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1. Natural deduction
Write proofs in natural deduction of the judgments

(a) X ⇒ Y, Y ⇒ Z ` X ⇒ Z

(b) Y ` (X ⇒ Y )⇒ Y

(c) X ` (X ⇒ Y )⇒ Y

(d) ((X ⇒ Y )⇒ Y )⇒ Y ` X ⇒ Y

Write down the corresponding terms of simply typed lambda calculus.

Solution. Here are the derivation trees:

X ⇒ Y, Y ⇒ Z,X ` X X ⇒ Y, Y ⇒ Z,X ` X ⇒ Y

X ⇒ Y, Y ⇒ Z,X ` Y X ⇒ Y, Y ⇒ Z,X ` Y ⇒ Z

X ⇒ Y, Y ⇒ Z,X ` Z
X ⇒ Y, Y ⇒ Z ` X ⇒ Z

Y,X ⇒ Y ` Y
Y ` (X ⇒ Y )⇒ Y

X,X ⇒ Y ` X ⇒ Y X,X ⇒ Y ` X
X,X ⇒ Y ` Y

X ` (X ⇒ Y )⇒ Y

A,X ` A

A,X,X ⇒ Y ` X ⇒ Y A,X,X ⇒ Y ` X
A,X,X ⇒ Y ` Y

A,X ` (X ⇒ Y )⇒ Y

A,X ` Y
A ` X ⇒ Y

with A ≡ ((X ⇒ Y )⇒ Y )⇒ Y .

And here are the terms:

(a) f :X ⇒ Y, g:Y ⇒ Z ` (λx . g(fx)) : X ⇒ Z

(b) y:Y ` (λf . y) : (X ⇒ Y )⇒ Y



(c) x:X ` (λf . fx) : (X ⇒ Y )⇒ Y

(d) x:((X ⇒ Y )⇒ Y )⇒ Y ` (λy . x(λz . zy)) : X ⇒ Y

2. Finite products

(a) Define a concept of ‘n-ary’ product A1 × · · · ×An (n ∈ N) of objects A1, . . . , An ∈
obj(C) of a category C, generalizing the binary products introduced in the lecture.

Solution. An n-ary product of A1, . . . , An ∈ obj(C) is an object A1 × · · · × An ∈
obj(C) together with morphisms πi : A1 × · · · × An → Ai for 1 ≤ i ≤ n such that
for all X ∈ obj(C) and morphisms fi : X → Ai (1 ≤ i ≤ n) there exists a unique
h : X → A1 × · · · ×An such that πi ◦ h = fi for all i with 1 ≤ i ≤ n.

(b) For n ∈ N and A1, . . . , An ∈ obj(C), define a category SpanC(A1, . . . , An) whose
terminal objects are the n-ary products of A1, . . . , An.

Solution. The objects of SpanC(A1, . . . , An) are tuples (X, f1, . . . , fn) with fi :
X → Ai. Morphisms from (X, f1, . . . , fn) to (Y, g1, . . . , gn) are morphisms h :
X → Y in C such that gi ◦ h = fi for 1 ≤ i ≤ n.

(c) Show that if C has binary products and a terminal object, then all n-ary products
exist.

Solution. The terminal object is a nullary product of the empty tuple. ‘Unary’
products are just given by the objects themselves. For n ≥ 3, we deduce the
existence of n-ary products from the existence of binary ones, by induction on n.

Assume that n-ary products and binary products exist in C. Let A1, . . . , An+1 ∈ C.

We define the (n+1)-ary product by A1×· · ·×An+1 = (Aa×· · ·×An)×An+1 (using
the n-ary and the binary product), where the projection maps are the appropriate
compositions of projections out of the n-ary and binary product.

Given X and fi : X → Ai for 1 ≤ i ≤ n+ 1, the n+ 1-fold target-tupeling is given
by

〈f1, . . . , fn+1〉 = 〈〈f1, . . . , fn〉, fn+1〉.

Uniqueness follows from the respective uniqueness conditions for n-ary and binary
products.

(d) Given A1, . . . , An, B ∈ obj(C), construct an isomorphism j : (A1×· · ·×An)×B
∼=−→

A1× · · ·×An×B (the left expression is a binary product of a of an n-ary product
and a single object, while the right expression is an (n+ 1)-ary product).

Solution. In the proof of (c) we showed that j : (A1 × · · · × An) × B equipped
with the obvious projection maps is an n+ 1-ary product. In (b) we showed that
products are terminal objects in a category of spans. Thus, if A1× · · ·×An×B is
another product, there is a unique isomorphism between them which is compatible
with all the projections.

3. Show that the category Preord of preorders is cartesian closed, i.e. show that all finite
products and exponential objects exist in Preord.



Solution. A terminal object is given by the one-element preorder. Given preorders
(D,≤) and (E,≤), a binary product is given by (D × E,≤) where the ordering is
defined by (d, e) ≤ (d′, e′) :⇔ d ≤ d′ ∧ e ≤ e′. To show that this defines a product, we
have to show that the projection functions are monotone, and that 〈f, g〉 is monotone
for monotone f, g, which is straightforward.

It remains to show the existence of exponential objects. We define (E,≤)(D,≤) =
(Preord((D,≤), (E,≤)),≤) with f ≤ g :⇔ ∀d ∈ D . fd ≤ gd. The evaluation ε :
(E,≤)(D,≤) × (D,≤) → (E,≤) is defined by (f, d) 7→ f(d) as in Set. Given f : (C,≤
) × (D,≤) → (E,≤), the map f̃ : (C,≤) → (E,≤)(D,≤) is defined by f̃(c)(d) = f(c, d)
(also as in Set). To show that this defines an exponential, it remains to show that

• ε is monotone,

• f̃ is well defined, i.e. f̃(c) is monotone for all c ∈ C, and

• f̃ is monotone w.r.t. the order on the exponential defined above,

which is all straightforward. Uniqueness of f̃ follows then from the analogous argument
in Set.

4. Right monoid actions
Let (M, ·, e) be a monoid. In the following we will write the multiplication in M as
juxtaposition mn instead of m · n.

A right action1 of M on a set X (also called a right M -action) is a function

X ×M → X, (x,m) 7→ x ·m

such that

(i) ∀x ∈ X . x · e = x

(ii) ∀x ∈ X ∀m,n ∈M . (x ·m) · n = x · (mn)

Given monoid actions X ×M → X, Y ×M → Y on sets X,Y , an equivariant map
between them is a function f : X → Y such that

∀x ∈ X ∀m ∈M . f(x ·m) = f(x) ·m.

Right M -actions and equivariant maps form a category M -Set.

(a) Show that M -Set has finite products

(b) Show that the multiplication map M ×M → M, (m,n) → mn can be viewed as
a right action of M on itself. To avoid confusion, we denote the corresponding
object of M -Set by M .

(c) Given m ∈M show that the function

m : M →M, m(n) = mn

is an equivariant map of type M →M .

1In the literature it is more common to consider left actions, but we prefer right ones for reasons that will
become clear later in the lecture.



(d) Show that every equivariant map of type M → M is of the form m for some
m ∈M .

(e) Given X,Y ∈ obj(M -Set), show that the mapping

M -Set(M ×X,Y )×M →M -Set(M ×X,Y ), (h,m) 7→ h ◦ (m× idX)

defines a right M -action on M -Set(M ×X,Y ).

Show that M -Set(M×X,Y ) equipped with this M -action is an exponential object
Y X in M -Set.

We conclude that M -Set is a cartesian closed category.


