
NON-BLOCKING DATA STRUCTURES

AND TRANSACTIONAL MEMORY

Tim Harris, 31 October 2012

Lecture 7

 Transactional memory

 HTM

 STM

 Programming models for TM

 Perspectives on TM research

Updating memory, one location at a time

 Theoretical result (informally): CAS is a strong enough
primitive to build a wait-free anything

 “Consensus hierarchy”:

 For a given primitive, what is the max number of processes (n)
between which it can solve wait-free consensus?

 Read/write memory locations: n=1

 FIFO queues: n=2

 Swap, TAS, FADD, ...: n=2

 CAS: n unbounded

 (=> fundamental limitation to the primitives on IBM 360,
NYU Ultracomputer, early SPARC, ...)

3

Updating memory, one location at a time

 Practical observation: building with CAS is difficult, and
incurs overheads not present in lock-based algorithms

 Two ways to look at this:

4

Each individual read, write, CAS, must
maintain the data structure’s invariants.
Typically, a CAS at the linearization point
must update the logical state of the data
structure by touching just one word.

Each individual read, write, CAS, must
maintain the data structure’s invariants.
Typically, a CAS at the linearization point
must update the logical state of the data
structure by touching just one word.

Updating memory, one location at a time

 Practical observation: building with CAS is difficult, and
incurs overheads not present in lock-based algorithms

 Two ways to look at this:

5

Suppose a thread is pre-empted just
before making a write or CAS. The OS
can re-schedule the thread at any time.
The application better make sure it is safe
to do so!

 => provide support for accessing multiple locations as a
single atomic step

Transactional memory

 Perform a series of reads / writes / computation

 The TM implementation is responsible for making it appear as
a single atomic action

 More than just “multi-word CAS”: can compute based on the
values read, and decide where/what to write

 Like a database transaction:

 A – Atomicity (either all the accesses appear to occur, or none)

 C – Consistency (invariants restored between transactions,
not at each step within one)

 I – Isolation (between transactions on concurrent threads)

 (D – Durability, people argue about what the terminology
means here…)

6

Logical vs physical deletion

H 10 30 T

20

10  30


30  30X




30  20 



7

 Use a ‘spare’ bit to indicate logically deleted nodes:

RECAP

Insert(20)

Delete(10)

Deletion with TM

H 10 30 T

20

10  30 30  NULL


30  20 

8

Insert(20)

Delete(10)

No need for a
reserved bit:

just use NULL

No need to handle partial
failures (either both

locations are
updated, or none is)

If complete operations
are done in transactions,

then memory
management simpler

Overview :implementation techniques

 Software TM

 Build from CAS (or whatever the hardware provides)

 Use techniques such as locking, version numbers, internally

 Implement the complexity once, rather than per data
structure

 Hardware TM

 Typically, build on the cache coherence protocol

 Cache already tracks which lines are in which modes

 Track if a line is “stolen” during a transaction’s execution

 Sand-box the transaction’s behavior until it commits

9

TM in hardware

HTM interfaces

 Focus here is on the ISA (programming API) rather than
micro-architecture (implementation)

 Bounded:
 Bound on the number of locations a tx may access

 “up to 2”, “up to 4”, ...

 Best effort:
 Any transaction may fail (indeed, some transactions may

always fail, even in isolation, for reasons hard to explain via
the ISA)

 Fairness:
 Is there any guarantee about how different threads make

progress with their transactions?

 (How does this compare with read, write, or CAS?)

11

Rock interface:

 chkpt <fail_addr>

 commit

 abort

 Best-effort

 Reads must fit in L1 (NB: limited associativity, as well as size)

 Writes must fit in the store buffer

 Some instructions are prohibited

 Speculation in the h/w can lead to surprises...

12

Intel TSX (“Haswell”) interface

 Restricted transactional memory mode:

 XBEGIN <fail_addr>

 XEND

 XABORT

 Explicit instructions to start/commit speculation

 No guarantee for bounded size transactions

 Nesting (flattening into outermost tx)

 Broad support for most of user-mode ISA

13

Intel TSX (“Haswell”) interface

 Hardware lock-elision mode:

 XACQUIRE *

 XRELEASE *

 Prefixes added to instructions that acquire/release locks

 Check the lock is available

 If so, speculatively run the critical section, monitoring the
lock’s address for writes

 Get to XRELEASE without conflict? Commit the updates,
stop speculating

14

Basic mutex

15

// Atomic CAS to acquire lock

mov eax <- 0 // Old value

Mov ecx <- 1 // New value

lock cmpxchg &flag, ecx

// Fall-back in case lock not available

jnz slow_path

// Do critical section

…

// Release lock

mov &flag <- 0

Basic mutex with HLE

16

// Atomic CAS to acquire lock

mov eax <- 0 // Old value

Mov ecx <- 1 // New value

xacquire lock cmpxchg &flag, ecx

// Fall-back in case lock not available

jnz slow_path

// Do critical section

…

// Release lock

xrelease mov &flag <- 0

CAS fails: go to
slow path

CAS succeeds: add lock to
read set, start monitoring

reads/writes

If we read from the lock: see 1. If
others read: see 0. If others

speculatively acquire: OK. If others
actually write: abort.

Storing 0 back without
intervening writes to flag:

finish speculation

TM in software

Implementation techniques
 Direct-update STM

 Allow transactions to make updates in place in the heap
 Avoids reads needing to search the log to see earlier writes that the

transaction has made
 Makes successful commit operations faster at the cost of extra work

on contention or when a transaction aborts

 Compiler integration
 Decompose the transactional memory operations into primitives
 Expose the primitives to compiler optimization (e.g. to hoist

concurrency control operations out of a loop)

 Runtime system integration
 Integration with the garbage collector or runtime system

components to scale to atomic blocks containing 100M memory
accesses

 Memory management system used to detect conflicts between
transactional and non-transactional accesses

18

Bartok-STM

 Use per-object meta-data (“TMWs”)

 Each TMW is either:

 Locked, holding a pointer to the transaction that has the
object open for update

 Available, holding a version number indicating how many
times the object has been locked

 Writers eagerly lock TMWs to gain access to the object,
using eager version management

 Maintain an undo log in case of roll-back

 Readers log the version numbers they see and perform lazy
conflict detection at commit time

Non-blocking data structures and transactional memory 19

Example: uncontended swap
a:

v150

1000

v250

2000

b:

void Swap(int *a, int *b) {

 do {

 tx = TxStart();

 va = TxRead(tx, &a);

 vb = TxRead(tx, &b);

 TxWrite(tx, &a, vb);

 TxWrite(tx, &b, va);

 } while (!TxCommit());

}

Non-blocking data structures and transactional memory 20

Example: uncontended swap
a:

v150

1000

v250

2000

b:

void Swap(int *a, int *b) {

 do {

 tx = TxStart();

 va = TxRead(tx, &a);

 vb = TxRead(tx, &b);

 TxWrite(tx, &a, vb);

 TxWrite(tx, &b, va);

 } while (!TxCommit());

}

Tx1 Objects read

Objects updated

Values

overwritten

Non-blocking data structures and transactional memory 21

Example: uncontended swap
a:

v150

1000

v250

2000

a: v150

b:

void Swap(int *a, int *b) {

 do {

 tx = TxStart();

 va = TxRead(tx, &a);

 vb = TxRead(tx, &b);

 TxWrite(tx, &a, vb);

 TxWrite(tx, &b, va);

 } while (!TxCommit());

}

Tx1 Objects read

Objects updated

Values

overwritten

Non-blocking data structures and transactional memory 22

Example: uncontended swap
a:

v150

1000

v250

2000

a: v150
b: v250

b:

void Swap(int *a, int *b) {

 do {

 tx = TxStart();

 va = TxRead(tx, &a);

 vb = TxRead(tx, &b);

 TxWrite(tx, &a, vb);

 TxWrite(tx, &b, va);

 } while (!TxCommit());

}

Tx1 Objects read

Objects updated

Values

overwritten

Non-blocking data structures and transactional memory 23

Example: uncontended swap
a:

Tx1

2000

v250

2000

a: v150
b: v250

a: v150

a.val = 1000

b:

void Swap(int *a, int *b) {

 do {

 tx = TxStart();

 va = TxRead(tx, &a);

 vb = TxRead(tx, &b);

 TxWrite(tx, &a, vb);

 TxWrite(tx, &b, va);

 } while (!TxCommit());

}

Tx1 Objects read

Objects updated

Values

overwritten

Non-blocking data structures and transactional memory 24

Example: uncontended swap
a:

Tx1

2000

Tx1

1000

a: v150
b: v250

a: v150
b: v250

a.val = 1000
b.val = 2000

b:

void Swap(int *a, int *b) {

 do {

 tx = TxStart();

 va = TxRead(tx, &a);

 vb = TxRead(tx, &b);

 TxWrite(tx, &a, vb);

 TxWrite(tx, &b, va);

 } while (!TxCommit());

}

Tx1 Objects read

Objects updated

Values

overwritten

Non-blocking data structures and transactional memory 25

Commit in Bartok-STM

Iterate over
the read set:

Current TMW
matches logged

version?

Current TMW
shows we locked

the object?

Abort

Logged TMW
matches version in

our write set?

Abort

Yes

Yes Yes

No

No No

OK so far

OK so far

Non-blocking data structures and transactional memory 26

Correctness sketch

time

Open obj1 for read Open obj2
for update

Commit: validate
obj1 version

Commit:
unlock obj2

Lock prevents concurrent updates

Validation checks no updates

Tx appears atomic after
last “Open” and before

first validation step

Non-blocking data structures and transactional memory 27

Example: uncontended swap
a:

Tx1

2000

Tx1

1000

a: v150
b: v250

a: v150
b: v250

a.val = 1000
b.val = 2000

b:

void Swap(int *a, int *b) {

 do {

 tx = TxStart();

 va = TxRead(tx, &a);

 vb = TxRead(tx, &b);

 TxWrite(tx, &a, vb);

 TxWrite(tx, &b, va);

 } while (!TxCommit());

}

Tx1 Objects read

Objects updated

Values

overwritten

“We locked the
object...”

“...and no-one
else got there

first!”

Non-blocking data structures and transactional memory 28

Example: uncontended swap
a:

v151

2000

Tx1

1000

a: v150
b: v250

a: v150
b: v250

a.val = 1000
b.val = 2000

b:

void Swap(int *a, int *b) {

 do {

 tx = TxStart();

 va = TxRead(tx, &a);

 vb = TxRead(tx, &b);

 TxWrite(tx, &a, vb);

 TxWrite(tx, &b, va);

 } while (!TxCommit());

}

Tx1 Objects read

Objects updated

Values

overwritten

Non-blocking data structures and transactional memory 29

Example: uncontended swap
a:

v151

2000

v251

1000

a: v150
b: v250

a: v150
b: v250

a.val = 1000
b.val = 2000

b:

void Swap(int *a, int *b) {

 do {

 tx = TxStart();

 va = TxRead(tx, &a);

 vb = TxRead(tx, &b);

 TxWrite(tx, &a, vb);

 TxWrite(tx, &b, va);

 } while (!TxCommit());

}

Tx1 Objects read

Values

overwritten

Non-blocking data structures and transactional memory 30

Objects updated

Example: uncontended swap
a:

v151

2000

v251

1000

b:

void Swap(int *a, int *b) {

 do {

 tx = TxStart();

 va = TxRead(tx, &a);

 vb = TxRead(tx, &b);

 TxWrite(tx, &a, vb);

 TxWrite(tx, &b, va);

 } while (!TxCommit());

}

Non-blocking data structures and transactional memory 31

Tx-tx interaction in Bartok-STM

 Read-read: no problem, both readers see the same version
number and verify it at commit time

 Read-write: reader sees that the writer has the object
locked. Reader always defers to writer

 Write-write: competition for lock serializes writers (drop
locks, then spin to avoid deadlock)

Non-blocking data structures and transactional memory 32

 Gold standard:

 During execution a transaction runs against a consistent view
of memory

 Won’t be “tricked” into looping, etc.

 “Opacity”

 What are the advantages / disadvantages when compared
with an implementation giving weaker guarantees?

Non-blocking data structures and transactional memory 33

Taxonomy: consistency during tx

 We need some way to manage the tentative updates that a
transaction is making

 Where are they stored?

 How does the implementation find them (so a transaction’s
read sees an earlier write)?

 Lazy versioning: only make “real” updates when a
transaction commits

 Eager versioning: make updates as a transaction runs, roll
them back on abort

 What are the advantages, disadvantages?

Non-blocking data structures and transactional memory 34

Taxonomy: lazy/eager versioning

 We need to detect when two transactions conflict with one
another

 Lazy conflict detection: detect conflicts at commit time

 Eager conflict detection: detect conflicts as transactions
run

 Again, what are the advantages, disadvantages?

Non-blocking data structures and transactional memory 35

Taxonomy: lazy/eager conflict detection

Taxonomy: word/object based

 What granularity are conflicts detected at?

 Object-based:

 Access to programmer-defined structures (e.g. objects)

 Word-based:

 Access to words (or sets of words, e.g. cache lines)

 Possibly after mapping under a hash function

 What are the advantages and disadvantages of these
approaches?

Non-blocking data structures and transactional memory 36

Bartok-STM

 Designed to work well on low-contention workloads

 Eager version management to reduce commit costs

 Eager locking to support eager version management

 Primitives do not guarantee that transactions see a
consistent view of the heap while running

 Can be sandboxed in managed code...

 ...harder in native code

Non-blocking data structures and transactional memory 37

Performance figures depend on...

 Workload : What do the atomic blocks do? How long is spent inside
them?

 Baseline implementation: Mature existing compiler, or prototype?

 Intended semantics: Support static separation? Violation freedom
(TDRF)?

 STM implementation: In-place updates, deferred updates, eager/lazy
conflict detection, visible/invisible readers?

 STM-specific optimizations: e.g. to remove or downgrade redundant TM
operations

 Integration: e.g. dynamically between the GC and the STM, or inlining of
STM functions during compilation

 Implementation effort: low-level perf tweaks, tuning, etc.

 Hardware: e.g. performance of CAS and memory system

Non-blocking data structures and transactional memory 38

Labyrinth

 STAMP v0.9.10

 256x256x3 grid

 Routing 256 paths

 Almost all execution inside atomic
blocks

 Atomic blocks can attempt 100K+
updates

 C# version derived from original C

 Compiled using Bartok, whole
program mode, C# -> x86 (~80%
perf of original C with VS2008)

 Overhead results with Core2 Duo
running Windows Vista

s1

e1

“STAMP: Stanford Transactional Applications for Multi-Processing”
Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, Kunle Olukotun , IISWC 2008

Non-blocking data structures and transactional memory 39

11.86

3.14

1.99 1.71 1.71

0

2

4

6

8

10

12

14

STM Dynamic
filtering

Dataflow
opts

Filter opts Re-use logs

1-
th

re
a

d
,

n
o

rm
a

li
ze

d
 t

o
 s

e
q

.
b

a
se

li
n

e

Sequential overhead

STM implementation supporting static separation
In-place updates

Lazy conflict detection
Per-object STM metadata

Addition of read/write barriers before accesses
Read: log per-object metadata word

Update: CAS on per-object metadata word
Update: log value being overwritten

Non-blocking data structures and transactional memory 40

Sequential overhead

11.86

3.14

1.99 1.71 1.71

0

2

4

6

8

10

12

14

STM Dynamic
filtering

Dataflow
opts

Filter opts Re-use logs

1-
th

re
a

d
,

n
o

rm
a

li
ze

d
 t

o
 s

e
q

.
b

a
se

li
n

e

Dynamic filtering to remove redundant logging

Log size grows with #locations accessed
Consequential reduction in validation time

1st level: per-thread hashtable (1024 entries)
2nd level: per-object bitmap of updated fields

Non-blocking data structures and transactional memory 41

Sequential overhead

11.86

3.14

1.99 1.71 1.71

0

2

4

6

8

10

12

14

STM Dynamic
filtering

Dataflow
opts

Filter opts Re-use logs

1-
th

re
a

d
,

n
o

rm
a

li
ze

d
 t

o
 s

e
q

.
b

a
se

li
n

e

Data-flow optimizations

Remove repeated log operations
Open-for-read/update on a per-object basis

Log-old-value on a per-field basis
Remove concurrency control on newly-allocated objects

Non-blocking data structures and transactional memory 42

Sequential overhead

11.86

3.14

1.99 1.71 1.71

0

2

4

6

8

10

12

14

STM Dynamic
filtering

Dataflow
opts

Filter opts Re-use logs

1-
th

re
a

d
,

n
o

rm
a

li
ze

d
 t

o
 s

e
q

.
b

a
se

li
n

e

Inline optimized filter operations

Re-use table_base between filter operations
Avoids caller save/restore on filter hits

mov eax <- obj_addr
and eax <- eax, 0xffc
mov ebx <- [table_base + eax]
cmp ebx, obj_addr

Non-blocking data structures and transactional memory 43

Sequential overhead

11.86

3.14

1.99 1.71 1.71

0

2

4

6

8

10

12

14

STM Dynamic
filtering

Dataflow
opts

Filter opts Re-use logs

1-
th

re
a

d
,

n
o

rm
a

li
ze

d
 t

o
 s

e
q

.
b

a
se

li
n

e

Re-use STM logs between transactions

Reduces pressure on per-page allocation lock
Reduces time spent in GC

Non-blocking data structures and transactional memory 44

Scaling – Labyrinth

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1 2 3 4 5 6 7 8

E
x

e
cu

ti
o

n
 t

im
e

 /
 s

e
q

. b
a

se
li

n
e

#Threads

Static separation
strong isolation

1.0 = wall-clock execution time
of sequential code without

concurrency control

Non-blocking data structures and transactional memory 45

Scaling – Genome

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1 2 3 4 5 6 7 8

E
x

e
cu

ti
o

n
 t

im
e

 /
 s

e
q

. b
a

se
li

n
e

#Threads

Static separation
strong isolation

Non-blocking data structures and transactional memory 46

TM programming

models

What we want

Hardware

Concurrency primitives

Library Library Library

Library

Library
Library

Library

Libraries build layered
concurrency
abstractions

48

Library

Locks and condition
variables
(a) are hard to use and
(b) do not compose

Hardware

What we have

49

Atomic blocks

Atomic blocks built over transactional memory.
In Haskell: 3 primitives: atomic, retry, orElse

Library Library Library

Library

Library
Library

Library

Hardware

50

Atomic memory transactions

 To a first approximation, just write the sequential code, and
wrap atomic around it

 All-or-nothing semantics: Atomic commit

 Atomic block executes in Isolation

 Cannot deadlock (there are no locks!)

 Atomicity makes error recovery easy
(e.g. exception thrown inside the PopLeft code)

Item PopLeft() {

 atomic { ... sequential code ... }

}

Like database
transactions

ACID

51

Atomic blocks compose (locks do not)

 Guarantees to get two consecutive items

 PopLeft() is unchanged

 Cannot be achieved with locks (except by
breaking the PopLeft abstraction)

void GetTwo() {

 atomic {

 i1 = PopLeft();

 i2 = PopLeft();

 }

 DoSomething(i1, i2);

}

Composition
is THE way we

build big
programs
that work

52

 retry means “abandon execution of the atomic block and re-
run it (when there is a chance it’ll complete)”

 No lost wake-ups

 No consequential change to GetTwo(), even though GetTwo
must wait for there to be two items in the queue

Item PopLeft() {

 atomic {

 if (leftSentinel.right==rightSentinel) {

 retry;

 } else { ...remove item from queue... }

} }

Blocking: how does PopLeft wait for data?

53

 do {...this...} orelse {...that...} tries to run “this”

 If “this” retries, it runs “that” instead

 If both retry, the do-block retries. GetEither() will thereby wait
for there to be an item in either queue

void GetEither() {

 atomic {

 do { i = Q1.Get(); }

 orelse { i = Q2.Get(); }

 R.Put(i);

} }

Q1 Q2

R

Choice: waiting for either of two queues

54

Programming with atomic blocks
With locks, you think about:

 Which lock protects which data? What data can be mutated
when by other threads? Which condition variables must be
notified when?

 None of this is explicit in the source code

With atomic blocks you think about

 What are the invariants (e.g. the tree is balanced)?

 Each atomic block maintains the invariants

 Purely sequential reasoning within a block, which is dramatically
easier

 Much easier setting for static analysis tools

55

Atomic blocks

Class Q {
 QElem leftSentinel;
 QElem rightSentinel;

 void pushLeft(int item) {
 atomic {
 QElem e = new QElem(item);
 e.right = this.leftSentinel.right;
 e.left = this.leftSentinel;
 this.leftSentinel.right.left = e;
 this.leftSentinel.right = e;
 }
 }

 ...
}

Class Q {
 QElem leftSentinel;
 QElem rightSentinel;

 void pushLeft(int item) {
 do {
 TxStart();
 QElem e = new QElem(item);
 TxWrite(&e.right, TxRead(&this.leftSentinel.right));
 TxWrite(&e.left, this.leftSentinel);
 TxWrite(&TxRead(&this.leftSentinel.right).left, e);
 TxWrite(&this.leftSentinel.right, e);
 } while (!TxCommit());
 }

 ...
}

Non-blocking data structures and transactional memory 56

Compilation

Source
code

Bytecode
Native
code

Source to bytecode compiler;
typically “csc” in C#, “javac” for

Java

Bytecode-to-native compiler;
JIT or traditional compilation

Non-blocking data structures and transactional memory 57

Why divide things this way?

 Little information loss from

source code to bytecode

 Source-to-bytecode works a

file at a time, bytecode-to-native

can see the whole program (or,

at least, see all of the parts

needed so far in execution)

 Lower level transformations

possible at bytecode-to-native

 Integration between the STM and

other parts of the runtime system

void Swap(Pair p) {
 try {
 va = p.a;
 vb = p.b;
 p.a = vb;
 p.b = va;
 } catch (AtomicException) {
 }
}

Non-blocking data structures and transactional memory 58

Boilerplate around transactions

void Swap(Pair p) {
 do {
 done = true;
 try {
 try {
 tx = StartTx();
 va = p.a;
 vb = p.b;
 p.a = vb;
 p.b = va;
 } finally {
 CommitTx();
 }
 } catch (TxInvalid) {
 done = false;
 }
 } while (!done);
}

Keep running the
atomic block in a

fresh tx each time

Commit (on
normal or exn exit)

Commit fails by raising
a TxInvalid exception;

re-execute

(I’m using source code
examples for clarity; in
reality this would be in
the compiler’s internal

intermediate code)

Non-blocking data structures and transactional memory 59

 Naïve expansion of data accesses

void Swap(Pair p) {
 do {
 done = true;
 try {
 try {
 tx = StartTx();
 TxWrite(tx, &va, TxRead(tx, &p.a));
 TxWrite(tx, &vb, TxRead(tx, &p.b));
 TxWrite(tx, &p.a, TxRead(tx, &vb));
 TxWrite(tx, &p.b, TxRead(tx, &va));
 } finally {
 CommitTx();
 }
 } catch (TxInvalid) {
 done = false;
 }
 } while (!done);
}

Non-blocking data structures and transactional memory 60

What are the problems here with STM?

 Using the STM for thread-private local variables

 Repeatedly mapping from addresses to concurrency
control info

 Duplicating concurrency control work if it’s implemented at
a per-object granularity

Non-blocking data structures and transactional memory 61

Decomposed STM primitive API

 OpenForRead(tx, obj)

 OpenForRead(tx, addr)

 OpenForUpdate(tx, obj)

 OpenForUpdate(tx, addr)

 LogForUndo(tx, addr)

Indicate intent to read from
an object or from a given

address

Indicate intent to update
a specific address (&

optional size)

Non-blocking data structures and transactional memory 62

Using the decomposed API

x = p.a;
OpenForRead(tx, p);
x = p.a;

p.b = y;
OpenForUpdate(tx, p);
LogForUndo(tx, &p.b);
p.b = y;

Non-blocking data structures and transactional memory 63

...
OpenForUpdate(tx, p);
OpenForRead(tx, p);
va = p.a;
OpenForRead(tx, p);
Vb = p.b;
OpenForUpdate(tx, p);
LogForUndo(tx, &p.a);
p.a = vb;
OpenForUpdate(tx, p);
LogForUndo(tx, &p.b);
p.b = va;
...

Second OpenForRead
made unnecessary by first

Second OpenForUpdate
made unnecessary by first

Always need update
access: get it first

Non-blocking data structures and transactional memory 64

Implementation using decomposed API

 Improved expansion of data accesses

void Swap(Pair p) {
 do {
 done = true;
 try {
 try {
 tx = StartTx();
 OpenForUpdate(tx, p);
 va = p.a;
 vb = p.b;
 LogForUndo(tx, &p.a);
 p.a = vb;
 LogForUndo(tx, &p.b);
 p.b = va;
 } finally {
 CommitTx();
 }
 } catch (TxInvalid) {
 done = false;
 }
 } while (!done);
}

Non-blocking data structures and transactional memory 65

Keeping optimizations safe

void Clear_tx(Pair p) {
 for (int i = 0; i < 10; i ++) {
 p.a = 10;
 p.b = i;
 }
}

Original (contrived) source code

Non-blocking data structures and transactional memory 66

Keeping optimizations safe

void Clear_tx(Pair p) {
 for (int i = 0; i < 10; i ++) {
 OpenForUpdate(tx, p);
 LogForUndo(tx, &p.a);
 p.a = 10;
 LogForUndo(tx, &p.b);
 p.b = i;
 }
}

Expanded with decomposed API operations

Non-blocking data structures and transactional memory 67

Keeping optimizations safe

void Clear_tx(Pair p) {
 p.a = 10;
 for (int i = 0; i < 10; i ++) {
 OpenForUpdate(tx, p);
 LogForUndo(tx, &p.a);
 LogForUndo(tx, &p.b);
 p.b = i;
 }
}

Hoisting loop-invariant code

Non-blocking data structures and transactional memory 68

Keeping optimizations safe

void Clear_tx(Pair p) {
for (int i = 0; i < 10; i ++) {
 tmp1 = OpenForUpdate(tx, p);
 tmp2 = LogForUndo(tx, &p.a) <tmp1>;
 p.a = 10 <tmp2>;
 tmp3 = LogForUndo(tx, &p.b) <tmp1>;
 p.b = i <tmp3>;
 }
}

Introduce dependencies

Non-blocking data structures and transactional memory 69

Keeping optimizations safe

void Clear_tx(Pair p) {
 tmp1 = OpenForUpdate(tx, p);
 tmp2 = LogForUndo(tx, &p.a) <tmp1>;
 tmp3 = LogForUndo(tx, &p.a) <tmp1>;
 p.a = 10 <tmp2>;
 for (int i = 0; i < 10; i ++) {
 p.b = i <tmp3>;
 }
}

Transformations must respect dependencies

Non-blocking data structures and transactional memory 70

Condition synchronization

 Semantically: in STM-Haskell we required the scheduler to
only run atomic blocks when they succeed without calling
“retry”

atomic {
 buffer.data = 42;
 buffer.full = true;
}

atomic {
 if (!buffer.full) {
 retry;
 }
 result = buffer.data;
 buffer.full = false;
}

This atomic block is
only ready to run when

buffer.full is true

Non-blocking data structures and transactional memory 71

Primitive for synchronization

 void WaitTX(tx)

 Semantically equivalent to AbortTx

 Implementation may assume caller will immediately re-
execute a (deterministic) tx

 Implementation may introduce a delay to avoid unnecessary
spinning

 Intuition:

 No point re-executing the consumer until the producer has
run

Non-blocking data structures and transactional memory 72

Compiling “retry” to “WaitTx”

atomic {
 if (!buffer.full) {
 retry;
 }
 result = buffer.data;
 buffer.full = false;
}

void Consume(Buffer b) {
 do {
 done = true;
 try {
 try {
 tx = StartTx();
 OpenForRead(tx, b);
 if (!b.full) {
 WaitTx();
 }
 OpenForUpdate(tx, b);
 result = b.data;
 LogForUndo(tx, &b.full);
 b.full = false;
 } finally {
 CommitTx();
 }
 } catch (TxInvalid) {
 done = false;
 }
 } while (!done);
}

Non-blocking data structures and transactional memory 73

Implementing WaitTx

buffer: v150

Val=0

Full=false

Non-blocking data structures and transactional memory 74

Implementing WaitTx

buffer: v150

Val=0

null

Full=false

1. Extend object header
with list of waiters

Non-blocking data structures and transactional memory 75

Implementing WaitTx

buffer: v150

Val=0

null

Full=false

1. Extend object header
with list of waiters

2. Extend tx records with
a mutex & condvar pair

Consumer
tx

Mutex

Condvar

Non-blocking data structures and transactional memory 76

Implementing WaitTx

buffer: v150

Val=0

Full=false

1. Extend object header
with list of waiters

2. Extend tx records with
a mutex & condvar pair

Consumer
tx

Mutex

Condvar

3. WaitTx links the
consumer to the lists in

its read set

Non-blocking data structures and transactional memory 77

Implementing WaitTx

buffer: v150

Val=0

Full=false

1. Extend object header
with list of waiters

2. Extend tx records with
a mutex & condvar pair

Consumer
tx

Mutex

Condvar

3. WaitTx links the
consumer to the lists in

its read set

4. WaitTx validates, locks
the mutex, updates its

status, blocks

Non-blocking data structures and transactional memory 78

Implementing WaitTx

buffer: v150

Val=0

Full=false

1. Extend object header
with list of waiters

2. Extend tx records with
a mutex & condvar pair

Consumer
tx

Mutex

Condvar

3. WaitTx links the
consumer to the lists in

its read set

4. WaitTx validates, locks
the mutex, updates its

status, blocks

5. CommitTx wakes
waiters on objects in its

write set

Non-blocking data structures and transactional memory 79

Implementing WaitTx

buffer: v150

Val=0

Full=false

1. Extend object header
with list of waiters

2. Extend tx records with
a mutex & condvar pair

Consumer
tx

Mutex

Condvar

3. WaitTx links the
consumer to the lists in

its read set

4. WaitTx validates, locks
the mutex, updates its

status, blocks

5. CommitTx wakes
waiters on objects in its

write set

Use “thin locks” style
tricks to avoid fixed

header word allocation

NB: many-to-many
relationship, so probably use

separate doubly linked list

Use latch in the header for
concurrency control on the

list

Non-blocking data structures and transactional memory 80

Are we done?

 Local variables

 By-ref parameters

 Method calls

 Sandboxing zombie transactions

 IO and other native operations

Non-blocking data structures and transactional memory 81

TM perspectives

Granularity

Distributed, large-scale
atomic actions

Composable shared
memory data structures

“Leaf” shared memory
data structures

General purpose atomic
actions in a program

83

Programming abstraction

Lock elision

The program’s semantics is
defined using locks. TM is used
as an implementation
mechanism.

Speculation

Semantics defined by speculative
execution, commit, etc. (either
implicitly, or explicitly)

Atomic

Semantics defined by atomic
execution (e.g. “atomic { X }”).
Speculation, if used, is
abstracted by the
implementation.

Non-blocking data structures and transactional memory 84

Purpose

Makes software easier
to develop /

verify /
maintain / …

Faster: better than
alternatives,

irrespective of
complexity

Non-blocking data structures and transactional memory 85

Design points that I like

HW DCAS / 3-CAS / …
Granularity: leaf data structures

Abstraction: atomic multi-word CAS
Purpose: faster

HTM with limited guarantees (~ASF)
Granularity: leaf data structures
Abstraction: short transactions

Purpose: faster

Static separation (e.g., STM-Haskell)
Granularity: composable data structures

Abstraction: atomic actions
Purpose: easier, decent perf

Non-blocking data structures and transactional memory 86

Design points I am sceptical about

Speculative lock elision on general-purpose s/w

“atomic” blocks over normal data in a high-level language
(C#/Java)

(prove me wrong, I would like either of these to work!)

Non-blocking data structures and transactional memory 87

Correctness

Ease to
write

What do we care about?

88

When can it
be used?

How well
does it scale?

How fast is it?

