Interactive Formal Verification (L21)
Exercises

Prof. Lawrence C Paulson
Computer Laboratory, University of Cambridge

Lent Term, 2014

Interactive Formal Verification consists of twelve lectures and four prac-
tical sessions. The handouts for the first two practical sessions will not be
assessed. You may find that these handouts contain more work than you can
complete in an hour. You are not required to complete these exercises; they
are merely intended to be instructive. Many more exercises can be found
at http://isabelle.in.tum.de/exercises/. Note that many of these on-line ex-
amples are very simple, the assessed exercises are considerably harder. You
are strongly encouraged to attempt a variety of exercises, and perhaps to
develop your own.

The handouts for the last two practical sessions will be assessed to de-
termine your final mark (50% each). For each assessed exercise, please
complete the indicated tasks and write a brief document explaining your
work. You may prepare these documents using Isabelle’s theory presenta-
tion facility (See section 4.2 of the Isabelle/HOL manual) but this is not
required. You can combine the resulting output with a document produced
using your favourite word processing package. Please ensure that your spec-
ifications are correct (because proofs based on incorrect specifications could
be worthless) and that your Isabelle theory actually runs.

Each assessed exercise is worth 100 marks. Of those, 50 marks are for
completing the tasks, 25 marks are for the write-up and the final 25 marks
are for demonstrating a wide knowledge of Isabelle primitives and tech-
niques. To earn these final 25 marks, you may need to vary your proof style
and perhaps to expand some brief apply-style proofs into structured proofs;
the point is not to make your proofs longer (other things being equal, brevity
is a virtue) but to show that you have mastered a variety of Isabelle skills.
You could even demonstrate techniques not covered in the course.

To get full credit, your write-up must be clear. It can be brief, 2—4
pages. It should explain your proofs, preferably displaying these proofs if
they are not too long. It could perhaps outline the strategic decisions that
affected the shape of your proof and include notes about your experience in
completing it.

http://isabelle.in.tum.de/exercises/

Isabelle theory files for all four sessions can be downloaded from the
course materials website. These files contain necessary Isabelle declarations
that you can use as a basis for your own work.

You must work on these assignments as an individual; collaboration is
not permitted. Here are the deadlines:

e 1st exercise: Tuesday, 18th February 2014
e 2nd exercise: Thursday, 6th March 2014

Please deliver a printed copy of each completed exercise to student admin-
istration by midday on the given date, and also send the corresponding
theory file to Ip15@cam.ac.uk. The latter should be enclosed in a directory
bearing your name.

lp15@cam.ac.uk

1 Replace, Reverse and Delete

Define a function replace, such that replace x y zs yields zs with every
occurrence of x replaced by y.

consts replace :: "’a = ’a = ’a list = ’a list"
Prove or disprove (by counterexample) the following theorems. You may
have to prove some lemmas first.

theorem "rev(replace x y zs) = replace x y (rev zs)"
theorem "replace x y (replace u v zs) = replace u v (replace x y zs)"
theorem "replace y z (replace x y zs) = replace x z zs"

Define two functions for removing elements from a list: dell x xs deletes
the first occurrence (from the left) of x in xs, delall x xs all of them.

consts dell :: "’a = ’a list = ’a list"
delall :: "’a = ’a list = ’a list"

Prove or disprove (by counterexample) the following theorems.

theorem "dell x (delall x xs) = delall x xs"

theorem "delall x (delall x xs) = delall x xs"

theorem "delall x (dell x xs) = delall x xs"

theorem "dell x (dell y zs) = dell y (dell x zs)"
theorem "delall x (dell y zs) = dell y (delall x zs)"
theorem "delall x (delall y zs) = delall y (delall x zs)"
theorem "dell y (replace x y xs) = dell x xs"

theorem "delall y (replace x y xs) = delall x xs"
theorem "replace x y (delall x zs) = delall x zs"
theorem "replace x y (delall z zs) = delall z (replace x y zs)"
theorem "rev(dell x xs) = dell x (rev xs)"

theorem "rev(delall x xs) = delall x (rev xs)"

2 Power, Sum

2.1 Power

Define a primitive recursive function pow x n that computes z™ on natural
numbers.

consts
pow :: "nat => nat => nat"

Prove the well known equation z™" = (z")™:

theorem pow_mult: "pow x (m * n) = pow (pow x m) n"

Hint: prove a suitable lemma first. If you need to appeal to associativity
and commutativity of multiplication: the corresponding simplification rules
are named mult_ac.

2.2 Summation

Define a (primitive recursive) function sum ns that sums a list of natural

numbers: sum(ny,...,ng] =ny + - + ng.
consts
sum :: "nat list => nat"

Show that sum is compatible with rev. You may need a lemma.

theorem sum_rev: "sum (rev ns) = sum ns"

Define a function Sum f k that sums f from 0 up to k — 1: Sum f k =
FO+-+ flk—1).
consts
Sum :: "(nat => nat) => nat => nat"
Show the following equations for the pointwise summation of functions. De-

termine first what the expression whatever should be.

theorem "Sum (%i. f i + g i) k = Sum f k + Sum g k"
theorem "Sum f (k + 1) = Sum f k + Sum whatever 1"

What is the relationship between sum and Sum? Prove the following equation,
suitably instantiated.
theorem "Sum f k = sum whatever"

Hint: familiarize yourself with the predefined functions map and [i..<j] on
lists in theory List.

3 Assessed Exercise I:
Verifying a Tautology Checker

This exercise reproduces an example first done by Boyer and Moore [1]
during the 1970s. It concerns a topology checker for propositional logic with
only one connective, namely if-then-else.

@ ::= FALSE | TRUE | VAR n | IF ¢ THEN (1 ELSE @2

This one connective can represent all the familiar Boolean operators, such as
conjunction. We declare a datatype ifexpr of propositional formulas, using
natural numbers for the names of propositional variables.

datatype ifexpr =
FALSE
| TRUE
| VAR nat
| IF ifexpr ifexpr ifexpr

Task 1 A propositional formula is evaluated with respect to an environment
mapping all propositional variables to either true or false. A set of the “true”
variables is one simple representation of an environment. Define a function
eval :: [nat set, ifexpr] => bool to ewvaluate propositional formulas ac-
cording to the obvious semantics of the conditional operator. [5 marks]

The tautology checker requires if-expressions to be transformed into normal
form, where IF does not appear within the condition of an if-expression.
Normal form can be reached by repeatedly replacing

IF (IF ppl p2) q r by IF p (IF p1 q r) (IF p2 q r)

until this replacement is no longer possible.

Proving termination of a function to normalise an if-expression requires first
defining the following function, which provides an upper bound on the re-
cursive calls.

fun normrank :: "ifexpr = nat"
where
"normrank (IF p q r) =
normrank p + normrank p * normrank q + normrank p * normrank r"
"normrank p = 1"

Task 2 Write a function norm :: ifexpr = ifexpr to transform if-expressions
into normal form. Because the proof of termination involves normrank, it

is necessary to use function rather than fun. See section 4.1 of “Defining
Recursive Functions in Isabelle/HOL” for details. The termination proof
requires a very simple lemma about normrank, as well as some algebraic rea-
soning. [7 marks]

Task 3 Prove the following theorem, which states that mormalisation pre-
serves the meaning of a formula. [3 marks]

lemma norm_is_sound: "eval env (norm p) = eval env p"

Task 4 Define a predicate normalised :: ifexpr = bool that returns true
if and only if the given formula is in normal form. Then prove the following
result, which states that the normalisation function indeed converts formulas
into normal form. [5 marks]

lemma normalised_norm: "normalised (norm p)"

The tautology checker is defined as follows. The if-expression is assumed to
be normalised, so its condition can only be some variable n. The sets ts and
fs are assumed to be disjoint.

fun (sequential) taut :: "[nat set, nat set, ifexpr] => bool"
where
"taut ts fs FALSE = False"
| "taut ts fs TRUE = True"

| "taut ts fs (VAR n) = (n € ts)"
| "taut ts fs (IF (VAR n) q r) =
(if n € ts then taut ts fs q
else if n € fs then taut ts fs r
else taut (insert n ts) fs q A taut ts (insert n fs) r)"
| "taut ts fs p = False" — default case (overlapping patterns)

The main tautology checker begins with empty sets of true and false vari-
ables.

definition tautology
where "tautology p = taut {} {} (norm p)"

Task 5 Prove the following theorem, which states that any formula p ac-
cepted by the tautology checker evaluates to true. Hint: this will require a
lemma to be proved by induction, describing the behaviour of taut ts fs p,
assuming normalised p; you will need to find the right relationships among
env, ts and fs. [18 marks]

theorem tautology_sound: "tautology p = eval env p"

Task 6 Prove the following completeness theorem: any normalised formula
p such that eval env p evaluates to true for all env will be accepted by the
tautology checker. Hint: as in the previous task. [17 marks]

theorem tautology_complete: "(/env. eval env p) —> tautology p"

4 Assessed Exercise 11I:
Properties of Binomial Coefficients

The binomial coefficients arise in the binomial theorem. They are the ele-
ments of Pascal’s triangle and satisfy a great many mathematical identities.
Below, we examine some of these. The theory HOL/Library/Binomial con-
tains basic definitions and proofs, including the binomial theorem itself:

(a+ 1) = (3 k=0..n. (nchoose k) * a¥ x p? ~ k)

Many textbooks on discrete mathematics cover binomial coefficients. Infor-
mation about them is widely available on the Internet, including Wikipedia
and the lecture course notes available here:

http://www.cs.columbia.edu/"cs4205/files/CM4.pdf

Task 1 Prove the following theorem. Hint: it follows from the binomial
theorem, which is available under the name binomial. [4 marks]

lemma choose_row_sum: "(} k=0..n. n choose k) = 2°n"

Task 2 Prove the following two theorems, which concern sums of binomial
coefficients. [4 marks]

lemma sum_choose_lower:

"(>"k=0..n. (r+k) choose k) = Suc (r+n) choose n"
lemma sum_choose_upper:

"(3>"k=0..n. k choose m) = Suc n choose Suc m"

The built-in theorem setsum_reindex_cong allows a summation to be re-
indexed by any injective function. (The notion of set image is also used.)

[inj_on £ A; B=f “ A; Aa. a € A = ga=h (f a)]
— setsum h B = setsum g A

Task 3 Prove the following corollary of setsum_reindex_cong, which allows
the indexes of a summation to be reversed. [5 marks]

corollary natsum_reverse_index:
fixes m: :nat
assumes "Ak. n < k = k <n=—=gk=f (m+mn-k)"
shows "(>"k=m..n. f k) = (O k=m..n. g k)"

Task 4 Prove the following identity. In addition to the re-indexing result
Just proved, you will need another of the identities proved above. [10 marks]

lemma sum_choose_diagonal:
assumes "m<n"
shows "(> k=0..m. (n-k) choose (m-k)) = Suc n choose m"

The identity (") (") = (}) (:l__];;) is straightforward. But the need to show

the necessary divisibility properties complicates the Isabelle proof. The key
result we need is already available as binomial_fact_lemma:

k < n — fact k * fact (n - k) * (n choose k) = fact n
Task 5 Using it, prove the following divisibility property. [5 marks]

lemma fact_fact_dvd_fact:
fixes k::nat
shows "fact k * fact n dvd fact (n + k)"

Now the identity () (%) = () (:;2) can be proved by expressing binomial
coefficients in terms of factorials:

k < n = n choose k = fact n div (fact k * fact (n - k))

Common factors are then cancelled using the result just proved along with
the lemma div_mult_div_if_dvd:

[y dvd x; z dvd w] = x div y * (w div z) = x * w div (y * z)

The equational calculation is still short, but each step requires some justifi-
cation.

Task 6 Prove the identity, expressed as shown below. [18 marks]

lemma choose_mult_pi:
"((m+r+k) choose (m+k)) * ((m+k) choose k) =
((m+r+k) choose k) * ((m+r) choose m)"

Task 7 The formulation given above uses addition instead of subtraction,
which tends to complicate proofs about the natural numbers. Now that the
hard work has been done, establish the identity in its conventional form.

[4 marks]

lemma choose_mult:
assumes "k<m" "m<n"
shows "(n choose m) * (m choose k) =
(n choose k) * ((n-k) choose (m-k))"

References

[1] Robert S. Boyer and J Strother Moore. A Computational Logic.
Academic Press, 1979.

10

	Replace, Reverse and Delete
	Power, Sum
	Power
	Summation

	Assessed Exercise I: Verifying a Tautology Checker
	Assessed Exercise II: Properties of Binomial Coefficients

