25/11/2013

Human-Computer Interaction

Lecture 6: Programming languages

USABILITY OF NOTATIONS

Cognitive Dimensions of Notations

» ‘Discussion tools’ for use when considering
alternative designs of programming languages, and
other complex information systems

— Suitable for analytic evaluation before, during and after a
design process (e.g. iterative prototyping)

— But not a checklist of ideal features
* We have to escape ‘superlativism’
— | think the best programming language is ... !
* All real design is about trade-offs
— What is better — a Lamborghini or a tractor?
— Do they have design principles in common?

Where do we find information structures?

* Not only programming languages, but anything with
internal structure (relationships, dependencies etc)

— UML diagrams, Spreadsheets, Travel bookings, Musical
compositions, Technical manuals, Novels

e Structured information devices involve:
— a notation
— an environment
— a medium

* Consider example dimension: Viscosity

— simplified preview definition:
“a viscous system is hard to modify”

25/11/2013

Example: modifying structure of text

* Notations:
— inserting text in a novel is easier than in more structured
formats like a newspaper
* Environment:

— structures in a word processor are easier to modify, on
pencil and paper are harder to modify

e Media:

— any part of a text on paper can be accessed easily, but
harder on a dictaphone (example — Philip Pullman).

Definitions

* Notation:

— The perceived marks or symbols (as covered in visual
representation lecture), and the correspondence to what
they are supposed to mean

* Environment:

— The operations and tools provided for users to navigate,

read and manipulate the perceived marks
* Medium:

— Where the marks are being made (screens, paper, Post-Its,
tangible objects, augmented reality)

25/11/2013

User experience of notational systems

* Interaction is viewed as building, modifying and
navigating an information structure

» Usability depends on the structure of the notation
and the tools that the environment provides for
manipulating marks within the medium

* Dimensions like viscosity draw attention to aspects of
user experience when interacting with the
information structure

 Different activities have different profiles (e.g. the

facilities you need when reading a technical manual
are different from those you need when writing one)

Construction activities: building information structure

Incrementation
— add a new formula to a spreadsheet

Transcription
— convert an equation to a spreadsheet formula

Modification
— change spreadsheet for a different problem

Exploratory design
— programming on the fly (“hacking”)

25/11/2013

Interpretation activities: reading information structures

* Search
— find a value specified in a spreadsheet
e Comparison
— fault-finding, checking correctness
* Exploratory understanding (sensemaking)
— analyse a business plan presented in a spreadsheet

Dimensions and Activities are orthogonal

D1 D2 D3 D4 D5 D6 D7 D8

Al

A2

A3

A4

25/11/2013

Profiles describe desirable combinations

I
A2 |
A3 ||

A4 B

SOME DETAILED DIMENSIONS

25/11/2013

Dimensions covered today:

e Abstraction
— types and availability of abstraction mechanisms

¢ Hidden dependencies
— important links between entities are not visible
* Premature commitment
— constraints on the order of doing things
¢ Secondary notation
— extra information in means other than formal syntax
e Viscosity
— resistance to change
e Visibility

— ability to view components easily

Not covered in detail today:

¢ Closeness of mapping * Progressive evaluation
— closeness of representation — work-to-date checkable any
to domain time
¢ (Consistency * Provisionality
— similar semantics expressed — degree of commitment to
in similar forms actions or marks
* Diffuseness * Role-expressiveness
— verbosity of language — component purpose is readily
inferred

M Error—proneness

— notation invites mistakes * And more ...
— Research continues to

¢ Hard mental operations ! ? | i
identify new dimensions

— high demand on cognitive
resources

25/11/2013

Viscosity

* Resistance to change: the cost of making small
changes.
* Repetition viscosity:
— e.g. manually changing US spelling to UK spelling
throughout a long document
e Domino (was “Knock-On”) viscosity:

— e.g. inserting a figure in a document means updating all
later figure numbers, their cross-references, the list of
figures, the index ...

Viscosity features

* Viscosity becomes a problem when you need to
change your plan: it is a function of the work
required to change a plan element.

* |tis a property of the system as a whole

* May be different for different operations

* Often happens when designers assume system use

will only involve incrementation, but that users will
never change the structure.

25/11/2013

Viscosity examples

* Repetition viscosity example:

— When the user has one document in mind, but it is stored
as a collection of files, which must be edited separately to

change style in all.
* Domino viscosity example:

— In structures with high inter-dependency, such as
timetables.

e Combinations of the two are the worst!

Combined domino/repetition

* Common in graphic structures, genealogical trees,
hypertexts ...
— e.g. tree showing part of JavaScript hierarchy

window

documentl |frames | |Iocation | |navigator|

| plugins | | mimeTypeIs

25/11/2013

Workarounds & trade-offs

» Separate exploratory & transcription stages
— e.g. pencil sketch before ink

* Introduce a new abstraction
— e.g. AutoNumber facility

* Change the notation

— e.g. quick dial codes for telephone

Hidden Dependencies

* A relationship between components such that one is
dependent on the other, but the dependency is not
fully visible.

* The one-way pointer:

— e.g. your Web page points to someone else’s - how do you
know when they move it?

* Local dependency:

— e.g. which spreadsheet cells use the value in a given cell?

25/11/2013

10

Hidden Dependency features

* Hidden dependencies slow up information finding.

* Tolerable in exploratory design, but not in
modification

* May be responsible for high frequency of errors in
spreadsheets.

Hidden Dependency examples

e GOTO statements
didn’t have a
corresponding

tag comoination (text) 1?1 " &)
Name: tags

CO M E_ F RO M . :i:?nlaswmnmaliun
Default: enter tags here
- B I ocC k St ru Ct ure Debug: lamborghini countach
brings symmetry o —)

e Data-flow makes o
dependencies S

Base: hitp:fiwww youtube

explicit

O Query parameters

[Fetch Feed IS
QURL

Pipe Output

25/11/2013

11

Workarounds & trade-offs

* Require explicit cueing

— e.g. import and export declarations
* Highlight different information

— e.g. data-flow language
* Provide tools

— e.g. spreadsheets which highlight all cells that use a
particular value

Premature Commitment / Enforced Lookahead

* Constraints on the order of doing things force the
user to make a decision before the proper
information is available.

PREMATURE
COMMITMEW

25/11/2013

12

25/11/2013

Premature commitment features

* Only occur if three conditions hold:
— target notation contains internal dependencies

— access to both source and target is
order-constrained

— the constrained order is inappropriate

* Happens when designer’s view of “natural sequence”
is at variance with user’s needs

* Results in 2nd and 3rd attempts at task

Premature commitment examples

* Telephone menu systems

¢ Four-function calculator
—(1.2+3.4-56) / ((8.7-6.5)+(4.3))

" O calculator |

:
LIE=E]
HEIEE]

CEIEIE]
| LEIE] |

13

More types and examples

Defining database schemas before the data

Filing systems (library shelving by Dewey)

Surreptitious order constraints
— Provisional relationships in E-R diagram

Effect of medium

— Exacerbated when ‘marks’ are transient
(e.g. in an auditory medium)

Workarounds & trade-offs

* Decoupling
— e.g. the signwriter paints the sign elsewhere
* Ameliorating
— premature commitment is not so bad if viscosity is low &
bad guesses can be corrected
* Deconstraining

— e.g. GUl interfaces often remove constraints on order of
actions

25/11/2013

14

25/11/2013

Abstractions

* An abstraction is a class of entities or grouping of

elements to be treated as one entity (thereby lowering
viscosity).

e Abstraction barrier:

— minimum number of new abstractions that must be
mastered before using the system (e.g. Z)

* Abstraction hunger:

— require user to create abstractions

Abstraction features

* Abstraction-tolerant systems:

— permit but do not require user abstractions
(e.g. word processor styles)

* Abstraction-hating systems:

— do not allow definition of new abstractions
(e.g. spreadsheets)

* Abstraction changes the notation.

15

Abstraction implications

* Abstractions are hard to create and use

* Abstractions must be maintained
— useful for modification and transcription
— increasingly used for personalisation

* Involve the introduction of an abstraction manager
sub-device

— including its own viscosity, hidden dependencies,
juxtaposability etc.

Abstraction examples

e Persistent abstractions:

— Style sheets, macros,
telephone memories

* Definitions and exemplars

— Powerpoint templates, CAD

libraries D word Work File D 3838
* Transient abstractions: D) CDs Notes - Closeness oMapping
D word Work File D 2822
— Search and rep|ace, (WWCDs Notes - Prem Com
selection aggregates) CDs Notes - Hidden Deps
D cDs Notes - Second Not
(WECDs Notes - Vis & Juxt

. CDs Notes - Visco

25/11/2013

16

Workarounds & trade-offs

* Incremental abstractions

— low abstraction barrier, tolerates new additions, provides
alternatives (but may confuse)

* Overcoming abstraction-repulsion

— abstractions decrease viscosity, but increase problems for
occasional / end-users

* Programming by example?

— can introduce abstract hidden dependencies

Secondary Notation

* Extra information carried by other means than the
official syntax.
* Redundant recoding:

— e.g. indentation in programs, grouping contol knobs by
function

* Escape from formalism:

— e.g. annotation on diagrams

25/11/2013

17

Secondary Notation features

* Redundant recoding
=>» easier comprehension
=>» easier construction.

* Escape from formalism
=» more information

* |s secondary notation ever bad?
— what about the brevity bigots?

* Designers often forget that users need information
beyond the “official” syntax.

— and even try to block the escapes people use

Secondary Notation examples

e Redundant 0114 225 5335
or

recoding 0 11 42 25 53 357
— Telephone
number

layout

— Front panel
of a car radio

— Functional
grouping n H

RZ
470 k

Fig. 31. The circuit diogrom of o simple oudio ompiifier

25/11/2013

18

Secondary Notation examples

* Escape from formalism
— Usage of calendars and diaries.

—

scar
regular event is
not happening

different handwriting

important

Workarounds & trade-offs

* Decoupling (if insufficient secondary notation)
— e.g. print out hard copy, attack it with a pencil

* Enriched resources
— e.g. tagging and annotation tools

* But extensive secondary notation introduces added
viscosity (it gets out of date).

— e.g. program comments

25/11/2013

19

Visibility & Juxtaposability

* Ability to view components easily & to place any
two components side by side.
* Visibility:
— e.g. searching a telephone directory for the name of a
subscriber who has a specified telephone number
* Juxtaposability:

— e.g. trying to compare statistical graphs on different pages
of a book

Visibility & Juxtaposability features

e Structure or indexing information is often invisible
because designers assumed it wouldn’t be needed.

e Often caused by presenting information in windows,
then restricting the number of windows.

e Becomes far worse with small devices
(cell-phones, PDAs, wearable computers?).

25/11/2013

20

Visibility & Juxtaposability examples

* Small windows onto invisible control trees:
— e.g. car radios, fax machines, cameras.
* Shared use displays:

— e.g. clock-radio: time or alarm or radio station

o FO rm ba Sed EPSRC EPS(eRP) &
FORM Mills & Boon:Utilities:eps_erp Folder:visibility demo
Syste ms.: Personal Information
The EPSRC aims to encourage equal opportunities. IT you are willing fo 2o, please provide
thnic origin, We will NOT use this

ur colleagues’ age, sex and ethnic
infor mation in the assessment of this research proposal, but only for internal and statistical
purposes.

2]

al

Please give details for each investigator below.

Date of birth Gender

Ethnic origin

Workarounds & trade-offs

* Working memory
— refreshed by revisiting items being compared
* External memory
— e.g. make a hard copy of one component (a new
environment that allows side-by-side viewing)
* Adding a browser
— e.g. class browser, alternative views
.

Visibility trades off against clutter, abstraction

25/11/2013

21

Desirable profiles

juxtaposability

transcription | incrementation | modification | exploration
viscosity acceptable acceptable harmful harmful
hidden acceptable acceptable harmful acceptable for
dependencies small tasks
premature harmful harmful harmful harmful
commitment
abstraction harmful harmful harmful harmful
barrier
abstraction useful useful (?) useful harmful
hunger
secondary useful (?) - v. useful v. harmful
notation
visibility / not vital not vital important important

Notable trade-offs

premature
commitment

secondary notation

e VISCOSLY

abstraction usage

—

learnability

visibility

hidden dependencies

juxtaposability

25/11/2013

22

Some design manoeuvres

* Potential design approaches to:
— reduce viscosity

improve comprehensibility

make premature commitment less expensive
remove need for lookahead

improve visibility

Design manoeuvres (1)

* Aim: to reduce viscosity

e Manoeuvre

— add abstractions (so one “power command” can change
many instances)

* At this cost
— increased lookahead (to get right abstractions);
— raises the abstraction barrier;
— may increase dependencies among abstractions

25/11/2013

23

Design manoeuvres (2)

* Aim: to improve comprehensibility

* Manoeuvre
— allow secondary notation - let users choose placing, white
space, font & colour; allow commenting
* At this cost

— increases viscosity (because layout, colour etc not usually
well catered for by environments)

Design manoeuvres (3)

* Aim: to make premature commitment less expensive

* Manoeuvre
— reduce viscosity (so that users can easily correct their first
guess)
* At this cost
— see above, re viscosity

25/11/2013

24

Design manoeuvres (4)

e Aim: to remove need for lookahead
* Manoeuvre
— remove internal dependencies in the notation;
— allow users to choose an easier decision order
* At this cost
— may make notation diffuse, or increase errors
— allowing free order needs a cleverer system

Design manoeuvres (5)

e Aim: to improve visibility
* Manoeuvre

— add abstractions (so that the notation becomes less
diffuse)

e At this cost
— see above re abstractions

25/11/2013

25

Luke Church’s CD Profile Visualisation

Error
Role Proneness

Expressiveness Consistency

Closeness Of Viscosity
Mapping
High

Diffuseness Abstraction

Hidden
Dependencies

Progressive
Evaluation

Hard Mental

i Premature
Operations

Commitment

Juxtaposition Provisionality

Visibility Secondary
Notation

A CASE STUDY

25/11/2013

26

25/11/2013

Example — LabView visual programming language

traveiled

Hidden dependencies

* Visual languages make connections explicit
* But with the trade-off that they need more screen

space
BASIC: LabVIEW:
X =1
- (possibly n
many
pages of b
code here...)
y =x + 3

27

25/11/2013

Premature commitment (1)

* Commitment to layout is a common problem e.g. x =
(-b + sqgr(b2 - 4ac) / 2a)

e Start with minus b ...

B [

L DBt |

Premature commitment (2)

e .. Il need b-squared too ...

g

= o
PQI Ep-b 7
] (=]
[55]

28

25/11/2013

Premature commitment (3)

* ... turn that into b-squared minus 4ac ...

3
| >
>
o b &
. [E
(o8|

= =1

L |[—

Premature commitment (4)

e ...00ps, that’s going to be 4ac minus b-squared ... try

moving the 4ac chunk down and reconnecting to the
‘minus’ box ...

29

Premature commitment (5)

* .. OK, now I need plus or minus that ...

e that’s root-b-squared-minus-4ac but | still haven’t
used b ... or the rest of the formula!

Secondary notation

e Little support for commenting
— can only attach comment to a single item
* Spatial layout can’t easily be used for grouping

e All the visual variables (degrees of freedom) are
taken up by the formal syntax

25/11/2013

30

25/11/2013

Visibility & Juxtaposability

* Visibility of data flow in LabVIEW is excellent

e But control branches in LabVIEW can’t be
juxtaposed:

31

