
LIPSIN: Line Speed Publish/Subscribe
Inter-Networking

TR09-0001

Document Properties:

Title of Contract Publish-Subscribe Internet Routing Paradigm

Acronym PSIRP

Contract Number FP7-INFSO-IST 216173

Start date of the project 1.1.2008

Duration 30 months, until 30.6.2010

Document Title: LIPSIN: Line speed Publish/Subscribe Inter-Networking

Date of preparation 09.01.2009

Author(s) Petri Jokela (LMF), Andras Zahemszky (LMF), Somaya
Arianfar (LMF), Pekka Nikander (LMF) and Christian
Esteve (LMF / Unicamp)

Responsible of the deliverable Petri Jokela

Phone: +358 9 299 2413

Fax: +358 9 299 3535

Email: petri.jokela@ericsson.com

Target Dissemination Level: PU

Status of the Document: Final

Version 1.00

Document location http://www.psirp.org/

Project web site http://www.psirp.org/

Document: TR09-0001

Date: 2008-06-03 Security: Public

Status: Final Version: 1.00

PSIRP LIPSIN 2! (6!)

Table of Contents
1 Introduction .. 1
2 Towards scalable pub/sub .. 3

2.1 Background ... 3
2.2 A straw-man design .. 5
2.3 The Network Architecture .. 5
2.4 Recursive bootstrapping .. 6
2.5 Forwarding on Bloomed link identifiers .. 7

3 Design .. 10
3.1 Rendezvous and Topology .. 10

3.2 Link IDs and LIT .. 10
3.3 Stateful functionality .. 15
3.4 Edge or border filtering .. 16

4 Evaluation .. 17
4.1 False positive probability ... 18
4.2 Data set .. 22
4.3 Packet-level Simulation ... 23
4.4 Forwarding table sizes .. 25
4.5 Security ... 26
4.6 Final remarks .. 28

5 Implementation and future work ... 30
6 Related work .. 33
7 Conclusions ... 35
8 Bibliography ... 37

This document has been produced in the context of the PSIRP Project. The PSIRP Project is part of the
European Community’s Seventh Framework Program for research and is as such funded by the
European Commission.
All information in this document is provided “as is” and no guarantee or warranty is given that the
information is fit for any particular purpose. The user thereof uses the information at its sole risk and
liability.
For the avoidance of all doubts, the European Commission has no liability in respect of this document,
which is merely representing the authors view.

LIPSIN: Line speed Publish/Subscribe

Inter-Networking

Petri Jokela, Andras Zahemszky, Somaya Arianfar, Pekka Nikander

Ericsson Research, NomadicLab

02420 Jorvas, Finland

firstname.secondname@ericsson.com

Christian Esteve Rothenberg

University of Campinas (UNICAMP)

School of Electrical and Computer Engineering

P.O. 6101, Sao Paulo, Brazil

chesteve@dca.fee.unicamp.br

January 11, 2009

Summary

In an attempt to solve many of the problems in the current Internet, a num-
ber of so-called clean slate approaches have been proposed. Common to many
of them is to focus on data, rather than nodes, and to use some sort of pub-
lish/subscribe, instead of send/receive, as the main API abstraction. In this
paper, we explore further the space where the pub/sub paradigm replaces send
/ receive completely, throughout the stack. In particular, we introduce a new
efficient forwarding architecture that naturally supports multicast and may be
relatively easily extended to support networking functions beyond forwarding,
including network coding and caching. The novelty of our approach consists
of compacting source route link identifiers in small Bloom-filter-based packet
headers. The suggested method is simple and can be readily implemented in
hardware for fast forwarding. Although we focus on a pub/sub-based architec-
ture in this paper, our forwarding method is not limited to pub/sub. It can be
used in any network setting with known link identifiers and sufficient topology
information allowing larger than hop-by-hop forwarding decisions.

Chapter 1

Introduction

The present host-oriented way of inter-networking [19] is based on routing pack-
ets using the destination host IP address. The network was designed to serve
the packet sender; it delivers the packet to the receiver the best it can. However,
this scheme does not consider the possibility that the receiver may not be will-
ing to receive that particular piece of data; the assumption was that the sender
will honour the recipient’s consent. Hence, the original design of the Internet
has led to an imbalance of powers, in which the sender has too much control
over the network, compared to the receiver. This is a root cause for a number
of well-known problems, such as unwanted traffic.

A number of mechanisms have been developed and turned out to be useful to
fight against problems caused by the present design. For example, firewalls are
used to protect hosts by aiming to block all unwanted traffic, and NAT boxes
provide partial protection by simply fracturing connectivity [38, 39]. However,
from a larger perspective, such mechanisms only lead to an armament com-
petition between those wanting protection and those wanting connectivity, for
legitimate or illegitimate reasons, thereby further reducing the potential utility
of the Internet.

In contrast to this background, information-centric inter-networking pro-
vides a new model for communication [19]. In an information-centric model,
the focus is on data, not nodes. The underlying nodes and hosts become more-
or-less impartial, possibly to an extent where they no longer have persistent,
IP-address-like names (cf. with [4]). We are not interested in the name of the
host that has converted the original information into the form and delivered it
to us, as long as the data is timely and correct.

In this paper, we focus on how to implement topic-based publish/subscribe [15],
or pub/sub for short, directly on the top of raw hardware, in a scalable manner.
To our knowledge, the proposed scheme is the first one that has the potential
of supporting pub/sub in Internet-like scales, allowing one to realistically con-
sider pub/sub, instead of IP-like approaches, as an inter-networking paradigm.
Furthermore, our scheme is not limited to publish/subscribe networks; instead,
it can be used in any network that has a rich-enough topology layer so that

1

our combination of source routing and stateful routing can be implemented; see
Section 3. Hence, it is plausible that the method could be used, for example, to
implement efficient IP multicast.

When designing a routing and forwarding system, one has to consider the
balance between the information stored in the forwarding nodes and the present
in the packet headers. In the basic IP design, the packet header contains the
destination address and all the forwarding nodes know their best next hop to-
wards all destinations. The only known way to make that design to scale is to
aggregate the address space so that state is needed only for each aggregate [14].

At the opposite end from the present Internet design lies strict source rout-
ing [36], with its well-known problems related to packet sizes and security [5]. In
strict source routing, the packet’s path is described, hop by hop, in the packet
header. A single forwarding node does not have to know anything else than its
neighbors; it just picks the next hop node from the packet header and delivers
the packet.

Our approach is based on an assumption that there are no stable end-to-end
addresses for the network nodes, for three reasons. First, such addresses might
foil most of our envisioned benefits in fighting unwanted traffic. Second, in an
information-centric architecture long-lived node addresses should not be needed.
Third, any such addresses used as identifiers are detrimental to the ability of
supporting mobility and multi-homing.

Such node-address-less design generates new kind of problems, especially
for routing and forwarding. Our Bloom-filter-based mechanism solves the for-
warding problem without end-to-end addressing, using a link-identifier-based
approach that combines elements from source routing and stateful routing, in a
flexible way. In particular, we show that our approach leads to fast hardware-
implementable forwarding decisions at the forwarding nodes, reduces the possi-
bilities for malicious nodes for sending unwanted traffic, and at the same time
could be scaled to Internet-wide scales.

Hence, the main contribution of this paper is showing that it is feasible
to build a scalable and secure multicast forwarding layer, allowing one to ex-
plore the space of source-addressable inter-networking instead of the present
destination-addressable internetworking schemes. In particular, our results in-
dicate that it should be possible to build flat content-based name spaces in a
scalable manner, contrary to previous results [8].

The rest of this paper is organised as follows. First, in Section 2, we motivate
our work and give an outline of our proposed methods. In Section 3, we go into
details of the design. Next, in Section 4, we provide extensive evaluation and
analysis, in the form of simulation results, to support the validity of the scalabil-
ity claims and accuracy of the results reported. In Section 5, we briefly describe
our early FreeBSD-based end-node implementation, provide some initial perfor-
mance measurements from our NetFPGA-based forwarding-node implementa-
tion, and discuss our plans for continuing with the implementation. Section 6
contrasts our work with related work, and Sec. 7 concludes the paper.

2

Chapter 2

Towards scalable pub/sub

2.1 Background

In the current frenzy of the so called clean slate network designs, different sorts
of publish/subscribe have become one of the more promising approaches [11, 24,
32, 37]. While the term “publish/subscribe” covers a wide variety of networking
approaches [15], the so-called topic-based publish/subscribe seems to offer the
best scalability. In our envisioned world, internet-networking is based on topic-
based publish/subscribe rather than the present send / receive paradigm [12,
32, 37]. In topic-based publish/subscribe, the basic unit of publication and
subscription is a topic, identified by a unique identifier.

From an architectural point of view, in a topic-based pub/sub a topic can
be thought as an identifier of a channel. Whenever there are events related
to the topic, information is delivered over the channel from the event source
to the subscribers. For example, if the topic refers to a document, whenever a
publisher publishes a new version of the document, the new version (or metadata
describing it) is sent.

An important feature of pub/sub inter-networking is that would allow us to
protect the hosts against most types of unwanted traffic. Basically, pub/sub
requires a subscription by the subscriber before any data moves. The architec-
ture becomes more balanced in power than the current Internet, allowing both
the sender and the receiver to exert a roughly equal amount of control over the
network.

The pub/sub abstraction allows the sender and the receivers to be separated
by time. For example, a subscriber may indicate its interest a long time before a
publisher has anything to publish, while another subscribe may come along only
later, once the publisher has already published some data, and get the latest
version of the data from a cache.

Overall, our aim is an information-centric inter-networking system that scales
to tens of billions of nodes and some 1015 active pub/sub topics, at the same
time reducing the relative amount of unwanted traffic by at least an order of

3

magnitude from its present level.

2.2 A straw-man design

Now, while almost all of the so-called clean slate designs are somehow based
on the assumption of an underlying network that forwards packets more-or-less
similar to the current Internet, we have envisioned a “post IP” world where
the inter-networking layer is based on topic-based pub/sub [12, 32, 37]. Hence,
instead of routing and forwarding packets based on a destination address, in
our architecture packets are ultimately routed based on a topic identifier. Fur-
thermore, we want to build a network where the receiver has a great deal of
control of what to receive, without the network being able to exert its power in
the form of content-based price discrimination [41].

Using these assumptions, it becomes natural to leave any solutions based
global end-to-end addressing behind, and move to the unmapped territory. A
straightforward way of implementing information-centric data delivery, where
the pieces of data have an identity of their own, is to set up a time-dependent
delivery-path or tree from the publisher to the subscribing nodes, based on the
topic identity. In such a solution, the routers along the path or tree are explicitly
configured to forward data based on the particular topic.

It is obvious that such a simple solution does not scale. First, the number
of potential topics and transmission events in the network is huge. The size of
the forwarding table in a single router would grow extremely large, as each new
subscription generates a separate piece of state at all routers residing on the
transmission path between the existing tree and the new subscriber. Second,
updating the forwarding tables due to subscribers’ churn would generate a large
amount of control traffic and take too long to process.

The straw-man design can be contrasted with IP multicast. In IP multicast,
the data source defines a group ID for the delivered data. The group ID is
announced to the potential receivers, who need to set up a connection towards
the source node. In practise, a receiver ”joins” the multicast group, and the
network forms a multicast tree based on the ”join” messages. As it is well
known, the approach has both scalability and deployability problems, as it, too,
involves adding state to all of the intermediate routers.

Our approach provides a flexible design where the network control func-
tions can vary the amount of routing information placed in the packet header
vs. installed at the network nodes.

In the following, we first briefly describe our overall pub/sub based inter-
networking architecture, and then present a forwarding solution that resembles
strict source routing but uses a fixed-sized, compact header, using Bloom filters,
suitable for fast hardware implementation. Furthermore, our solution hides the
network structure so that it is difficult, using only the forwarding information
from the packet headers, to figure out the path that any given packet will take.

4

Figure 2.1: Rendezvous, Topology, and Forwarding in pub/sub architecture

2.3 The Network Architecture

In our topic-based pub/sub architecture, the topics do appear at various layers
in the architecture, at the lowest layers representing single packets, higher up
channels, and still higher up documents. The applications can request publish
or subscribe access to these entities, typically asking existing entities in their
virtual memory to be published in the network, or network-based entities to be
subscribed and mapped to their virtual memory space.

While the overall architecture of the system is still work in progress (cf. [12]),
the approach can be described through a recursive approach [32], depicted in
Figure 2.1. At the bottom of the architecture lies the forwarding layer, the
main focus of this paper. Its main responsibility is to forward packets from
their sources to their sinks in an efficient, best-effort manner. The structure
above the forwarding layer can be divided into a data and control plane. At the
control plane, the topology management system creates a distributed awareness
of the structure of the network, similar to what today’s routing protocols do. On
the top of the topology management system lies the rendezvous system, which
is responsible for matching the interests of the publishers and subscribers.

At the data plane, at the top of the forwarding layer, in addition to the
traditional transport functions, such as error detection and traffic scheduling, we
envision a number of new network functions, such as opportunistic caching and
lateral error correction. The transport functions will work in concert, utilising
each other in a component wheel [12], similar to the way Haggle managers are
organised [33].

As in most pub/sub schemes, communication is based on multicast. In
our design, the basic communication scheme is functionally similar to IP-based
source specific multicast (SSM), with the IP multicast groups having been re-
placed by the topic identifiers1. Hence, in our architecture multicast is used
as the basic transmission method, and unicast is a special case of multicasting

1For multi-sender single-receiver situations, some sort of concast will be supported; see
Section 6.3.1 of [12].

5

with only one receiver.
Each publication is identified with a Rendezvous Identifier (RId). For the

purposes of this paper, it is sufficient to consider each RId to be unique, acting
as a handle to the publication2. When a publisher wants to publish a new
piece of information, it acquires a new RId from the system and instructs the
system where in its virtual memory space the publication data can be found.
Correspondingly, when a subscriber wants to get access to a piece of information,
it acquires the RId through an application specific means, e.g. from a well-
known directory, and asks the system to arrange the data to appear at its virtual
memory. It is the responsibility of the node-local part of the network to actually
announce each new publication to the rendezvous system, and correspondingly,
to request the rendezvous system to (eventually) arrange the data delivery to
take place.

Once the rendezvous system has identified a publication that has both a
publisher (or an up-to-date cache) and one or more subscribers, the network
requests the topology system to build a forwarding tree from the present location
of the data to the subscribers. While sounding trivial, the actual implementation
of the functionality in a scalable manner turns out to be quite complex.

In this paper, we concentrate mostly on channel-granularity publications and
only on the forwarding layer, including the way the topology system controls the
forwarding layer. We do not describe any particular solution for the rendezvous
mechanism or for the topology collection phase of the topology system, and we
do not discuss the transport functions at the data plane. Furthermore, we mostly
focus on intra-domain forwarding, i.e. forwarding inside a single autonomous
system (AS). As our architecture is recursive, the method can be applied also
on inter-AS routing.

2.4 Recursive bootstrapping

As mentioned above, we are creating a new network architecture on the as-
sumption that there is no end-to-end addressing scheme deployed. The only
initial way of communication is link-local broadcasting, used to bootstrap the
topology mapping and rendezvous systems [30]. As a part of the bootstrap-
ping process, we expect the topology system to create local static forwarding
paths for the purposes of the rendezvous system, thereby allowing publication
announcements and subscription requests to be forwarded between any nodes
and the rendezvous system.

This approach is applied in a recursive manner. That is, while at the local
links the rendezvous system runs directly on the top of the local broadcasting
function, without any topology management at all, at the higher layers the
rendezvous system relies on the static forwarding paths, created during the
bootstrap and provided by the lower layers.

2More precisely, each publication is identified with a < ScopeID, RendezvousID > pair.
The scopes both help the rendezous system to scale and to organise the publications.

6

We bootstrap the system bottom-up, assuming recursively that the layer
below offers (static) connectivity between any node and the rendezvous system.
At the lowest layer, this assumption is trivially true since any two nodes con-
nected by a shared link (wireline or wireless) can, by default, send packets that
the other node(s) can receive.

During the bootstrap process, the topology management functions on each
node learn their local connectivity, by probing or relying on the underlying layer
to provide the information. Then, in a manner similar to the current routing
protocols, they exchange information about their perceived local connectivity,
creating a map of the network graph structure. The same messages are simul-
taneously used to bootstrap the rendezvous system.

2.5 Forwarding on Bloomed link identifiers

In order to forward packets through the network, we use a hybrid approach
where the topology system both constructs Bloom-filters-based forwarding iden-
tifiers, used in a source-routing manner, and on demand installs new state at
the forwarding nodes. For both of these functions, we use an approch where the
links, not the nodes, have names.

For each point-to-point link, we assign two identifiers, called Link IDs, one
in each direction. For example, a link between the nodes A and B has two
identifiers,

−−→
AB and

←−−
AB. In the case of a multipoint link, such as a wireless link,

we consider each pair of nodes as a separate link. With this setup, we don’t
need any common agreement between the nodes on the link identities – each
link identity may be locally assigned, as long as the probability of duplicates is
low enough3.

Basically, a Link ID is an m-bit Bloom filter whith just k bits set to one.
In Sec. 4 we will discuss the proper values for m and k, and what are the
concequences if we change the values; however, for now it is sufficient to note
that typically k ≪ m and m is relatively large, making the Link IDs statistically
unique (e.g., m=256, k=5, Link IDs ≈ m!/(m − k)!). As briefly explained
above, the topology management system creates a graph of the network using
the Link IDs and connectivity information (creating the “topology map” or
“routing table”). Using the network graph, the topology system can determine
a forwarding tree for any publication, considering the locations of the publisher
and subscribers.

Now, when the topology management system gets a request to determine a
forwarding tree for a certain publication, it first creates a conceptual delivery
tree for the publication using the network graph. Once it has such an internal
representation of the tree, it knows which links the packets need to pass during
delivery, and it can determine when to use Bloom filters and when to create
state.

3As we will see later, under certain settings it is beneficial to coordinate the link identifiers
in a centralised manner, reducing the amount of forwarding loops and false positives.

7

Figure 2.2: Example of Link IDs assigned for links, as well as a publication with
a zFilter, built for forwarding the packet from the Publisher to the Subscriber.

In the default case, we use the source-routing-based approach. Basically,
we encode the all Link IDs of the tree into Bloom filter, placed in the packet
header. By having Link IDs taking the form of a BF-compatible bit vector
structure (m-bit long with k one bits), the topology module can create a usable
in-packet representation of the tree by simply ORing the Link IDs. Once all
link IDs have been added to the filter, a mapping from the rendezvous identifier
(RId) to the BF is given to the node acting as the data source, which can now
create packets that will be delivered along the tree. To distinguish the BFs in
the actual packet headers from other BFs, the in-packet Bloom filters (together
with an addional byte) are referred as zFilters4.

Each forwarding node acts on incoming packets roughly as follows. For each
link in its forwarding table, the outgoing Link ID is ANDed with the zFilter. If
the result matches with the Link ID, it is assumed that the Link ID has been
added to the zFilter and that the packet needs to be forwarded along that link.

With Bloom filters, matching may result with some false positives. In such
a case, the packet is forwarded along a link that was not added to the zFilter.
However, we do not consider this a problem as long as the rate of false positives
remains sufficiently low; see Section 4.1. Indeed, it is even possible to take
advantage of some packets being transmitted unnecessarily: the packets can be
opportunistically cached and used to fulfill possible future subscriptions.

Fixed-sized Bloom filters have a finite capacity; when the number of links
exceeds this capacity, the rate of false positives would raise to an unbearable
level. While we are able to increase the capacity somewhat through using some
clever coding choices, our fundamental approach in solving the capacity prob-
lem is twofold: Firstly, we use recursive layering [10] to divide the network into

4The name is not due to zfilter.com nor the e-mail filter, but due to one of the authors
reading Franquin’s Zorglub for the Nth time during the early days of the presented work.

8

suitably-sized components; see Section 3.4. Secondly, and perhaps more impor-
tantly, the topology system may dynamically add virtual links to the system5.

A virtual link is, roughly speaking, an unidirecitional delivery tree that con-
sists of a number of links. It has its own Link ID, similar to the real links.
Furthermore, the functionality in the forwarding nodes is identical: the Link
ID is compared with the zFilter in the incoming packets, and the packet is for-
warded with a match. The difference is that a virtual Link ID is associated with
several outgoing links at several routers, causing matches over the whole path.

In this section, we have outlined our architecture and especially the for-
warding system. As the astute reader has realised, the basic solution has some
shortages, e.g., how to deal with broken links or the (rare) loops that the system
inherently imposes due to the false positives. In the next sections, we describe
a number of enhancements to this basic forwarding solution, dealing with these
shortcomings.

5The virtual links may also be used to implement the aformentioned static forwarding
paths, needed by the rendezvous system.

9

Chapter 3

Design

In the previous section, we described our basic Bloom-filter-based forwarding
mechanism using Link IDs. In this section, we first consider the overall design
of the system. The rendezvous and topology functions are described without
going into too much details, on a level that is needed for understanding the
underlying forwarding layer operations. The forwarding layer itself is described
in detail, including Link ID Tags generation, creation and selection of the for-
warding Bloom filters, loop prevention, virtual links, fast recovery, and stateful
operations.

3.1 Rendezvous and Topology

The main purpose of the rendezvous system is to keep track of offered publica-
tions and to find publications matching with subscriptions. The topology system
has two main functions: to autonomously collect and maintain a representation
of the network graph (i.e. the “routing table”), and to create zFilters and virtual
links in response to requests from the rendezvous system. That is, the topology
system determines the most suitable delivery trees that are then implemented
at the forwarding layer in some combination of zFilters and virtual links.

An important aspect of the topology system is to optimize the trees, both in
the terms of latency as well as on, e.g., the amount of traffic and network usage.
For the purposes of this paper, we assume that for each request the topology
module initially selects a (semi)optimal delivery tree, to be implemented by the
forwarding layer.

3.2 Link IDs and LITs

We now introduce the concept of Link ID Tags (LITs) as an addition to the plain
Bloom-filter compatible Link IDs. That is, instead of each link being identified
with a single Link ID, every unidirectional link is associated with a set of d
LITs, uniformly computed by applying some mapping function (see Fig. 3.1).

10

Figure 3.1: Relation of one link identifier (link ID) to d Link ID Tags (LIT).
Example of d− LIT generation by using k hashes the Link ID.

That allows us to construct zFilters that can be optimized in terms of the false
positive rate and/or compliance with network policies. By introducing the LITs,
the actual Link IDs no longer need to be BF compatible but are free to take
any form (e.g., our baseline implementation uses 256-bit random bit vectors).

Hence, for each link, there are d LITs, where d is a system parameter that
can vary depending on the network. As we explore later, a practical value of d
is in the range of multiples of 2 between 2 to 32. The key idea is that we have
a set of LITs that each equivalently represents a given link. That allows us to
take advantage of the random distribution of the LITs, selecting them in a way
that leads to better performing BFs.

In the default configuration, each node assigns a random Link ID and com-
putes the corresponding d LITs for each of its outgoing links that it knows of.
This information is locally maintained in the topology system with d forwarding
tables containing the LIT entries of the active Link IDs.

Upon packet arrival, the zFilter and the corresponding LIT entries in the
forwarding table are ANDed in parallel. The packet is then forwarded on all
matching outgoing links (other than the link where the packet arrived from).
Fig. 3.2 provides a conceptional view of a forwarding element. The operation
is so fast that a long packet packet can be on its way out before the tail of the
packet has been received.

To achieve the maximal entropy in the bit distribution of each LIT, it would
be required to have k different hash functions per LIT1. However, we use the
double hashing technique to generate the d LITs efficiently, using only two ran-
dom independent hash functions, without any increase of the asymptotic false
positive probability. That is, we rely on the result of Kirsch and Mitzenmacher
[23] on linear combination of hash functions, concluding that in practice double
hashing matches the performance of random hashing. Two independent hash
functions h1(x) and h2(x) are used simulate i hash functions of the form:

gi(x) = h1(x) + i ∗ h2(x) + i2mod m (3.1)

Moreover, simple hash functions have been shown [23] to perform well enough

1The number k can be different for each LIT, which allows us to adapt to the different fill
factors of the BF, thereby yielding lower false positive rates.

11

Figure 3.2: Outgoing interfaces are identified by a Link IDs and d forwarding
tables indexed by Link ID Tags are maintained.

when the entropy of the elements to be hashed is sufficiently large, which is the
case of our pseudo-randomly generated link identifiers.

Furthermore, using the double hashing method, any LIT generation process
can be compactly represented by the set of indices i that were used to compute
the k positions of the LIT set to 1 (see forwarding table discussion in Sec. 4.4).
Therefore, as h1(x) and h2(x) are system wide parameters, only sharing d ∗ k
integers i is required to derive the LITs for any Link ID.

3.2.1 zFilter construction using LITs

The Link ID Tags enable a more flexible BF construction scheme by taking ad-
vantage of the power of choice [26] during the probabilistic process of generating
the zFilters. For each of the d LITs of every link to be inserted in the BF, a
candidate BF is generated by ORing one LIT representation at a time of each
link2 (see formal example algorithm 1). This results in having d candidate BFs
that are “equivalent” representations of a certain delivery tree, meaning that
the packet using any of the candidates will follow, at minimum, all the network
links inserted into the BF.

2In the case we allow different links having a different number of LITs, we simply reuse
the LITs in a modular fashion. For example, if a link as d = 4 and we are constructing the
7th candidate, we use the 3rd LIT.

12

Algorithm 1: Construction of d candidate BFs and selection based on
expected false positives.

Input: Link IDs of the delivery tree
Output: zFilter to be used as forwarding identifier

foreach Link ID in Delivery Tree do
foreach Link ID Tag LITi/ i ∈ [1 : d] do

Candidate BFi ← BFi OR LITi;
end

end
// Procedure to apply the filter selection criteria (e.g., BF with the best
fill factor)

Return zFilter ← SelectBest(BFi);

Due to the probabilistic nature of the LITs, each candidate BF constructed
by ORing the LITs will look different regarding the number and position of the
bits set to 1. The fill factor ρ (or the ratio of 1’s to 0’s) in the candidate BFs
will be key when counting for false positives. It can be shown that the false
positive rate of a BF is a function of the probability that a bit cell is empty (see
analysis in Sec. 4.1).

In addition to the actual BF, the packet header must now include the LIT
set index d of the selected BF. At packet forwarding time, the nodes receiving
the d-enhanced BF can pick the dth3 forwarding table entry that includes the
correct LIT, i.e. the same one that was used during the construction time. Our
approach thereby enables finer control over the effects of false positives while
keeping the appealing properties of the Bloom filters.

3.2.2 Selecting the optimal filter

When optimizing forwarding, for better performance in terms of lower false
positive probability we first consider two different, relatively simple strategies:

Lowest false positive after hashing (fpa): When every LIT contributes
with k bit positions set to one, selecting the best candidate BF implies simply
choosing the candidate BF with the lowest amount of 1’s. If different number k
of bits were used for the LIT representations, the selected BF should be the one
with the lowest false probability estimate after hashing: min{ρ0

k0 , . . . , ρd
kd}.

See details in Sec. 4.1.
Lowest observed false positive rate (fpr): Given a test set Tset of link

IDs, the candidate BF can be chosen after counting for false positives against
Tset. The objective is to minimize the observed false positives when querying
against a known set of Link IDs active in the routing elements along the delivery
path.

The fpa strategy is simple and aims at lower false positives rates for any
set of link IDs under membership test. On the other hand, the fpr yields the

3dkth entry in the case there are only k LITs associated with the link

13

best performance of false positives for a specific test set at the expense of higher
complexity.

Going further, the BF selection criteria can also take other network poli-
cies into consideration beyond false positives. For instance, we can check for
false positives of specific link IDs that may be troublesome, such as forwarding
packets towards non-peered domains, resource constrained regions, or potential
loops. Any such candidate BF would then be disregarded, even though it might
offer better false positive estimates in absolute terms. We call such selection
criteria as link avoidance, since it is based in penalizing those candidate BFs
that yield false positives when tested against sets of LITs to be avoided. Such
link test sets (Tset), for a specific criterion, can be weighted against each other
when choosing the final BF. For example, the following kinds of criteria could
be considered:

Routing policies: Tset of links to be preferably avoided due to inter/intra-
domain routing policies.

Congestion mitigation: Static Tset of links to be avoided due to traffic
engineering (e.g., low capacity links) and dynamic Tset containing links suffering
from congestion.

Subscribers density: Tset of links that lead to a dense area of subscribers
where false positives are expected to cause more cascaded false positives and
undesired traffic.

Security policies: Tset containing links to be avoided due to security con-
cerns.

With the d-choice LIT BF construction scheme, we have a powerful method
to construct a compact forwarding identifier that can reduce the effects of pack-
ets by reducing and confining false positives to certain network areas. Increasing
the power of choices (larger d values) leads to more possible combinations of
hash functions, and hence better chance of having optimal fill factors of the BFs.
However, a larger d implies larger forwarding tables that may not pay off the
gains in false positive rates. Section 4.3 provides more experimental insights on
these trade-offs.

3.2.3 Loop prevention

In some cases false positives can result in loops; for instance, consider the case
where a zFilter encodes a forwarding path A → B → C, but, due to a false
positive, the zFilter also matches with a separate link C → A, which is used
to forward packets from C to A. Without loop prevention, this will cause an
endless loop of A → B → C → A. Obviously, we can construct a set of links
that may cause a loop and use the pfr method above to select only loopless
candidate BFs. However, this may not guarantee loop free trees; for example,
the network graph presentation may not have all links in it, e.g. due to slow
reaction to network changes.

As an alternative solution, we start with each node knowing the neighboring
nodes’ outgoing Link ID and LITs towards the node itself. We call these as the
incoming Link ID and LITs. Now, for each incoming packet, the node checks the

14

incoming LITs of its interfaces, except the one from where the packet arrives,
and matches them to the zFilter in the packet. A match means that there is a
possibility for a loop, and the node caches the packet’s zFilter and the incoming
Link ID for a short period of time. In case of a loop, the packet will return
to this node over a different link than the cached one and the packet is simply
dropped.

3.3 Stateful functionality

3.3.1 Virtual Links

So far, a number of LITs have been inserted into a zFilter, each LIT representing
an individual physical link. However, in case of dense multicast trees, heavy
traffic, and long-lived connections, it becomes more efficient to identify sets of
individual links with a separate Link ID and a set of associated LITs. We call
such sets of links for virtual links. A single virtual link can define an end-to-end
path partly or completely. They are always unidirectional, but they may also
encode multicast trees instead of simple paths.

A virtual link may be generated by the topology layer whenever it sees the
need for such a link. The creation process consists of selecting the individual
links over which the virtual link is created, assigning the link a new Link ID, and
computing the LITs. Once the virtual link has been generated, the topology
layer needs to communicate the Link ID, together with the LITs (or their hash
indices) to the nodes residing on the virtual link.

Once the virtual link creation process is finished, we can use a LIT of this
virtual link in any zFilter instead of including all the individual LITs into it.
This reduces the probability of false positives when matching the zFilter on the
path. On the other hand, adding forwarding table entries into nodes increases
the sizes of the forwarding tables, but compared to the current situation with
IP routers, the sizes of the forwarding tables still remain relatively small, unless
a huge amount of virtual links needs to be added.

3.3.2 Fast recovery

Whenever a link or a node fails, all delivery trees flowing through the failed com-
ponent break. In this section, we consider two approaches for fast re-routing; in
particular, we examine the simple case where there is only one failed node(link)
on any given path.

Our first approach is to replace a failed link with a functionally equivalent,
preconfigured virtual link. We call this the VLId-based recovery approach. The
idea is to have a separate virtual backup path built for each physical link ID, to
be dynamically used in case of failure of a node determining that it no longer
can send packets out through one of its interfaces. This virtual backup path has
the same Link ID as the physical link it replaces, but is not active by default to
avoid false forwarding.

15

The main advantage of this approach is that there is no need to change
the zFilter in the packets; basically, it is enough that the node detecting a
failure sends an activation message over the replacement route, activating the
backup route for both the failed physical link and any virtual links flowing
over the physical link, and then starts to forward the packets normally. When
receiving the activation message, the nodes along the backup path reconfigure
their forwarding tables, starting to forward packets along the replacement path.
As a result, the packets flow, unmodified, over the replacement path.

Another approach is to have a separate Link ID (and LITs) for the replace-
ment route. In this method, when a node detects a failure, it adds the appropri-
ate LIT representing the replacement route into the zFilter in the packet. This
method does not add any additional signaling or state to the forwarding nodes,
but it increases the probability of false positives.

3.4 Edge or border filtering

Let us reconsider Fig. 2.1 on page 3. In the figure, the AS on the left and
the core on the right each form separate subnetworks, using zFilters internally.
As a result of the rendezvous systems asking the topology system to create a
forwarding path, each of the topology modules compute a suitable zFilter, to
be used internally. We present two alternative operations at the edge nodes,
depending if we use label switching or recursive stacking for the zFilters.

In the case of label switching, as the AS topology module realises that the
packets must continue to the core, it instructs the edge forwarding node to
record a mapping from the zFilter to the RId. Correspondingly, the core topol-
ogy module instructs the edge node to form a mapping from the RId to its
zFilter. Note, that a single zFilter may be used to carry packets from multiple
publications, each of having different RId and potentially a different set of sub-
scribers. Thus, each of the zFilters may be mapped to multiple RIds on both
directions.

Using the mappings, the edge node can now inspect incoming packets, filter
out false positives, replace the incoming zFilter in the packet with an outgoing
one, and pass the packet to the other network for delivery. In the case of
connecting multiple domains, the edge network may forward multiple copies
the packet, each having a different zFilter.

The main drawback is the huge amount of state required. Basically, there
needs to be a table entry for each active RId, which becomes impractical towards
the core. This method is mainly suitable for use at the edges of the network,
where the order of active RIds is likely to be millions.

In the case of recursive stacking, the packet carries two zFilters, one for the
inter-domain layer and the other one for intra-domain use.

The inter-domain zFilter contains only two links: one from the node closest
to the publisher to the border node, and another from the border node to the
node closest to the subscriber. These links are virtual in the sense that they
cannot be used for forwarding through the networks but for mapping purposes.

16

The edge node removes the intra-domain zFilter from the packet and de-
termines from the inter-domain zFilter the possible other edge nodes as well
as candidate internal subscriber virtual links. In our example , no edge nodes
exist in the zFilter and there would be only one entry for the local subscriber.
The edge node conceptually contacts the local topology layer, which determines
the proper intra-domain zFilter to be used for delivering the packet to the sub-
scriber. In practice, the local zFilter can usually be pre-determined and simply
looked up from a cache, or formed from a few cache entries by ORing together
the corresponding zFilters.

Even in this case the border router needs quite a lot of state, as it needs
to have a separate virtual link for each separate subscriber set. However, for
typical unicast and sparse multicast cases it suffices to have a separate entry
for each local edge node, which will can be scaled up to a few millions without
compromising the performance.

17

Chapter 4

Evaluation

The main objective of this section is to explore the scalability limits of the
zFilter forwarding approach. First, we study the false positive probability of
the proposed Bloom filters for different design parameters and optimizations.
Second, we estimate the amount of link IDs required to establish delivery trees
in typical intra-domain AS topologies for different subscribers’ density. Estab-
lishing a maximum false positive probability to achieve reasonable performance
levels (e.g., 5% false positives), we will be able to draw some conclusions on the
scalability of the zFilters without further extensions. Third, packet-level ns-3
simulations demonstrate the feasibility of LIPSIN and complement the previous
analysis with actual false positives measurements and insights on the forward-
ing efficiency. Finally, we conclude the evaluation section with considerations
on forwarding table sizes, security, and some final remarks.

4.1 False positive probability

As already described in Sec. 3.2, Link ID Tags are already in the form of
m-bit bit vectors with k bits set to one and are added to a candidate BFi

through a simple OR operation of the LITi. Assuming that the hash functions
to compute the LITs are uniform, it is easy to show [26, 17] that the a priori
false positive estimate fpb is the expected false positive probability for the given
set of parameters (m, n, k) before adding the set of elements:

fpb =

[

1−

(

1−
1

m

)k·n
]k

(4.1)

Setting the partial derivative of fpb with respect to k to zero, gives the number k
that minimizes the false positive probability. This is attained when k = log2 ·

m
n

,
and is rounded to an integer that determines the optimal number of ones in the
LIT representation.

Note that the definition of fpb does not involve knowing exactly how many
bits are finally set to one in the BF. Therefore, a more accurate estimate can be

18

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6
 6.5

 7
 7.5

 8
 8.5

 9
 9.5
 10

 12 16 20 24 28 32 36 40 44 48

fa
ls

e
 p

o
s
it
iv

e
 r

a
te

 (
%

)

links (#)

False positive rate vs. inserted links in 248-bit Bloom filters (k=5)

Standard BF (a priori)
Standard BF (observed)

d=8 fpa-optimized BF (observed)
d=8 fpr-optimized BF (observed)

Figure 4.1: Having more choices when constructing BFs leads to improved BFs:
≈ 1% better fpr in our region of interest (30-40 links or below 5% fpr).

given once the fill factor ρ of the filter is known; that is the factor of bits that
are set to one after all the keys are hashed. We can define the posterior false
positive estimate fpa as the expected false positive estimate after hashing the
elements:

fpa = ρk (4.2)

In practice, the prior and the posterior estimates are usually very close due
to their concentration around the mean. In our small size bit vector scenario,
every bit counts and fewer false positives will be key to the performance of our
system. The fpa optimized BF selection introduced in Sec. 3.2.2, is based on
finding the set of LITs with the smallest predicted fpa.

Finally, the observed false positive probability is the actual false positive rate
(fpr) that is observed when a set of queries are made on the BF:

fpr =
Observed false positives

Tested elements
(4.3)

Note that the fpr is an experimental quantity computed via simulation or actual
measurements and not a theoretical estimate. The minimum observed fpr of
the d candidate BFs provides a reference lower bound on the actual false positive
rate that we can achieve for a specific BF design (e.g., m = 248bits, kopt).

Recall that a fpr optimized selection of the LIT-based zFilters can be done
when the topology module bases the selection of the zFilter on the lowest ob-
served fpr after checking for false positives against a set of LITs expected in
the network path. Alternatively the sending node is provided with all candidate
zFilters and is able to use the one that shows the actual best fpr based on some
type of network feedback.

19

4.1.1 System parameters and experiment setup

We carry a set of simulations to get practical knowledge on the actual per-
formance and the design space of a the BF-based data structure for compact
representation of Link IDs. In order to have a small overhead in the packet
headers we set the size of the zFilter to 256 bits(248-bit BF + 8 reserved bits),
which is also a fair comparison value to the source and destination to pair of
IPv6 address fields (2 · 128bits).

Our goal is to evaluate how many links can be inserted in the zFilter for
a certain upper bound false positive probability Pmax = 5%. Recall that false
positives are traduced in data packets delivered over neighbouring link IDs not
included in the zFilter. However, the probability that a false positive propagates
over further links is multiplicative at each hop by Pmax, given the large space of
link IDs (m!/(m−k)!). Recall that in our data-centric inter-networking scenario
with massive opportunistic caching, such false positives are even less harmful;
if there is space available the data may be cached at these false locations thus
making the network usage more efficient.

We simulated many system parameters (k ∈ [4, 5, 6],d ∈ [2, 4, 8, 16, 32],)
and for pairwise combinations we run 500 tests counting for false positives by
querying for the presence of 1000 link IDs of a randomly generated disjoint Tset.
Figure 4.1 shows the false positive ratio results for d = 8 degrees of choice,
k = 5 for the standard BF and a kdist = {3, 3, 4, 4, 5, 5, 6, 6} to build the 8
candidate BFs. The points in the graph are the mean values of the experiments
and the error bars denote the standard error deviation. As expected, the best
performing BF (fpr optimization) is the one we can select when Tset is known.
The BF selected after observing its fill factor (fpa optimization) shows also
better performance than a standard BF with no choice (d=1). After inserting
32 elements, a fpa-optimized BF reduces on average the fpr in around 0.5% (from
2.75% to 2.25%) and the best performing candidate brings the fpr another 0.5%
down to under 1.8%. The performance gains increase with number of elements
inserted in the filter. The best BF candidate supports up to 43 elements before
reaching the 5% false positive rate. In comparison, the standard BF already
shows this fpr after having inserted around 38 links. These extra 5 links means
that more subscribers can be reached without loosing forwarding efficiency.

Figure 4.2 illustrates the performance gains of having 8 choices when con-
structing BFs. The percentage boxes illustrate the distribution of k among the
experiments when the BF is selected following the lower fpa criteria (see eq. 4.2)
and when the actual best performing BFs are considered. The percentage curve
highlights how often the used BF performed the best among the 8 candidates
in the standard BF scenario (figure 4.2(b)) and when the candidate BF was
selected after computing the lowest fpa (figure 4.2(a)). One can also appreci-
ate the adaptive selection characteristic of the kopt depending on the fill factor.
With ≈ 32 inserted elements, almost every second time the best performing BF
was selected just looking at the fill factor.

20

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

2 4 6 8 10121416182022242628303234363840424446485052545658

S
e
le

c
te

d
 B

F
 c

a
n
d
id

a
te

 (
%

)

Links in the BF (#)

% of fpa-based selected BFs with k=3
% of fpa-based selected BFs with k=4
% of fpa-based selected BFs with k=5
% of fpa-based selected BFs with k=6

% of actual best BF candidate matching

(a) fpa-based Bloom filter selection

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

2 4 6 8 10121416182022242628303234363840424446485052545658

S
e
le

c
te

d
 B

F
 c

a
n
d
id

a
te

 (
%

)

Links in the BF (#)

% of BFs with best actual fpr with k=3
% of BFs with best actual fpr with k=4
% of BFs with best actual fpr with k=5
% of BFs with best actual fpr with k=6

% of best BF candidate == standard BF (k=5, d=1, no opt.)

(b) fpr-based Bloom filter selection

Figure 4.2: Performance gains of d-LIT constructed BFs and the distribution
of kopt .

21

Table 4.1: Graph characterization of a subset of router-level AS topologies used
in the experiments.

AS 1221 1755 3257 3967 6461 TA2 Cost

Nodes (#) 104 87 161 79 138 65 37

Links (#) 151 161 328 147 372 108 57

Diameter 8 11 10 10 8 8 8

Radius 4 6 5 6 4 5 5

Max. degr. 18 11 29 12 20 10 5

Avg. degr. 2 4 3 3 5 3 3

4.2 Data set

Choosing realistic AS topologies to validate new forwarding algorithms is a chal-
lenging task, mainly due to the inaccuracies of the available data sets. One set
of data we used are 6 intra-domain AS topologies from Rocketfuel [2]. Though
not completely accurate, they are a common (best) practice to approximate
new forwarding schemes to real world scenarios. A second useful data set of
“realistic” router-level topologies is SNDlib [28], where contributors worldwide
have published their network maps to the research community. Recent studies
[34] have pointed out the limitations of the Rocketfuel data, suggesting that the
number of actual physical routing elements is less than the inferred one by their
measurement technique. We observed that Rocketfuel graphs are more complex
than the largest topologies in SNDlib. Four our purposes this fact (potential
inaccuracy) is actually good to stress our forwarding mechanisms.

We are also aware that switching elements are not present in topology maps
and could have an impact on the number of link IDs required as the number
of network element hops increase. However, we believe that routers should
be regarded as the significant networking units on which link IDs are defined,
letting layer 2 elements hidden from the topology function.

4.2.1 User density and number of links

We carried a series of experiment to estimate the number of links required to
establish delivery trees for different user densities. The experimental results for
the number of links required averaged over 6 different topologies are given in
Fig. 4.3. In the center figure, we show the case when one additional link ID
is required for the hop between the user and the first forwarding node. The
figure on the right presents the case where the leaf nodes represent rendezvous
points of the subscribers and therefore maintainance of forwarding state for their
attached users can be assumed. Finally, the left figure shows the experiment
snapshot from the largest router-level topology (AS 1239 - Sprint).

In the previous false positive probability analysis, we observed that 40 link
IDs is the maximum capacity of the zFilters to maintain the bandwidth waste

22

under control. For 40 link IDs, we can conclude that up to 10 users can be
reached over typical AS intra-domain topologies, or up to 20 users when some
state is maintained in the forwarding node where the users are attached.

4.3 Packet-level Simulation

Another important part of our evaluation studies was to implement our line
speed forwarding scheme in ns-3 [18]. First, it serves as a quick proof-of-concept
implementation of the LIPSIN idea. Second, it investigates its behaviour on
different topologies and gives a detailed picture about the effect of the different
parameters.

We implemented a zFilter-based forwarding layer over an existing Layer2 im-
plementation1. Over the forwarding layer, we implemented a simplified pub/sub-
based internetworking-layer to send publication data to a given rendezvous iden-
tifier. A separate topology module has all the information about the network
topology (user locations, Link IDs and LITs) and can thereby construct the
zFilter by defining a tree using the shortest paths between the publisher and
each subscriber. We also implemented a rough loop prevention method that
solves the problem of infinite loops by caching packet headers in the forwarding
elements that may potentially cause loops if a forwarded packet is received again
over another input interface.

In our experiments we investigated the different settings of the number of
forwarding tables (d), as well as the number of users interested in a publica-
tion (n). Furthermore, we investigated the effect of different LIT-sets for the
nodes(constant k, variable k distribution), and used different BF selection algo-
rithms (fpr/fpa optimization). We carried out our tests on the well-referenced
topologies (data set from Sec. 4.2) and performed 500 runs for each parameter
setting.

We can define the forwarding efficiency as the ratio of inserted links (pro-
grammed links in the zFilter) to forwarded links (actual links the packet tra-
versed through). This metric gives a notion of the bandwidth overhead due to
false-positive-based forwarding decisions.

We present the essence of our simulation results on Tables 4.2 and 4.3. Table
4.2 contains results using the fpa selection criteria with the above mentioned
distribution of k around 5. Besides the mean values, we also counted the 95%
percentiles to observe the sensibility of the results. We found that we have
adequate performance in all of the topologies, if we consider one publisher and
23 subscribers (≈ 32 links). When increasing the number of subscribers the
results tend to be more topology-dependent. AS3257 presents the poorest per-
formance, which can be expected due to its graph characteristics (many nodes,
high diameter and radius).

Table 4.3 sheds light on the fpa/fpr-based BF selection algorithms. From
the results we discovered an interesting relation between the distribution of k

1This was purely an early implementation choice. Ethernet or other Layer 2 MAC is not
required.

23

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

N
u
m

b
e
r

o
f
L
in

k
s
 r

e
q
u
ir
e
d
 t
o
 c

o
n
n
e
c
t
u
s
e
rs

Number of Users (1 Publisher, N-1 Subscribers)

Required links in Delivery Trees

Data set: AS 1239 (Sprint)
router-level topology [Rocketfuel]

 mean
 95%
 max

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

N
u
m

b
e
r

o
f
L
in

k
s
 (

in
c
lu

d
in

g
 1

 l
in

k
 I
D

 p
e
r

u
s
e
r)

Number of Users (1 Publisher, N-1 Subscribers)

Required Links (Avg 6 AS topologies) - with final user link ID

Average over 6 sample AS
router-level topology [Rocketfuel]

 mean
 95%
 max

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

N
u
m

b
e
r

o
f
L
in

k
s
 r

e
q
u
ir
e
d
 b

e
tw

e
e
n
 f
o
rw

a
rd

in
g
 n

o
d
e
s

Number of Users (1 Publisher, N-1 Subscribers)

Required Links (Avg 6 AS topologies)

Average over 6 sample AS
router-level topology [Rocketfuel]

 mean
 95%
 max

Figure 4.3: Simulation results on the number of links required to establish
delivery paths for different user densities over Rocketfuel topologies.

24

Table 4.2: ns-3 simulation results (d=8, multi-k=5).

Users AS
Links (#) Efic. (%) fpr (%)

mean 95% mean 5% mean 95%

4

TA2 8.6 12.7 99.92 100 0.02 0
1221 9.7 13.6 98.08 88.89 0.37 2.13
3257 9.6 13.5 99.83 100 0.02 0

8

TA2 15.6 20.0 99.6 94.12 0.2 1.59
1221 16.8 21.3 97.78 90.89 0.54 2.02
3257 17.9 22.9 98.95 91.3 0.28 1.25

16

TA2 25.7 30.9 97.92 91.67 0.83 2.67
1221 27.4 31.0 95.51 88.22 1.28 3.17
3257 31.3 36.7 92.37 79.58 1.76 3.86

24

TA2 34.1 38.8 95.2 87.18 1.95 4.63
1221 36.1 41.0 92.06 83.33 2.65 5.19
3257 42.2 48.1 82.27 67.69 4.17 6.96

32

TA2 41.4 46.0 92.04 84.31 3.46 6.46
1221 44.0 48.3 88.22 78.95 4.32 7.45
3257 52.2 57.9 71.47 59.34 7.3 10.41

and the optimization strategies. We observed that in our region of interest the
kconst = 5 performs better than the variable k distribution. As expected, fpr-
optimization successfully reduces the false positive ratio, and outperforms the
standard approach 2 or 3 times in the scenarios with 16 users. The gain of
using fpa-optimization instead of the standard algorithm is clear, although not
as significant as in the previous case. These improvements can be also observed
in the sample results of AS6161 on Fig. 4.4.

4.4 Forwarding table sizes

Each forwarding node maintains d forwarding tables with one entry for every
active Link ID and one associated outport value. In the basic system design,
the memory requirements for the LIT-based forwarding tables are:

FTmem = d ·#Links · [size(LIT) + size(PortOut)] (4.4)

Considering d = 8, 128 link IDs (physical & virtual), 248-bit LITs and 8 bits
for the outport, the total memory required for the forwarding table would be
≈ 256Kbit.

The d-LIT enhancement comes at a price of factor d in fast memory sizes.
Although this memory size is small due to the source-based routing approach,
there is room to design a more efficient forwarding table. Since LIT entries
will only contain k bits set to one, a sparse representation would only require
to store the k positions of the bits to be ANDed in the test membership on

25

Table 4.3: ns-3 simulation results comparing mean fpr values for different con-
figurations.

Users AS
links fpa-opt. (fpr %) fpr-opt. (fpr %) Stdrd.
mean kconst kdistr kconst kdistr k = 5

8

TA2 15.6 0.12 0.2 0 0 0.18
1221 16.83 0.44 0.54 0.26 0.26 0.55
3967 17.72 0.28 0.33 0.03 0.03 0.48
6461 17.18 0.32 0.39 0.06 0.07 0.36

16

TA2 25.7 0.54 0.83 0.01 0.03 0.8
1221 27.37 1.17 1.28 0.36 0.45 1.57
3967 29.04 1.13 1.29 0.24 0.34 1.48
6461 29.31 1.55 1.57 0.71 0.83 1.89

24

TA2 34.1 1.65 1.95 0.38 0.58 2.03
1221 36.14 2.48 2.65 1.21 1.33 3.55
3967 37.65 2.55 2.78 1.31 1.48 3.22
6461 39.60 3.72 3.79 2.81 2.86 4.86

packet arrival. Thereby, the size of each LIT entry is nor to only k · log2(LIT),
the total forwarding table size is thereby reduced to 48Kbit. Furthermore, if
we used a segmented hash approach where each hash to generate the LIT is
limited to a region of m

k
bits, each LIT entry would require just k · log2(

LIT
k

)
bits, which in our example is traduced to a total forwarding table size of 36Kbit.
Our first evaluations on a FPGA implementation suggest that the forwarding
performance is not penalized when adopting the sparse representation of the
LIT entries.

4.5 Security

The probabilistic nature of Bloom filters inherently provides the basis for most
of our security features. Furthermore, due to their construction, zFilters are
location specific, making it unlikely that any given zFilter could induce any
usable traffic if used outside of its intended links. Without knowledge of the
actual network graph, including the active Link IDs and LITs, it is unpractical
trying to guess a zFilter that would reach any set of host(s).

Consider a simple zFilter contamination attack, where a sending node can
try to use a BF with a large amount of 1’s (or even containing only 1’s) that
would result in the packet being broadcasted at every forwarding hop due to
matches over every link. A simple countermeasure, also observed in [40], is to
limit the amount of 1’s in a BF, e.g., to 50–70% of the bits. This can be easily
implemented in hardware without causing any additional delay. As a result, on
the average any randomly generated zFilter will match outgoing links only at
the false positive rate, which could be tuned in our system, e.g. to the level of
5%.

26

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 4 8 12 16 20 24 28 32
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

fa
ls

e
 p

o
s
it
iv

e
 r

a
te

 (
%

)

lin
k
 I
D

s
 (

#
)

users (#)

False positive evaluation in AS 6461 (d=8, k=5)

Required link IDs
Standard zFilter fpr
fpa-opt. zFilter fpr
fpr-opt. zFilter fpr

Figure 4.4: ns-3 simulation results for AS 6461.

In a more advanced attack, basically combining a LIT learning attack and
a zFilter re-use attack, an attacker may first attempt to figure out the LITs
of the links nearby it. For example, an attacker may attempt to lure lots of
subscribers from different parts of the network, thereby allowing it to learn a
number of valid zFilters originating at it and learning probable local LIT or
combination of LITs for the next few links by using AND for the received LITs.

The presented attack requires quite a lot of work and there are few di-
rect countermeasures. First, using more parallel LITs on links close to the
data sources makes collection more expensive. Second, uplink Link IDs can
be changed relatively often, forcing the attacker to restart. Third, varying the
selection of the Bloom filter (as described in Section 3.2.2), and using those
that have more ones, increases the probability that the attacker gets a too full
zFilter.

More generally, we can avoid many of the known, and probably a number of
still unknown attacks, by slowly changing the Link IDs over time. Thus, there
would not exist fixed zFilters that can be used for data between two points at
any time. The caveat would be that the connection between the hosts has to
be re-calculated once in a while. For actual data delivery, we expect higher
level virtual trees to be used deeper in the network which can be easily made
short-lived and thereby become unusable after the timer expires.

Finally, consider the situation where an attacker has succesfully launched a
DDoS attack. That is, there are lots of packets that do not belong to any active
subscription arriving at a victim. Initially, the victim can easily quench the
packet stream by changing its downlink LITs. After that, any upstream node
close to the victim can AND together the zFilters from the unwanted packets,
thereby determining if there are any LIT or combination LITs indicating a com-

27

mon data path. If there are any such links, the traffic can be further quenched
by requesting LIT changes also on those links. The above mentioned periodic
Link ID changes can then be used to extinguish the attack.

Looking at our system from a higher perspective, forwarding on a hash-
based data structure, such as proposed in our system, complies with several of
the steps recommended by Handley and Greenhalgh [16]. By separating the
roles of publishers and subscribers, basically any addressing scheme can be used
in the domain where the communicating entities reside. The use of periodically
changing link IDs avoids requiring global client identifiers.

In other words, the pub/sub paradigm inherently builds a powerful defense
architecture empowering the receivers. In our design, no forwarding state is
created if there aren’t a sufficient number of subscribers that have explicitly
indicated their interest in data delivery. We thereby avoid the typical problems
of multicast routers maintaining state of unnecessary multicast groups, e.g., an
attacker joining many low-rate multicast groups.

Our architecture has the potential to drastically reduce the amount of packet-
level or DDoS-like unwanted traffic by making it more costly for the sender.
Additionally, we are also considering other security mechanisms, such as using
cryptographic rendezvous identifiers or using hash chains or trees to verify the
integrity of packet sequences. However, the details fall beyond the scope of this
paper.

4.6 Final remarks

The results of our evaluation work suggest that we can make 40 Link IDs easily
available for stateless unicast traffic, covering sparse multicast, too, in small
world topologies. However, dense multicast still requires explicit state.

The small memory requirements of the forwarding tables and the line speed
matching of the outport LITs indicate that we could easily have a few hundreds
of Link IDs defined per physical interface. We believe that with such an amount
of Link IDs we can establish even more stable and larger (multi-hop) network
paths via virtual links, reaching thereby larger groups of users, perhaps up to a
few tens, without compromising the fast forwarding efficiency. The exact trade-
offs of leveraging the (physical) Link ID based forwarding with a certain amount
of virtual links has been left for future work.

Another direction towards scalability is to use a second BF, when higher
capacity zFilters are required. LITs are inserted into either one of the BF. The
forwarding nodes need to check for the presence of LinkIDs in both BFs. This
“double query” comes at the cost of increased zFilter construction time and
false positives rate.

With the diameter2 of the Internet appearing to be established around 4 [3]
and the assumption that the current Internet hass small world topology [21], on

2http://thyme.apnic.net/current/data-summary accessed in Nov. 2008: BGP routing
report average AS path length visible in the Internet = 3.6

28

average just 4 domain level hops are involved and less than 10 routers in typical
end-to-end connections.

We believe that our design, with the briefly sketched edge and border opera-
tions involving zFilter swapping and stacking, should easily scale to an Internet-
wide system. However, exact estimates for the memory requirements at the edge
routers is left for future work.

29

Chapter 5

Implementation and future
work

We have implemented two partial prototypes of the system, a FreeBSD-based
end-node prototype and a Stanford NetFPGA based forwarding node prototype.
The structure of the end-node prototype is depicted in Fig. 5.1. Each publication
is represented as a virtual memory area, depicted with a “P”. The PSIRP I/O
implements the needed system calls for creating new publications (reserving
memory areas), publishing, and subscribing. When allocating memory for a
publication, the pager is set to be a vnode pager, and the backing file to be in
the Filesystem in Userspace (FUSE)[1]. Hence, each publication is backed up
by a virtual file, located in a separate virtual file system running under FUSE.

In the current implementation, the actual contents of the file are kept only
in the memory. The physical memory pages are mapped onto the virtual mem-
ory of the psirpd daemon, the publisher (if any), and the subscribers (if any).
The mapping is copy-on-write, causing the kernel to allocate new pages if the
publisher or any subscriber modify pages that contain published data. When-
ever the publisher wants to publish a new version, the system creates a new
snapshot, basically marking any changed pages again as copy-on-write. In this
way, there is never need to copy data during the publication time and the sys-
tem can easily keep track of changed pages, eventually leading to more efficient
communications.

On a parallel track, we have implemented an early prototype of the forward-
ing node using Stanford NetFPGA [25]. Starting from the reference switch im-
plementation, we removed most of the unnecessary code in the reference pipeline
and replaced it with a simple zFilter switch. At this point, we have a hand
coded forwarding table, with eight parallel entries and support for only one LIT
(d = 1). The present implementation takes less than 100 lines of Verilog code.

In order to estimate the packet handling delay, we implemented a simple
measurement tool on FreeBSD, using a PC with two separate gigabit Ethernet
NICs. The tool sends a timestamped packet out through one NIC and waits

30

Figure 5.1: Overall view of the FreeBSD Prototype

for the packet to be returned through the other one. We measured the average
packet delay over 10000 packets, once with the NetFPGA on the path and
another time using a loopback cable. The results are given in Table 5.1 and
indicate that the switching delay on the NetFPGA is negligible. We are 95%
confident that adding the NetFPGA implementation increases the latency only
by 1.01-3.95 µs.

As the next steps, we will enhance the implementation to support dynamic
and larger forwarding tables, virtual links, and parallel LITs. Once done, we
will measure the performance in a three NetFPGA network, and compare that
with the NetFPGA reference Ethernet switch implementation.

We will integrate our end-node implementation with the rendezvous system
prototype, build by another group within our project. The resulting system,
while still lacking a proper topology system, will be functionally complete and
allow us to test pub/sub based applications in small network settings. We have
started to implement a proper topology management module, and we will also
enhance the system otherwise.

On a wider scope, we will continue with the evaluation when using vir-

Table 5.1: Preliminary NetFPGA implementation performance results. Pro-
cessing time in µs

NetFPGA loopback

Avg. 91.54 89.06

Samples 9969 9969

SD 37.46 37.27

SE 0.38 0.37

95% CI (90.8, 92.27) (88.33, 89.79)

31

tual Link ID to explore the signaling and state trade-offs of this enhancements
towards global scalability. Simulation work is going in the field of state-full
operations between network domains to implement the edge or border filter-
ing approaches. Moreover, we have not exhausted all dimensions of the zFilter
design parameters.

32

Chapter 6

Related Work

Related work falls into various categories, which we briefly discuss in the fol-
lowing paragraphs.

Pub/sub and multicast: To improve the network layer performance in
topic-based pub/sub systems, one approach is mapping pub/sub topics to IP
multicast groups, so data can be directly sent to subscribers with a single mes-
sage on the wire. However, this method, though network efficient, does not help
to solve the scalability issues of IP multicast. In case of many concurrent active
receiver groups, the routers are forced to maintain huge forwarding states due
to the lack of aggregation.

The authors of [31] revisit the case of IP multicast and propose Bloom filters
to aggregate active multicast groups inside a domain, piggybacking this infor-
mation in BGP updates. Their IP multicast design also includes a Bloom-filter-
based shim header in packets to represent AS-level paths of multicast packets.
Our work handles links as more general destination information than IP prefixes
and explores more dimensions of the pub/sub forwarding/routing space [42].

Fast forwarding: GMPLS[27] is being extensively used to provide fast
forwarding. By separating control and forwarding plane, it introduces more
flexibility and important performance gains with the pure hardware fast label
switching. However, it does not suit topic-based pub/sub because of the lim-
ited label space and no label aggregation capabilities. Some approaches have
tried to address this problem by the help of tunneling and group aggregation.
Our approach also benefits from the separation of these different planes and is
extremely hardware-friendly promising a line speed forwarding layer.

Source routing: The simplest form of source routing [36], is concatenating
the forwarding nodes’ network identifiers on the path between senders and re-
ceivers. Our zFilters address one of the main caveats of source routing, namely
the overhead of having to carry all the routing information in the packet. More-
over, our approach does not reveal these identifiers to the sending nodes, nor
the sequence or amount of hops involved.

In the PoMo architecture [29], the authors suggest a routing/forwarding
solution that trades overdeliveries for reduced state and reduced dependence of

33

node network locators. In [9], they propose a networking approach with link
identities having a pivotal role.

In line with our LIPSIN forwarding scheme, the BANANAS framework [22]
for explicit and multipath routing in the Internet is based on the observation
that a path can be encoded as a short hash (PathID) of a sequence of globally
known identifiers. While the focus of BANANAS relies on host-centric multi-
path communications, our design is centered around non-global, opaque Link
IDs and its compact representation for efficient information-oriented multicast
communication. Many of the schemes developed in [22] for route computation
and deployability over existing connectionless routing protocols (e.g., OSPF and
BGP extensions) may be borrowed to be used for LIPSIN over legacy networks.

Networking applications of Bloom filters: Bloom filters [6] have at-
tracted considerable attention from a networking application perspective. To-
day BFs are one of the most popular data structures, spanning their application
domain [7] from distributed environments (e.g., distributed caching) to hardware
implementations, becoming a daily aid for network processing applications (e.g.,
IP forwarding, security, etc.).

In Icarus [35], a method to detect possible loops in the routing by using
in-packet BF is presented. The security model proposed in [40] shares also the
principle of carrying a small BF in packets to provide data path authentication.

In resource location applications [7], BFs have been used to bias random
walks in P2P networks. In content-based pub/sub systems [20], summarized
subscriptions are created using BFs and used for event routing purposes and
general.

We can expect more and more applications Bloom filters and its derivatives
in future internetworking proposals relying in hash-based flat identifiers [13].

Improved Bloom filters: Prior work include the Power of Two Choices
filter [26] and the Partitioned Hashing [17], which combine the power of choices
at hashing time to improve the performance of BFs. Besides sharing the same
motivation, our fast forwarding application posses some extra challenges and
opportunities for optimization.

False positives are reduced in [17] by a careful choice of the group of hash
functions that are well-matched to the input elements. However, this scheme is
not practical in a distributed highly dynamic environments. The main idea of
[26], is also to choose one of c sets of hash functions so that the number of ones
in the filter is reduced. In our system we have the information of which group
of hash functions was used (d value) transmitted to the test-membership issuer
(forwarding nodes), avoiding thereby the caveat of checking multiple sets. On
the other hand, we need to stick to one set of hash functions for all elements
in the BF, whereas in [26] the optimal group of hash functions can be chosen
on an element base. However, in our small BF scenario we are able to select
an optimal BF after evaluating all d candidates. We recognize that there is
still room for optimization and other probabilistic compact representations and
design parameters could be used as long as simplicity is not sacrificed.

34

Chapter 7

Conclusions

In this paper, we presented the design, analysis, and partial implementations
for a recursive multicast-based forwarding layer, suitable for implementing very
large topic-based publish/subscribe networks. In a two-layer model, similar to
the present Internet inter-domain and intra-domain routing model, we are using
a slightly larger packet header (64 bytes) than the current Internet (IPv4’s 20
bytes and IPv6’s 40 bytes). While the intra-domain forwarding is straightfor-
ward with our design, in inter-domain case we need to maintain some additional
information about neighbour edge nodes at each of the domain’s edge nodes.

Our analysis and simulations indicate that we can easily support sparse mul-
ticast trees up to approximately 20 receivers per domain. For denser multicast
trees, one can either install a separate forwarding table entry for each group, or
implement partial trees that can be easily shared between groups. By installing
state in the network as and where required depending on the usage dynamics,
we expect that applying the recursive operations it should be possible to scale
our design into Internet-wide scales.

As our solution is based on partial source routing, it is potentially vulnerable
to the well-known problems known from IP source routing. While the actual
discussions are lengthy, we can summarise the security discussion by noting
that the Bloom filters are opaque and location dependent, making it hard to
construct targeted packets. We deal with the looping and packet amplification
problems by using preventive actions as well as detection in the network. Link
and node failures are handled using preconfigured hot spares.

While we only briefly defined the requirements for the control plane, in the
companion paper [42] we discuss the problems of multicast tree construction
and maintenance in more detail, and and show how the problem can be divided
into a number of subproblems, each separately solvable.

We have implemented two early prototypes of our system, one running
on FreeBSD (end node) and another based on the Stanford NetFPGA (for-
warding node). In the FreeBSD implementation, we have implemented an
publish/subscribe API using the virtual memory, resulting in zero-copy oper-
ations. With the present early NetFPGA-based implementation, forwarding

35

single packets takes only about 2.5 microseconds compared to a plain loopback
cable, suggesting a very fast packet forwarding plane.

Acknowledgments

We want to thank Sasu Tarkoma and Mikko Sarela for their valuable comments on the
various versions of the paper, Jukka Ylitalo and Jimmy Kjallman for implementing
the measurement tool and working together with Kristian Slavov and Teemu Rinta-
Aho on the FreeBSD implementation, and Jari Keinanen for the contribution to the
NetFPGA implementation.

36

Bibliography

[1] Fuse: File system in userspace. http://fuse.sourceforge.net/.

[2] Rocketfuel isp topology data. http://www.cs.washington.edu/research/networking/
rocketfuel/maps/weights-dist.tar.gz.

[3] D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen, D. Moon, and
S. Shenker. Accountable internet protocol (aip). In ACM SIGCOMM, 2008.

[4] H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy, S. Shenker, I. Stoica,
and M. Walfish. A layered naming architecture for the internet. In SIGCOMM
’04: 2004 conference on Applications, technologies, architectures, and protocols
for computer communications, pages 343–352, New York, NY, USA, 2004. ACM.

[5] S. M. Bellovin. Security problems in the TCP/IP protocol suite. SIGCOMM
CCR, 19(2):32–48, 1989.

[6] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Com-
mun. ACM, 13(7):422–426, 1970.

[7] A. Z. Broder and M. Mitzenmacher. Survey: Network applications of bloom
filters: A survey. Internet Mathematics, 1:485–509, 2004.

[8] M. Caesar, T. Condie, J. Kannan, K. Lakshminarayanan, and I. Stoica. Rofl:
routing on flat labels. SIGCOMM Comput. Commun. Rev., 36(4):363–374, 2006.

[9] K. L. Calvert, J. Griffioen, and L. Poutievski. Separating Routing and Forward-
ing: A Clean-Slate Network Layer Design. In In proceedings of the Broadnets
2007 Conference, September 2007.

[10] J. Day. Patterns in Network Architecture: A Return to Fundamentals. Prentice
Hall, 2008.

[11] M. Demmer, K. Fall, T. Koponen, and S. Shenker. Towards a modern communi-
cations api. In Proceedings of HotNets-VI, November 2007.

[12] D. (edit.). Conceptual architecture of PSIRP including subcomponent descrip-
tions. Deliverable d2.2, PSIRP project, Aug. 2008.

[13] C. Esteve, F. Verdi, and M. Magalhaes. Towards a new generation of information-
oriented internetworking architectures. In First Workshop on Re-Architecting the
Internet, Madrid, Spain, 12 2008.

[14] D. Estrin, Y. Rekhter, and S. Hotz. Scalable inter-domain routing architecture.
In SIGCOMM ’92: Conference proceedings on Communications architectures &
protocols, pages 40–52, New York, NY, USA, 1992. ACM.

[15] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The many faces
of publish/subscribe. ACM Comput. Surv., 35(2):114–131, 2003.

37

[16] M. Handley and A. Greenhalgh. Steps towards a dos-resistant internet architec-
ture. In FDNA ’04: ACM SIGCOMM workshop on Future directions in network
architecture, pages 49–56. ACM, 2004.

[17] F. Hao, M. Kodialam, and T. V. Lakshman. Building high accuracy bloom filters
using partitioned hashing. In SIGMETRICS ’07, pages 277–288. ACM, 2007.

[18] T. R. Henderson, M. Lacage, G. F. Riley, C. Dowell, and J. B. Kopena. Network
simulations with the ns-3 simulator. SIGCOMM’08 Demos, August 2008. Code
available: http://www.nsnam.org/releases/ns-3.1.tar.bz2.

[19] V. Jacobson, M. Mosko, D. Smetters, and J. J. Garcia-Luna-Aceves. Content-
centric networking: Whitepaper describing future assurable global networks. Re-
sponse to DARPA RFI SN07-12, 2007.

[20] Z. Jerzak and C. Fetzer. Bloom filter based routing for content-based pub-
lish/subscribe. In DEBS ’08: Proceedings of the second international conference
on Distributed event-based systems, pages 71–81, New York, NY, USA, 2008.
ACM.

[21] S. Jin and A. Bestavros. Small-world characteristics of internet topologies and
implications on multicast scaling. Comput. Netw., 50(5):648–666, 2006.

[22] H. T. Kaur, S. Kalyanaraman, A. Weiss, S. Kanwar, and A. Gandhi. Bananas:
an evolutionary framework for explicit and multipath routing in the internet.
SIGCOMM Comput. Commun. Rev., 33(4):277–288, 2003.

[23] A. Kirsch and M. Mitzenmacher. Less hashing, same performance: building a
better bloom filter. In ESA’06: Proceedings of the 14th conference on Annual
European Symposium, pages 456–467, London, UK, 2006. Springer-Verlag.

[24] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim, S. Shenker,
and I. Stoica. A data-oriented (and beyond) network architecture. In SIGCOMM
’07, pages 181–192, New York, NY, USA, 2007. ACM.

[25] J. W. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke, J. Naous,
R. Raghuraman, and J. Luo. Netfpga–an open platform for gigabit-rate network
switching and routing. In MSE ’07: Proceedings of the 2007 IEEE International
Conference on Microelectronic Systems Education, pages 160–161, Washington,
DC, USA, 2007. IEEE Computer Society.

[26] S. Lumetta and M. Mitzenmacher. Using the power of two choices to improve
bloom filters. Accepted to Internet Mathematics. Preprint version available at
http://www.eecs.harvard.edu/m̃ichaelm.

[27] E. Mannie. Generalized Multi-Protocol Label Switching (GMPLS) Architecture.
RFC 3945, Oct. 2004.

[28] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly. SNDlib 1.0–
Survivable Network Design Library. In Proceedings of the 3rd International
Network Optimization Conference (INOC 2007), Spa, Belgium, April 2007.
http://sndlib.zib.de.

[29] L. B. Poutievski, K. L. Calvert, and J. N. Griffioen. Routing and forwarding
with flexible addressing. Journal Of Communication and Networks, 9:383–393,
December 2007.

[30] J. Rajahalme, M. Särelä, P. Nikander, and S. Tarkoma. Incentive-compatible
caching and peering in data-oriented networks. In ReArch’08 - Re-Architecting
the Internet, Dec. 2008. Submitted.

38

[31] S. Ratnasamy, A. Ermolinskiy, and S. Shenker. Revisiting ip multicast. In Pro-
ceedings of ACM SIGCOMM’06, Pisa, Italy, Sept. 2006.

[32] M. Särelä, T. Rinta-aho, and S. Tarkoma. Rtfm: Publish/subscribe internetwork-
ing architecture. ICT Mobile Summit, Stockholm., June 2008.

[33] J. Scott, J. Crowcroft, P. Hui, and C. Diot. Haggle: a networking architecture
designed around mobile users. In 3rd Annual Conference on Wireless On-demand
Network Systems and Services, pages 78–86. IFIP, January 2006.

[34] R. Sherwood, A. Bender, and N. Spring. Discarte: a disjunctive internet cartog-
rapher. SIGCOMM Comput. Commun. Rev., 38(4):303–314, 2008.

[35] A. C. Snoeren. Hash-based ip traceback. In SIGCOMM ’01, pages 3–14, New
York, NY, USA, 2001. ACM.

[36] C. A. Sunshine. Source routing in computer networks. SIGCOMM Comput.
Commun. Rev., 7(1):29–33, 1977.

[37] S. Tarkoma, D. Trossen, and M. Särelä. Black boxed rendezvous based network-
ing. In ACM MobiArch ’08, 2008.

[38] J. Touch. Those pesky nats [network address translators]. Internet Computing,
IEEE, 6(4):96–, Jul/Aug 2002.

[39] M. Walfish, J. Stribling, M. Krohn, H. Balakrishnan, R. Morris, and S. Shenker.
Middleboxes no longer considered harmful. In OSDI’04, pages 15–15, Berkeley,
CA, USA, 2004. USENIX Association.

[40] T. Wolf. A credential-based data path architecture for assurable global network-
ing. In Proc. of IEEE MILCOM, Orlando, FL, October 2007.

[41] X. Yang, G. Tsudik, and X. Liu. A technical approach to net neutrality. In Fifth
Workshop on Hot Topics in Networks (HotNets-V), Nov. 2006.

[42] A. Zahemszky, A. Csaszar, P. Nikander, and C. Esteve. Exploring the pubsub
routing/forwarding space. In International Workshop on the Network of the Fu-
ture 2009, 2009. To be submitted.

39

