Lecture 8: nominal unification

1/18

Sample aProlog code

id : name_type. (* variables *)

tm : type. (* lambda terms *)

var : id -> tm.

app : tm -> tm -> tm.

lam : id\tm -> tm.

pred subst (id\tm) tm tm.

(* "subst (a\X) Y Z" holds if Z is the result of capture-avoiding substitution
of Y for all free occurrences of var a in X *)

subst (a\var a) Y Y.

subst (a\X) Y X :- a # X.

subst (a\app X X’) Y (app Z Z’) :- subst (a\X) Y Z, subst (a\X’) Y Z°.

subst (a\lam(b\X)) Y (lam (b\Z)) :- subst (a\X) Y Z, b # Y.

?- subst (b\lam(a\var b)) (var a) X. (* search for X satisfying X = Aa.b[a/b] *)
Yes. X = lam(a’\var a) (*+ X is Aa’.a, not Aa.a *)

As for Prolog, search for solutions to queries involves resolution (try
to unify query with head of each clause), but using nominal
unification, which solves a-equivalence and freshness constraints.

Lecture 8 2/18

Y.(8) = raw terms over X of sort S

ac A t € X(S) op:S—D
a € X(N) opt € X(D) () € (1)

ti €EX(S1) t €X(S) aceA teX(s)
t1,t2€2(81,82) a.tEZ(N.S)

Each Z(S) is a nominal set once equipped with the
obvious Perm A-action—any finite set of atoms
containing all those occurring in ¢ supports t € X(8).

Alpha-equivalence
=, C X(S) X X(9)

a e A t=,t
a=,a opt =, opt’ O =0
th=st] th=,t,

t11t2 —u t{lté

(a1 a) 0 t1 = (az a) c tz a# (al, tl, a, tz)
al.tl = az.tz

Examples of unification ‘mod &’

over the nominal algebraic signature X for A-calculus:
name-sort Var, data-sort Term, operations

V:Var — Term

A:Term,Term — Term

L:Var.Term — Term

Ex. 1: does there exist a t € X(Term) with

L(a.L(b.A(t,VDb))) =4 L(b.L(a.A(Va,t)))
(where a # b)?

Ex. 2: do there exist t1,) € X(Term) with
L(a.L(b.A(Vb,t1))) =4 L(a.L(a.A(Va,t)))
(where a # b)?

Lecture 8

5/18

Examples of unification ‘mod &’

over the nominal algebraic signature X for A-calculus:
name-sort Var, data-sort Term, operations

V:Var — Term

A:Term,Term — Term

L:Var.Term — Term

Ex. 1: does there exist a A-term e with
Aa.Ab.eb = Ab.Aa.ae
(where a # b)?

Ex. 2: do there exist A-terms eq1, e with
Aa.Ab.be; = Aa.Aa.ae;
(where a # b)?

Lecture 8 5/18

Ex. 1: does there exist t+ € L(Term) with
L(a.L(b.A(t,VD))) =, L(b.L(a.A(Va,t)))
(where a # b)?

18

Ex. 1: does there exist t+ € L(Term) with
L(a.L(b.A(t,VD))) =, L(b.L(a.A(Va,t)))
(where a # b)?

L(b.A((ac)-t, Vb)) =4 L(a.A(Va,(bc)-t))
where ¢ # (a, b, t)

Ex. 1: does there exist t+ € L(Term) with
L(a.L(b.A(t,VD))) =, L(b.L(a.A(Va,t)))
(where a # b)?

L(b.A((ac)-t, Vb)) =4 L(a.A(Va,(bc)-t))
where ¢ # (a, b, t)
A((bd)(ac)-t,vd) =, A(Vd,(ad)(bc)-t))
where d # ¢, d,c # (a,b, t)

18

Ex. 1: does there exist t+ € L(Term) with
L(a.L(b.A(t,VD))) =, L(b.L(a.A(Va,t)))
(where a # b)?

L(b.A((ac)-t, Vb)) =4 L(a.A(Va,(bc)-t))
where ¢ # (a, b, t)
A((bd)(ac)-t,vd) =, A(Vd,(ad)(bc)-t))
where d # ¢, d,c # (a,b, t)

(bd)(ac) - t=4VdandVd =, (ad)(bc)-t
where d # ¢, d,c # (a,b, t)

Ex. 1: does there exist t+ € L(Term) with
L(a.L(b.A(t,VD))) =, L(b.L(a.A(Va,t)))
(where a # b)?

L(b.A((ac)-t, Vb)) =4 L(a.A(Va,(bc)-t))
where ¢ # (a, b, t)
A((bd)(ac)-t,vd) =, A(Vd,(ad)(bc)-t))
where d # ¢, d,c # (a,b, t)

(bd)(ac) - t=4VdandVd =, (ad)(bc)-t
where d # ¢, d,c # (a,b, t)

t=4VbandVa =,t
where d # ¢, d,c # (a,b, t)

Ex. 1: does there exist t+ € L(Term) with
L(a.L(b.A(t,VD))) =, L(b.L(a.A(Va,t)))
(where a # b)?

L(b.A((ac)-t, Vb)) =4 L(a.A(Va,(bc)-t))
where ¢ # (a, b, t)

A((bd)(ac)-t,vd) =, A(Vd,(ad)(bc)-t))
where d # ¢, d,c # (a,b, t)

(bd)(ac) - t=4VdandVd =, (ad)(bc)-t
where d # ¢, d,c # (a,b, t)

t=4VbandVa =,t
where d # ¢, d,c # (a,b, t)

Vb =,Va

b=a
contradicting @ 7 b — so no such t can exist.

Ex. 2: do there exist t;, £, € L(Term) with
L(a.L(b.A(VD,t1))) =4 L(a.L(a.A(Va,t)))
(where a # b)?

18

Ex. 2: do there exist t;, £, € L(Term) with
L(a.L(b.A(VD,t1))) =4 L(a.L(a.A(Va,t)))
(where a # b)?

L(b.A(Vb,t1)) =4 L(a.A(Va,t))

18

Ex. 2: do there exist t;, £, € L(Term) with
L(a.L(b.A(VD,t1))) =4 L(a.L(a.A(Va,t)))
(where a # b)?

L(b.A(Vb,t1)) =4 L(a.A(Va,t))

A(Ve,(bc)-t1)) = A(Vc,(ac) - t2))
where c # (a,b, t1, 1)

18

Ex. 2: do there exist t;, £, € L(Term) with
L(a.L(b.A(VD,t1))) =4 L(a.L(a.A(Va,t)))
(where a # b)?

L(b.A(Vb,t1)) =4 L(a.A(Va,t))

A(Ve,(bc)-t1)) = A(Vc,(ac) - t2))
where c # (a,b, t1, 1)
Ve=4Vcand (bc)-t1 =4 (ac) -t
where ¢ # (a, b, t1, tz)

18

Ex. 2: do there exist t;, £, € L(Term) with
L(a.L(b.A(VD,t1))) =4 L(a.L(a.A(Va,t)))
(where a # b)?

L(b.A(Vb,t1)) =4 L(a.A(Va,t))

A(Ve,(bc)-t1)) = A(Vc,(ac) - t2))
where c # (a,b, t1, 1)
Ve=4Vcand (bc)-t1 =4 (ac) -t
where ¢ # (a, b, t1, tz)

t1i=(bc)(ac) -t = (ab)(bc)-t)]
where ¢ # (a,b, (a b)(b c) - 1y, 1)

18

Ex. 2: do there exist t;, £, € L(Term) with
L(a.L(b.A(VD,t1))) =4 L(a.L(a.A(Va,t)))
(where a # b)?

L(b.A(Vb,t1)) =4 L(a.A(Va,t))

A(Ve,(bc)-t1)) = A(Vc,(ac) - t2))
where c # (a,b, t1, 1)
Ve=4Vcand (bc)-t1 =4 (ac) -t
where ¢ # (a, b, t1, tz)
ti=(bc)(ac)-tr[=(ab)(bc)-t)]
where ¢ # (a,b, (a b)(b c) - 1y,)
t1i=(ab)(bc) -t = (ab)-t]
where ¢ # (a,b,t;) and b # 1

18

Ex. 2: do there exist t;, £, € L(Term) with
L(a.L(b.A(VD,t1))) =4 L(a.L(a.A(Va,t)))
(where a # b)?

L(b.A(Vb,t1)) =4 L(a.A(Va,t))

A(Ve,(bc)-t1)) = A(Vc,(ac) - t2))
where c # (a,b, t1, 1)

Ve=yVcand (bc)-t1 =4 (ac)- -t
where ¢ # (a, b, t1, tz)

ti=(bc)(ac)-tr[=(ab)(bc)-t)]
where ¢ # (a,b, (a b)(bc) - tp, 1)

t1i=(ab)(bc) -t = (ab)-t]
where ¢ # (a,b,t;) and b # t,

t;1 = (a b) - ty, for any t with b # ¢,

18

Examples of unification ‘mod a’

Ex. 1: does there exist a t+ € L(Term) with
L(a.L(b.A(t,VD))) =, L(b.L(a.A(Va,t)))
(where a # b)?

Ex. 2: do there exist t;, £, € L(Term) with
L(a.L(b.A(VD,t1))) =4 L(a.L(a.A(Va,t)))
(where a # b)?

Can decide all such problems (over any nominal algebraic
signature) using the nominal unification algorithm
[Urban+AMP+Gabbay, TCS 323(2004)473-497] = NOMU.

First, need to extend the synax of terms over a nominal
signature with variables. . .

Lecture 8 8/18

Lecture 8

Open nominal terms

() unit a atomic names

t,t' pairs a.t abstractions

opt constructed /n'*X suspensions

X ranges over variables,
€ standing for unknown terms

Eg. L(a.A(Ve,(ac)*X))

9/18

Equality & freshness
Equality of open terms is not just

t=,t w&-equivalence

Lecture 8 10/18

Equality & freshness
Equality is in general hypothetical

VHEtrt hypothetical a-equivalence

finite set of freshness assumptions, a ¢ X, each with
intended meaning: ‘atomic name a will not occur
freely in any term substituted for X'

Intended meaning:

‘any closing substitution (= replacement of variables by
terms) satisfying V makes t and ' a-equivalent’

Lecture 8 10/18

Equality & freshness
Equality is in general hypothetical

VEtxt hypothetical a-equivalence
Examples of valid judgements:

{b#X}Fa.X=b.((ab)*X)
(A% XbEX}Fa.X~b.X

Lecture 8 10/18

Equality & freshness

Also need freshness judgements
ViEagt
Intended meaning:

‘any closing substitution satisfying V makes t not
contain the atom a freely’

Examples of valid judgements:

{b#X}Fbz#a.X
{}raza.X

10/18

RulesforVEFt=1{t

Excerpt
(see NOMU, or NSB chapter 12, for full details)

ure 8 11/18

RulesforVFtxt
VkEtet
Vka.tx~a.t

a#a Viktx(aad)xt! ViEagt

Vita.tx=a.t

ure 8 11/18

RulesforVEFt=1{t

VEt
Vika.t

/

~
~~
~
~~

t/

aFZza ViEtx(aa)xt! Viagt
Vl—a.tz/éz’.t’

/

(a a’) %t is defined by recursion on the structure of #, pushing the
swap down through the structure, applying it to atoms and stopping
with subterms like ((a a’) o 7r) * X

Lecture 8 11/18

Rulesfor VEFt=t
(a g X) € V for all a with 7r(a) # ’(a)
VEFaxX~naxX

Eg.
{a#X,c#X}F(ac)(ab)*X = (bc)*xX
because
(ac)(ab): a—b (be): ara
b—c b—c

c—a c—b

disagree at a and c.

Lecture 8 11/18

Rulesfor Vi a gt

(Excerpt)

a#a
ViEaga

a#xa Vika#t
Vika#a.t Vika#a.t

(rla# X) eV
ViEazrxX

12/18

Correctness

[NOMU, Proposition 2.16]
Theorem. = is an equivalence relation and agrees with
—, on ground terms: if £ and t’ contain no variables
then

OFtx~t isvaldifft =, t'.

Furthermore
D agtisvalidiff a & fu(t).

Lecture 8 13/18

Substitution
Substitutions ¢ are finite maps from variables to terms,
[X1 = tl,...,Xn = tn]

Applying a substitution to a term: o t = result of
replacing variables in t with terms according to o,
carrying out any permutations of atomic names that are
generated.

Eg. ifc =[X:=A(VD,Y)], then

c(L(a.(ab)*X)) =L(a.(ab)*A(Vb,Y))
=L(a.A(Va,(ab)*Y))

Lecture 8 14/18

Equational & freshness problems

An equational problem |t ,=, t’| is solved by

» a substitution o, plus
» a set of freshness assumptions V

sothat Vot~ ot

Lecture 8 15/18

Equational & freshness problems

An equational problem |t ,=, t’| is solved by

» a substitution o, plus
» a set of freshness assumptions V

sothat Vot~ ot

Solving equations may entail solving freshness problems.
E.g. assuming that a # a’, then L(a.t) ,~, L(a’.t')
can only be solved if

ty(aa)xt and a,t

can be solved.

Lecture 8 15/18

Equational & freshness problems

An equational problem |t ,=, t’| is solved by

» a substitution o, plus
» a set of freshness assumptions V

sothat Vot~ ot

A freshness problem |a 2, t|is solved by

» a substitution o, plus
» a set of freshness assumptions V

sothat VFa# ot.

Lecture 8 15/18

Existence of MGUs

Theorem. There is an algorithm which given any finite
set P of equational and freshness problems (over any
nominal algebraic signature), decides whether or not it
has a solution (o, V), and returns a most general one if
it does. |

o

|straightforward definition, omitted |J

Lecture 8 16/18

Theorem. There is an algorithm which given any finite
set P of equational and freshness problems (over any
nominal algebraic signature), decides whether or not it
has a solution (o, V'), and returns a most general one if
it does.

o

Algorithm first reduces all the equations to ‘solved form' (creating a
substitution), possibly generating extra freshness problems, and then
solves all the freshness problems (easy).

(See [NOMU, Sect. 3].)

Lecture 8 16/18

{L(a.L(b.A(VD,X))) =7 L(a.L(a.A(Va,Y)))}

id

(—

5 {A(VD,X) 2 A(VD, (b a) % Y), bR, A(Va,Y)}

)® {b.A(VD,X) ;~7a.A(Va,Y)}

(id)3 {X = (ba)*Y, bz, A(Va,Y)}
[X:= (ba)*Y]{b #, A(Va,Y)}
L (b, vVa b, Y}

(3)2 {b#, v}
{(bﬁY)} o

cture 8 17/18

{L(a.L(b.A(VD,X))) =7 L(a.L(a.A(Va,Y)))}

id

(—

5 {A(VD,X) 2~ A(VD, (b a) *Y), bR, A(Va,Y)}

$ {b.A(Vb,X) 2 a.A(Va,Y)}

() {X o2 (ba)*Y, bs, A(Va,Y)}
=0y s, a(va,)}
2 {b%,Va, bz, Y}

(3)2 {b#, v}
{(bﬁY)} o

most general solution = [X:= (b a) *xY],{(b# Y)}

Lecture 8 17/18

Theorem. There is an algorithm which given any finite
set P of equational and freshness problems (over any
nominal algebraic signature), decides whether or not it
has a solution (o, V'), and returns a most general one if
it does.

i

» Current best NOMU algorithm is quadratic [Levy & Villaret,
Proc. RTA 2010].

» NOMU is (quadratically) inter-reducible with Dale Miller's
higher-order pattern unification, which uses variables that
depend on names X (ay, ..., a,) rather than NOMU's
variables that are fresh for names ({a1,...,a,} # X).
(Higher-order patterns form a subset of Church's simply typed
A-calculus.)

Lecture 8 18/18

	Lecture 8: nominal unification

