
Load-reserve / Store-conditional on POWER and ARM

Peter Sewell (slides from Susmit Sarkar)

1University of Cambridge

June 2012

Correct implementations of C/C++ on hardware

Can it be done?
◮ . . . on highly relaxed hardware?

What is involved?
◮ Mapping new constructs to assembly

◮ Optimizations: which ones legal?

Peter Sewell (Cambridge) Load-reserve / Store-conditional on POWER and ARM June 2012 2 / 10

Correct implementations of C/C++ on hardware

Can it be done?
◮ . . . on highly relaxed hardware? e.g. Power

What is involved?
◮ Mapping new constructs to assembly

◮ Optimizations: which ones legal?

Peter Sewell (Cambridge) Load-reserve / Store-conditional on POWER and ARM June 2012 2 / 10

Implementing C/C++11 on POWER: Pointwise Mapping

C/C++11 Operation POWER Implementation

Store (non-atomic)
Load (non-atomic)

st

ld

(From Paul McKenney and Raul Silvera)

Peter Sewell (Cambridge) Load-reserve / Store-conditional on POWER and ARM June 2012 3 / 10

Implementing C/C++11 on POWER: Pointwise Mapping

C/C++11 Operation POWER Implementation

Store (non-atomic)
Load (non-atomic)

st

ld

Store relaxed
Store release
Store seq-cst

st

lwsync; st

lwsync; st

Load relaxed
Load consume
Load acquire
Load seq-cst

ld

ld (and preserve dependency)
ld; cmp; bc; isync

sync; ld; cmp; bc; isync

(From Paul McKenney and Raul Silvera)

Peter Sewell (Cambridge) Load-reserve / Store-conditional on POWER and ARM June 2012 3 / 10

Implementing C/C++11 on POWER: Pointwise Mapping

C/C++11 Operation POWER Implementation

Store (non-atomic)
Load (non-atomic)

st

ld

Store relaxed
Store release
Store seq-cst

st

lwsync; st

lwsync; st

Load relaxed
Load consume
Load acquire
Load seq-cst

ld

ld (and preserve dependency)
ld; cmp; bc; isync

sync; ld; cmp; bc; isync

Fence acquire
Fence release
Fence seq-cst

lwsync

lwsync

sync

(From Paul McKenney and Raul Silvera)

Peter Sewell (Cambridge) Load-reserve / Store-conditional on POWER and ARM June 2012 3 / 10

Implementing C/C++11 on POWER: Pointwise Mapping

C/C++11 Operation POWER Implementation

Store (non-atomic)
Load (non-atomic)

st

ld

Store relaxed
Store release
Store seq-cst

st

lwsync; st

lwsync; st

Load relaxed
Load consume
Load acquire
Load seq-cst

ld

ld (and preserve dependency)
ld; cmp; bc; isync

sync; ld; cmp; bc; isync

Fence acquire
Fence release
Fence seq-cst

lwsync

lwsync

sync

CAS relaxed

CAS seq-cst

loop: lwarx; cmp; bc exit;

stwcx.; bc loop; exit:

sync; loop: lwarx; cmp; bc exit;

stwcx.; bc loop; isync; exit:

.

(From Paul McKenney and Raul Silvera)

Peter Sewell (Cambridge) Load-reserve / Store-conditional on POWER and ARM June 2012 3 / 10

Implementing C/C++11 on POWER: Pointwise Mapping

C/C++11 Operation POWER Implementation

Store (non-atomic)
Load (non-atomic)

st

ld

Store relaxed
Store release
Store seq-cst

st

lwsync; st

lwsync; st

Load relaxed
Load consume
Load acquire
Load seq-cst

ld

ld (and preserve dependency)
ld; cmp; bc; isync

sync; ld; cmp; bc; isync

Fence acquire
Fence release
Fence seq-cst

lwsync

lwsync

sync

CAS relaxed

CAS seq-cst

loop: lwarx; cmp; bc exit;

stwcx.; bc loop; exit:

sync; loop: lwarx; cmp; bc exit;

stwcx.; bc loop; isync; exit:

.

Is that mapping correct?

(From Paul McKenney and Raul Silvera)

Peter Sewell (Cambridge) Load-reserve / Store-conditional on POWER and ARM June 2012 3 / 10

Implementing C/C++11 on POWER: Pointwise Mapping

C/C++11 Operation POWER Implementation

Store (non-atomic)
Load (non-atomic)

st

ld

Store relaxed
Store release
Store seq-cst

st

lwsync; st

lwsync; sync; st

Load relaxed
Load consume
Load acquire
Load seq-cst

ld

ld (and preserve dependency)
ld; cmp; bc; isync

sync; ld; cmp; bc; isync

Fence acquire
Fence release
Fence seq-cst

lwsync

lwsync

sync

CAS relaxed

CAS seq-cst

loop: lwarx; cmp; bc exit;

stwcx.; bc loop; exit:

sync; loop: lwarx; cmp; bc exit;

stwcx.; bc loop; isync; exit:

.

Answer: No!

(From Paul McKenney and Raul Silvera)

Peter Sewell (Cambridge) Load-reserve / Store-conditional on POWER and ARM June 2012 3 / 10

Implementing C/C++11 on POWER: Pointwise Mapping

C/C++11 Operation POWER Implementation

Store (non-atomic)
Load (non-atomic)

st

ld

Store relaxed
Store release
Store seq-cst

st

lwsync; st

sync; st

Load relaxed
Load consume
Load acquire
Load seq-cst

ld

ld (and preserve dependency)
ld; cmp; bc; isync

sync; ld; cmp; bc; isync

Fence acquire
Fence release
Fence seq-cst

lwsync

lwsync

sync

CAS relaxed

CAS seq-cst

loop: lwarx; cmp; bc exit;

stwcx.; bc loop; exit:

sync; loop: lwarx; cmp; bc exit;

stwcx.; bc loop; isync; exit:

.

Is that mapping correct?

Answer: Yes!

(From Paul McKenney and Raul Silvera)

Peter Sewell (Cambridge) Load-reserve / Store-conditional on POWER and ARM June 2012 3 / 10

Implementing C/C++11 on POWER: Pointwise Mapping

C/C++11 Operation POWER Implementation

Store (non-atomic)
Load (non-atomic)

st

ld

Store relaxed
Store release
Store seq-cst

st

lwsync; st

sync; st

Load relaxed
Load consume
Load acquire
Load seq-cst

ld

ld (and preserve dependency)
ld; cmp; bc; isync

sync; ld; cmp; bc; isync

Fence acquire
Fence release
Fence seq-cst

lwsync

lwsync

sync

CAS relaxed

CAS seq-cst

loop: lwarx; cmp; bc exit;

stwcx.; bc loop; exit:

sync; loop: lwarx; cmp; bc exit;

stwcx.; bc loop; isync; exit:

.

Is that the only correct mapping?

Answer: No!

(From Paul McKenney and Raul Silvera)

Peter Sewell (Cambridge) Load-reserve / Store-conditional on POWER and ARM June 2012 3 / 10

Implementing C/C++11 on POWER: Pointwise Mapping

C/C++11 Operation POWER Implementation

Store (non-atomic)
Load (non-atomic)

st

ld

Store relaxed
Store release
Store seq-cst

st

lwsync; st

sync; st

Alternative

sync; st; sync;

Load relaxed
Load consume
Load acquire
Load seq-cst

ld

ld (and preserve dependency)
ld; cmp; bc; isync

sync; ld; cmp; bc; isync ld; sync

Fence acquire
Fence release
Fence seq-cst

lwsync

lwsync

sync

CAS relaxed

CAS seq-cst

loop: lwarx; cmp; bc exit;

stwcx.; bc loop; exit:

sync; loop: lwarx; cmp; bc exit;

stwcx.; bc loop; isync; exit:

.

All compilers must agree for separate compilation
Peter Sewell (Cambridge) Load-reserve / Store-conditional on POWER and ARM June 2012 3 / 10

Machine Synchronisation Operations

x86: atomic synchronization operations, e.g. “atomic add”,“CAS”,. . .

RISC-friendly alternative: Load-reserve/Store-conditional
(aka LL/SC, larx/stcx and lwarx/stwcx, LDREX/STREX)

Peter Sewell (Cambridge) Load-reserve / Store-conditional on POWER and ARM June 2012 4 / 10

Machine Synchronisation Operations

x86: atomic synchronization operations, e.g. “atomic add”,“CAS”,. . .

RISC-friendly alternative: Load-reserve/Store-conditional
(aka LL/SC, larx/stcx and lwarx/stwcx, LDREX/STREX)

Can be used to implement CAS, atomic add, spinlocks, . . .

Universal (like CAS) [Herlihy’93] (but no ABA problem)

Atomic Addition

loop: lwarx r, d;

add r,v,r;

stwcx r, d;

bne loop;

Informally, stwcx succeeds only if no other write to the same address
since last lwarx, setting a flag iff it succeeds

Peter Sewell (Cambridge) Load-reserve / Store-conditional on POWER and ARM June 2012 4 / 10

What is no write since . . . ?

In machine time?
◮ Neither necessary, nor sufficient

Peter Sewell (Cambridge) Load-reserve / Store-conditional on POWER and ARM June 2012 5 / 10

What is no write since . . . ?

In machine time?
◮ Neither necessary, nor sufficient

Microarchitecturally (simplified): if cache-line
ownership not lost since last lwarx

(but we don’t want to model the microarchitecture...)

Peter Sewell (Cambridge) Load-reserve / Store-conditional on POWER and ARM June 2012 5 / 10

Modeling “not lost since”

Abstractly: ownership chain modeled by building up coherence order

Coherence: order relating stores to the same location (eventually
linear)

A stwcx succeeds only if it is (or at least, if it can become)
coherence-next-to the write read from by lwarx

. . . and no other write can later come in between

Peter Sewell (Cambridge) Load-reserve / Store-conditional on POWER and ARM June 2012 6 / 10

Modeling “not lost since”

Abstractly: ownership chain modeled by building up coherence order

Coherence: order relating stores to the same location (eventually
linear)

A stwcx succeeds only if it is (or at least, if it can become)
coherence-next-to the write read from by lwarx

. . . and no other write can later come in between

Isolate key concept: write reaching coherence point —
◮ coherence is linear below this write, and no new edges will be added

below

Peter Sewell (Cambridge) Load-reserve / Store-conditional on POWER and ARM June 2012 6 / 10

Coherence points and a successful stwcx

Atomic Addition

loop: lwarx r, x;

add r,3,r;

stwcx r, x;

bne loop;

Coherence order for x:

b:W x=3a:W x=2

i:W x=0 j:W x=1

c:W x=4

Suppose lwarx reads from the “a:W x:2”

Peter Sewell (Cambridge) Load-reserve / Store-conditional on POWER and ARM June 2012 7 / 10

Coherence points and a successful stwcx

Atomic Addition

loop: lwarx r, x;

add r,3,r;

stwcx r, x;

bne loop;

Coherence order for x:

b:W x=3a:W x=2

i:W x=0 j:W x=1

c:W x=4

Suppose lwarx reads from the “a:W x:2”

stwcx can succeed if this becomes possible:

writes that have reached coherence point

i:W x=0 j:W x=1 a:W x=2 d:W∗ x=5

c:W x=4

b:W x=3

Warning: stwcx can fail spuriously

Peter Sewell (Cambridge) Load-reserve / Store-conditional on POWER and ARM June 2012 7 / 10

Load-reserve/store-conditional and ordering

Same-thread load-reserve/store-conditionals ordered
by program order

If all memory accesses are l-r/s-c sequences

Then: only SC behaviour

But . . . normal loads/stores (to different addresses)
not ordered; the l-r/s-c do not act as a barrier

Confusion here led to Linux bug
. . . bad barrier placement in atomic-add-return

Peter Sewell (Cambridge) Load-reserve / Store-conditional on POWER and ARM June 2012 8 / 10

Correctness of the Mapping

Theorem: For any sane, non-optimising compiler following the mapping:

DRF C/C++ prog

POWER prog

C/C++11 execution
observations

POWER execution
observations

C/C++11 semantics

POWER semantics

compilation ⊆

Peter Sewell (Cambridge) Load-reserve / Store-conditional on POWER and ARM June 2012 9 / 10

Correctness of the Mapping

Theorem: For any sane, non-optimising compiler following the mapping:

DRF C/C++ prog

POWER prog

C/C++11 execution
observations

POWER execution
observations

C/C++11 semantics

POWER semantics

compilation ⊆
Preserves memory accesses;
Uses the mapping table;
Respects the thread local semantics of C/C++, preserving
dependencies

Peter Sewell (Cambridge) Load-reserve / Store-conditional on POWER and ARM June 2012 9 / 10

Correctness of the Mapping

Theorem: For any sane, non-optimising compiler following the mapping:

DRF C/C++ prog

POWER prog

C/C++11 execution
observations

POWER execution
observations

C/C++11 semantics

POWER semantics

compilation ⊆

From POWER trace, build key relations (happens-before, SC
order)

Required properties from abs. machine properties

If trace looks like it produces data race, build the C/C++
data race

Peter Sewell (Cambridge) Load-reserve / Store-conditional on POWER and ARM June 2012 9 / 10

For details...

see Synchronising C/C++ and POWER, Sarkar et al., PLDI 2012

http://www.cl.cam.ac.uk/~pes20/cppppc-supplemental/

In the paper:

A formal model of load-reserve/store-conditional (in Lem)

An executable model with exploration tool (ppcmem)

Simplifications to the C/C++11 lock model

Models “tight” against each other: relaxing the Power model would
make C/C++11 unimplementable

Peter Sewell (Cambridge) Load-reserve / Store-conditional on POWER and ARM June 2012 10 / 10

http://www.cl.cam.ac.uk/~pes20/cppppc-supplemental/

