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Let’s start with shortest paths!
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Can represent a problem instance with an adjacency
matrix

A =



0 1 2 3 4

0 ∞ 1 ∞ ∞ ∞
1 1 ∞ 2 1 1
2 ∞ 2 ∞ 1 1
3 ∞ 1 1 ∞ ∞
4 ∞ 1 1 ∞ ∞


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But what problem are we solving?

Classic: globally optimal path weights
We want to find A∗ such that

A∗(i , j) = min
p∈P(i, j)

w(p),

where P(i , j) is the set of all paths from i to j .

In the example:

A∗ =



0 1 2 3 4

0 0 1 3 2 2
1 1 0 2 1 1
2 3 2 0 1 1
3 2 1 1 0 2
4 2 1 1 2 0


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An Algorithm: Dijkstra’s

Input : adjacency matrix A and source vertex i ∈ V ,
Output : the i-th row of R, where R(i , j) is the shortest distance

from i to j in the graph represented by A.

(1) for each q ∈ V do R(i , q)←∞
(2) S ← {}; R(i , i)← 0
(3) while S 6= V do
(4) find q ∈ V − S such that R(i , q) is minimal
(5) S ← S ∪ {q}
(6) for each j ∈ V − S do
(7) R(i , j)← R(i , j) min (R(i , q) + A(q, j))

Run this |V | times to get R = A∗.
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But wait! What about the PATHS???

A bit of notation
Assume X and Y are sets of paths over E .

X � Y ≡ {pq | p ∈ X , q ∈ Y}
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Dijkstra’s Algorithm Augmented With Paths

Input : adjacency matrix A and source vertex i ∈ V ,
Output : the i-th row of R as before. Now with P(i , j) the set

of all paths from i to j of distance R(i , j)

(1) for each q ∈ V do R(i , q)←∞; P(i , q)← {}
(2) S ← {}; R(i , i)← 0; P(i , i)← {ε}
(3) while S 6= V do
(4) find q ∈ V − S such that R(i , q) is minimal
(5) S ← S ∪ {q}
(6) for each j ∈ V − S do
(7) if R(i , j) = R(i , q) + A(q, j)
(8) then P(i , j)← P(i , j) ∪ (P(i , q) � {(q, j)})
(9) else if R(i , j) > R(i , q) + A(q, j)
(10) then R(i , j)← R(i , q) + A(q, j);
(11) P(i , j)← P(i , q) � {(q, j)}
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Solution(s)

R =



0 1 2 3 4

0 0 1 3 2 2
1 1 0 2 1 1
2 3 2 0 1 1
3 2 1 1 0 2
4 2 1 1 2 0


P(0,0) = {ε}
P(0,1) = {(0,1)}
P(0,2) = {(0,1,2), (0,1,3,2), (0,1,4,2)}
P(2,1) = {(2,1), (2,3,1), (2,4,1)}
P(2,0) = {(2,1,0), (2,3,1,0), (2,4,1,0)}

...
...

...

Note : could use just the next hop to implement hop-by-hop
forwarding.
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Let’s enrich the metric to Widest Shortest-Paths

shortest paths widest shortest paths
N ∪ {∞} Swsp ≡ (N× {1, . . . , >}) ∪ {∞}

min ◦
+ •
0 (0, >)

Can replace + by • and min by ◦ in both Dijkstra and Bellman-Ford.

(a, b) ◦ (c, d) =


(a, b max d) (a = c)

(a, b) (a < c)
(c, d) (c < a)

(a, b) • (c, d) = (a + c, b min d)
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Add bandwith to link weights

0 1 2

3

4

(1,10) (2,90)

(1,100)(1,5)

(1,100)(1,100)
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Weights are globally optimal

Widest shortest-path weights computed by Dijkstra and
Bellman-Ford

R =



0 1 2 3 4

0 (0,>) (1,10) (3,10) (2,5) (2,10)
1 (1,10) (0,>) (2,100) (1,5) (1,100)
2 (3,10) (2,100) (0,>) (1,100) (1,100)
3 (2,5) (1,5) (1,100) (0,>) (2,100)
4 (2,10) (1,100) (1,100) (2,100) (0,>)


Four optimal paths of weight (3,10). Do our algorithms find all of
them?

Poptimal(0,2) = {(0,1,2), (0,1,4,2)}
Poptimal(2,0) = {(2,1,0), (2,4,1,0)}
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Surprise!
Four optimal paths of weight (3,10)

Poptimal(0,2) = {(0,1,2), (0,1,4,2)}
Poptimal(2,0) = {(2,1,0), (2,4,1,0)}

Paths computed by Dijkstra

PDijkstra(0,2) = {(0,1,2), (0,1,4,2)}
PDijkstra(2,0) = {(2,4,1,0)}

Notice that 0’s paths cannot both be implemented with next-hop
forwarding since PDijkstra(1,2) = {(1,4,2)}.

Paths computed by Distributed Bellman-Ford (Explained in
later lectures)

PBellman(0,2) = {(0,1,4,2)}
PBellman(2,0) = {(2,1,0), (2,4,1,0)}
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Optimal paths from 0 to 2. Computed by Dijkstra but
not by Bellman-Ford

0 1 2

3

4

(1,100)(1,5)

(1,10) (2,90)

(1,100) (1,100)
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Optimal paths from 2 to 1. Computed by Bellman-Ford
but not by Dijkstra

0 1 2

3

4

(1,100)(1,5)

(2,90)(1,10)

(1,100)(1,100)
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Observations

For distributed Bellman-Ford
next-hop-paths(A) = computed-paths(A)

⊆ optimal-paths(A)

For Dijkstra’s algorithm

next-hop-paths(A) ⊆ computed-paths(A)
⊆ optimal-paths(A)

We will see that all of these path sets coincide exactly when the metric
is cancellative. That is, when a⊗ b = a⊗ c always implies that b = c.
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What is going on here???

Help!
Are the algorithms broken?
Is the new metric broken?

L11
This course will provide you with the tools to answert these questions!

see also ....
On the Forwarding Paths Produced by Internet Routing Algorithms.
Seweryn Dynerowicz and Timothy G. Griffin. To be presented at ICNP
2013 on 10 October, 2013.
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Our approach

The Algorithm to Algebra (A2A) method original metric
+

complex algorithm

→
 modified metric

+
generic algorithm


A2A attempts to shift complexity from an algorithm to the metric, which
is captured in an algebraic structure such as a semiring.
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The Tentative Plan
1 11 October : The Paths Puzzle
2 16 October : Semigroups and Order Relations
3 18 October : Semirings — Theory
4 23 October : Semirings — Constructions
5 25 October : Semirings — Examples
6 30 October : Semirings — algorithms
7 1 November : Beyond Semirings — “functions on arcs”
8 6 November : Beyond Semirings — Global vs Local optimality
9 8 November : Solving the Paths Puzzle (HW 1 due)
10 13 November : Graph (Network) decomposition
11 15 November : Protocols : RIP, OSPF, IS-IS
12 20 November : More on Global vs Local optimality
13 23 November : Protocols : EIGRP, BGP
14 27 November : Dijkstra revisited
15 29 November : Route redistribution, administrative distance
16 4 December : Metarouting project (HW 2 due)

15 January : HW 3 due

tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applications to Internet Routing Lecture 01T.G.Griffin c©2013 18 / 53



Semigroups

Definition (Semigroup)
A semigroup (S, ⊕) is a non-empty set S with a binary operation such
that

ASSOCIATIVE : a⊕ (b ⊕ c) = (a⊕ b)⊕ c

S ⊕ where
N∞ min
N∞ max
N∞ +
2W ∪
2W ∩
S∗ ◦ (abc ◦ de = abcde)
S left (a left b = a)
S right (a right b = b)
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Special Elements

Definition
α ∈ S is an identity if for all
a ∈ S

a = α⊕ a = a⊕ α

A semigroup is a monoid if it
has an identity.
ω is an annihilator if for all
a ∈ S

ω = ω ⊕ a = a⊕ ω

S ⊕ α ω

N∞ min ∞ 0
N∞ max 0 ∞
N∞ + 0 ∞
2W ∪ {} W
2W ∩ W {}
S∗ ◦ ε
S left
S right
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Important Properties

Definition (Some Important Semigroup Properties)

COMMUTATIVE : a⊕ b = b ⊕ a
SELECTIVE : a⊕ b ∈ {a, b}

IDEMPOTENT : a⊕ a = a

S ⊕ COMMUTATIVE SELECTIVE IDEMPOTENT

N∞ min ? ? ?
N∞ max ? ? ?
N∞ + ?

2W ∪ ? ?

2W ∩ ? ?
S∗ ◦
S left ? ?
S right ? ?

tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applications to Internet Routing Lecture 01T.G.Griffin c©2013 21 / 53



Order Relations

We are interested in order relations ≤⊆ S × S

Definition (Important Order Properties)

REFLEXIVE : a ≤ a

TRANSITIVE : a ≤ b ∧ b ≤ c → a ≤ c

ANTISYMMETRIC : a ≤ b ∧ b ≤ a→ a = b

TOTAL : a ≤ b ∨ b ≤ a

partial preference total
pre-order order order order

REFLEXIVE ? ? ? ?
TRANSITIVE ? ? ? ?

ANTISYMMETRIC ? ?
TOTAL ? ?
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Canonical Pre-order of a Commutative Semigroup
Suppose ⊕ is commutative.

Definition (Canonical pre-orders)

a ER
⊕ b ≡ ∃c ∈ S : b = a⊕ c

a EL
⊕ b ≡ ∃c ∈ S : a = b ⊕ c

Lemma (Sanity check)
Associativity of ⊕ implies that these relations are transitive.

Proof.
Note that a ER

⊕ b means ∃c1 ∈ S : b = a⊕ c1, and b ER
⊕ c means

∃c2 ∈ S : c = b ⊕ c2. Letting c3 = c1 ⊕ c2 we have
c = b ⊕ c2 = (a⊕ c1)⊕ c2 = a⊕ (c1 ⊕ c2) = a⊕ c3. That is,
∃c3 ∈ S : c = a⊕ c3, so a ER

⊕ c. The proof for EL
⊕ is similar.
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Canonically Ordered Semigroup

Definition (Canonically Ordered Semigroup)

A commutative semigroup (S, ⊕) is canonically ordered when a ER
⊕ c

and a EL
⊕ c are partial orders.

Definition (Groups)

A monoid is a group if for every a ∈ S there exists a a−1 ∈ S such that
a⊕ a−1 = a−1 ⊕ a = α.
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Canonically Ordered Semigroups vs. Groups

Lemma (THE BIG DIVIDE)
Only a trivial group is canonically ordered.

Proof.
If a, b ∈ S, then a = α⊕ ⊕ a = (b ⊕ b−1)⊕ a = b ⊕ (b−1 ⊕ a) = b ⊕ c,
for c = b−1 ⊕ a, so a EL

⊕ b. In a similar way, b ER
⊕ a. Therefore

a = b.
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Natural Orders
Definition (Natural orders)
Let (S, ⊕) be a semigroup.

a ≤L
⊕ b ≡ a = a⊕ b

a ≤R
⊕ b ≡ b = a⊕ b

Lemma
If ⊕ is commutative and idempotent, then a ED

⊕ b ⇐⇒ a ≤D
⊕ b, for

D ∈ {R, L}.

Proof.

a ER
⊕ b ⇐⇒ b = a⊕ c = (a⊕ a)⊕ c = a⊕ (a⊕ c)

= a⊕ b ⇐⇒ a ≤R
⊕ b

a EL
⊕ b ⇐⇒ a = b ⊕ c = (b ⊕ b)⊕ c = b ⊕ (b ⊕ c)

= b ⊕ a = a⊕ b ⇐⇒ a ≤L
⊕ b
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Special elements and natural orders
Lemma (Natural Bounds)

If α exists, then for all a, a ≤L
⊕ α and α ≤R

⊕ a
If ω exists, then for all a, ω ≤L

⊕ a and a ≤R
⊕ ω

If α and ω exist, then S is bounded.

ω ≤L
⊕ a ≤L

⊕ α

α ≤R
⊕ a ≤R

⊕ ω

Remark (Thanks to Iljitsch van Beijnum)
Note that this means for (min, +) we have

0 ≤L
min a ≤L

min ∞
∞ ≤R

min a ≤R
min 0

and still say that this is bounded, even though one might argue with the
terminology!
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Examples of special elements

S ⊕ α ω ≤L
⊕ ≤R

⊕
N ∪ {∞} min ∞ 0 ≤ ≥
N ∪ {∞} max 0 ∞ ≥ ≤
P(W ) ∪ {} W ⊆ ⊇
P(W ) ∩ W {} ⊇ ⊆
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Property Management

Lemma
Let D ∈ {R, L}.

1 IDEMPOTENT((S, ⊕)) ⇐⇒ REFLEXIVE((S, ≤D
⊕))

2 COMMUTATIVE((S, ⊕)) =⇒ ANTISYMMETRIC((S, ≤D
⊕))

3 COMMUTATIVE((S, ⊕)) =⇒ (SELECTIVE((S, ⊕)) ⇐⇒
TOTAL((S, ≤D

⊕)))

Proof.
1 a ≤D

⊕ a ⇐⇒ a = a⊕ a,
2 a ≤L

⊕ b ∧ b ≤L
⊕ a ⇐⇒ a = a⊕ b ∧ b = b ⊕ a =⇒ a = b

3 a = a⊕ b ∨ b = a⊕ b ⇐⇒ a ≤L
⊕ b ∨ b ≤L

⊕ a
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Bounds

Suppose (S, ≤) is a partially ordered set.

greatest lower bound
For a, b ∈ S, the element c ∈ S is the greatest lower bound of a and b,
written c = a glb b, if it is a lower bound (c ≤ a and c ≤ b), and for
every d ∈ S with d ≤ a and d ≤ b, we have d ≤ c.

least upper bound
For a, b ∈ S, the element c ∈ S is the least upper bound of a and b,
written c = a lub b, if it is an upper bound (a ≤ c and b ≤ c), and for
every d ∈ S with a ≤ d and b ≤ d , we have c ≤ d .
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Semi-lattices

Suppose (S, ≤) is a partially ordered set.

meet-semilattice
S is a meet-semilattice if a glb b exists for each a, b ∈ S.

join-semilattice
S is a join-semilattice if a lub b exists for each a, b ∈ S.
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Fun Facts

Fact 1
Suppose (S, ⊕) is a commutative and idempotent semigroup.

(S, ≤L
⊕) is a meet-semilattice with a glb b = a⊕ b.

(S, ≤R
⊕) is a join-semilattice with a lub b = a⊕ b.

Fact 2
Suppose (S, ≤) is a partially ordered set.

If (S, ≤) is a meet-semilattice, then (S, glb) is a commutative and
idempotent semigroup.
If (S, ≤) is a join-semilattice, then (S, lub) is a commutative and
idempotent semigroup.

That is, semi-lattices represent the same class of structures as
commutative and idempotent semigroups.

tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applications to Internet Routing Lecture 01T.G.Griffin c©2013 32 / 53



Bi-semigroups and Pre-Semirings

(S, ⊕, ⊗) is a bi-semigroup when
(S, ⊕) is a semigroup
(S, ⊗) is a semigroup

(S, ⊕, ⊗) is a pre-semiring when
(S, ⊕, ⊗) is a bi-semigroup
⊕ is commutative

and left- and right-distributivity hold,

LD : a⊗ (b ⊕ c) = (a⊗ b)⊕ (a⊗ c)
RD : (a⊕ b)⊗ c = (a⊗ c)⊕ (b ⊗ c)
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Semirings

(S, ⊕, ⊗, 0, 1) is a semiring when
(S, ⊕, ⊗) is a pre-semiring
(S, ⊕, 0) is a (commutative) monoid
(S, ⊗, 1) is a monoid
0 is an annihilator for ⊗
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Examples

Pre-semirings

name S ⊕, ⊗ 0 1

min_plus N min + 0
max_min N max min 0

Semirings

name S ⊕, ⊗ 0 1

sp N∞ min + ∞ 0
bw N∞ max min 0 ∞

Note the sloppiness — the symbols +, max, and min in the two tables
represent different functions....
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How about (max, +)?

Pre-semiring

name S ⊕, ⊗ 0 1

max_plus N max + 0 0

What about “0 is an annihilator for ⊗”? No!

Semiring (max_plus−∞ = add_zero(−∞, max_min))

name S ⊕, ⊗ 0 1

max_plus−∞ N ∪ {−∞} max + −∞ 0
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Matrix Semirings
(S, ⊕, ⊗, 0, 1) a semiring
Define the semiring of n× n-matrices over S : (Mn(S), ⊕, ⊗, J, I)

⊕ and ⊗
(A⊕ B)(i , j) = A(i , j)⊕ B(i , j)

(A⊗ B)(i , j) =
⊕

1≤q≤n

A(i , q)⊗ B(q, j)

J and I

J(i , j) = 0

I(i , j) =


1 (if i = j)

0 (otherwise)
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Mn(S) is a semiring!

For example, here is left distribution

A⊗ (B⊕ C) = (A⊗ B)⊕ (A⊗ C)

(A⊗ (B⊕ C))(i , j)
=

⊕
1≤q≤n

A(i , q)⊗ (B⊕ C)(q, j)

=
⊕

1≤q≤n

A(i , q)⊗ (B(q, j)⊕ C(q, j))

=
⊕

1≤q≤n

(A(i , q)⊗ B(q, j))⊕ (A(i , q)⊗ C(q, j))

= (
⊕

1≤q≤n

A(i , q)⊗ B(q, j))⊕ (
⊕

1≤q≤n

A(i , q)⊗ C(q, j))

= ((A⊗ B)⊕ (A⊗ C))(i , j)

Note : we only needed left-distributivity on S.
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Matrix encoding path problems

(S, ⊕, ⊗, 0, 1) a semiring
G = (V , E) a directed graph
w ∈ E → S a weight function

Path weight
The weight of a path p = i1, i2, i3, · · · , ik is

w(p) = w(i1, i2)⊗ w(i2, i3)⊗ · · · ⊗ w(ik−1, ik ).

The empty path is given the weight 1.

Adjacency matrix A

A(i , j) =


w(i , j) if (i , j) ∈ E ,

0 otherwise
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The general problem of finding globally optimal paths

Given an adjacency matrix A, find R such that for all i , j ∈ V

R(i , j) =
⊕

p∈P(i, j)

w(p)

How can we solve this problem?
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Matrix methods

Matrix powers, Ak

A0 = I

Ak+1 = A⊗ Ak

Closure, A∗

A(k) = I⊕ A1 ⊕ A2 ⊕ · · · ⊕ Ak

A∗ = I⊕ A1 ⊕ A2 ⊕ · · · ⊕ Ak ⊕ · · ·

Note: A∗ might not exist. Why?

tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applications to Internet Routing Lecture 01T.G.Griffin c©2013 41 / 53



Matrix methods can compute optimal path weights

Let P(i , j) be the set of paths from i to j .
Let Pk (i , j) be the set of paths from i to j with exactly k arcs.
Let P(k)(i , j) be the set of paths from i to j with at most k arcs.

Theorem

(1) Ak (i , j) =
⊕

p∈Pk (i, j)

w(p)

(2) A(k)(i , j) =
⊕

p∈P(k)(i, j)

w(p)

(3) A∗(i , j) =
⊕

p∈P(i, j)

w(p)

Warning again: for some semirings the expression A∗(i , j) might not
be well-defeind. Why?
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Proof of (1)

By induction on k . Base Case: k = 0.

P0(i , i) = {ε},

so A0(i , i) = I(i , i) = 1 = w(ε).

And i 6= j implies P0(i , j) = {}. By convention⊕
p∈{}

w(p) = 0 = I(i , j).
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Proof of (1)

Induction step.

Ak+1(i , j) = (A⊗ Ak )(i , j)

=
⊕

1≤q≤n

A(i , q)⊗ Ak (q, j)

=
⊕

1≤q≤n

A(i , q)⊗ (
⊕

p∈Pk (q, j)

w(p))

=
⊕

1≤q≤n

⊕
p∈Pk (q, j)

A(i , q)⊗ w(p)

=
⊕

(i, q)∈E

⊕
p∈Pk (q,j)

w(i , q)⊗ w(p)

=
⊕

p∈Pk+1(i, j)

w(p)
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When does A(∗) exist? Try a general approach.

(S, ⊕, ⊗, 0, 1) a semiring

Powers, ak

a0 = 1
ak+1 = a ⊗ ak

Closure, a∗

a(k) = a0 ⊕ a1 ⊕ a2 ⊕ · · · ⊕ ak

a∗ = a0 ⊕ a1 ⊕ a2 ⊕ · · · ⊕ ak ⊕ · · ·

Definition (q stability)

If there exists a q such that a(q) = a(q+1), then a is q-stable. Therefore,
a∗ = a(q), assuming ⊕ is idempotent.
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More Fun Facts

Fact 3
If 1 is an annihiltor for ⊕, then every a ∈ S is 0-stable!

Fact 4
If S is 0-stable, then Mn(S) is (n − 1)-stable. That is,

A∗ = A(n−1) = I⊕ A1 ⊕ A2 ⊕ · · · ⊕ An−1

Homework number 1
Prove Fun Facts 1, 2, 3, 4.
Define a non-commutative semigroup (S, ⊕) where ≤L

⊕ is
anti-symmetric.
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Shortest paths example, (N∞, min, +)

1

2

3

4

5

6

5 42

1

4

3

The adjacency matrix

A =



1 2 3 4 5

1 ∞ 2 1 6 ∞
2 2 ∞ 5 ∞ 4
3 1 5 ∞ 4 3
4 6 ∞ 4 ∞ ∞
5 ∞ 4 3 ∞ ∞


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Shortest paths example, (N∞, min, +)

1

2

3

4

5

6

5 42

1

4

3

Bold arrows indicate the
shortest-path tree rooted at 1.

The routing matrix

R =



1 2 3 4 5

1 0 2 1 5 4
2 2 0 3 7 4
3 1 3 0 4 3
4 5 7 4 0 7
5 4 4 3 7 0


Matrix R solves this global
optimality problem:

R(i , j) = min
p∈P(i, j)

w(p),

where P(i , j) is the set of all paths
from i to j .
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Widest paths example, (N∞, max, min)

1

2

3

4

5

2

1 3

6 4

5 4

Bold arrows indicate the
widest-path tree rooted at 1.

The routing matrix

R =



1 2 3 4 5

1 ∞ 4 4 6 4
2 4 ∞ 5 4 4
3 4 5 ∞ 4 4
4 6 4 4 ∞ 4
5 4 4 4 4 ∞


Matrix R solves this global
optimality problem:

R(i , j) = max
p∈P(i, j)

w(p),

where w(p) is now the minimal
edge weight in p.
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Unfamiliar example, (2{a, b, c}, ∪, ∩)

1

2

3

4

5

{a}

{b c} {b}

{a b} {b}

{a b c} {c}

We want a Matrix R to solve this
global optimality problem:

R(i , j) =
⋃

p∈P(i, j)

w(p),

where w(p) is now the intersection
of all edge weights in p.

For x ∈ {a, b, c}, interpret x ∈ R(i , j) to mean that there is at least
one path from i to j with x in every arc weight along the path.
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Unfamiliar example, (2{a, b, c}, ∪, ∩)

The matrix R

1 2 3 4 5

1 {a b c} {a b c} {a b c} {a b} {b c}
2 {a b c} {a b c} {a b c} {a b} {b c}
3 {a b c} {a b c} {a b c} {a b} {b c}
4 {a b} {a b} {a b} {a b c} {b}
5 {b c} {b c} {b c} {b} {a b c}


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Another unfamiliar example, (2{a, b, c}, ∩, ∪)

1

2

3

4

5

{a}

{b c} {b}

{a b} {b}

{a b c} {c}

We want matrix R to solve this
global optimality problem:

R(i , j) =
⋂

p∈P(i, j)

w(p),

where w(p) is now the union of all
edge weights in p.

For x ∈ {a, b, c}, interpret x ∈ R(i , j) to mean that every path from i
to j has at least one arc with weight containing x .
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Another unfamiliar example, (2{a, b, c}, ∩, ∪)

The matrix R

1 2 3 4 5

1 {} {} {b} {b} {}
2 {} {} {b} {b} {}
3 {b} {b} {} {b} {b}
4 {b} {b} {b} {} {b}
5 {} {} {b} {b} {}


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