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Nominal Sets and their Applications

Exercise Sheet

[∗ indicates a harder exercise]

Exercise 1. Let Tr, var : Tr → PfA and =α ⊆ Tr × Tr be as in Lecture 1.

(i) Prove by induction on the structure of abstract syntax trees t that the action (−) · (−) :
Perm A × Tr → Tr defined in Lecture 2 satisfies var(π · t) = {π a | a ∈ var t}.

(ii) Show that for any a, a′ ∈ A and π ∈ Perm A, π ◦ (a a′) = (π a π a′) ◦ π in Perm A.

(iii) Hence prove by induction on the derivation of t =α t′ from the rules inductively defin-
ing =α that if t =α t′, then π · t =α π · t′ holds for any π ∈ Perm A.

[If you are not confident about proofs by structural induction and rule-based induction, why
not try formulating your proofs in Agda, Coq or Isabelle/HOL.]

Exercise 2. Use Exercise 1 to show that if (a b) · t =α (a′ b) · t′ holds for some b ∈ A −
({a, a′} ∪ var(t t′)), then it holds for any such b. Use this to prove that =α is an equivalence
relation.

Exercise 3. The finite set fv t of free variables of t ∈ Tr is recursively defined by:

fv(V a) = {a}

fv(A(t, t′)) = (fv t) ∪ fv t′)

fv(L(a, t)) = (fv t)− {a}.

(i) Prove that for all π ∈ Perm A and t ∈ Tr, fv(π · t) = {π a | a ∈ fv t}.

(ii)∗ Prove that for all t ∈ Tr, ((∀a ∈ fv t)π a = a) ⇔ π · t =α t.
[Hint: proceed by induction on the size |t| of abstract syntax trees t, where |V a| = 0,
|A(t, t′)| = |t| + |t′|+ 1 and |L(a, t)| = |t| + 2, say. Note that |(a a′) · t| = |t|, so that
in the induction step for L(a, t) one can suitably freshen the bound variable, L(a, t) =α

L(a′, (a a′) · t), and apply the induction hypothesis to (a a′) · t.]

(iii) Deduce that the smallest support of the α-equivalence class [t]α in Λ = {[t]α | t ∈ Tr}
is fv t.

Exercise 4. (i) Show that in the category Nom the product of two objects X and Y is given
by their cartesian product as sets X ×Y = {(x, y) | x ∈ X ∧ y ∈ Y} with Perm A-action
π · (x, y) = (π · x, π · y).

(ii) What is the terminal object 1 in Nom?

(iii) Prove that for all (x, y) ∈ X × Y, supp(x, y) = supp x ∪ supp y.

Exercise 5. If X ∈ Nom, x ∈ X and A ∈ PfA, show that for all π ∈ Perm A that if A supports
x, then π · A , {π a | a ∈ A} supports π · x. Deduce that supp(π · x) = π · (supp x).
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Exercise 6. Show that f ∈ Nom(X, Y) is an isomorphism iff the function f is not only equiv-
ariant, but also a bijection.

Exercise 7. Continuing Exercise 4, show that Nom is a cartesian closed category. To do this,
show that the exponential of two nominal sets X and Y is given by the nominal set X �fs Y
of finitely supported functions defined in Lecture 3.

Exercise 8. Show that the name abstraction functor [A](−) : Nom → Nom is right adjoint
to the functor (−) ∗ A : Nom → Nom which sends each X ∈ Nom to

X ∗ A , {(x, a) ∈ X × A | a # x}

(with Perm A-action inherited from the product X ×A) and each f ∈ Nom(X, Y) to f ∗A ∈
Nom(X ∗ A, Y ∗ A), given by ( f ∗ A)(x, a) = ( f x, a).

To do this, first show that there is a well-defined equivariant function (−)@ (−) : ([A]X) ∗
A → X satisfying (〈a〉x) @ b = (a b) · x. This is called concretion and is the counit of
the adjunction: show that if f ∈ Nom(Y ∗ A, X), then there is a unique morphism f̂ ∈
Nom(Y, [A]X) satisfying f (y, a) = ( f̂ y) @ a, for all (y, a) ∈ Y ∗ A.

Exercise 9. Coproducts in Nom are given by disjoint union, X + Y , {(0, x) | x ∈ X} ∪

{(1, y) | y ∈ Y} with Perm A-action given by

{

π · (0, x) = (0, π · x)

π · (1, y) = (1, π · y).

Show that [A](X + Y) is isomorphic to ([A]X) + ([A]Y).

Exercise 10. Show that [A]A is isomorphic in the category Nom to the coproduct A + 1.

Exercise 11. For any discrete nominal set S (cf. Lecture 2), show that [A]S is isomorphic to S
in Nom.

Exercise 12. Show that for any X, Y ∈ Nom, [A](X × Y) is isomorphic to ([A]X)× ([A]Y).

Exercise∗13. Show that for any X, Y ∈ Nom, [A](X �fs Y) is isomorphic to ([A]X) �fs

([A]Y).

Exercise 14. Suppose ϕ(a) and ϕ′(a) are properties of atomic names a ∈ A whose extensions
{a | ϕ(a)} and {a | ϕ′(a)} give finitely supported subsets of A. Writing ( Na) ϕ(a) to indicate
that {a | ϕ(a)} is a cofinite set of atoms (cf. Lecture 7), show that this ‘freshness quantifier’
has the following properties:

(i) ¬( Na) ϕ(a) ⇔ ( Na)¬ϕ(a).

(ii) (( Na) ϕ(a) ∧ ( Na) ϕ′(a)) ⇔ ( Na) (ϕ(a) ∧ ϕ′(a)).

(iii) (( Na) ϕ(a) ∨ ( Na) ϕ′(a)) ⇔ ( Na) (ϕ(a) ∨ ϕ′(a)).

(iv) (( Na) ϕ(a) ⇒ ( Na) ϕ′(a)) ⇔ ( Na) (ϕ(a) ⇒ ϕ′(a)).

If X ∈ Nom and ϕ(a, x) determines a finitely supported subset of A × X, what in general
is the relationship between (∃x ∈ X)( Na) ϕ(a, x) and ( Na)(∃x ∈ X) ϕ(a, x)? And between
(∀x ∈ X)( Na) ϕ(a, x) and ( Na)(∀x ∈ X) ϕ(a, x)?
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Exercise 15. Use the α-structural recursion theorem for λ-terms from Lecture 5 to prove
the following α-structural induction principle for the nominal set Λ of λ-terms modulo α-
equivalence: if P ∈ PfsΛ satisfies

(∀a ∈ A) a ∈ P

∧ (∀e1, e2 ∈ Λ) e1 ∈ P ∧ e2 ∈ P ⇒ e1 e2 ∈ P

∧ ( Na)(∀e ∈ Λ) e ∈ P ⇒ λa. e ∈ P

then (∀e ∈ Λ) e ∈ P. [Hint: for any nominal set X, PfsX is isomorphic to X �fs 2; so we can
apply the recursion principle to functions from Λ to 2.]

Exercise 16. Show that a subset S of the nominal set A is finitely supported iff it is either
finite or cofinite (that is, its complement A − S is finite).

Exercise 17. (i) or each X ∈ Nom, show that

a\S , {x ∈ X | ( Na′) (a a′) · x ∈ S} (a ∈ A, S ∈ PfsX)

defines a name-restriction operation (Lecture 6) on PfsX.

(ii) When X = A, show that a\S = S − {a} if S is finite and a\S = S ∪ {a} if S is cofinite
(cf. Exercise 16).

Exercise∗18. Show that if (−)\(−) ∈ Nom(A × Y, Y) is a name-restriction operation on
Y ∈ Nom (Lecture 6), then for any X ∈ Nom, there is a name restriction operation (−)\1(−)
on X �fs Y satisfying

a # x ⇒ (a\1 f ) x = a\( f x)

for all a ∈ A, x ∈ X and f ∈ X �fs Y.
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