
Internet Indirection Infrastructure
�

Ion Stoica Daniel Adkins Shelley Zhuang Scott Shenker
�

Sonesh Surana

University of California, Berkeley�
istoica, dadkins, shelleyz, sonesh � @cs.berkeley.edu

ABSTRACT
Attempts to generalize the Internet’s point-to-point communication
abstraction to provide services like multicast, anycast, and mobility
have faced challenging technical problems and deployment barri-
ers. To ease the deployment of such services, this paper proposes
an overlay-based Internet Indirection Infrastructure (���) that offers
a rendezvous-based communication abstraction. Instead of explic-
itly sending a packet to a destination, each packet is associated with
an identifier; this identifier is then used by the receiver to obtain de-
livery of the packet. This level of indirection decouples the act of
sending from the act of receiving, and allows ��� to efficiently sup-
port a wide variety of fundamental communication services. To
demonstrate the feasibility of this approach, we have designed and
built a prototype based on the Chord lookup protocol.

Categories and Subject Descriptors
H.4.3 [Information Systems]: Communication

General Terms
Design

Keywords
Indirection, Abstraction, Scalable, Internet, Architecture

1. INTRODUCTION
The original Internet architecture was designed to provide uni-

cast point-to-point communication between fixed locations. In this
basic service, the sending host knows the IP address of the receiver
and the job of IP routing and forwarding is simply to deliver packets
�
This research was sponsored by NSF under grant numbers Career

Award ANI-0133811, and ITR Award ANI-0085879. Views and
conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies,
either expressed or implied, of NSF, or the U.S. government.�
ICSI Center for Internet Research (ICIR), Berkeley,

shenker@icsi.berkeley.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM ’02 Pittsburgh, Pennsylvania USA
Copyright 2002 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

to the (fixed) location of the desired IP address. The simplicity of
this point-to-point communication abstraction contributed greatly
to the scalability and efficiency of the Internet.

However, many applications would benefit from more general
communication abstractions, such as multicast, anycast, and host
mobility. In these abstractions, the sending host no longer knows
the identity of the receiving hosts (multicast and anycast) and the
location of the receiving host need not be fixed (mobility). Thus,
there is a significant and fundamental mismatch between the orig-
inal point-to-point abstraction and these more general ones. All
attempts to implement these more general abstractions have relied
on a layer of indirection that decouples the sending hosts from the
receiving hosts; for example, senders send to a group address (mul-
ticast or anycast) or a home agent (mobility), and the IP layer of the
network is responsible for delivering the packet to the appropriate
location(s).

Although these more general abstractions would undoubtedly
bring significant benefit to end-users, it remains unclear how to
achieve them. These abstractions have proven difficult to imple-
ment scalably at the IP layer [4, 13, 27]. Moreover, deploying ad-
ditional functionality at the IP layer requires a level of community-
wide consensus and commitment that is hard to achieve. In short,
implementing these more general abstractions at the IP layer poses
difficult technical problems and major deployment barriers.

In response, many researchers have turned to application-layer
solutions (either end-host or overlay mechanisms) to support these
abstractions [4, 15, 24]. While these proposals achieve the desired
functionality, they do so in a very disjointed fashion in that solu-
tions for one service are not solutions for other services; e.g., pro-
posals for application-layer multicast don’t address mobility, and
vice-versa. As a result, many similar and largely redundant mech-
anisms are required to achieve these various goals. In addition, if
overlay solutions are used, adding a new abstraction requires the
deployment of an entirely new overlay infrastructure.

In this paper, we propose a single new overlay network that
serves as a general-purpose Internet Indirection Infrastructure (���).
��� offers a powerful and flexible rendezvous-based communication
abstraction; applications can easily implement a variety of commu-
nication services, such as multicast, anycast, and mobility, on top
of this communication abstraction. Our approach provides a gen-
eral overlay service that avoids both the technical and deployment
challenges inherent in IP-layer solutions and the redundancy and
lack of synergy in more traditional application-layer approaches.
We thus hope to combine the generality of IP-layer solutions with
the deployability of overlay solutions.

The paper is organized as follows. In Sections 2 and 3 we pro-
vide an overview of the ��� architecture and then a general discus-
sion on how ��� might be used in applications. Section 4 covers ad-

���
’s Application Programming Interface (API)�����	��

����������� ��� send packet� �	����������� ����� ����� �!� insert trigger�"��#%$�&'����� ����� ����� �!� remove trigger

(a)

()()()(*)*)* +)+)+)++)+)+)+,),),),,),),), -)-)-)-.).).). /)/)/)/0)0)0
(id, R)

(b)

(id, R)

(c)

sender (S) (R, data)(id, data)receiver (R) sender (S) receiver (R)

Figure 1: (a) ��� ’s API. Example illustrating communication between two nodes. (b) The receiver 1 inserts trigger 2 �!3	45176 . (c) The
sender sends packet 2 �!3	4�398;:<8=6 .
ditional aspects of the design such as scalability and efficient rout-
ing. Section 5 describes some simulation results on � � performance
along with a discussion on an initial implementation. Related work
is discussed in Section 6, followed by a discussion on future work
Section 7. We conclude with a summary in Section 8.

2. >�? OVERVIEW
In this section we present an overview of ��� . We start with the

basic service model and communication abstraction, then briefly
describe ��� ’s design.

2.1 Service Model
The purpose of ��� is to provide indirection; that is, it decouples

the act of sending from the act of receiving. The ��� service model
is simple: sources send packets to a logical identifier, and receivers
express interest in packets sent to an identifier. Delivery is best-
effort like in today’s Internet, with no guarantees about packet de-
livery.

This service model is similar to that of IP multicast. The cru-
cial difference is that the ��� equivalent of an IP multicast join is
more flexible. IP multicast offers a receiver a binary decision of
whether or not to receive packets sent to that group (this can be
indicated on a per-source basis). It is up to the multicast infrastruc-
ture to build efficient delivery trees. The ��� equivalent of a join is
inserting a trigger. This operation is more flexible than an IP mul-
ticast join as it allows receivers to control the routing of the packet.
This provides two advantages. First, it allows them to create, at the
application level, services such as mobility, anycast, and service
composition out of this basic service model. Thus, this one simple
service model can be used to support a wide variety of application-
level communication abstractions, alleviating the need for many
parallel and redundant overlay infrastructures. Second, the infras-
tructure can give responsibility for efficient tree construction to the
end-hosts. This allows the infrastructure to remain simple, robust,
and scalable.

2.2 Rendezvous-Based Communication
The service model is instantiated as a rendezvous-based com-

munication abstraction. In their simplest form, packets are pairs2 �@3	453989:<8A6 where �!3 is an B -bit identifier and 3989:�8 consists of
a payload (typically a normal IP packet payload). Receivers use
triggers to indicate their interest in packets. In the simplest form,
triggers are pairs 2 �@3	458;3939C�6 , where �!3 represents the trigger iden-
tifier, and 8;3939C represents a node’s address which consists of an
IP address and a port number. A trigger 2 �@3	458;3939C'6 indicates that
all packets with an identifier �@3 should be forwarded (at the IP
level) by the ��� infrastructure to the node identified by 8;3939C . More
specifically, the rendezvous-based communication abstraction ex-
ports three basic primitives as shown in Figure 1(a).

Figure 1(b) illustrates the communication between two nodes,
where receiver 1 wants to receive packets sent to �@3 . The receiver

inserts the trigger 2 �@3	4�176 into the network. When a packet is sent
to identifier �!3 , the trigger causes it to be forwarded via IP to 1 .

Thus, much as in IP multicast, the identifier �!3 represents a log-
ical rendezvous between the sender’s packets and the receiver’s
trigger. This level of indirection decouples the sender from the
receiver. The senders need neither be aware of the number of re-
ceivers nor their location. Similarly, receivers need not be aware of
the number or location of senders.

The above description is the simplest form of the abstraction.
We now describe a generalization that allows inexact matching be-
tween identifiers. (A second generalization that replaces identi-
fiers with a stack of identifiers is described in Section 2.5.) We as-
sume identifiers are B bits long and that there is some exact-match
threshold D with DFEGB . We then say that an identifier �@3=H in a
trigger matches an identifier �@3 in a packet if and only if

(a) �!3 and �!3 H have a prefix match of at least D bits, and

(b) there is no trigger with an identifier that has a longer prefix
match with �@3 .

In other words, a trigger identifier �@3=H matches a packet identi-
fier �@3 if and only if �@3;H is a longest prefix match (among all other
trigger identifiers) and this prefix match is at least as long as the
exact-match threshold D . The value D is chosen to be large enough
so that the probability that two randomly chosen identifiers match
is negligible.1 This allows end-hosts to choose the identifiers inde-
pendently with negligible chance of collision.

2.3 Overview of the Design
We now briefly describe the infrastructure that supports this ren-

dezvous communication abstraction; a more in-depth description
follows in Section 4. ��� is an overlay network which consists of
a set of servers that store triggers and forward packets (using IP)
between ��� nodes and to end-hosts. Identifiers and triggers have
meaning only in this � � overlay.

One of the main challenges in implementing � � is to efficiently
match the identifiers in the packets to those in triggers. This is
done by mapping each identifier to a unique ��� node (server); at
any given time there is a single ��� node responsible for a given �@3 .
When a trigger 2 �@3	458;3939C�6 is inserted, it is stored on the ��� node
responsible for �@3 . When a packet is sent to �@3 it is routed by ��� to
the node responsible for �@3 ; there it is matched against any triggers
for that �!3 and forwarded (using IP) to all hosts interested in packets
sent to that identifier. To facilitate inexact matching, we require that
all �!3 ’s that agree in the first D bits be stored on the same ��� server.
The longest prefix match required for inexact matching can then be
executed at a single node (where it can be done efficiently).

Note that packets are not stored in ��� ; they are only forwarded. ���
provides a best-effort service like today’s Internet. ��� implements
neither reliability nor ordered delivery on top of IP. End-hosts useI
In our implementation we choose BKJML�N�O and DPJRQ�L�S .

������������
������������

������������

�������������� 	�	�	�		�	�	�	

�
�

�
�

����������������������������

�
�
�
�������
s1p(id |id , R1)

s2p(id |id , R2)

s3p(id |id , R3)

(id |id , data)p s

������������������������

(a) Mobility

����������������������������

��������������

receiver (R2)

receiver (R1)

receiver (R3)

������������

��������������

(b) Multicast

(id, R2)
sender (S)

(R2, data)

(id, R1)

(id, R3) receiver (R2)(R3, data)

receiver (R1)(R1, data)
(id, data)

receiver (R3) (c) Anycast

(R2, data)

sender (S)

(id, data)
sender (S)

receiver (R’)

(id, R)

(id, data)
sender (S)

receiver (R)

(R, data) (R’, data)(id, R’)

Figure 2: Communication abstractions provided by ��� . (a) Mobility: The change of the receiver’s address from 1 to 1�� is transparent
to the sender. (b) Multicast: Every packet 2 �!3	4�398;:<8=6 is forwarded to each receiver 1�� that inserts the trigger 2 �@3	4�1�� 6 . (c) Anycast:
The packet matches the trigger of receiver 17L . �@3��! �@3#" denotes an identifier of size B , where �@3$� represents the prefix of the D most
significant bits, and �!3 " represents the suffix of the B&% D least significant bits.

periodic refreshing to maintain their triggers in ��� . Hosts contact an
��� node when sending ��� packets or inserting triggers. This ��� node
then forwards these packets or triggers to the ��� node responsible
for the associated identifiers. Thus, hosts need only know one ���
node in order to use the � � infrastructure.

2.4 Communication Primitives Provided by >�?
We now describe how ��� can be used by applications to achieve

the more general communication abstractions of mobility, multi-
cast, and anycast.

2.4.1 Mobility
The form of mobility addressed here is when a host (e.g., a lap-

top) is assigned a new address when it moves from one location to
another. A mobile host that changes its address from 1 to 1'� as a
result of moving from one subnet to another can preserve the end-
to-end connectivity by simply updating each of its existing triggers
from 2 �@3	4�176 to 2 �@3	4�1�� 6 , as shown in Figure 2(a). The sending host
needs not be aware of the mobile host’s current location or address.
Furthermore, since each packet is routed based on its identifier to
the server that stores its trigger, no additional operation needs to be
invoked when the sender moves. Thus, ��� can maintain end-to-end
connectivity even when both end-points move simultaneously.

With any scheme that supports mobility, efficiency is a major
concern [25]. With � � , applications can use two techniques to
achieve efficiency. First, the address of the server storing the trigger
is cached at the sender, and thus subsequent packets are forwarded
directly to that server via IP. This way, most packets are forwarded
through only one � � server in the overlay network. Second, to al-
leviate the triangle routing problem due to the trigger being stored
at a server far away, end-hosts can use off-line heuristics to choose
triggers that are stored at � � servers close to themselves (see Sec-
tion 4.5 for details).

2.4.2 Multicast
Creating a multicast group is equivalent to having all members of

the group register triggers with the same identifier �!3 . As a result,

any packet that matches �@3 is forwarded to all members of the group
as shown in Figure 2(b). We discuss how to make this approach
scalable in Section 3.4.

Note that unlike IP multicast, with ��� there is no difference be-
tween unicast or multicast packets, in either sending or receiving.
Such an interface gives maximum flexibility to the application. An
application can switch on-the-fly from unicast to multicast by sim-
ply having more hosts maintain triggers with the same identifier.
For example, in a telephony application this would allow multiple
parties to seamlessly join a two-party conversation. In contrast,
with IP, an application has to at least change the IP destination ad-
dress in order to switch from unicast to multicast.

2.4.3 Anycast
Anycast ensures that a packet is delivered to exactly one receiver

in a group, if any. Anycast enables server selection, a basic building
block for many of today’s applications. To achieve this with ��� , all
hosts in an anycast group maintain triggers which are identical in
the D most significant bits. These D bits play the role of the anycast
group identifier. To send a packet to an anycast group, a sender uses
an identifier whose D -bit prefix matches the anycast group identi-
fier. The packet is then delivered to the member of the group whose
trigger identifier best matches the packet identifier according to the
longest prefix matching rule (see Figure 2(c)). Section 3.3 gives
two examples of how end-hosts can use the last B(% D bits of the
identifier to encode their preferences.

2.5 Stack of Identifiers
In this section, we describe a second generalization of ��� , which

replaces identifiers with identifier stacks. An identifier stack is a
list of identifiers that takes the form 2 �!3 I 4 �@3*)�4 �@3#+'4-,.,-, 4 �@3*/�6 where
�@3#� is either an identifier or an address. Packets 0 and triggers : are
thus of the form:

1 Packet 0 J 2 �@3 "�H3254 /�453989:�8=6
1 Trigger :�J 2 �@3	4 �@3*"<H32-4 / 6

��� recv(0) // upon receiving packet 0
�@3 J����"8;3 2 0 , �!3 � :�8�� DA6 ; // get head of p’s stack
// is local server responsible for id’s best match?
if 2 ���	� 89:
������
	� 8��<2 �@3�6�J FALSE 6

��� forward(0); // matching trigger stored elsewhere
return;0�
 0 2 0 , �@3 � :�8���D=6 ; // pop id from p’s stack...

����: :�J�����: B 8;:������	��2 �@3�6 ; // get all triggers matching id
if 2����": :�J���6

if 2 0 , �@3 � :�8�� DPJ���6
drop(0) // nowhere else to forward

else
� � forward 2 0 6 ;

while (����: :��J��) // forward packet to each matching trigger: J�����: :�C �������"C�2����": :�6 ;0 Q J���
 0�� 2 0 6 ; // create new packet to send
// ... add t’s stack at head of p1’s stack0AC�� 0 ��! 3 2�:5, �@3 � :�8���D 4 0 Q , �@3 � :�8���D=6 ;
��� forward(0 Q);

��� forward(0) // send/forward packet 0
�@3 J����"8;3 2 0 , �!3 � :�8�� DA6 ; // get head of p’s stack
if 2�:
� 0 �92 �@3�6 J IP ADDR TYPE 6

IP send(�@3	4 0); // id is an IP address; send p to id via IP
else

forward 2 0 6 ; // forward 0 via overlay network

Figure 3: Pseudo-code of the receiving and forward operations
executed by an ��� server.

The generalized form of packets allows a source to send a packet
to a series of identifiers, much as in source routing. The general-
ized form of triggers allows a trigger to send a packet to another
identifier rather than to an address. This extension allows for a
much greater flexibility. To illustrate this point, in Sections 3.1, 3.2,
and 4.3, we discuss how identifier stacks can be used to provide
service composition, implement heterogeneous multicast, and in-
crease ��� ’s robustness, respectively.

A packet 0 is always forwarded based on the first identifier �@3
in its identifier stack until it reaches the server who is responsible
for storing the matching trigger(s) for 0 . Consider a packet 0 with
an identifier stack 2 �@3 I 4 �@3) 4 �@3 + 6 . If there is no trigger in � � whose
identifier matches �@3 I , �@3 I is popped from the stack. The process is
repeated until an identifier in 0 ’s identifier stack matches a trigger: . If no such trigger is found, packet 0 is dropped. If on the other
hand, there is a trigger : whose identifier matches �@3 I , then �!3 I is
replaced by : ’s identifier stack. In particular, if : ’s identifier stack
is 2#" 4
�=6 , then 0 ’s identifier stack becomes 2#" 4
� 4 �@3)'4 �@3#+"6 . If �@3 I
is an IP address, 0 is sent via IP to that address, and the rest of0 ’s identifier stack, i.e., 2 �@3)�4 �@3#+"6 is forwarded to the application.
The semantics of �@3) and �!3 + are in general application-specific.
However, in this paper we consider only examples in which the
application is expected to use these identifiers to forward the packet
after it has processed it. Thus, an application that receives a packet
with identifier stack 2 �@3)�4 �@3#+�6 is expected to send another packet
with the same identifier stack 2 �!3)'4 �@3#+�6 . As shown in the next
section this allows � � to provide support for service composition.

Figure 3 shows the pseudo-code of the receiving and forward-
ing operations executed by an ��� node. Upon receiving a packet 0 ,
a server first checks whether it is responsible for storing the trig-
ger matching packet 0 . If not, the server forwards the packet at
the ��� level. If yes, the code returns the set of triggers that match

$%$%$%$&%&%&

'%'%'%'(%(%(

)%)%)%)*%*%*

+%+%+%+,%,%,

HTML−WML transcoder (T)

(id, R)

(R, data)

((T, R1), data)

(id, (id , R1))MPEG−H.263

((id , R1), data)MPEG−H.263

MPEG−H.263 transcoder (T)

(id, R2)

(R1, data)

(R2, data)

receiver (R2)

receiver (R1)

sender (S)

(id, data)

sender (S)

((T,id), data)

(b) Heterogeneous multicast

(a) Service composition

HTML−WML

MPEG−H.263

((id , id), data)HTML−WML (id , T)

(id , T)

receiver (R)

Figure 4: (a) Service composition: The sender (-) specifies that
packets should be transcoded at server . before being delivered
to the destination (1). (b) Heterogeneous multicast: Receiver1 Q specifies that wants to receive H.263 data, while 17L specifies
that wants to receive MPEG data. The sender sends MPEG
data.

0 . For each matching trigger : , the identifier stack of the trigger is
prepended to 0 ’s identifier stack. The packet 0 is then forwarded
based on the first identifier in its stack.

3. USING > ?
In this section we present a few examples of how ��� can be used.

We discuss service composition, heterogeneous multicast, server
selection, and large scale multicast. In the remainder of the paper,
we say that packet 0 matches trigger : if the first identifier of 0 ’s
identifier stack matches : ’s identifier.

3.1 Service Composition
Some applications may require third parties to process the data

before it reaches the destination [10]. An example is a wireless
application protocol (WAP) gateway translating HTML web pages
to WML for wireless devices [35]. WML is a lightweight version of
HTML designed to run on wireless devices with small screens and
limited capabilities. In this case, the server can forward the web
page to a third-party server . that implements the HTML-WML
transcoding, which in turn processes the data and sends it to the
destination via WAP.

In general, data might need to be transformed by a series of
third-party servers before it reaches the destination. In today’s In-
ternet, the application needs to know the set of servers that per-
form transcoding and then explicitly forward data packets via these
servers.

With ��� , this functionality can be easily implemented by using a
stack of identifiers. Figure 4(a) shows how data packets containing
HTML information can be redirected to the transcoder, and thus
arrive at the receiver containing WML information. The sender
associates with each data packet the stack 2 �@3�/10 243�5768293 4 �@3�6 ,
where �@3 represents the flow identifier. As a result, the data packet
is routed first to the server which performs the transcoding. Next,
the server inserts packet 2 �@3	453989:�8=6 into ��� , which delivers it to the
receiver.

3.2 Heterogeneous Multicast
Figure 4(b) shows a more complex scenario in which an MPEG

video stream is played back by one H.263 receiver and one MPEG
receiver.

To provide this functionality, we use the ability of the receiver,
instead of the sender (see Section 2.5), to control the transforma-
tions performed on data packets. In particular, the H.263 receiver1 Q inserts trigger 2 �@3	4"2 �@3 2������ 5 /��)�� +�4�1 Q"656 , and the sender sends
packets 2 �@3	453989:�8=6 . Each packet matches 1 Q ’s trigger, and as a
result the packet’s identifier �!3 is replaced by the trigger’s stack2 �@3�2������ 5 /	�)�� + 4
. 6 . Next, the packet is forwarded to the MPEG-
H.263 transcoder, and then directly to receiver 1 Q . In contrast, an
MPEG receiver 17L only needs to maintain a trigger 2 �@3	4�1 Q"6 in ��� .
This way, receivers with different display capabilities can subscribe
to the same multicast group.

Another useful application is to have the receiver insist that all
data go through a firewall first before reaching it.

3.3 Server Selection
��� provides good support for basic server selection through the

use of the last B % D bits of the identifiers to encode application
preferences.2 To illustrate this point consider two examples.

In the first example, assume that there are several web servers
and the goal is to balance the client requests among these servers.
This goal can be achieved by setting the B % D least significant bits
of both trigger and packet identifiers to random values. If servers
have different capacities, then each server can insert a number of
triggers proportional to its capacity. Finally, one can devise an
adaptive algorithm in which each server varies the number of trig-
gers as a function of its current load.

In the second example, consider the goal of selecting a server
that is close to the client in terms of latency. To achieve this goal,
each server can use the last B�% D bits of its trigger identifiers to
encode its location, and the client can use the last B�% D bits in the
packets’ identifier to encode its own location. In the simplest case,
the location of an end-host (i.e., server or client) can be the zip
code of the place where the end-host is located; the longest pre-
fix matching procedure used by ��� would result then in the packet
being forwarded to a server that is relatively close to the client.3

3.4 Large Scale Multicast
The multicast abstraction presented in Section 2.4.2 assumes

that all members of a multicast group insert triggers with identical
identifiers. Since triggers with identical identifier are stored at the
same � � server, that server is responsible for forwarding each mul-
ticast packet to every member of the multicast group. This solution
obviously does not scale to large multicast groups.

One approach to address this problem is to build a hierarchy of
triggers, where each member 1 � of a multicast group �@3�
 replaces
its trigger 2 �@3�
94�1 � 6 by a chain of triggers 2 �@3�
94 " I 6 , 2#" I 4 ")�6 , ,-,-, ,2#" � 451 � 6 . This substitution is transparent to the sender: a packet2 �@3�
94�3989:�8=6 will still reach 1 � via the chain of triggers. Figure 5
shows an example of a multicast tree with seven receivers in which
no more than three triggers have the same identifier. This hierarchy
of triggers can be constructed and maintained either cooperatively
by the members of the multicast group, or by a third party provider.
In [18], we present an efficient distributed algorithm in which the
) Recall that identifiers are B bits long and that D is the exact-
matching threshold.+ Here we assume that nodes that are geographically close to each
other are also close in terms of network distances, which is not
always true. One could instead use latency based encoding, much
as in [20].

�
�
�������������

����������

�����
�����
���
���

�����
�����
���
���

��������

id1

R2

��������

R1

idg

id2id1

idg idg

R5

R4

id2

R4

R5

id2

R6

id2

R6

R1

(idg, data) S

R3R2

R3

id1

Figure 5: Example of a scalable multicast tree with bounded
degree by using chains of triggers.

receivers of the multicast group construct and maintain the hierar-
chy of triggers.

4. ADDITIONAL DESIGN AND PERFOR-
MANCE ISSUES

In this section we discuss some additional ��� design and per-
formance issues. The ��� design was intended to be (among other
properties) robust, self-organizing, efficient, secure, scalable, incre-
mentally deployable, and compatible with legacy applications. In
this section we discuss these issues and some details of the design
that are relevant to them.

Before addressing these issues, we first review our basic design.
��� is organized as an overlay network in which every node (server)
stores a subset of triggers. In the basic design, at any moment of
time, a trigger is stored at only one server. Each end-host knows
about one or more ��� servers. When a host wants to send a packet2 �@3	453989:�8=6 , it forwards the packet to one of the servers it knows. If
the contacted server doesn’t store the trigger matching 2 �@3	453989:�8=6 ,
the packet is forwarded via IP to another server. This process con-
tinues until the packet reaches the server that stores the matching
trigger. The packet is then sent to the destination via IP.

4.1 Properties of the Overlay
The performance of ��� depends greatly on the nature of the un-

derlying overlay network. In particular, we need an overlay net-
work that exhibits the following desirable properties:

1 Robustness: With a high probability, the overlay network
remains connected even in the face of massive server and
communication failures.

1 Scalability: The overlay network can handle the traffic gen-
erated by millions of end-hosts and applications.

1 Efficiency: Routing a packet to the server that stores the
packet’s best matching trigger involves a small number of
servers.

1 Stability: The mapping between triggers and servers is rela-
tively stable over time, that is, it is unlikely to change during

i finger
1 5
2 5
3 7

1 2

17

4

5 3

26

Node

i finger
1 7
2 7
3 2

i finger

2 2
3 5

0

Figure 6: Routing information (finger tables) maintained by
the Chord nodes.

the duration of a flow. This property allows end-hosts to op-
timize their performance by choosing triggers that are stored
on nearby servers.

To implement � � we have chosen the Chord lookup protocol [26],
which is known to satisfy the above properties. Chord uses an B -
bit circular identifier space where � follows L�� %MQ . Each server
is associated a unique identifier in this space. In the original Chord
protocol, each identifier �!3 is mapped on the server with the clos-
est identifier that follows �!3 on the identifier circle. This server
is called successor of �!3 and it is denoted by ���������	� ��
'C�2 �@3�6 . Fig-
ure 6 shows an example in which there are three nodes, and BKJ � .
Server 2 is responsible for identifiers 0, 1, and 2, server 5 is respon-
sible for 3, 4 and 5, and server 7 is responsible for 6 and 7.

To implement the routing operation, each server maintains a rout-
ing table of size B . The � -th entry in the routing table of server !
contains the first server that follows !�� L �#5 I

, i.e., ����� ���	� ��
�C�2#!��L ��5 I 6 . This server is called the � -th finger of ! . Note that the first
finger is the same as the successor server.

Upon receiving a packet with identifier �@3 , server ! checks whether
�@3 lies between itself and its successor. If yes, the server forwards
the packet to its successor, which should store the packet’s trigger.
If not, ! sends the packet to the closest server (finger) in its rout-
ing table that precedes �!3 . In this way, we are guaranteed that the
distance to �@3 in the identifier space is halved at each step. As a re-
sult, it takes �P2
	���
��)6 hops to route a packet to the server storing
the best matching trigger for the packet, irrespective of the start-
ing point of the packet, where � is the number of � � servers in the
system.

In the current implementation, we assume that all identifiers that
share the same D -bit prefix are stored on the same server. A simple
way to achieve this is to set the last B % D bits of every node iden-
tifier to zero. As a result, finding the best matching trigger reduces
to performing a longest prefix matching operation locally.

While ��� is implemented on top of Chord, in principle ��� can use
any of the recently proposed P2P lookup systems such as CAN [22],
Pastry [23] and Tapestry [12].

4.2 Public and Private Triggers
Before discussing ��� ’s properties, we introduce an important tech-

nique that allows applications to use ��� more securely and effi-
ciently. With this technique applications make a distinction be-
tween two types of triggers: public and private. This distinction
is made only at the application level: ��� itself doesn’t differentiate
between private and public triggers.

The main use of a public trigger is to allow an end-host to contact
another end-host. The identifier of a public trigger is known by all
end-hosts in the system. An example is a web server that maintains
a public trigger to allow any client to contact it. A public trigger can
be defined as a the hash of the host’s DNS name, of a web address,
or of the public key associated with a web server. Public triggers
are long lived, typically days or months. In contrast, private triggers
are chosen by a small number of end-hosts and they are short lived.
Typically, private triggers exist only during the duration of a flow.

To illustrate the difference between public and private triggers,
consider a client � accessing a web server � that maintains a public
trigger 2 �@3 ����� 4�� 6 . First, client � chooses a private trigger iden-
tifier �@3#2 , inserts trigger 2 �@3#2�4�� 6 into ��� , and sends �@3$2 to the
web server via the server’s public trigger 2 �@3 ����� 4�� 6 . Once con-
tacted, server � selects a private identifier �@3 � , inserts the associ-
ated trigger 2 �@3 � 4�� 6 into � � , and sends its private trigger identifier
�@3 � to client � via � ’s private trigger 2 �@3#2=4�� 6 . The client and
the server then use both the private triggers to communicate. Once
the communication terminates, the private triggers are destroyed.
Sections 4.5 and 4.10 discuss how private triggers can be used to
increase the routing efficiency, and the communication security.

Next, we discuss ��� ’s properties in more detail.

4.3 Robustness
��� inherits much of the robustness properties of the overlay itself

in that routing of packets within ��� is fairly robust against ��� node
failures. In addition, end-hosts use periodic refreshing to maintain
their triggers into ��� . This soft-state approach allows for a simple
and efficient implementation and frees the ��� infrastructure from
having to recover lost state when nodes fail. If a trigger is lost—
for example, as a result of an ��� server failure—the trigger will be
reinserted, possibly at another server, the next time the end-host
refreshes it.

One potential problem with this approach is that although the
triggers are eventually reinserted, the time during which they are
unavailable due to server failures may be too large for some appli-
cations. There are at least two solutions to address this problem.
The first solution does not require ��� -level changes. The idea is to
have each receiver 1 maintain a backup trigger 2 �@3 � 2-4 / �-� 4�176 in
addition to the primary trigger 2 �@3	4�176 , and have the sender send
packets with the identifier stack 2 �@3	4 �!3 � 2-4 / �.� 6 . If the server stor-
ing the primary trigger fails, the packet will be then forwarded via
the backup trigger to 1 .4 Note that to accommodate the case when
the packet is required to match every trigger in its identifier stack
(see Section 3.2), we use a flag in the packet header, which, if set,
causes the packet to be dropped if the identifier at the head of its
stack doesn’t find a match. The second solution is to have the over-
lay network itself replicate the triggers and manage the replicas.
In the case of Chord, the natural replication policy is to replicate a
trigger on the immediate successor of the server responsible for that
trigger [5]. Finally, note that when an end-host fails, its triggers are
automatically deleted from ��� after they time-out.

4.4 Self-Organizing
��� is an overlay infrastructure that may grow to large sizes. Thus,

it is important that it not require extensive manual configuration or
human intervention. The Chord overlay network is self-configuring,
in that nodes joining the ��� infrastructure use a simple bootstrap-
ping mechanism (see [26]) to find out about at least one existing � �
node, and then contacts that node to join the ��� infrastructure. Sim-
�
Here we implicitly assume that the primary and backup triggers

are stored on different servers. The receiver can ensure that this is
the case with high probability by choosing �@3�� 2-4 / �-�7J L�� % �@3 .

ilarly, end-hosts wishing to use � � can locate at least one ��� server
using a similar bootstrapping technique; knowledge of a single ���
server is all that’s needed to fully utilize the ��� infrastructure.

4.5 Routing Efficiency
As with any network system, efficient routing is important to the

overall efficiency of ��� . While ��� tries to route each packet effi-
ciently to the server storing the best matching trigger, the routing
in an overlay network such as � � is typically far less efficient than
routing the packet directly via IP. To alleviate this problem, the
sender caches the ��� server’s IP address. In particular, each data
and trigger packet carry in their headers a refreshing flag � . When
a packet reaches an ��� server, the server checks whether it stores
the best matching trigger for the packet. If not, it sets the flag � in
the packet header before forwarding it. When a packet reaches the
server storing the best matching trigger, the server checks flag � in
the packet header, and, if � is set, it returns its IP address back to the
original sender. In turn, the sender caches this address and uses it
to send the subsequent packets with the same identifier. The sender
can periodically set the refreshing flag � as a keep-alive message
with the cached server responsible for this trigger.

Note that the optimization of caching the server � which stores
the receiver’s trigger does not undermine the system robustness.
If the trigger moves to another server �.� (e.g., as the result of a
new server joining the system), � � will simply route the subsequent
packets from � to � � . When the first packet reaches � � , the receiver
will replace � with � � in its cache. If the cached server fails, the
client simply uses another known � � server to communicate. This
is the same fall-back mechanism as in the unoptimized case when
the client uses only one � � server to communicate with all the other
clients. Actually, the fact that the client caches the ��� server storing
the receiver’s trigger can help reduce the recovery time. When the
sender notices that the server has failed, it can inform the receiver
to reinsert the trigger immediately. Note that this solution assumes
that the sender and receiver can communicate via alternate triggers
that are not stored at the same ��� server.

While caching the server storing the receiver’s trigger reduces
the number of ��� hops, we still need to deal with the triangle rout-
ing problem. That is, if the sender and the receiver are close by,
but the server storing the trigger is far away, the routing can be in-
efficient. For example, if the sender and the receiver are both in
Berkeley and the server storing the receiver’s trigger is in London,
each packet will be forwarded to London before being delivered
back to Berkeley!

One solution to this problem is to have the receivers choose their
private triggers such that they are located on nearby servers. This
would ensure that packets won’t take a long detour before reach-
ing their destination. If an end-host knows the identifiers of the
nearby ��� servers, then it can easily choose triggers with identifiers
that map on these servers. In general, each end-host can sample
the identifier space to find ranges of identifiers that are stored at
nearby servers. To find these ranges, a node � can insert random
triggers 2 �!3	4 � 6 into ��� , and then estimate the RTT to the server
that stores the trigger by simply sending packets, 2 �!3	4�3 �	B B �A6 , to
itself. Note that since we assume that the mapping of triggers onto
servers is relatively stable over time, this operation can be done
off-line. We evaluate this approach by simulation in Section 5.1.

4.6 Avoiding Hot-Spots
Consider the problem of a large number of clients that try to con-

tact a popular trigger such as the CNN’s trigger. This may cause the
server storing this trigger to overload. The classical solution to this
problem is to use caching. When the rate of the packets matching

Proxy
i3

Proxy
i3 Proxy

i3

Proxy
i3

��������������

(id, data)

mpeg

sender (S)
(R2, data)

((T, R1), data)
(R1, data)

receiver (R1)

tmndec

receiver (R2)

mpeg_play

MPEG−H.263 transcoder (T)

Figure 7: Heterogeneous multicast application. Refer to Fig-
ure 4(b) for data forwarding in ��� .

a trigger : exceeds a certain threshold, the server - storing the trig-
ger pushes a copy of : to another server. This process can continue
recursively until the load is spread out. The decision of where to
push the trigger is subject to two constraints. First, - should push
the trigger to the server most likely to route the packets matching
that trigger. Second, - should try to minimize the state it needs
to maintain; - at least needs to know the servers to which it has
already pushed triggers in order to forward refresh messages for
these triggers (otherwise the triggers will expire). With Chord, one
simple way to address these problems is to always push the triggers
to the predecessor server.

If there are more triggers that share the same D -bit prefix with a
popular trigger : , all these triggers need to be cached together with: . Otherwise, if the identifier of a packet matches the identifier
of a cached trigger : , we cannot be sure that : is indeed the best
matching trigger for the packet.

4.7 Scalability
Since typically each flow is required to maintain two triggers

(one for each end-point), the number of triggers stored in ��� is of the
order of the number of flows plus the number of end-hosts. At first
sight, this would be equivalent to a network in which each router
maintains per-flow state. Fortunately, this is not the case. While the
state of a flow is maintained by each router along its path, a trigger
is stored at only one node at a time. Thus, if there are ! triggers and
� servers, each server will store !�� � triggers on the average. This
also suggests that ��� can be easily upgraded by simply adding more
servers to the network. One interesting point to note is that these
nodes do not need to be placed at specific locations in the network.

4.8 Incremental Deployment
Since ��� is designed as an overlay network, ��� is incrementally

deployable. At the limit, ��� may consist of only one node that stores
all triggers. Adding more servers to the system does not require
any system configuration. A new server simply joins the � � system
using the Chord protocol, and becomes automatically responsible
for an interval in the identifier space. When triggers with identifiers
in that interval are refreshed/inserted they will be stored at the new
server. In this way, the addition of a new server is also transparent
to the end-hosts.

4.9 Legacy Applications
The packet delivery service implemented by � � is best-effort,

which allows existing UDP-based applications to work over ��� eas-
ily. The end-host runs an � � proxy that translates between the appli-
cations’ UDP packets and � � packets, and inserts/refreshes triggers

on behalf of the applications. The applications do not need to be
modified, and are unaware of the ��� proxy. Packets are intercepted
and translated by the ��� proxy transparently. As a proof of concept,
we have implemented the heterogeneous multicast application pre-
sented in Section 3.2 over ��� . The sender sends a MPEG stream,
and one receiver plays back with a MPEG player (mpeg play) and
the other with a H.263 player (tmndec), as shown in Figure 7.
In [38], we present a solution using � � to provide mobility support
for TCP-based legacy applications.

4.10 Security
Unlike IP, where an end-host can only send and receive pack-

ets, in � � end-hosts are also responsible for maintaining the routing
information through triggers. While this allows flexibility for ap-
plications, it also (and unfortunately) creates new opportunities for
malicious users. We now discuss several security issues and how
��� addresses them.

We emphasize that our main goal here is not to design a bullet
proof system. Instead, our goal is to design simple and efficient
solutions that make ��� not worse and in many cases better than
today’s Internet. The solutions outlined in this section should be
viewed as a starting point towards more sophisticated and better
security solutions that we will develop in the future.

4.10.1 Eavesdropping
Recall that the key to enabling multicast functionality is to al-

low multiple triggers with the same identifer. Unfortunately, a ma-
licious user that knows a host’s trigger can use this flexibility to
eavesdrop the traffic towards that host by simply inserting a trig-
ger with the same identifier and its own address. In addressing this
problem, we consider two cases: (a) private and (b) public triggers
(see Section 4.2).

Private triggers are secretly chosen by the application end-points
and are not supposed to be revealed to the outside world. The length
of the trigger’s identifier makes it difficult for a third party to use
a brute force attack. While other application constraints such as
storing a trigger at a server nearby can limit the identifier choice,
the identifier is long enough (i.e., L�N�O bits), such that the appli-
cation can always reserve a reasonably large number of bits that
are randomly chosen. Assuming that an application chooses Q�L'S
random bits in the trigger’s identifier, it will take an attacker L I)��
probes on the average to guess the identifier. Even in the face of
a distributed attack of say one millions of hosts, it will take aboutL I)�� 5)�� J L I ��� probes per host to guess a private trigger. We
note that the technique of using random identifiers as probabilistic
secure capabilities was previously used in [28, 37].

Furthermore, end-points can periodically change the private trig-
gers associated with a flow. Another alternative would be for the
receiver to associate multiple private triggers to the same flow, and
the sender to send packets randomly to one of these private triggers.
The alternative left to a malicious user is to intercept all private trig-
gers. However this is equivalent to eavesdropping at the IP level or
taking control of the ��� server storing the trigger, which makes ���
no worse than IP.

With ��� , a public trigger is known by all users in the system, and
thus anyone can eavesdrop the traffic to such a trigger. To alleviate
this problem, end-hosts can use the public triggers to choose a pair
of private triggers, and then use these private triggers to exchange
the actual data. To keep the private triggers secret, one can use
public key cryptography to exchange the private triggers. To initiate
a connection, a host � encrypts its private trigger �!3 2 under the
public key of a receiver � , and then sends it to � via � ’s public
trigger. � decrypts � ’s private trigger �@3 2 , then chooses its own

private trigger �!3 � , and sends this trigger back to � over � ’s private
trigger �!3 2 . Since the sender’s trigger is encrypted, a malicious user
cannot impersonate � .5

4.10.2 Trigger hijacking
A malicious user can isolate a host by removing its public trigger.

Similarly, a malicious user in a multicast group can remove other
members from the group by deleting their triggers. While removing
a trigger also requires to specify the IP address of the trigger, this
address is, in general, not hard to obtain.

One possibility to guard against this attack is to add another level
of indirection. Consider a server - that wants to advertise a public
trigger with identifier �@3 � . Instead of inserting the trigger 2 �@3 � 4 - 6 ,
the server can insert two triggers, 2 �@3��=4
" 6 and 2#" 4 - 6 , where " is an
identifier known only by - . Since a malicious user has to know "
in order to remove either of the two triggers, this simple technique
provides effective protection against this type of attack. To avoid
performance penalties, the receiver can choose " such that both2 �@3 ��4 " 6 and 2#" 4 -�6 are stored at the same server. With the current
implementation this can be easily achieved by having �@3 � and "
share the same D -bit prefix.

4.10.3 DoS Attacks
The fact that ��� gives end-hosts control on routing opens new

possibilities for DoS attacks. We consider two types of attacks: (a)
attacks on end-hosts, and (b) attacks on the infrastructure. In the
former case, a malicious user can insert a hierarchy of triggers (see
Figure 5) in which all triggers on the last level point to the victim.
Sending a single packet to the trigger at the root of the hierarchy
will cause the packet to be replicated and all replicas to be sent
to the victim. This way an attacker can mount a large scale DoS
attack by simply leveraging the ��� infrastructure. In the later case,
a malicious user can create trigger loops, for instance by connecting
the leaves of a trigger hierarchy to its root. In this case, each packet
sent to the root will be exponentially replicated!

To alleviate these attacks, ��� uses three techniques:
1. Challenges: ��� assumes implicitly that a trigger that points

to an end-host 1 is inserted by the end-host itself. An ���
server can easily verify this assumption by sending a chal-
lenge to 1 the first time the trigger is inserted. The challenge
consists of a random nonce that is expected to be returned by
the receiver. If the receiver fails to answer the challenge the
trigger is removed. As a result an attacker cannot use a hier-
archy of triggers to mount a DoS attack (as described above),
since the leaf triggers will be removed as soon as the server
detects that the victim hasn’t inserted them.

2. Resource allocation: Each server uses Fair Queueing [7] to
allocate resources amongst the triggers it stores. This way
the damage inflicted by an attacker is only proportional to
the number of triggers it maintains. An attacker cannot sim-
ply use a hierarchy of triggers with loops to exponentially
increase its traffic. As soon as each trigger reaches its fair
share the excess packets will be dropped. While this tech-
nique doesn’t solve the problem, it gives ��� time to detect
and to eventually break the cycles.
To increase protection, each server can also put a bound on
the number of triggers that can be inserted by a particular
end-host. This will preclude a malicious end-host from mo-

�
Note that an attacker can still count the number of connection re-

quests to � . However, this information is of very limited use, if
any, to the attacker. If, in the future, it turns out that this is un-
acceptable for some applications, then other security mechanisms
such as public trigger authentication will need to be used.

0 5 10 15 20 25 30 35
1

1.5

2

2.5

3

3.5

4

4.5

Number of Samples

90
th

 P
er

ce
nt

ile
 L

at
en

cy
 S

tr
et

ch
power law random graph
transit−stub

Figure 8: The 90th percentile latency stretch vs. number of
samples for PLRG and transit-stub with 5000 nodes.

nopolizing a server’s resources.
3. Loop detection: When a trigger that doesn’t point to an IP

address is inserted, the server checks whether the new trigger
doesn’t create a loop. A simple procedure is to send a special
packet with a random nonce. If the packet returns back to the
server, the trigger is simply removed. To increase the robust-
ness, the server can invoke this procedure periodically after
such a trigger is inserted. Another possibility to detect loops
more efficiently would be to use a Bloom filter to encode the
set of ��� servers along the packet’s path, as proposed in the
Icarus framework [34].

4.11 Anonymity
Point-to-point communication networks such as the Internet pro-

vide limited support for anonymity. Packets usually carry the des-
tination and the source addresses, which makes it relatively easy
for an eavesdropper to learn the sender and the receiver identi-
ties. In contrast, with ��� , eavesdropping the traffic of a sender will
not reveal the identity of the receiver, and eavesdropping the traf-
fic of a receiver will not reveal the sender’s identity. The level of
anonymity can be further enhanced by using chain of triggers or
stack of identifiers to route packets.

5. SIMULATION RESULTS
In this section, we evaluate the routing efficiency of ��� by sim-

ulation. One of the main challenges in providing efficient routing
is that end-hosts have little control over the location of their trig-
gers. However, we show that simple heuristics can significantly
enhance � � ’s performance. The metric we use to evaluate these
heuristics is the ratio of the inter-node latency on the � � network to
the inter-node latency on the underlying IP network. This is called
the latency stretch.

The simulator is based on the Chord protocol and uses iterative
style routing [26]. We assume that node identifiers are randomly
distributed. This assumption is consistent with the way the iden-
tifiers are chosen in other lookup systems such as CAN [22] and
Pastry [23]. As discussed in [26], using random node identifiers
increases system robustness and load-balancing. 6 We consider the
� We have also experimented with identifiers that have location se-
mantics. In particular, we have used space filling curves, such as
the Hilbert curve, to map a 3 -dimensional geometric space—which

following network topologies in our simulations:

1 A power-law random graph topology generated with the INET

topology generator [16] with 5000 nodes, where the delay of
each link is uniformly distributed in the interval

� N;4"Q�����6 ms.
The � � servers are randomly assigned to the network nodes.

1 A transit-stub topology generated with the GT-ITM topology
generator [11] with 5000 nodes, where link latencies are 100
ms for intra-transit domain links, 10 ms for transit-stub links
and 1 ms for intra-stub domain links. ��� servers are randomly
assigned to stub nodes.

5.1 End-to-End Latency
Consider a source � that sends packets to a receiver 1 via trigger2 �@3	4�176 . As discussed in Section 4.5, once the first packet reaches

the server - storing the trigger 2 �@3	4�176 , � caches - and sends all
subsequent packets directly to - . As a result, the packets will be
routed via IP from � to - and then from - to 1 . The obvious
question is how efficient is routing through - as compared to rout-
ing directly from � to 1 . Section 4.5 presents a simple heuristic
in which a receiver 1 samples the identifier space to find an iden-
tifier �@3$4 that is stored at a nearby server. Then 1 inserts trigger2 �@3 4 45176 .

Figure 8 plots the 90th percentile latency stretch versus the num-
ber of samples D in a system with Q�O�4 ��S�� ��� servers. Each point
represents the 90th percentile over 1000 measurements. For each
measurement, we randomly choose a sender and a receiver. In
each case, the receiver generates D triggers with random identi-
fiers. Among these triggers, the receiver retains the trigger that is
stored at the closest server. Then we sum the shortest path latency
from the sender to - and from - to the receiver, and divide it by
the shortest path latency from the sender to the receiver to obtain
the latency stretch. Sampling the space of identifiers greatly low-
ers the stretch. While increasing the number of samples decreases
the stretch further, the improvement appears to saturate rapidly, in-
dicating that in practice, just Q"O#% ��L samples should suffice. The
receiver does not need to search for a close identifier every time a
connection is open; in practice, an end-host can sample the space
periodically and maintain a pool of identifiers which it can reuse.

5.2 Proximity Routing in > ?
While Section 5.1 evaluates the end-to-end latency experienced

by data packets after the sender caches the server storing the re-
ceiver’s trigger : , in this section, we evaluate the latency incurred
by the sender’s first packet that matches trigger : . This packet is
routed through the overlay network until it reaches the server stor-
ing : . While Chord ensures that the overlay route length is only
�P2
	���
 � 6 , where � is the number of ��� servers, the routing latency
can be quite large. This is because server identifiers are randomly
chosen, and therefore servers close in the identifier space can be
very far away in the underlying network. To alleviate this problem,
we consider two simple heuristics:

1 Closest finger replica In addition to each finger, a server
maintains C#%7Q immediate successors of that finger. Thus,
each node maintains references to about C � 	���
) � other
nodes for routing proposes. To route a packet, a server se-
lects the closest node in terms of network distance amongst
(1) the finger with the largest identifier preceding the packet’s

was shown to approximate the Internet latency well [20]—onto the
one-dimensional Chord identifier space. However, the preliminary
results do not show significant gains as compared to the heuristics
presented in this section, so we omit their presentation here.

0 2 4 6 8 10 12 14

x 10
4

2

4

6

8

10

12

14

16

Number of i3 Servers

90
th

 P
er

ce
nt

ile
 L

at
en

cy
 S

tr
et

ch

default chord
closest finger set
closest finger replica

(a)

0 2 4 6 8 10 12 14

x 10
4

2

4

6

8

10

12

14

16

Number of i3 Servers

90
th

 P
er

ce
nt

ile
 L

at
en

cy
 S

tr
et

ch

default chord
closest finger set
closest finger replica

(b)

Figure 9: The 90th percentile latency stretch in the case of (a) a power-law random network topology with 5000 nodes, and (b) a
transit-stub topology with 5000 nodes. The � � servers are randomly assigned to all nodes in case (a), and only to the stub nodes in
case (b).

identifier and (2) the C#% Q immediate successors of that fin-
ger. This heuristic was originally proposed in [5].

1 Closest finger set Each server � chooses 	��
 � � fingers as
���������	�	��
�C=2�� ��� � 6 , where 2 � E 	��
 � � 6 and � E L . To
route a packet, server � considers only the closest 	��
) �
fingers in terms of network distances among all its 	���
 � �
fingers.

Figure 9 plots the 90th percentile latency stretch as a function
of ��� ’s size for the baseline Chord protocol and the two heuris-
tics. The number of replicas C is 10, and � is chosen such that
	��
 � � J C � 	��
) � . Thus, with both heuristics, a server con-
siders roughly the same number of routing entries. We vary the
number of ��� servers from L I � to L I � , and in each case we aver-
age routing latencies over 1000 routing queries. In all cases the ���
server identifiers are randomly generated.

As shown in Figure 9, both heuristics can reduce the 90th per-
centile latency stretch up to L#% � times as compared to the default
Chord protocol. In practice, we choose the “closest finger set”
heuristic. While this heuristic achieves comparable latency stretch
with “closest finger replica”, it is easier to implement and does not
require to increase the routing table size. The only change in the
Chord protocol is to sample the identifier space using base � in-
stead of L , and store only the closest 	��
) � fingers among the
nodes sampled so far.

5.3 Implementation and Experiments
We have implemented a bare-bones version of � � using the Chord

protocol. The control protocol used to maintain the overlay net-
work is fully asynchronous and is implemented on top of UDP. The
implementation uses 256 bit (B J L�N�O) identifiers and assumes
that the matching procedure requires exact matching on the 128
most significant bits (DPJRQ�L�S). This choice makes it very unlikely
that a packet will erroneously match a trigger, and at the same time
gives applications up to 128 bits to encode application specific in-
formation such as the host location (see Section 2.4.3).

For simplicity, in the current implementation we assume that all
triggers that share the first 128 bits are stored on the same server. In

theory, this allows us to use any of the proposed lookup algorithms
that performs exact matching.

Both insert trigger requests and data packets share a common
header of 48 bytes. In addition, data packets can carry a stack of
up to four triggers (this feature isn’t used in the experiments). Trig-
gers need to be updated every 30 seconds or they will expire. The
control protocol to maintain the overlay network is minimal. Each
server performs stabilization every 30 seconds (see [26]). Dur-
ing every stabilization period all servers generate approximately
� 	 �
�� control messages. Since in our experiments the number
of servers � is in the order of tens, we neglect the overhead due to
the control protocol.

The testbed used for all of our experiments was a cluster of Pen-
tium III 700 MHz machines running Linux. We ran tests on systems
of up to 32 nodes, with each node running on its own processor.
The nodes communicated over a shared 1 Gbps Ethernet. For time
measurements, we use the Pentium timestamp counter (TSC). This
method gives very accurate wall clock times, but sometime it in-
cludes interrupts and context switches as well. For this reason, the
high extremes in the data are unreliable.

5.4 Performance
In the section, we present the overhead of the main operations

performed by ��� . Since these results are based on a very prelim-
inary implementation, they should be seen as a proof of feasibil-
ity and not as a proof of efficiency. Other Chord related perfor-
mance metrics such as the route length and system robustness are
presented in [5].

Trigger insertion: We consider the overhead of handling an
insert trigger request locally, as opposed to forwarding a request
to another server. Triggers are maintained in a hash table, so the
time is practically independent of the number of triggers. Inserting
a trigger involves just a hash table lookup and a memory alloca-
tion. The average and the standard deviation of the trigger inser-
tion operation over 10,000 insertions are 12.5 � sec, and 7.12 � sec,
respectively. This is mostly the time it takes the operating system
to process the packet and to hand it to the application. By compar-
ison, memory allocation time is just 0.25 � sec on the test machine.
Note that since each trigger is updated every 30 sec, a server would

0 200 400 600 800 1000 1200 1400
0

5

10

15

20

25

30

35

40

Packet Payload Size (bytes)

P
er

 D
at

a
P

ac
ke

t F
or

w
ar

di
ng

 O
ve

rh
ea

d
(u

se
c)

50 percentile
25, 75 percentiles
10, 90 percentiles

Figure 10: Per packet forwarding overhead as a function of
payload packet size. In this case, the ��� header size is 48 bytes.

be able to maintain up to � � � S ��4 ��� � JML$, � � Q�� � triggers.
Data packet forwarding: Figure 10 plots the overhead of for-

warding a data packet to its final destination. This involves looking
up the matching trigger and forwarding the packet to its destination
addresses. Since we didn’t enable multicast, in our experiments
there was never more than one address. Like trigger insertion,
packet forwarding consists of a hash table lookup. In addition, this
measurement includes the time to send the data packet. Packet for-
warding time, in our experiments, increases roughly linearly with
the packet size. This indicates that as packet size increases, mem-
ory copy operations and pushing the bits through the network dom-
inate processing time.

��� routing: Figure 11 plots the overhead of routing a packet to
another ��� node. This differs from data packet forwarding in that
we route the packet using a node’s finger table rather than its trigger
table. This occurs when a data packet’s trigger is stored on some
other node. The most costly operation here is a linear finger table
lookup, as evidenced by the graph. There are two reasons for this
seemingly poor behavior. First, we augment the finger table with a
cache containing the most recent servers that have sent control or
data packets. Since in our experiments this cache is large enough
to store all servers in the system, the number of nodes used to route
a packet (i.e., the fingers plus the cached nodes) increases roughly
linearly with the number of nodes in the system. Second, the fin-
ger table data structure in our implementation is a list. In a more
polished implementation, a more efficient data structure is clearly
needed to significantly improve the performance.

Throughput: Finally, we ran some experiments to see the max-
imum rate at which a node can process data packets. Ideally, this
should be the inverse of overhead. To test throughput, a single
node is bombarded with more packets than it can reasonably han-
dle. We measure the time it takes for Q�� ��4 � ��� packets to emerge
from the node to determine throughput. Not surprisingly, as packet
payload increases, throughput in packets decreases. In addition, we
calculate the data throughput from the user perspective. Only the
payload data is considered; headers are overhead to users. The user
throughput in Mbps increases as the packet payload increases be-
cause the overhead for headers and processing is roughly the same
for both small and large payloads.

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

Number of I3 Servers

P
er

 P
ac

ke
t R

ou
tin

g
O

ve
rh

ea
d

(u
se

c)

50 percentile
25, 75 percentiles
10, 90 percentiles

Figure 11: Per packet routing overhead as a function of ���
nodes in the system. The packet payload size is zero.

Payload Size Avg. Throughput (std. dev.) Avg. Throughput
(bytes) (pkts/sec) (payload Mbps)

0 35,753 (2,406) 0
200 33,130 (3,035) 53.00
400 28,511 (1,648) 91.23
600 28,300 (595) 135.84
800 27,842 (1,028) 178.18

1,000 27,060 (1,127) 216.48
1,200 26,164 (1,138) 251.16
1,400 23,339 (1,946) 261.39

Figure 12: The throughput of the data packet forwarding.

6. RELATED WORK
The rendezvous-based communication is similar in spirit to the

tuple space work in distributed systems [2, 14, 36]. A tuple space
is a shared memory that can be accessed by any node in the system.
Nodes communicate by inserting tuples and retrieving them from a
tuple space, rather than by point-to-point communication. Tuples
are more general than data packets. A tuple consists of arbitrary
typed fields and values, while a packet consists of just an identi-
fier and a data payload. In addition, tuples are guaranteed to be
stored until they are explicitly removed. Unfortunately, the added
expressiveness and stronger guarantees of tuple spaces make them
very hard to efficiently implement on a large scale. Finally, with
tuple spaces, a node has to explicitly ask for each data packet. This
interface is not effective for high speed communications.

��� ’s communication paradigm is similar to the publish-subscribe-
notify (PSN) model. The PSN model itself exists in many pro-
prietary forms already in commercial systems [29, 31]. While the
matching operations employed by these systems are typically much
more powerful than the longest prefix matching used by ��� , it is not
clear how scalable these systems are. In addition, these systems
don’t provide support for service composition.

Active Networks aim to support rapid development and deploy-
ment of new network applications by downloading and executing
customized programs in the network [33]. ��� provides an alterna-
tive design that, while not as general and flexible as Active Net-
works, is able to realize a variety of basic communication services
without the need for mobile code or any heavyweight protocols.

��� is similar to many naming systems. This should come as no
surprise, as identifiers can be viewed as semantic-less names. One
future research direction is to use ��� as a unifying framework to

implement various name systems.
The Domain Name system (DNS) maps hostnames to IP ad-

dresses [19]. A DNS name is mapped to an end-host as a result
of an explicit request at the beginning of a transfer. In ��� , the
identifier-to-address mapping and the packet forwarding are tightly
integrated. DNS resolvers form a static overlay hierarchy, while ���
servers form a self-organizing overlay.

Active Names (AN) map a name to a chain of mobile code re-
sponsible for locating the remote service, and transporting its re-
sponse to the destination [30]. The code is executed on names at
resolvers. The goals of AN and ��� are different. In AN, applica-
tions use names to describe what they are looking for, while in ���
identifiers are used primary as a way to abstract away the end-host
location. Also, while the goal of AN is to support extensibility for
wide-area distributed services, the goal of ��� is to support basic
communication primitives such as multicast and anycast.

The Intentional Naming System (INS) is a resource discovery
and service location system for mobile hosts [32]. INS uses an
attribute-based language to describe names. Similar to ��� identi-
fiers, INS names are inserted and refreshed by the application. INS
also implements a late biding mechanism that integrates the name
resolution with message forwarding. ��� differs from INS in that
from the network’s point of view, an identifier does not carry any
semantics. This simplicity allows for a scalable and efficient imple-
mentation. Another difference is that ��� allows end-hosts to control
the application-level path followed by the packets.

The rendezvous-based abstraction is similar to the IP multicast
abstraction [6]. An IP multicast address identifies the receivers of
a multicast group in the same way an ��� identifier identifies the
multicast receivers. However, unlike IP which allocates a special
range of addresses (i.e., class D) to multicast, ��� does not put any
restrictions on the identifier format. This gives � � applications the
ability to switch on-the-fly from unicast to multicast. In addition,
��� can support multicast groups with heterogeneous receivers.

Several solutions to provide the anycast service have been re-
cently proposed. IP Anycast aims to provide this service at the IP
layer [21]. All members of an anycast group share the same IP
address. IP routing forwards an anycast packet to the member of
the anycast group that is the closest in terms of routing distance.
Global IP-Anycast (GIA) provides an architecture that addresses
the scalability problems of the original IP Anycast by differentiat-
ing between rarely used and popular anycast groups [17]. In con-
trast to these proposals, ��� can use distance metrics that are only
available at the application level such as server load, and it sup-
ports other basic communication primitives such as multicast and
service composition.

Estrin et al. have proposed an attribute-based data communi-
cation mechanism, called direct diffusion, to disseminate data in
sensor networks [8]. Data sources and sinks use attributes to iden-
tify what information they provide or are interested in. A user that
wants to receive data inserts an interest into the network in the form
of attribute-value pairs. At a high level, attributes are similar to
identifiers, and interests are similar to triggers. However, in di-
rect diffusion, the attributes have a much richer semantic and the
rules can be much more complex than in ��� . At the implementation
level, in direct diffusion, nodes flood the interests to their neigh-
bors, while � � uses a lookup service to store the triggers determined
based on the trigger identifier.

TRIAD [3] and IPNL [9] have been recently proposed to solve
the IPv4 address scarcity problem. Both schemes use DNS names
rather than addresses for global identification. However, TRIAD
and IPNL make different tradeoffs. While TRIAD is more gen-
eral by allowing an unlimited number of arbitrarily connected IP

network realms, IPNL provides more efficient routing by assuming
a hierarchical topology with a single “middle realm”. Packet for-
warding in both TRIAD and IPNL is similar to packet forwarding
based on identifier stacks in ��� . However, while with TRIAD and
IPNL the realm-to-realm path of a packet is determined during the
DNS name resolution by network specific protocols, with ��� the
path is determined by end-hosts.

Multi-Protocol Label Switching (MPLS) was recently proposed
to speed-up the IP route lookup and to perform route pinning [1].
Similar to ��� , each packet carries a stack of labels that specifies the
packet route. The first label in the stack specifies the next hop. Be-
fore forwarding a packet, a router replaces the label at the head of
the stack. There are several key differences between ��� and MPLS.
While ��� identifiers have global meaning, labels have only local
meaning. In addition, MPLS requires special protocols to choose
and distribute the labels. In contrast, with � � identifier stacks are
chosen and maintained by end-hosts.

7. DISCUSSION AND FUTURE WORK
While we firmly believe in the fundamental purpose of ��� —

providing a general-purpose indirection service through a single
overlay infrastructure—the details of our design are preliminary.
Besides exploring the security and efficiency issues mentioned in
the paper further, there are areas that deserve significant additional
attention.

A general question is what range of services and applications can
be synthesized from the fixed abstraction provided by ��� . Until now
we have developed two applications on top of ��� , a mobility solu-
tion [38], and a scalable reliable multicast protocol [18]. While the
initial experience with developing these applications has been very
promising, it is too early to precisely characterize the limitations
and the expressiveness of the ��� abstraction. To answer this ques-
tion, we need to gain further experience with using and deploying
new applications on top of ��� .

For inexact matching, we have used longest-prefix match. Inex-
act matching occurs locally, on a single node, so one could use any
reasonably efficient matching procedure. The question is which
inexact matching procedure will best allow applications to choose
among several candidate choices. This must work for choosing
based on feature sets (e.g., selecting printers), location (e.g., se-
lecting servers), and policy considerations (e.g., automatically di-
recting users to facilities that match their credentials). We chose
longest-prefix match mostly for convenience and familiarity, and it
seems to work in the examples we’ve investigated, but there may
be superior options.

Our initial design decision was to use semanticless identifiers
and routing; that is, identifiers are chosen randomly and routing is
done based on those identifiers. Instead, one could embed location
semantics into the node identifiers. This may increase the efficiency
of routing, by allowing routes to take lower-latency ��� -level hops,
but at the cost of making the overlay harder to deploy, manage, and
load-balance.

Our decision to use Chord [26] to implement ��� was motivated
by the protocol simplicity, its provable properties, and by our famil-
iarity with the protocol. However, one could easily implement ���
on top of other lookup protocols such as CAN [22], Pastry [23] and
Tapestry [12]. Using these protocols may present different bene-
fits. For instance, using Pastry and Tapestry can reduce the latency
of the first packets of a flow, since these protocols find typically
routes with lower latencies than Chord. However, note that once
the sender caches the server storing the receiver’s trigger, there will
be little difference between using different lookup protocols, as the
packets will forwarded directly via IP to that server. Studying the

trade-offs involved by using various lookup protocols to implement
��� is a topic of future research.

While these design decisions are important, they may have lit-
tle to do with whether ��� is ever deployed. We don’t know what
the economic model of ��� would be and whether its most likely
deployment would be as a single provider for-profit service (like
content distribution networks), or a multiprovider for-profit service
(like ISPs), or a cooperatively managed nonprofit infrastructure.
While deployment is always hard to achieve, ��� has the advantage
that it can be incrementally deployed (it could even start as a sin-
gle, centrally located server!). Moreover, it does not require the
cooperation of ISPs, so third-parties can more easily provide this
service. Nonetheless, ��� faces significant hurdles before ever being
deployed.

8. SUMMARY
Indirection plays a fundamental role in providing solutions for

mobility, anycast and multicast in the Internet. In this paper we pro-
pose a new abstraction that unifies these solutions. In particular, we
propose to augment the point-to-point communication abstraction
with a rendezvous-based communication abstraction. This level
of indirection decouples the sender and the receiver behaviors and
allows us to provide natural support for mobility, anycast and mul-
ticast.

To demonstrate the feasibility of this approach, we have built an
overlay network based on the Chord lookup system. Preliminary
experience with ��� suggests that the system is highly flexible and
can support relatively sophisticated applications that require mo-
bility, multicast, and/or anycast. In particular, we have developed a
simple heterogeneous multicast application in which MPEG video
traffic is transcoded on the fly to H.263 format. In addition, we
have recently developed two other applications: providing transpar-
ent mobility to legacy applications [38], and a large scale reliable
multicast protocol [18].

9. ACKNOWLEDGMENTS
The authors would like to thank Sylvia Ratnasamy, Kevin Lai,

Karthik Lakshminarayanan, Ananthapadmanabha Rao, Adrian Per-
rig, and Randy Katz for their insightful comments that helped im-
prove the ��� design. We thank Hui Zhang, Dawn Song, Volker
Roth, Lakshminarayanan Subramanian, Steve McCanne, Srinivasan
Keshav, and the anonymous reviewers for their useful comments
that helped improve the paper.

10. REFERENCES
[1] CALLON, R., DOOLAN, P., FELDMAN, N., FREDETTE, A.,

SWALLOW, G., AND VISWANATHAN, A. A framework for
multiprotocol label switching, Nov. 1997. Internet Draft,
draft-ietf-mpls-framework-02.txt.

[2] CARRIERO, N. The Implementation of Tuple Space
Machines. PhD thesis, Yale University, 1987.

[3] CHERITON, D. R., AND GRITTER, M. TRIAD: A new next
generation Internet architecture, Mar. 2000.
http://www-dsg.stanford.edu/triad/ triad.ps.gz.

[4] CHU, Y., RAO, S. G., AND ZHANG, H. A case for end
system multicast. In Proc. of ACM SIGMETRICS’00 (Santa
Clara, CA, June 2000), pp. 1–12.

[5] DABEK, F., KAASHOEK, F., KARGER, D., MORRIS, R.,
AND STOICA, I. Wide-area cooperative storage with cfs. In
Proc. ACM SOSP’01 (Banff, Canada, 2001), pp. 202–215.

[6] DEERING, S., AND CHERITON, D. R. Multicast routing in
datagram internetworks and extended LANs. ACM
Transactions on Computer Systems 8, 2 (May 1990), 85–111.

[7] DEMERS, A., KESHAV, S., AND SHENKER, S. Analysis and
simulation of a fair queueing algorithm. In Journal of
Internetworking Research and Experience (Oct. 1990),
pp. 3–26. (Also in Proc. of ACM SIGCOMM’89, pages
3-12).

[8] ESTRIN, D., GOVINDAN, R., HEIDEMANN, J., AND

KUMAR, S. Next century challenges: Scalable coordination
in sensor networks. In Proc. of ACM/IEEE MOBICOM’99
(Cambridge, MA, Aug. 1999).

[9] FRANCIS, P., AND GUMMADI, R. IPNL: A NAT extended
internet architecture. In Proc. ACM SIGCOMM’01 (San
Diego, 2001), pp. 69–80.

[10] GRIBBLE, S. D., WELSH, M., VON BEHREN, J. R.,
BREWER, E. A., CULLER, D. E., BORISOV, N.,
CZERWINSKI, S. E., GUMMADI, R., HILL, J. R., JOSEPH,
A. D., KATZ, R. H., MAO, Z. M., ROSS, S., AND ZHAO,
B. Y. The ninja architecture for robust internet-scale systems
and services. Computer Networks 35, 4 (2001), 473–497.

[11] Georgia tech internet topology model.
http://www.cc.gatech.edu/fac/Ellen.Zegura/graphs.html.

[12] HILDRUM, K., KUBATOWICZ, J. D., RAO, S., AND ZHAO,
B. Y. Distributed Object Location in a Dynamic Network. In
Proc. 14th ACM Symp. on Parallel Algorithms and
Architectures (Aug. 2002).

[13] HOLBROOK, H., AND CHERITON, D. IP multicast channels:
EXPRESS support for large-scale single-source applications.
In Proc. of ACM SIGCOMM’99 (Cambridge, Massachusetts,
Aug. 1999), pp. 65–78.

[14] Java Spaces. http://www.javaspaces.homestead.com/.
[15] JANNOTTI, J., GIFFORD, D. K., JOHNSON, K. L.,

KAASHOEK, M. F., AND J. W. O’TOOLE, J. Overcast:
Reliable multicasting with an overlay network. In Proc. of
the 4th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 2000) (San Diego, California,
October 2000), pp. 197–212.

[16] JIN, C., CHEN, Q., AND JAMIN, S. Inet: Internet topology
generator, 2000. Technical report CSE-TR-433-00,
University of Michigan, EECS dept,
http://topology.eecs.umich.edu/inet.

[17] KATABI, D., AND WROCLAWSKI, J. A framework for
scalable global ip-anycast (gia). In Proc. of SIGCOMM 2000
(Stockholm, Sweden, Aug. 2000), pp. 3–15.

[18] LAKSHMINARAYANAN, K., RAO, A., STOICA, I., AND

SHENKER, S. Flexible and robust large scale multicast using
i3. Tech. Rep. CS-02-1187, University of California -
Berkeley, 2002.

[19] MOCKAPETRIS, P., AND DUNLAP, K. Development of the
Domain Name System. In Proc. ACM SIGCOMM (Stanford,
CA, 1988), pp. 123–133.

[20] NG, T. S. E., AND ZHANG, H. Predicting internet network
distance with coordinates-based approaches. In Proc. of
INFOCOM’02 (New York, NY, 2002).

[21] PARTRIDGE, C., MENDEZ, T., AND MILLIKEN, W. Host
anycasting service, nov 1993. RFC-1546.

[22] RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP, R.,
AND SHENKER, S. A scalable content-addressable network.
In Proc. ACM SIGCOMM (San Diego, 2001), pp. 161–172.

[23] ROWSTRON, A., AND DRUSCHEL, P. Pastry: Scalable,
distributed object location and routing for large-scale
peer-to-peer systems. In Proc. of the 18th IFIP/ACM
International Conference on Distributed Systems Platforms
(Middleware 2001) (Nov. 2001), pp. 329–350.

[24] SNOEREN, A. C., AND BALAKRISHNAN, H. An end-to-end
approach to host mobility. In Proc. of ACM/IEEE
MOBICOM’99 (Cambridge, MA, Aug. 1999).

[25] SNOEREN, A. C., BALAKRISHNAN, H., AND KAASHOEK,
M. F. Reconsidering internet mobility. In Proc. of the 8th
IEEE Workshop on Hot Topics in Operating Systems
(HotOS-VIII) (Elmau/Oberbayern, Germany, May 2001).

[26] STOICA, I., MORRIS, R., KARGER, D., KAASHOEK,
M. F., AND BALAKRISHNAN, H. Chord: A scalable
peer-to-peer lookup service for internet applications. In Proc.
ACM SIGCOMM’01 (San Diego, 2001), pp. 149–160.

[27] STOICA, I., NG, T., AND ZHANG, H. REUNITE: A
recursive unicast approach to multicast. In Proc. of
INFOCOM’00 (Tel-Aviv, Israel, Mar. 2000), pp. 1644–1653.

[28] TANENBAUM, A. S., KAASHOEK, M. F., VAN RENESSE,
R., AND BAL, H. E. The amoeba distributed operating
system: a status report. Computer Communications 14 (1),
324–335.

[29] Tibco software. http://www.tibco.com.
[30] VAHDAT, A., DAHLIN, M., ANDERSON, T., AND

AGGARWAL, A. Active names: Flexible location and
transport. In Proc. of USENIX Symposium on Internet
Technologies & Systems (Oct. 1999).

[31] Vitria. http://www.vitria.com.
[32] W. ADJIE-WINOTO AND E. SCHWARTZ AND H.

BALAKRISHNAN AND J. LILLEY. The design and
implementation of an intentional naming system. In Proc.
ACM Symposium on Operating Systems Principles (Kiawah
Island, SC, Dec. 1999), pp. 186–201.

[33] WETHERALL, D. Active network vision and reality: lessons
form a capsule-based system. In Proc. of the 17th ACM
Symposium on Operating System Principles (SOSP’99)
(Kiawah Island, SC, Nov. 1999), pp. 64–79.

[34] WHITAKER, A., AND WETHERALL, D. Forwarding without
loops in icarus. In Proc. of OPENARCH 2002 (New York
City, NY, June 2002).

[35] WAP wireless markup language specification (WML).
http://www.oasis-open.org/cover/wap-wml.html.

[36] WYCKOFF, P., MCLAUGHRY, S. W., LEHMAN, T. J., AND

FORD, D. A. T Spaces. IBM System Journal 37, 3 (1998),
454–474.

[37] YARVIN, C., BUKOWSKI, R., AND ANDERSON, T.
Anonymous rpc: Low-latency protection in a 64-bit address
space. In Proc. of USENIX (June 1993), pp. 175–186.

[38] ZHUANG, S., LAI, K., STOICA, I., KATZ, R., AND

SHENKER, S. Host mobility using an internet indirection
infrastructure. Tech. Rep. UCB/CSD-02-1186, Computer
Science Division, U. C. Berkeley, June 2002.

