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Lecture 7 

 Transactional memory 

 HTM 

 STM 

 Programming models for TM 

 Perspectives on TM research 



Updating memory, one location at a time 

 Theoretical result (informally): CAS is a strong enough 
primitive to build a wait-free anything 

 “Consensus hierarchy”: 

 For a given primitive, what is the max number of processes (n) 
between which it can solve wait-free consensus? 

 Read/write memory locations: n=1 

 FIFO queues: n=2 

 Swap, TAS, FADD, ...: n=2 

 CAS: n unbounded 

 (=> fundamental limitation to the primitives on IBM 360, 
NYU Ultracomputer, early SPARC, ...) 
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Updating memory, one location at a time 

 Practical observation: building with CAS is difficult, and 
incurs overheads not present in lock-based algorithms 

 Two ways to look at this: 
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Each individual read, write, CAS, must 
maintain the data structure’s invariants.  
Typically, a CAS at the linearization point 
must update the logical state of the data 
structure by touching just one word. 



Each individual read, write, CAS, must 
maintain the data structure’s invariants.  
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must update the logical state of the data 
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incurs overheads not present in lock-based algorithms 
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Suppose a thread is pre-empted just 
before making a write or CAS.  The OS 
can re-schedule the thread at any time.  
The application better make sure it is safe 
to do so! 

 => provide support for accessing multiple locations as a 
single atomic step  



Transactional memory 

 Perform a series of reads / writes / computation 

 The TM implementation is responsible for making it appear as 
a single atomic action 

 More than just “multi-word CAS”: can compute based on the 
values read, and decide where/what to write 

 Like a database transaction: 

 A – Atomicity (either all the accesses appear to occur, or none) 

 C – Consistency (invariants restored between transactions, 
not at each step within one) 

 I – Isolation (between transactions on concurrent threads) 

 (D – Durability, people argue about what the terminology 
means here…) 
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Logical vs physical deletion 

H 10 30 T 

20 

10  30 
 

30  30X 
 

 

30  20  

 

7 

 Use a ‘spare’ bit to indicate logically deleted nodes: 

RECAP 

Insert(20) 

Delete(10) 



Deletion with TM 

H 10 30 T 

20 

10  30 30  NULL 
 

30  20  
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Insert(20) 

Delete(10) 

No need for a 
reserved bit:  

just use NULL 

No need to handle partial 
failures (either both 

locations are  
updated, or none is) 

If complete operations 
are done in transactions, 

then memory 
management simpler 



Overview :implementation techniques
  
 Software TM 

 Build from CAS (or whatever the hardware provides) 

 Use techniques such as locking, version numbers, internally 

 Implement the complexity once, rather than per data 
structure 

 Hardware TM 

 Typically, build on the cache coherence protocol 

 Cache already tracks which lines are in which modes 

 Track if a line is “stolen” during a transaction’s execution 

 Sand-box the transaction’s behavior until it commits 
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TM in hardware 



HTM interfaces 

 Focus here is on the ISA (programming API) rather than 
micro-architecture (implementation) 

 Bounded: 
 Bound on the number of locations a tx may access 

 “up to 2”, “up to 4”, ... 

 Best effort: 
 Any transaction may fail (indeed, some transactions may 

always fail, even in isolation, for reasons hard to explain via 
the ISA) 

 Fairness: 
 Is there any guarantee about how different threads make 

progress with their transactions? 

 (How does this compare with read, write, or CAS?) 
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Rock interface: 

 chkpt <fail_addr> 

 commit 

 abort 
 

 Best-effort 

 Reads must fit in L1 (NB: limited associativity, as well as size) 

 Writes must fit in the store buffer 

 Some instructions are prohibited  

 Speculation in the h/w can lead to surprises... 
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Intel TSX (“Haswell”) interface 

 Restricted transactional memory mode: 
 

 XBEGIN <fail_addr> 

 XEND 

 XABORT 
 

 Explicit instructions to start/commit speculation 

 No guarantee for bounded size transactions 

 Nesting (flattening into outermost tx) 

 Broad support for most of user-mode ISA 
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Intel TSX (“Haswell”) interface 

 Hardware lock-elision mode: 
 

 XACQUIRE * 

 XRELEASE * 
 

 Prefixes added to instructions that acquire/release locks 

 Check the lock is available 

 If so, speculatively run the critical section, monitoring the 
lock’s address for writes 

 Get to XRELEASE without conflict?  Commit the updates, 
stop speculating 
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Basic mutex  
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// Atomic CAS to acquire lock 

mov eax <- 0 // Old value 

Mov ecx <- 1 // New value 

lock cmpxchg &flag, ecx 

 

// Fall-back in case lock not available 

jnz slow_path 

 

// Do critical section 

… 

 

// Release lock 

mov &flag <- 0 



Basic mutex with HLE 
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// Atomic CAS to acquire lock 

mov eax <- 0 // Old value 

Mov ecx <- 1 // New value 

xacquire lock cmpxchg &flag, ecx 

 

// Fall-back in case lock not available 

jnz slow_path 

 

// Do critical section 

… 

 

// Release lock 

xrelease mov &flag <- 0 

CAS fails: go to 
slow path 

CAS succeeds: add lock to 
read set, start monitoring 

reads/writes 

If we read from the lock: see 1.  If 
others read: see 0.  If others 

speculatively acquire: OK.  If others 
actually write: abort. 

Storing 0 back without 
intervening writes to flag: 

finish speculation 



TM in software 



Implementation techniques 
 Direct-update STM 

 Allow transactions to make updates in place in the heap 
 Avoids reads needing to search the log to see earlier writes that the 

transaction has made 
 Makes successful commit operations faster at the cost of extra work 

on contention or when a transaction aborts 

 Compiler integration 
 Decompose the transactional memory operations into primitives 
 Expose the primitives to compiler optimization (e.g. to hoist 

concurrency control operations out of a loop) 

 Runtime system integration 
 Integration with the garbage collector or runtime system 

components to scale to atomic blocks containing 100M memory 
accesses 

 Memory management system used to detect conflicts between 
transactional and non-transactional accesses 
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Bartok-STM 

 Use per-object meta-data (“TMWs”) 

 Each TMW is either: 

 Locked, holding a pointer to the transaction that has the 
object open for update 

 Available, holding a version number indicating how many 
times the object has been locked 

 Writers eagerly lock TMWs to gain access to the object, 
using eager version management 

 Maintain an undo log in case of roll-back 

 Readers log the version numbers they see and perform lazy 
conflict detection at commit time 

Non-blocking data structures and transactional memory 19 



Example: uncontended swap 
a: 

v150 

1000 

v250 

2000 

b: 

void Swap(int *a, int *b) { 

  do { 

    tx = TxStart(); 

    va = TxRead(tx, &a); 

    vb = TxRead(tx, &b); 

    TxWrite(tx, &a, vb); 

    TxWrite(tx, &b, va); 

  } while (!TxCommit()); 

} 
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Values 

overwritten 
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Example: uncontended swap 
a: 

Tx1 

2000 

v250 

2000 

a: v150 
b: v250 

a: v150 

a.val = 1000 

b: 

void Swap(int *a, int *b) { 

  do { 
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    va = TxRead(tx, &a); 

    vb = TxRead(tx, &b); 

    TxWrite(tx, &a, vb); 
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  } while (!TxCommit()); 

} 
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Values 
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Example: uncontended swap 
a: 

Tx1 

2000 

Tx1 
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b: v250 

a.val = 1000 
b.val = 2000 
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void Swap(int *a, int *b) { 

  do { 
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    va = TxRead(tx, &a); 

    vb = TxRead(tx, &b); 

    TxWrite(tx, &a, vb); 

    TxWrite(tx, &b, va); 

  } while (!TxCommit()); 

} 
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Commit in Bartok-STM 

Iterate over 
the read set: 

Current TMW 
matches logged 

version? 

Current TMW 
shows we locked 

the object? 

Abort 

Logged TMW 
matches version in 

our write set? 

Abort 

Yes 

Yes Yes 

No 

No No 

OK so far 

OK so far 
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Correctness sketch 

time 

Open obj1 for read Open obj2 
for update 

Commit: validate 
obj1 version 

Commit: 
unlock obj2 

Lock prevents concurrent updates 

Validation checks no updates 

Tx appears atomic after 
last “Open” and before 

first validation step 
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Example: uncontended swap 
a: 

Tx1 

2000 

Tx1 

1000 

a: v150 
b: v250 

a: v150 
b: v250 

a.val = 1000 
b.val = 2000 

b: 

void Swap(int *a, int *b) { 

  do { 

    tx = TxStart(); 

    va = TxRead(tx, &a); 

    vb = TxRead(tx, &b); 

    TxWrite(tx, &a, vb); 

    TxWrite(tx, &b, va); 

  } while (!TxCommit()); 

} 

Tx1 Objects read 

Objects updated 

Values 

overwritten 

“We locked the 
object...” 

“...and no-one 
else got there 

first!” 
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Example: uncontended swap 
a: 

v151 

2000 

Tx1 

1000 

a: v150 
b: v250 

a: v150 
b: v250 

a.val = 1000 
b.val = 2000 

b: 

void Swap(int *a, int *b) { 

  do { 

    tx = TxStart(); 

    va = TxRead(tx, &a); 

    vb = TxRead(tx, &b); 

    TxWrite(tx, &a, vb); 

    TxWrite(tx, &b, va); 

  } while (!TxCommit()); 

} 

Tx1 Objects read 

Objects updated 

Values 

overwritten 
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Example: uncontended swap 
a: 

v151 

2000 

v251 

1000 

a: v150 
b: v250 

a: v150 
b: v250 

a.val = 1000 
b.val = 2000 

b: 

void Swap(int *a, int *b) { 

  do { 

    tx = TxStart(); 

    va = TxRead(tx, &a); 

    vb = TxRead(tx, &b); 

    TxWrite(tx, &a, vb); 

    TxWrite(tx, &b, va); 

  } while (!TxCommit()); 

} 

Tx1 Objects read 

Values 

overwritten 
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Example: uncontended swap 
a: 

v151 

2000 

v251 

1000 

b: 

void Swap(int *a, int *b) { 

  do { 

    tx = TxStart(); 

    va = TxRead(tx, &a); 

    vb = TxRead(tx, &b); 

    TxWrite(tx, &a, vb); 

    TxWrite(tx, &b, va); 

  } while (!TxCommit()); 

} 
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Tx-tx interaction in Bartok-STM 

 Read-read: no problem, both readers see the same version 
number and verify it at commit time 

 Read-write: reader sees that the writer has the object 
locked.  Reader always defers to writer 

 Write-write: competition for lock serializes writers (drop 
locks, then spin to avoid deadlock) 
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 Gold standard: 

 During execution a transaction runs against a consistent view 
of memory 

 Won’t be “tricked” into looping, etc. 

 “Opacity”  

 What are the advantages / disadvantages when compared 
with an implementation giving weaker guarantees? 

Non-blocking data structures and transactional memory 33 

Taxonomy: consistency during tx 



 We need some way to manage the tentative updates that a 
transaction is making  

 Where are they stored? 

 How does the implementation find them (so a transaction’s 
read sees an earlier write)? 

 Lazy versioning: only make “real” updates when a 
transaction commits 

 Eager versioning: make updates as a transaction runs, roll 
them back on abort 

 What are the advantages, disadvantages? 
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Taxonomy: lazy/eager versioning 



 We need to detect when two transactions conflict with one 
another 

 Lazy conflict detection: detect conflicts at commit time 

 Eager conflict detection: detect conflicts as transactions 
run 

 Again, what are the advantages, disadvantages? 
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Taxonomy: lazy/eager conflict detection 



Taxonomy: word/object based 

 What granularity are conflicts detected at? 

 Object-based: 

 Access to programmer-defined structures (e.g. objects) 

 Word-based: 

 Access to words (or sets of words, e.g. cache lines) 

 Possibly after mapping under a hash function 

 What are the advantages and disadvantages of these 
approaches? 
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Bartok-STM 

 Designed to work well on low-contention workloads 

 Eager version management to reduce commit costs 

 Eager locking to support eager version management 

 Primitives do not guarantee that transactions see a 
consistent view of the heap while running 

 Can be sandboxed in managed code... 

 ...harder in native code 
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Performance figures depend on... 

 Workload : What do the atomic blocks do?  How long is spent inside 
them? 

 Baseline implementation: Mature existing compiler, or prototype? 

 Intended semantics: Support static separation?  Violation freedom 
(TDRF)?   

 STM implementation: In-place updates, deferred updates, eager/lazy 
conflict detection, visible/invisible readers? 

 STM-specific optimizations: e.g. to remove or downgrade redundant TM 
operations 

 Integration: e.g. dynamically between the GC and the STM, or inlining of 
STM functions during compilation 

 Implementation effort: low-level perf tweaks, tuning, etc. 

 Hardware: e.g. performance of CAS and memory system 
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Labyrinth 

 STAMP v0.9.10 

 256x256x3 grid 

 Routing 256 paths 

 Almost all execution inside atomic 
blocks 

 Atomic blocks can attempt 100K+ 
updates 

 C# version derived from original C 

 Compiled using Bartok, whole 
program mode, C# -> x86 (~80% 
perf of original C with VS2008) 

 Overhead results with Core2 Duo 
running Windows Vista 

s1 

e1 

“STAMP: Stanford Transactional Applications for Multi-Processing” 
Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, Kunle Olukotun , IISWC 2008 

Non-blocking data structures and transactional memory 39 



11.86 

3.14 

1.99 1.71 1.71 

0

2

4

6

8

10

12

14

STM Dynamic
filtering

Dataflow
opts

Filter opts Re-use logs

1-
th

re
a

d
, 

n
o

rm
a

li
ze

d
 t

o
 s

e
q

. 
b

a
se

li
n

e
 

Sequential overhead 

STM implementation supporting static separation 
In-place updates 

Lazy conflict detection 
Per-object STM metadata 

Addition of read/write barriers before accesses 
Read: log per-object metadata word 

Update: CAS on per-object metadata word 
Update: log value being overwritten 
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Sequential overhead 
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Dynamic filtering to remove redundant logging 
 

Log size grows with #locations accessed 
Consequential reduction in validation time 

1st level: per-thread hashtable (1024 entries) 
2nd level: per-object bitmap of updated fields 
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Data-flow optimizations 
 

Remove repeated log operations 
Open-for-read/update on a per-object basis 

Log-old-value on a per-field basis 
Remove concurrency control on newly-allocated objects 
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Inline optimized filter operations 
 
 
 
 
 

Re-use table_base between filter operations 
Avoids caller save/restore on filter hits 

mov eax <- obj_addr 
and eax <- eax, 0xffc 
mov ebx <- [table_base + eax] 
cmp ebx, obj_addr 
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Sequential overhead 
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Re-use STM logs between transactions 
 

Reduces pressure on per-page allocation lock 
Reduces time spent in GC 

Non-blocking data structures and transactional memory 44 



Scaling – Labyrinth 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1 2 3 4 5 6 7 8

E
x

e
cu

ti
o

n
 t

im
e

  /
 s

e
q

. b
a

se
li

n
e

 

#Threads 

Static separation 
strong isolation 

1.0 = wall-clock execution time 
of sequential code without 

concurrency control 

Non-blocking data structures and transactional memory 45 



Scaling – Genome 
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#Threads 

Static separation 
strong isolation 
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TM programming 
 
models 



What we want 

Hardware 

Concurrency primitives 

Library Library Library 

Library 

Library 
Library 

Library 

Libraries build layered 
concurrency 
abstractions  
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Library 

Locks and condition 
variables  
(a) are hard to use and  
(b) do not compose 

Hardware 

What we have 

49 



Atomic blocks 

Atomic blocks built over transactional memory.  
In Haskell: 3 primitives: atomic, retry, orElse 

Library Library Library 

Library 

Library 
Library 

Library 

Hardware 
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Atomic memory transactions 

 To a first approximation, just write the sequential code, and 
wrap atomic around it 

 All-or-nothing semantics: Atomic commit 

 Atomic block executes in Isolation 

 Cannot deadlock (there are no locks!) 

 Atomicity makes error recovery easy  
(e.g. exception thrown inside the PopLeft code) 

Item PopLeft() { 

 atomic { ... sequential code ... } 

} 

Like database 
transactions 

ACID 
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Atomic blocks compose (locks do not) 

 Guarantees to get two consecutive items 

 PopLeft() is unchanged  

 Cannot be achieved with locks (except by 
breaking the PopLeft abstraction) 

void GetTwo() { 

 atomic {  

  i1 = PopLeft();  

  i2 = PopLeft();  

 } 

 DoSomething( i1, i2 ); 

} 

Composition 
is THE way we 

build big 
programs 
that work 

52 



 retry means “abandon execution of the atomic block and re-
run it (when there is a chance it’ll complete)” 

 No lost wake-ups 

 No consequential change to GetTwo(), even though GetTwo 
must wait for there to be two items in the queue 

Item PopLeft() { 

 atomic { 

  if (leftSentinel.right==rightSentinel)  {  

   retry;  

  } else { ...remove item from queue... } 

} } 

Blocking: how does PopLeft wait for data? 
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 do {...this...} orelse {...that...} tries to run “this” 

 If “this” retries, it runs “that” instead 

 If both retry, the do-block retries.  GetEither() will thereby wait 
for there to be an item in either queue 

void GetEither() { 

 atomic { 

 

  do { i = Q1.Get(); } 

  orelse { i = Q2.Get(); } 

 

  R.Put( i ); 

} } 

Q1 Q2 

R 

Choice: waiting for either of two queues 
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Programming with atomic blocks 
With locks, you think about: 

 Which lock protects which data?  What data can be mutated 
when by other threads? Which condition variables must be 
notified when?  

 None of this is explicit in the source code 
 

With atomic blocks you think about 

 What are the invariants (e.g. the tree is balanced)? 

 Each atomic block maintains the invariants 

 Purely sequential reasoning within a block, which is dramatically 
easier 

 Much easier setting for static analysis tools 
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Atomic blocks 

Class Q { 
  QElem leftSentinel; 
  QElem rightSentinel; 
 
  void pushLeft(int item) { 
    atomic { 
      QElem e = new QElem(item); 
      e.right = this.leftSentinel.right; 
      e.left = this.leftSentinel; 
      this.leftSentinel.right.left = e; 
      this.leftSentinel.right = e; 
    } 
  } 
 
  ... 
} 

Class Q { 
  QElem leftSentinel; 
  QElem rightSentinel; 
 
  void pushLeft(int item) { 
    do { 
      TxStart(); 
      QElem e = new QElem(item); 
      TxWrite(&e.right, TxRead(&this.leftSentinel.right)); 
      TxWrite(&e.left, this.leftSentinel); 
      TxWrite(&TxRead(&this.leftSentinel.right).left, e); 
      TxWrite(&this.leftSentinel.right, e); 
    } while (!TxCommit()); 
  } 
 
  ... 
} 
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Compilation 

Source 
code 

Bytecode 
Native 
code 

Source to bytecode compiler; 
typically “csc” in C#, “javac” for 

Java 

Bytecode-to-native compiler; 
JIT or traditional compilation 
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Why divide things this way? 

 Little information loss from 

source code to bytecode 

 Source-to-bytecode works a 

file at a time, bytecode-to-native  

can see the whole program (or, 

at least, see all of the parts 

needed so far in execution) 

 Lower level transformations 

possible at bytecode-to-native 

 Integration between the STM and 

other parts of the runtime system 

void Swap(Pair p) { 
  try { 
    va = p.a; 
    vb = p.b; 
    p.a = vb; 
    p.b = va; 
  } catch (AtomicException) { 
  } 
} 
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Boilerplate around transactions 

void Swap(Pair p) { 
   do { 
    done = true; 
    try { 
      try { 
        tx = StartTx(); 
        va = p.a; 
        vb = p.b; 
        p.a = vb; 
        p.b = va; 
      } finally { 
        CommitTx(); 
      } 
    } catch (TxInvalid) { 
      done = false; 
    } 
  } while (!done); 
} 

Keep running the 
atomic block in a 

fresh tx each time 

Commit (on 
normal or exn exit) 

Commit fails by raising 
a TxInvalid exception; 

re-execute 

(I’m using source code 
examples for clarity; in 
reality this would be in 
the compiler’s internal 

intermediate code) 
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 Naïve expansion of data accesses 

void Swap(Pair p) { 
   do { 
    done = true; 
    try { 
      try { 
        tx = StartTx(); 
        TxWrite(tx, &va, TxRead(tx, &p.a)); 
        TxWrite(tx, &vb, TxRead(tx, &p.b)); 
        TxWrite(tx, &p.a, TxRead(tx, &vb)); 
        TxWrite(tx, &p.b, TxRead(tx, &va)); 
      } finally { 
        CommitTx(); 
      } 
    } catch (TxInvalid) { 
      done = false; 
    } 
  } while (!done); 
} 
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What are the problems here with STM? 

 Using the STM for thread-private local variables 

 Repeatedly mapping from addresses to concurrency 
control info 

 Duplicating concurrency control work if it’s implemented at 
a per-object granularity 
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Decomposed STM primitive API 

 OpenForRead(tx, obj) 

 OpenForRead(tx, addr) 

 OpenForUpdate(tx, obj) 

 OpenForUpdate(tx, addr) 

 

 LogForUndo(tx, addr) 

Indicate intent to read from 
an object or from a given 

address 

Indicate intent to update 
a specific address (& 

optional size) 

Non-blocking data structures and transactional memory 62 



Using the decomposed API 

x = p.a; 
OpenForRead(tx, p); 
x = p.a; 

p.b = y; 
OpenForUpdate(tx, p); 
LogForUndo(tx, &p.b); 
p.b = y; 
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... 
OpenForUpdate(tx, p); 
OpenForRead(tx, p); 
va = p.a; 
OpenForRead(tx, p); 
Vb = p.b; 
OpenForUpdate(tx, p); 
LogForUndo(tx, &p.a); 
p.a = vb; 
OpenForUpdate(tx, p); 
LogForUndo(tx, &p.b); 
p.b = va; 
... 

Second OpenForRead 
made unnecessary by first 

Second OpenForUpdate 
made unnecessary by first 

Always need update 
access: get it first 
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 Improved expansion of data accesses 

void Swap(Pair p) { 
   do { 
    done = true; 
    try { 
      try { 
        tx = StartTx(); 
        OpenForUpdate(tx, p); 
        va = p.a; 
        vb = p.b; 
        LogForUndo(tx, &p.a); 
        p.a = vb; 
        LogForUndo(tx, &p.b); 
        p.b = va; 
      } finally { 
        CommitTx(); 
      } 
    } catch (TxInvalid) { 
      done = false; 
    } 
  } while (!done); 
} 
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Keeping optimizations safe 

 
void Clear_tx(Pair p) { 
  for (int i = 0; i < 10; i ++) { 
    p.a = 10; 
    p.b = i; 
  } 
}   

Original (contrived) source code 
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Keeping optimizations safe 

 
void Clear_tx(Pair p) { 
  for (int i = 0; i < 10; i ++) { 
    OpenForUpdate(tx, p); 
    LogForUndo(tx, &p.a); 
    p.a = 10; 
    LogForUndo(tx, &p.b); 
    p.b = i; 
  } 
}   

Expanded with decomposed API operations 

Non-blocking data structures and transactional memory 67 



Keeping optimizations safe 

 
void Clear_tx(Pair p) { 
  p.a = 10; 
  for (int i = 0; i < 10; i ++) { 
    OpenForUpdate(tx, p); 
    LogForUndo(tx, &p.a); 
    LogForUndo(tx, &p.b); 
    p.b = i; 
  } 
}   

Hoisting loop-invariant code 
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Keeping optimizations safe 

 
void Clear_tx(Pair p) { 
for (int i = 0; i < 10; i ++) { 
    tmp1 = OpenForUpdate(tx, p); 
    tmp2 = LogForUndo(tx, &p.a) <tmp1>; 
    p.a = 10 <tmp2>; 
    tmp3 = LogForUndo(tx, &p.b) <tmp1>; 
    p.b = i <tmp3>; 
  } 
}   

Introduce dependencies 

Non-blocking data structures and transactional memory 69 



Keeping optimizations safe 

 
void Clear_tx(Pair p) { 
  tmp1 = OpenForUpdate(tx, p); 
  tmp2 = LogForUndo(tx, &p.a) <tmp1>; 
  tmp3 = LogForUndo(tx, &p.a) <tmp1>; 
  p.a = 10 <tmp2>; 
  for (int i = 0; i < 10; i ++) { 
    p.b = i <tmp3>; 
  } 
}   

Transformations must respect dependencies 
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Condition synchronization 

 Semantically: in STM-Haskell we required the scheduler to 
only run atomic blocks when they succeed without calling 
“retry” 

atomic { 
  buffer.data = 42; 
  buffer.full = true; 
} 

atomic { 
  if (!buffer.full) { 
    retry; 
  } 
  result = buffer.data; 
  buffer.full = false; 
} 

This atomic block is 
only ready to run when 

buffer.full is true 
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Primitive for synchronization 

 void WaitTX(tx) 

 Semantically equivalent to AbortTx 

 Implementation may assume caller will immediately re-
execute a (deterministic) tx 

 Implementation may introduce a delay to avoid unnecessary 
spinning 

 Intuition:  

 No point re-executing the consumer until the producer has 
run 
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Compiling “retry” to “WaitTx” 

atomic { 
  if (!buffer.full) { 
    retry; 
  } 
  result = buffer.data; 
  buffer.full = false; 
} 

void Consume(Buffer b) { 
   do { 
    done = true; 
    try { 
      try { 
        tx = StartTx(); 
        OpenForRead(tx, b); 
        if (!b.full) { 
          WaitTx(); 
        } 
        OpenForUpdate(tx, b); 
        result = b.data; 
        LogForUndo(tx, &b.full); 
        b.full = false; 
      } finally { 
        CommitTx(); 
      } 
    } catch (TxInvalid) { 
      done = false; 
    } 
  } while (!done); 
} 
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Implementing WaitTx 

buffer: v150 

Val=0 

Full=false 
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Implementing WaitTx 

buffer: v150 

Val=0 

null 

Full=false 

1. Extend object header 
with list of waiters 
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Implementing WaitTx 

buffer: v150 

Val=0 

null 

Full=false 

1. Extend object header 
with list of waiters 

2. Extend tx records with 
a mutex & condvar pair 

Consumer 
tx 

Mutex 

Condvar 
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Implementing WaitTx 

buffer: v150 

Val=0 

Full=false 

1. Extend object header 
with list of waiters 

2. Extend tx records with 
a mutex & condvar pair 

Consumer 
tx 

Mutex 

Condvar 

3. WaitTx links the 
consumer to the lists in 

its read set 
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Implementing WaitTx 

buffer: v150 

Val=0 

Full=false 

1. Extend object header 
with list of waiters 

2. Extend tx records with 
a mutex & condvar pair 

Consumer 
tx 

Mutex 

Condvar 

3. WaitTx links the 
consumer to the lists in 

its read set 

4. WaitTx validates, locks 
the mutex, updates its 

status, blocks 
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Implementing WaitTx 

buffer: v150 

Val=0 

Full=false 

1. Extend object header 
with list of waiters 

2. Extend tx records with 
a mutex & condvar pair 

Consumer 
tx 

Mutex 

Condvar 

3. WaitTx links the 
consumer to the lists in 

its read set 

4. WaitTx validates, locks 
the mutex, updates its 

status, blocks 

5. CommitTx wakes 
waiters on objects in its 

write set 
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Implementing WaitTx 

buffer: v150 

Val=0 

Full=false 

1. Extend object header 
with list of waiters 

2. Extend tx records with 
a mutex & condvar pair 

Consumer 
tx 

Mutex 

Condvar 

3. WaitTx links the 
consumer to the lists in 

its read set 

4. WaitTx validates, locks 
the mutex, updates its 

status, blocks 

5. CommitTx wakes 
waiters on objects in its 

write set 

Use “thin locks” style 
tricks to avoid fixed 

header word allocation 

NB: many-to-many 
relationship, so probably use 

separate doubly linked list 

Use latch in the header for 
concurrency control on the 

list 
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Are we done? 

 Local variables 

 By-ref parameters 

 Method calls 

 Sandboxing zombie transactions 

 IO and other native operations 
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TM perspectives 



Granularity 

Distributed, large-scale 
atomic actions 

Composable shared  
memory data structures 

“Leaf” shared memory 
data structures 

General purpose atomic 
actions in a program 
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Programming abstraction 

Lock elision 

The program’s semantics is 
defined using locks.  TM is used 
as an implementation 
mechanism. 

Speculation 

Semantics defined by speculative 
execution, commit, etc. (either  
implicitly, or explicitly) 

Atomic 

Semantics defined by atomic 
execution (e.g. “atomic { X }”).  
Speculation, if used, is 
abstracted by the 
implementation. 
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Purpose 

Makes software easier 
to develop /  

verify /  
maintain / … 

Faster: better than 
alternatives, 

irrespective of 
complexity 
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Design points that I like 

HW DCAS / 3-CAS / … 
Granularity: leaf data structures 

Abstraction: atomic multi-word CAS 
Purpose: faster 

HTM with limited guarantees (~ASF) 
Granularity: leaf data structures 
Abstraction: short transactions 

Purpose: faster 

Static separation (e.g., STM-Haskell) 
Granularity: composable data structures 

Abstraction: atomic actions 
Purpose: easier, decent perf 
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Design points I am sceptical about 

Speculative lock elision on general-purpose s/w 

“atomic” blocks over normal data in a high-level language 
(C#/Java) 

(prove me wrong, I would like either of these to work!) 
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Correctness 

Ease to  
write 

What do we care about? 

88 

When can it 
be used? 

How well 
does it scale? 

How fast is it? 


