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Dijkstra’s algorithm

Input : adjacency matrix A and source vertex i € V,
Output : thei-throw of R, R(i, _). J
begin
S« {i}
R(i, i)« 1
foreach g ¢ V —{i} : R(/, q) < A(i, q)
while S = V
begin
find g € V — Ssuch that R(/, q)is <% -minimal
S+ Su{q}
foreachjc V- S
R(i, j) < R(i, j)® (R(i, ) @ A(q, J))
end
end
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Classical proofs of Dijkstra’s algorithm (for global

optimality) assume

Semiring Axioms

ADD.ASSOCIATIVE
ADD.COMMUTATIVE
ADD.LEFT.ID
MULT.ASSOCIATIVE
MULT.LEFT.ID
MULT.RIGHT.ID
MULT.LEFT.ANN
MULT.RIGHT.ANN
L.DISTRIBUTIVE
R.DISTRIBUTIVE

ag(bec)
aeb
0Ooa
a(b®c)
1®a
a1l
O®a
a®0
a(bac)
(a®b)®c

(a® b)® (a®c)
(avc)d (b c)
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Classical proofs of Dijkstra’s algorithm assume

Additional axioms

ADD.SELECTIVE : a®b € {a, b}
ADD.ANN : 1®a = 1

Note that we can derive
RIGHT.ABSORBTION : a®(a®b) = a

and this gives (right) inflationarity, Va,b: a< a® b.
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Our goal will be simpler

Theorem 9.1

Given adjacency matrix A and source vertex i € V, Dijkstra’s algorithm
will compute R(/, _) such that

vj e V:R(i, j) =1(i.j) ® @R, q) @ Aq, ))-
qgeVv

That is, it computes one row of the solution for the right equation

X=XAasl
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What will we assume?

Beéiiing Axioms

ADD.ASSOCIATIVE
ADD.COMMUTATIVE

ADD.LEFT.ID
WIITINSB OO IVE

MULT.LEFT.ID
MU RIEWT Mo

MMULHLLRHTLANM
WNOALT [RGB WK
L/ DVERRAB T X

R/DISHRBUTIVE

ad(baoc)
aeb
O®a

; a1/ (0 1% 1)

1®a
e
0/thl4
440

ARk R)
L (BRYb) IR

B0

R R R KR KRI

(aeb)®c
bad a

a

(8121 6)/1# fe

a

4
0
0
(A 12/ 1) 1) K2 1)
(A 12/ Q) 11 (Mo1H 1¢)
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What will we assume?

Additional axioms

ADD.SELECTIVE : a®b € {a b}
ADD.ANN : 1oa = 1
RIGHT.ABSORBTION : a®(a®b) = a

Note that we can no longer derive RIGHT.ABSORBTION, SO we must
assume it.
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Dijkstra’s algorithm, annotated version

Subscripts make proofs by induction easier ....

begin
S1 < {I}
Ry(i, i) <1
foreach g c V — S; : Ry(i, q) <+ A(/, q)
foreach k=2,3,...,| V|
begin
find g € V — Sk_ such that R(i, g)is <L -minimal
Sk Sk—1 U {qk}
foreachjc V — Sy
R(i. /) + Ri1(i, /) ® (Re—1(i. qk) @ A(Gk, J)
end
end

tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applice T.G.Griffin©2013

8/24



On to the proof ...

Main Claim

vk 1<k<| V] = Vje S Rl )) = Ii,))® ) Reli, Q)0 A, J)
e[S

v

Observation 1

Vk:1<k<|V|= Vj€ S :Rli. j) = Res1(i. J)

This is easy to see — once a node is put into S its weight never
changes.
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Observation 2
Observation 2

Vk:1<k<|V|= VgeS:Ywe V—S:Ri(i, g) < Ri(i, w)

By induction.
Base : Need 1 < A(i, w). OK
Induction. Assume

Vg e Sk :Vw e V — Sk : Ri(i, ) < Rg(i, w)
and show
Vq € Sky1: YW € V — Si1 : Riy1 (i q) < Reqa (7, w)
Since Sk11 = Sk U{Qqk+1}, this is means showing

(1) Yge Sk:vwe V — Sk Reya(i, q) < Ripa(i, w)
(2) vw e V — Skt Rl Qiy1) < Ry (1, w)
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By Observation 1, showing (1) is the same as
Vq € Sk:Vw e V — Sciq: Ri(i, q) < Ripa(i, w)
which expands to (by definition of Ry 1(i, w))
Vg e Sk :Vw e V-Sk. 1 : Rk(i, 9) < Rk(i, w)B(Rk(i, qks1)A(Gkr1, W)

But Rk(/, q) < Rk(i, w) by the induction hypothesis, and

Rk(i, q) < (Rk(i, k1) ® A(Qk+1, W)) by the induction hypothesis and
RINF.

Since a<t bra<hbc = a<k (b®c), we are done.
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By Observation 1, showing (2) is the same as showing
Yw e V — Skt Re(i, Gkr1) < Ryya (i, w)
which expands to
Yw e V — Ski1: Re(i; grs1) < Ri(i, w) @ (Re(F; k1) @ A(Qks1, W))

But Rk(/, gk+1) < Rk(i, w) since gx;1 was chosen to be minimal, and

Ric(i, Qi+1) < (Ric(l, Qi+1) ® A(Qk+1, W)) by RINF.
Since a<i bra<hbc = a<k (b®c), we are done.
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Observation 3
Observation 3

Vk:1<k<|V|= Ywe V-Sc:Rg(i, w) = P Rk(i, 9)2A(q, w)
q€ Sk

Proof: By induction:
Base : easy, since

B Ri(i, 9) ©A(g, w) =T@A(i, w) = A(i, w) = Ry(i, w)
qeS;

Induction step. Assume

vYw e V — Sk : Rg(i, w) @Rk q) @ A(g, w)

Qe Sk
and show
VYw e V — Skiq1: Regr(i, w) @ Ri.1(i, 9) ® A(g, w)
QESk 41
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By Observation 1, and a bit of rewriting, this means we must show

YW € V—=Ski1 : Rey1 (i, W) = Re(i, Ghr1)®A(Ghs1, w)D ED Ri(i,
qeSk

Using the induction hypothesis, this becomes
Yw e V — Sk Reyr (i, w) = Ri(i, k1) @ A(Qks1, W) @ Re(i, w)

But this is exactly how R, 1(i, w) is computed in the algorithm.
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Proof of Main Claim

Main Claim

Vk:1<k<|V|= Vje S: R, ) =1(i,))® P Rk(i, 9)®A(q, j)

qeSk

Proof : By induction on k.
Base case: Sy = {i} and the claim is easy.
Induction: Assume that

Vj € Sk : Ri(i, j) =1(i,j) ® @D R«(i, q) ® A(q, J)
Q€ Sk

We must show that

Vj € Ski1 1 Rt (i, ) =10, )) & D Rur1(i, q) @ A(q, j)

Q€ Sk41
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Since Sk 1 = Sk U {Qgk+1}, this means we must show

(1) Vj € Sk : Rer1(i; ) =1(1,)) © Dges,,, Re+1(i, 9) @ A(q, )
(2) Riq1(i, Q1) =10, Q1) ® Dges,., Re1(/; @) @ A(Q, Gr+1)

By use Observation 1, showing (1) is the same as showing

Vje Sk:Ri(i, ) =1(i.) o @ Rk(i. )@ A, j),

QESk 11

which is equivalent to

Vj € Sk : Ri(i, j) = 1(i, )Rk (i, Grr1)2A(Gks1, 1)), & €D Rk(i, 9)@A(q,
Q€ Sk

By the induction hypothesis, this is equivalent to

Vj € Sk : Ri(i, j) = Ri(i, J) ® (Rk(/, Q1) @ A(Qk+1, /)

tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applice T.G.Griffin©2013 16/24



Put another way,
Vj € Sk : Re(i, J) < Rk(i, Q1) @ A(Qk+1, J)
By observation 2 we know R(i, j) < Rk(i, gk.1), and so

Ri(i, j) < Rk(i, gkr1) < Rk(i, Qkr1) @ A(Qkat, f)

by RINF.
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To show (2), we use Observation 1 and I(/, gx1) = 0 to obtain

Rk(i, k1) = €D Rk 9) @ A(G, Ghr1)

QESk 11

which, since A(Qk+1, Qk+1) = 0, is the same as

, Gk1) = EP Rk, 9) @ AQ, Gkrr)
qeSk

This then follows directly from Observation 3.
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Finding Left Local Solutions?

L=(AoL)el «— LT=(L"e"TAN)al

R"=(AT@"RT)al <= R=(RoA)®l

where
av’b=bwa

Notice that this exchanges RINF for LINF!

LINF:Va,b:a<b®a
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Notes

@ Complexity of solving for left local optima?

» Previous work has shown that Bellman-Ford will find a solution as
long as only simple paths are explored — but no time bounds are
known.

» Dijkstra’s algorithm : O(V3)

» Could do better in sparse graphs using Fibonacci heaps ...
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HW 2 : Recall a few definitions

Recall definition of a reduction

If S=(S,®,®)is asemiring and r is a function from Sto S, then ris a
reduction for Sifforallaand bin S

Q r(a)=r(r(a))
Q r(aeb)=r(r(a)eb)=r(asdr(b))
Q r(amb)=r(r(a®b)=r(a® rb))

Reduce operation

If (S, &, ®) is semiring and r is a reduction, then let
redr(s) = (Sr, @r, ®r) Where

Q S ={seS|r(s)=s}
Q xory=r(xoy)
Q x@ry=r(xey)
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HW?2 : A few more definitions

Recall: Lifted product semiring

Assume (S, ®, 1) is a monoid (a semigroup with identity 1). Define
the semiring

lift(S) = (Pa(S), U, &, {}, {1})
where
XY ={xey|xeX, yeVY}

for X, Y € Pan(S), the set of finite subsets of S.

Definition: min-sets
Suppose that (S, <) is a pre-ordered set (reflexive, transitive
pre-order). Let A C S be finite. Define

min<(A) = {ac€A|Vbe A:~(b< a)}
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HW 2 : Questions 1 and 2

Question 1 (30 points)

Is it always the case that red,(S) is a semiring? If so prove this.
Otherwise impose some conditions on r that would guarantee that
red,(S) is a semiring.

Question 2 (40 points)

Is min< always a reduction for the semiring lift(S)? If not, impose
some constraints on < and ® that will result in min< being a reduction.
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HW2 : Question 3

The lecture notes introduced this “reduction”

r(o) = oo
o W=}
r(s,W) = { (s, W) otherwise

and then gave an example using the algebra
s = red,(add_zero(co, min_plus X sep(G)))

Question 3 (30 points)
(a) Show that r is not in fact a reduction.

(b) Suppose that A is an adjacency matrix over algebra s.
Looking only at the first component of the metric, suppose
there are no 0-weight cycles in the graph. Argue that
starting with any M and iterating using A§vl|(> we will arrive
at A*.

v
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