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Dijkstra’s algorithm

Input : adjacency matrix A and source vertex i ∈ V ,
Output : the i-th row of R, R(i , _).

begin
S ← {i}
R(i , i)← 1
for each q ∈ V − {i} : R(i , q)← A(i , q)
while S 6= V

begin
find q ∈ V − S such that R(i , q) is ≤L

⊕ -minimal
S ← S ∪ {q}
for each j ∈ V − S

R(i , j)← R(i , j)⊕ (R(i , q)⊗ A(q, j))
end

end
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Classical proofs of Dijkstra’s algorithm (for global
optimality) assume

Semiring Axioms

ADD.ASSOCIATIVE : a⊕ (b ⊕ c) = (a⊕ b)⊕ c
ADD.COMMUTATIVE : a⊕ b = b ⊕ a

ADD.LEFT.ID : 0⊕ a = a
MULT.ASSOCIATIVE : a⊗ (b ⊗ c) = (a⊗ b)⊗ c

MULT.LEFT.ID : 1⊗ a = a
MULT.RIGHT.ID : a⊗ 1 = a

MULT.LEFT.ANN : 0⊗ a = 0
MULT.RIGHT.ANN : a⊗ 0 = 0
L.DISTRIBUTIVE : a⊗ (b ⊕ c) = (a⊗ b)⊕ (a⊗ c)
R.DISTRIBUTIVE : (a⊕ b)⊗ c = (a⊗ c)⊕ (b ⊗ c)
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Classical proofs of Dijkstra’s algorithm assume

Additional axioms
ADD.SELECTIVE : a⊕ b ∈ {a, b}

ADD.ANN : 1⊕ a = 1

Note that we can derive

RIGHT.ABSORBTION : a⊕ (a⊗ b) = a

and this gives (right) inflationarity, ∀a,b : a ≤ a⊗ b.
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Our goal will be simpler

Theorem 9.1
Given adjacency matrix A and source vertex i ∈ V , Dijkstra’s algorithm
will compute R(i , _) such that

∀j ∈ V : R(i , j) = I(i , j)⊕
⊕
q∈V

R(i , q)⊗ A(q, j).

That is, it computes one row of the solution for the right equation

X = XA⊕ I.

tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applications to Internet Routing Lecture 09T.G.Griffin c©2013 5 / 24



What will we assume?

///////////Semiring Axioms

ADD.ASSOCIATIVE : a⊕ (b ⊕ c) = (a⊕ b)⊕ c
ADD.COMMUTATIVE : a⊕ b = b ⊕ a

ADD.LEFT.ID : 0⊕ a = a
MULT.ASSOCIATIVE/////////////////////// : a⊗ (b ⊗ c)////////////// =// (a⊗ b)⊗ c//////////////

MULT.LEFT.ID : 1⊗ a = a
MULT.RIGHT.ID////////////////// : a⊗ 1////// =// a/

MULT.LEFT.ANN/////////////////// : 0⊗ a////// =// 0/

MULT.RIGHT.ANN//////////////////// : a⊗ 0////// =// 0/

L.DISTRIBUTIVE//////////////////// : a⊗ (b ⊕ c)////////////// =// (a⊗ b)⊕ (a⊗ c)/////////////////////

R.DISTRIBUTIVE//////////////////// : (a⊕ b)⊗ c////////////// =// (a⊗ c)⊕ (b ⊗ c)/////////////////////
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What will we assume?

Additional axioms
ADD.SELECTIVE : a⊕ b ∈ {a, b}

ADD.ANN : 1⊕ a = 1
RIGHT.ABSORBTION : a⊕ (a⊗ b) = a

Note that we can no longer derive RIGHT.ABSORBTION, so we must
assume it.
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Dijkstra’s algorithm, annotated version

Subscripts make proofs by induction easier ....

begin
S1 ← {i}
R1(i , i)← 1
for each q ∈ V − S1 : R1(i , q)← A(i , q)
for each k = 2,3, . . . , | V |

begin
find qk ∈ V − Sk−1 such that R(i , q) is ≤L

⊕ -minimal
Sk ← Sk−1 ∪ {qk}
for each j ∈ V − Sk

Rk (i , j)← Rk−1(i , j)⊕ (Rk−1(i , qk )⊗ A(qk , j))
end

end
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On to the proof ...

Main Claim

∀k : 1 ≤ k ≤| V | =⇒ ∀j ∈ Sk : Rk (i , j) = I(i , j)⊕
⊕
q∈Sk

Rk (i , q)⊗A(q, j)

Observation 1

∀k : 1 ≤ k <| V | =⇒ ∀j ∈ Sk+1 : Rk (i , j) = Rk+1(i , j)

This is easy to see — once a node is put into S its weight never
changes.
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Observation 2
Observation 2

∀k : 1 ≤ k ≤| V | =⇒ ∀q ∈ Sk : ∀w ∈ V − Sk : Rk (i , q) ≤ Rk (i , w)

By induction.
Base : Need 1 ≤ A(i , w). OK
Induction. Assume

∀q ∈ Sk : ∀w ∈ V − Sk : Rk (i , q) ≤ Rk (i , w)

and show

∀q ∈ Sk+1 : ∀w ∈ V − Sk+1 : Rk+1(i , q) ≤ Rk+1(i , w)

Since Sk+1 = Sk ∪ {qk+1}, this is means showing

(1) ∀q ∈ Sk : ∀w ∈ V − Sk+1 : Rk+1(i , q) ≤ Rk+1(i , w)
(2) ∀w ∈ V − Sk+1 : Rk+1(i , qk+1) ≤ Rk+1(i , w)
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By Observation 1, showing (1) is the same as

∀q ∈ Sk : ∀w ∈ V − Sk+1 : Rk (i , q) ≤ Rk+1(i , w)

which expands to (by definition of Rk+1(i , w))

∀q ∈ Sk : ∀w ∈ V−Sk+1 : Rk (i , q) ≤ Rk (i , w)⊕(Rk (i , qk+1)⊗A(qk+1, w)).

But Rk (i , q) ≤ Rk (i , w) by the induction hypothesis, and
Rk (i , q) ≤ (Rk (i , qk+1)⊗A(qk+1, w)) by the induction hypothesis and
RINF.
Since a ≤L

⊕ b ∧ a ≤L
⊕ c =⇒ a ≤L

⊕ (b ⊕ c), we are done.
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By Observation 1, showing (2) is the same as showing

∀w ∈ V − Sk+1 : Rk (i , qk+1) ≤ Rk+1(i , w)

which expands to

∀w ∈ V − Sk+1 : Rk (i , qk+1) ≤ Rk (i , w)⊕ (Rk (i , qk+1)⊗ A(qk+1, w))

But Rk (i , qk+1) ≤ Rk (i , w) since qk+1 was chosen to be minimal, and
Rk (i , qk+1) ≤ (Rk (i , qk+1)⊗ A(qk+1, w)) by RINF.
Since a ≤L

⊕ b ∧ a ≤L
⊕ c =⇒ a ≤L

⊕ (b ⊕ c), we are done.
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Observation 3
Observation 3

∀k : 1 ≤ k ≤| V | =⇒ ∀w ∈ V−Sk : Rk (i , w) =
⊕
q∈Sk

Rk (i , q)⊗A(q, w)

Proof: By induction:
Base : easy, since⊕

q∈S1

R1(i , q)⊗ A(q, w) = 1⊗ A(i , w) = A(i , w) = R1(i , w)

Induction step. Assume

∀w ∈ V − Sk : Rk (i , w) =
⊕
q∈Sk

Rk (i , q)⊗ A(q, w)

and show

∀w ∈ V − Sk+1 : Rk+1(i , w) =
⊕

q∈Sk+1

Rk+1(i , q)⊗ A(q, w)
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By Observation 1, and a bit of rewriting, this means we must show

∀w ∈ V−Sk+1 : Rk+1(i , w) = Rk (i , qk+1)⊗A(qk+1, w)⊕
⊕
q∈Sk

Rk (i , q)⊗A(q, w)

Using the induction hypothesis, this becomes

∀w ∈ V − Sk+1 : Rk+1(i , w) = Rk (i , qk+1)⊗ A(qk+1, w)⊕ Rk (i , w)

But this is exactly how Rk+1(i , w) is computed in the algorithm.
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Proof of Main Claim

Main Claim

∀k : 1 ≤ k ≤| V | =⇒ ∀j ∈ Sk : Rk (i , j) = I(i , j)⊕
⊕
q∈Sk

Rk (i , q)⊗A(q, j)

Proof : By induction on k .
Base case: S1 = {i} and the claim is easy.
Induction: Assume that

∀j ∈ Sk : Rk (i , j) = I(i , j)⊕
⊕
q∈Sk

Rk (i , q)⊗ A(q, j)

We must show that

∀j ∈ Sk+1 : Rk+1(i , j) = I(i , j)⊕
⊕

q∈Sk+1

Rk+1(i , q)⊗ A(q, j)
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Since Sk+1 = Sk ∪ {qk+1}, this means we must show

(1) ∀j ∈ Sk : Rk+1(i , j) = I(i , j)⊕
⊕

q∈Sk+1
Rk+1(i , q)⊗ A(q, j)

(2) Rk+1(i , qk+1) = I(i ,qk+1)⊕
⊕

q∈Sk+1
Rk+1(i , q)⊗ A(q, qk+1)

By use Observation 1, showing (1) is the same as showing

∀j ∈ Sk : Rk (i , j) = I(i , j)⊕
⊕

q∈Sk+1

Rk (i , q)⊗ A(q, j),

which is equivalent to

∀j ∈ Sk : Rk (i , j) = I(i , j)⊕(Rk (i , qk+1)⊗A(qk+1, j)),⊕
⊕
q∈Sk

Rk (i , q)⊗A(q, j),

By the induction hypothesis, this is equivalent to

∀j ∈ Sk : Rk (i , j) = Rk (i , j)⊕ (Rk (i , qk+1)⊗ A(qk+1, j)),
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Put another way,

∀j ∈ Sk : Rk (i , j) ≤ Rk (i , qk+1)⊗ A(qk+1, j)

By observation 2 we know Rk (i , j) ≤ Rk (i , qk+1), and so

Rk (i , j) ≤ Rk (i , qk+1) ≤ Rk (i , qk+1)⊗ A(qk+1, j)

by RINF.
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To show (2), we use Observation 1 and I(i ,qk+1) = 0 to obtain

Rk (i , qk+1) =
⊕

q∈Sk+1

Rk (i , q)⊗ A(q, qk+1)

which, since A(qk+1, qk+1) = 0, is the same as

Rk (i , qk+1) =
⊕
q∈Sk

Rk (i , q)⊗ A(q, qk+1)

This then follows directly from Observation 3.
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Finding Left Local Solutions?

L = (A⊗ L)⊕ I ⇐⇒ LT = (LT ⊗T AT )⊕ I

RT = (AT ⊗T RT )⊕ I ⇐⇒ R = (R⊗ A)⊕ I

where
a⊗T b = b ⊗ a

Notice that this exchanges RINF for LINF!

LINF : ∀a,b : a ≤ b ⊗ a
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Notes

Complexity of solving for left local optima?
I Previous work has shown that Bellman-Ford will find a solution as

long as only simple paths are explored — but no time bounds are
known.

I Dijkstra’s algorithm : O(V 3)
I Could do better in sparse graphs using Fibonacci heaps ...
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HW 2 : Recall a few definitions

Recall definition of a reduction
If S ≡ (S,⊕,⊗) is a semiring and r is a function from S to S, then r is a
reduction for S if for all a and b in S

1 r(a) = r(r(a))
2 r(a⊕ b) = r(r(a)⊕ b) = r(a⊕ r(b))
3 r(a⊗ b) = r(r(a)⊗ b) = r(a⊗ r(b))

Reduce operation
If (S, ⊕, ⊗) is semiring and r is a reduction, then let
redr (S) = (Sr , ⊕r , ⊗r ) where

1 Sr = {s ∈ S | r(s) = s}
2 x ⊕r y = r(x ⊕ y)
3 x ⊗r y = r(x ⊗ y)
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HW2 : A few more definitions

Recall: Lifted product semiring

Assume (S, ⊗, 1) is a monoid (a semigroup with identity 1). Define
the semiring

lift(S) = (Pfin(S), ∪, ⊗̂, {}, {1})

where
X ⊗̂Y = {x ⊗ y | x ∈ X , y ∈ Y}

for X ,Y ∈ Pfin(S), the set of finite subsets of S.

Definition: min-sets
Suppose that (S, ≤) is a pre-ordered set (reflexive, transitive
pre-order). Let A ⊆ S be finite. Define

min≤(A) ≡ {a ∈ A | ∀b ∈ A : ¬(b < a)}
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HW 2 : Questions 1 and 2

Question 1 (30 points)
Is it always the case that redr (S) is a semiring? If so prove this.
Otherwise impose some conditions on r that would guarantee that
redr (S) is a semiring.

Question 2 (40 points)
Is min≤ always a reduction for the semiring lift(S)? If not, impose
some constraints on ≤ and ⊗ that will result in min≤ being a reduction.
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HW2 : Question 3
The lecture notes introduced this “reduction”

r(∞) = ∞

r(s,W ) =

{
∞ if W = {}

(s,W ) otherwise

and then gave an example using the algebra

s ≡ redr (add_zero(∞, min_plus ~× sep(G)))

Question 3 (30 points)
(a) Show that r is not in fact a reduction.
(b) Suppose that A is an adjacency matrix over algebra s.

Looking only at the first component of the metric, suppose
there are no 0-weight cycles in the graph. Argue that
starting with any M and iterating using A〈k〉M we will arrive
at A∗.
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