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Algebra of Monoid Endomorphisms (AME) (See
Gondran and Minoux 2008)

Let (S, @, 0) be a commutative monoid.

(S, ® FC S— S, 0)is an algebra of monoid endomorphisms (AME)
if

evVicF, f(0)=0

e Vfe F,Vvb,ce S, f(bac)=f(b)®f(c)

| will declare these as optional
e Vf,ge F, fog e F (closed)
@ JieF,vVse S, i(s)=s
@ JweF,VneN, wn)=0

v

Note: as with semirings, we may have to drop some of these axioms in
order to model Internet routing ...
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So why do we want AMEs?

Each (closed with w and /) AME can be viewed as a semiring of
functions. Suppose (S, @, F, 0) is an algebra of monoid
endomorphisms. We can turn it into a semiring

F=(F, B, o, w, i

where (f & g)(a) = f(a) ® g(a) and (f o g)(a) = f(g(a)).

But functions are hard to work with....
@ All algorithms need to check equality over elements of a semiring

@ f=gmeansvVac S, f(a) =g(a)
@ S can be very large, or infinite ...
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Lexicographic product of AMEs

(87 Ps, F)Q(T7 DT, G):(SXT7 G95';(‘697-7 FXG)

Theorem 11.3
D(SX T) <= D(S)AD(T)A(c(S) VK(T)) J
Where
Property  Definition
D Va,b,f, f(a® b) = f(a) ® f(b)
C va,b,f, f(a)=1f(b) = a=>b
K Va, b, f, f(a) = f(b)
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Functional Union of AMEs

(S, @, F)4m (S, @, G) = (S, @, F+ G)

Fact
D(S+m T) < D(S)AD(T)
Property Definition
Where — va.b,f: f(a® b) = (@) & 7(b)
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Left and Right
right

right(S, &, F) = (S, &, {i})

left
left(S, @, F) = (S, ®, K(S))

where K(S) represents all constant functions over S. For a € S, define
the function k4(b) = a. Then K(S) = {ka | a € S}.

v

Facts
The following are always true.

D(right(S))
D(left(S)) (assuming & is idempotent)
c(right(S))
K(left(S))

v
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Scoped Product (Think iBGP/eBGP)
SOT = (S X left(T)) +n, (right(S) X T)

Theorem 11.2
D(SOT) < D(S)AD(T).

O

SOT)
S X lef

D((S X left(T)) +m (right(S) x T))

S X left(T)) A D(right(S) X T)

S) A D(left(T)) A (c(S) v K(left(T)))

A D(right(S)) A D(T) A (c(right(S)) v K(T))

< D(S)AD(T)

(
(
(
(

<~—D
<~ D

Lexicographic Products in Metarouting. Alexander Gurney, Timothy G.
Griffin. International Conference on Network Protocols (ICNP), 2007.
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Routing Matrix vs. Path Matrix

@ Inspired by the the Locator/ID split work
» See Locator/ID Separation Protocol (LISP)

@ Let’'s make a distinction between infrastructure nodes V and
destinations D.

@ Assume VN D= {}

@ Mis a V x D mapping matrix

» M(v, d) # co means that destination (identifier) d is somehow
attached to node (locator) v
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Example of routing = path finding + mapping

3 --»{ o

A

H@_ &@ ]
RN

MR K w2
w2888 &

Mapping matrix

di >

1[5 6

2|13 7

matrix | solves F = 3|55
A [L=(AxL)al 4191
A*M |F=(AxF)oM 502 3

Routing matrix (paths implicit)
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More Interesting Example
attachment that is closest

(?--\(o, 3) » d
S ]

2 5 4 (0,2)

s

6 (0, 3)
A4
- (0, 1) -~ db

o
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: “Hot-Potato” Idiom — find

d o
(0,3) o

oo (0,1)
(0,2) (0, 3)

Mapping matrix

=
I
g »~ WO N =

-
I
g »~ WO N =

Routing matrix
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General Case

G = (V,E), nis the size of V.
A n x n (left) path matrix L solves an equation of the form
L=(A®L)al,

over semiring S.

D is a set of destinations, with size d.
A n x d routing matrix is defined as
F=L>M,

over some structure (N, O, ), where > € S — (N — N).
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routing = path finding + mapping

Does this make sense?

@ Once again we are leaving paths implicit in the construction.

@ Routing paths are best paths to egress nodes, selected with
respect to (J-minimality.

@ [-minimality can be very different from selection involved in path
finding.
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When we are lucky ...

matrix | solves
A* L=(AxL)al
A*>M | F=(AxF)OM

When does this happen?
When (N, O, ) is a (left) semi-module over the semiring S2.

2A model of Internet routing using semi-modules. John N. Billings and
Timothy G. Griffin. ReIMiCS11/AKA6 2009
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(left) Semi-modules

° (S, @, ®, 0, 1)is a semiring.

A (left) semi-module over S

Is a structure (N, O, >, Oy), where
@ (N, O, Op) is a commutative monoid
@ >isafunction> e (Sx N)— N
@ (avb)>m=ar (bx>m)
@ 0> m=0yp
@ S>> 6/\/ = 6N
e1>m=m
and distributivity holds,

Lb : s>(mOn) = ( (
RD : (s@t)pm = (s>m)O(t>m)
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Example : Hot-Potato

S idempotent and selective

S = (S @s, ®s)
T = (T,0r, ®7)
Dttt € S—=(SxT)=>(SxT)
S1 Dy (S, 1) = (S1®s 82, 1)

Hot(S, T) = (Sx T, &, b)),

where & is the (left) lexicographic product of &g and ®7.

Define >p,, on matrices

(Lo M)(i, d) = SgevL(i, q) >re M(q, d)
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Example of hot-potato routing

ad; [e )
- (0, 3) »|d 1] o0 o0
(0.3) = d 2] (0,3) oo
‘ M = 3 00 00

4

5

2/5 4 (0,‘2) s (0,1)

| — 3 % (0,2) (0, 3)
H Mapping matrix

6 4 (0, 3) a d>
Y

oy

'n
I

a A O N =

Nwon

NN W W

matrix | solves
A* L=(AxL)asl Routing matrix
A >y, M| F=(Apy, F)EM
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Example : Cold-Potato

T idempotent and selective

S = (S, &s, ®s)
T = (T,9r, ®7)
b € S—=(SxT)—(SxT)
S1 Dt (S2, 1) = (51 ®s82, 1)

Cold(S, T)=(Sx T, &, ),

where @ is the (left) lexicographic product of &5 and @ 7.

Define >, on matrices

(L>ep M)(i, d) = BgevL(i, q) >r: M(q, d)
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Example of cold-potato routing

ad; [e )
0.3) A1 2(1(0,3) o
M = 3 00 00

4

5

dj d>

2/5 4 (0,I2) s (0,1)

| — 3 % (0,2) (0, 3)
! Mapping matrix

6 4 (0, 3)

: 1[(4,2) (5, 1)
-(0,1)>d2 2 (472) (9’1)
F = 3[(3,2) (4 1)

41(7,2) (0,1)

51(0,2) (7, 1)

matrix | solves
A* L=(AxL)al Routing matrix
A >, M F:ADCPFéM
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