ACS Introduction to NLP

Lecture 3

Part I: Language Modelling and Smoothing
Part Il: Viterbi for Taggers

B H UNIVERSITY OF
4PV CAMBRIDGE

Stephen Clark
Natural Language and Information Processing (NLIP) Group
sc609@am ac. uk

Language Modelling

e A language model is a probability distribution over strings

e A core component of many language processing systems

— speech recognition, hand writing recognition, machine translation, ...

e Many of the estimation techniques carry over to other NLP problems

— POS tagging, parsing, ...

Classic N-gram Language Models 3

P(wl,...,wn)

P(w) P(ws|wy) P(ws|wy, ws) . .. Plw,|wy, ... w,_1)

Q

P(w1) P(ws|wy) P(ws|wy, ws) ... Plwy|w, 2, w, 1)

e Chain rule followed by independence assumptions
— here the independence assumptions give a trigram language model

e Notice chain rule Is exact

e Note also that we don’t have to apply the chain rule using this ordering
of the words

Statistical Methods in NLP: Chomsky 4

It must be recognised that the notion of a ‘probability of a sentence’ is an
entirely useless one, under any interpretation of this term (Chomsky, 1969)

[taken from Chapter 1 of Young and Bloothooft, eds, Corpus-Based Methods in Language and Speech Processing]

[Colorless green ideas sleep furiously example]

It's all about Prediction 5

Statistics is the science of learning from observations and experience
(Ney, 1997)

By chance we mean something like a guess. Why do we make guesses?
We make guesses when we wish to make a judgement but have incom-
plete information or uncertain knowledge. We want to make a guess as
to what things are, or what things are likely to happen. Often we wish to
make a guess because we have to make a decision ... Sometimes we
make guesses because we wish, with our limited knowledge, to say as
much as we can about some situation. Really, any generalization is in the
nature of a guess. Any physical theory is a kind of guesswork. There are
good guesses and there are bad guesses. The theory of probability is a
system for making better guesses. The language of probability allows us
to speak quantitatively about some situation which may be highly variable,
but which does have some consistent average behavior. (Guess who?)

[taken from Chapter 1 of Young and Bloothooft, eds, Corpus-Based Methods in Language and Speech Processing]

Overfitting 6

e Maximum likelihood estimation (relative frequency estimation in our cases)
can suffer from overfitting

e Because we are choosing parameters to make the data as probable as
possible, the resulting model can look “too much” like the data

e Classic example of this occurs in language modelling with a word we
haven’t seen before

The Problem with Zeros 7

Pl)= 2

e If w; followed by w, Is unseen then estimate is undefined

e If w; followed by w, followed by w; is unseen then estimate is zero

e Zeros propogate through the product to give a zero probability for the
whole string

e Smoothing technigues are designed to solve this problem (called smooth-
INng because the resulting distributions tend to be more uniform)

Add-one Smoothing

B I+ f(wz-_l, wz)
S L+ fwi—, w;)
1 -+ f(’wz'_l, ’U}Z>

V| + 2y, flwi—1, w;)

e Simple technique not widely used anymore

Linear Interpolation 9

e Consider burnish the and burnish thou where:

f(burnish, the) = f(burnish, thou) = 0
e add-1 smoothing would assign the same probability to P(the|burnish)
and P(thou|burnish)

e But burnish the intuitively more likely (because the more likely than
thou)

Linear Interpolation 10

~ AN

P(w;|wi_1) = AP(wi|w;_1) + (1 — X\ P(w;)

e P is the interpolated model and P is the maximum likelihood (relative
frequency) estimate

P(wz‘\wz—1,wz—2> =)\1p(wz‘|wz'—1awz—2)

AN AN

‘|‘(1 - Al)(AgP(wi\wi_l) + (1 -)\Q)P(wz))

Backoff 11

AN

P(wi\’wi_l,wi_g) = P(w;|w;_1, w;_o) if f(w; o, w;_1,w;) >0
= 041]5(102-\10@-_1) if f(w; o, w;_1,w;) =0
and f(w;_1,w;) >0
= auP(w;) otherwise

e Where the as are required to ensure a proper distribution

e although see Large Language Models in Machine Translation, Brants et
al., based on 2 trillion tokens which uses “stupid backoff” and ignores
the as

[see google n-gram corpus]

Back to Tagging ... 12

e Tag sequence probabilities can be smoothed (or backed off):

P(tilti_1, i) =)\1p(tz|tz‘—1>tz‘—2>

—|—(1 — Al)()\gp(ti‘ti_ﬁ + (1 —)\2)P(tz>)

e A simple solution for unknown words is to replace them with UNK:

where any word in the training data occurring less than, say, 5 times is
replaced with UNK

Better Handling of Unknown Words 13

e Lots of clues as to what the tag of an unknown word might be:

— proper nouns (NNP) likely to be unknown
— if the word ends in ing, likely to be VBG

P(wlt) = ;P(unknown word|t) P(capitalized|t) P(endings|t)

e but now we're starting to see the weaknesses of generative models for
taggers

e Conditional models can deal with these features directly

— see Ratnaparkhi’s tagger as an example

Tagging: Why is there a search problem? 14

T" = arg max P(T|W) = arg max PW|T)P(T)

e Number of tag sequences for a sentence of length n is O(T") where T
IS the size of the tagset

e OK, but why Is there a non-trivial search problem?

— e.g. for a unigram model we can just take the most probable tag for
each word, an algorithm which runs in O(nT') time

Tagging: Why Is there a non-trivial search problem? 15

T" = arg max P(T|W) = arg max PW|T)P(T)

e But what about a bigram model?
e Intuition: suppose | have two competing tags for word w;, ¢t} and ¢

e Compare:

Score(t;)
Score(t?)

P(t;[ti—1) P(wi|t;))
P(t7[ti1) P(wi|t}))

Suppose Score(t!) > Score(t?); can we be sure ¢! is part of the highest
scoring tag sequence?

Viterbi Algorithm 16

e Dynamic Programming (DP) algorithm, so requires the “optimal sub-
problem property”

— l.e. optimal solution to the complete problem can be defined in terms
of optimal solutions to sub-problems

e S0 what are the sub-problems in this case?

— intuition: suppose we want the optimal tag sequence ending at w,,
and we know the optimal sub-sequence ending at w,,_, for all pos-
sible tags at w,,_;

Viterbi Algorithm (for a bigram tagger) 17

0r;(n + 1) = max oy, (n) P(L[t;) P(wi|t;)
where 4, (n+1) is the probability of the most probable tag sequence ending

In tag ¢, at position n + 1

e Recursion bottoms out at position 1 in the sentence

e Most probable tag sequence can be obtained by following the recursion
from the right backwards

e Time complexity is O(7?n) where T is the size of the tagset

[See Chs. 9 and 10 of Manning and Schutze for a more rigorous presentation]

Practicalities 18

e Choice of tags to be assigned to a particular word usually governed by
a “tag dictionary”

e Accuracy measured by taking a manually created “gold-standard” for a
set of held-out test sentences

e Accuracy of POS taggers on newspaper data is over 97%, close to the
upper bound represented by human agreement (and existence of noise
In the data)

e Linear time process (in length of sentence) means tagging can be per-
formed very fast, e.g. hundreds of thousands of words per second

Reading for Today’s Lecture 19

e Jurafsky and Martin, Speech and Language Processing, Chapter on
N-grams

e Manning and Schutze, Foundations of Statistical Natural Language Pro-
cessing, Chapter on Statistical Inference: n-gram models over sparse
data

e An Empirical Study of Smoothing Techniques for Language Modeling,
Chen and Goodman, TR-10-98, 1998 (lots of technical and empirical
details)

e Chapter 1 of Corpus-Based Methods in Language and Speech Pro-
cessing, ed Steve Young and Gerrit Bloothooft, Kluwer 1997 (if avail-
able)

e Chapters 9 and 10 of Manning and Schutze

