished vertex a such that for every vertex v there is a unique

directed path from a to v.

We will actually see that MSO satisfaction is FPT for rooted,

directed trees.

The result for undirected trees follows, as any undirected tree can

be turned into a rooted directed one by choosing any vertex as a

root and directing edges away from it.
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Sums of Rooted Trees

Given rooted, directed trees (T, a) and (S, b) we define the sum

(T, a) ⊕ (S, b)

to be the rooted directed tree which is obtained by taking the

disjoint union of the two trees while identifying the roots.

That is,

• the set of vertices of (T, a) ⊕ (S, b) is V (T ) ⊎ V (S) \ {b}.

• the set of edges is E(T ) ∪ E(S) ∪ {(a, v) | (b, v) ∈ E(S)}.
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Congruence

If (T1, a1) ≡
MSO
m (T2, a2) and (S1, b1) ≡

MSO
m (S2, b2), then

(T1, a1) ⊕ (S1, b1) ≡
MSO

m (T2, a2) ⊕ (S2, b2).

This can be proved by an application of Ehrenfeucht games.

Moreover (though we skip the proof), TypeMSO

m ((T, a) ⊕ (S, b)) can

be computed from TypeMSO

m ((T, a)) and TypeMSO

m ((S, b)).
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Add Root

For any rooted, directed tree (T, a) define r(T, a) to be rooted

directed tree obtained by adding to (T, a) a new vertex, which is

the root and whose only child is a.

That is,

• the vertices of r(T, a) are V (T ) ∪ {a′} where a′ is not in V (T );

• the root of r(T, a) is a′; and

• the edges of r(T, a) are E(T ) ∪ {(a′, a)}.

Again, TypeMSO

m (r(T, a)) can be computed from TypeMSO

m (T, a).
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MSO satisfaction is FPT on Trees

Any rooted, directed tree (T, a) can be obtained from singleton trees

by a sequence of applications of ⊕ and r.

The length of the sequence is linear in the size of T .

We can compute TypeMSO

m (T, a) in linear time.
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The Method of Decompositions

Suppose C is a class of graphs such that there is a finite class B and

a finite collection Op of operations such that:

• C is contained in the closure of B under the operations in Op;

• there is a polynomial-time algorithm which computes, for any

G ∈ C, an Op-decomposition of G over B; and

• for each m, the equivalence class ≡MSO
m is an effective

congruence with respect to to all operations o ∈ Op (i.e., the

≡MSO
m -type of o(G1, . . . , Gs) can be computed from the

≡MSO
m -types of G1, . . . , Gs).

Then, MSO satisfaction is fixed-parameter tractable on C.
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Treewidth

The treewidth of an undirected graph is a measure of how tree-like

the graph is.

A graph has treewidth k if it can be covered by subgraphs of at

most k + 1 nodes in a tree-like fashion.

This gives a tree decomposition of the graph.
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Treewidth

Treewidth is a measure of how tree-like a graph is.

For a graph G = (V,E), a tree decomposition of G is a relation

D ⊂ V × T with a tree T such that:

• for each v ∈ V , the set {t | (v, t) ∈ D} forms a connected

subtree of T ; and

• for each edge (u, v) ∈ E, there is a t ∈ T such that

(u, t), (v, t) ∈ D.

The treewidth of G is the least k such that there is a tree T and a

tree decomposition D ⊂ V × T such that for each t ∈ T ,

|{v ∈ V | (v, t) ∈ D}| ≤ k + 1.
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Dynamic Programming

It has long been known that graphs of small treewidth admit

efficient dynamic programming algorithms for intractable problems.

In general, these algorithms proceed bottom-up along a tree

decomposition of G.

At any stage, a small set of vertices form the “interface” to the rest

of the graph.

This allows a recursive decomposition of the problem.
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Treewidth

Looking at the decomposition bottom-up, a graph of treewidth k is

obtained from graphs with at most k + 1 nodes through a finite

sequence of applications of the operation of taking sums over sets

of at most k elements.

G1 ⊕X G2

|X | ≤ k

G1 G2

X

We let Tk denote the class of graphs G such that tw(G) ≤ k.
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Treewidth

More formally,

Consider graphs with up to k + 1 distinguished vertices

C = {c0, . . . , ck}.

Define a merge operation (G⊕C H) that forms the union of G and

H disjointly apart from C.

Also define erasei(G) that erases the name ci.

Then a graph G is in Tk if it can be formed from graphs with at

most k + 1 vertices through a sequence of such operations.
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Congruence

• Any G ∈ Tk is obtained from Bk by finitely many applications

of the operations erasei and ⊕C .

• If G1, ρ1 ≡MSO
m G2, ρ2, then

erasei(G1, ρ1) ≡
MSO

m erasei(G2, ρ2)

• If G1, ρ1 ≡MSO
m G2, ρ2, and H1, σ1 ≡MSO

m H2, σ2 then

(G1, ρ1) ⊕C (H1, σ1) ≡
MSO

m (G2, ρ2) ⊕C (H2, σ2)

Note: a special case of this is that ≡MSO
m

is a congruence for

disjoint union of graphs.
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Courcelle’s Theorem

Theorem (Courcelle)

For any MSO sentence φ and any k there is a linear time algorithm

that decides, given G ∈ Tk whether G |= φ.

Given G ∈ Tk and φ, compute:

• from G a labelled tree T ; and

• from φ a bottom-up tree automaton A

such that A accepts T if, and only if, G |= φ.
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Bounded Degree Graphs

In a graph G = (V,E) the degree of a vertex v ∈ V is the number of

neighbours of v, i.e.

|{u ∈ V | (u, v) ∈ E}|.

We write δ(G) for the smallest degree of any vertex in G.

We write ∆(G) for the largest degree of any vertex in G.

Dk—the class of graphs G with ∆(G) ≤ k.
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Bounded Degree Graphs

Theorem (Seese)

For every sentence φ of FO and every k there is a linear time

algorithm which, given a graph G ∈ Dk determines whether G |= φ.

A proof is based on locality of first-order logic.

To be precise a strengthening of Hanf’s theorem.

Note: this is not true for MSO unless P = NP.

Construct, for any graph G, a graph G′ such that

∆(G′) ≤ 5 and G′ is 3-colourable iff G is, and the map

G 7→ G′ is polynomial-time computable.
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Hanf Types

For an element a in a structure A, define

NA
r (a)—the substructure of A generated by the elements

whose distance from a (in GA) is at most r.

We say A and B are Hanf equivalent with radius r and threshold q

(A ≃r,q B) if, for every a ∈ A the two sets

{a′ ∈ a | NA

r (a) ∼= NA

r (a′)} and {b ∈ B | NA

r (a) ∼= NB

r (b)}

either have the same size or both have size greater than q;

and, similarly for every b ∈ B.

80

Hanf Locality Theorem

Theorem (Hanf)

For every vocabulary σ and every m there are r ≤ 3m and q ≤ m

such that for any σ-structures A and B: if A ≃r,q B then A ≡m B.

In other words, if r ≥ 3m, the equivalence relation ≃r,m is a

refinement of ≡m.

For A ∈ Dk:

NA
r (a) has at most kr + 1 elements

each ≃r,m has finite index.

Each ≃r,m-class t can be characterised by a finite table, It, giving

isomorphism types of neighbourhoods and numbers of their

occurrences up to threshold m.
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Satisfaction on Dk

For a sentence φ of FO, we can compute a set of tables {I1, . . . , Is}

describing ≃r,m-classes consistent with it.

This computation is independent of any structure A.

Given a structure A ∈ Dk,

for each a, determine the isomorphism type of NA
r (a)

construct the table describing the ≃r,m-class of A.

compare against {I1, . . . , Is} to determine whether A |= φ.

For fixed k, r,m, this requires time linear in the size of A.

Note: satisfaction for FO is in O(f(l, k)n).
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Reading List for this Handout

1. Libkin. Sections 7.6 and 7.7


