In Proceedings of ASPLOS-XIX, March 2014
Scale-Out NUMA

Stanko Novakowi Alexandros Daglis Edouard Bugnion Babak Falsafi  Boris f5rot

EcoCloud, EPFL
tUniversity of Edinburgh

Abstract enormous datasets in response to real-time queries. Te mini
fnize the response latency, datacenter operators keeptthe da
in memory. As dataset sizes push into the petabyte range, the
number of servers required to house them in memory can
easily reach into hundreds or even thousands.

Because of the distributed memory, applications that tra-
verse large data structures (e.g., graph algorithms) er fre
m_quently access disparate pieces of data (e.g., key-value

modity networking technologies, including RDMA, which stores) must do so over the datacenter network. As today’s
incur delays of 10-1000x over local DRAM operations. datacenters are built with commodity networking technglog
We introduce Scale-Out NUMA (soNUMA) — an ar- running on top of commodity servers and operating systems,
chitecture, programming model, and communication pro- Node-to-node communication delays can exceeqii io].
tocol for low-latency, distributed in-memory processing. In contrast, accesses to local mem(_)rymf_:ur_delays o_f around
SONUMA layers an RDMA-inspired programming model 60ns — a fagtor of 1OQO less. The irony is rich: moving the
directly on top of a NUMA memory fabric via a state- dat@ from disk to main memory yields a 100,000 reduc-
less messaging protocol. To facilitate interactions betwe tion in latency (10ms vs. 100ns), but distributing the meymor

the application, OS, and the fabric, SONUMA relies on the €liminates 1000x of the benefit. o

remote memory controller a new architecturally-exposed The reasons for the high communication latency are
hardware block integrated into the node’s local coherence Well known and include deep network stacks, complex
hierarchy. Our results based on cycle-accurate full-syste N€twork interface cards (NIC), and slow chip-to-NIC in-

simulation show that SONUMA performs remote reads at la- t€faces [21, 50]. RDMA reduces end-to-end latency by

tencies that are within 4x of local DRAM, can fully utilize enabling memory-to-memory data transfer_s over Infini-
the available memory bandwidth, and can issue up to 10m Band [26] and Converged Ethernet [25] fabrics. By expos-

remote memory operations per second per core ing remote memory at user-level and offloading network pro-
cessing to the adapter, RDMA enables remote memory read

Categoriesand Subject Descriptors  C.1.4 [Computer Sys-  |atencies as low as 1.19 [14]; however, that still represents
tem Organizatioh Parallel Architectures—Distributed Ar- 3 >10x latency increase over local DRAM.

Emerging datacenter applications operate on vast dataset
that are kept in DRAM to minimize latency. The large num-
ber of servers needed to accommodate this massive mem
ory footprint requires frequent server-to-server comroani
tion in applications such as key-value stores and graphebas
applications that rely on large irregular data structutd®
fine-grained nature of the accesses is a poor match to co

chitectures; C.5.5Gomputer System OrganizatioCom- We introduce Scale-Out NUMA (soNUMA), an archi-

puter System Implementation—Servers tecture, programming model, and communication protocol

Keywords RDMA, NUMA, System-on-Chips for distributed, in-memory applications that reduces rmo
memory access latency to within a small facter) of lo-

1. Introduction cal memory. sONUMA leverages two simple ideas to min-

imize latency. The first is to use a stateless request/reply
protocol running over a NUMA memory fabric to drasti-
cally reduce or eliminate the network stack, complex NIC,
and switch gear delays. The second is to integrate the proto-
col controller into the node’s local coherence hierarchyst
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tion threads making explicit remote memory read and write  The distributed nature of the data leads to frequent server-
requests with copy semantics. The model is supported byto-server interactions within the context of a given compu-
an architecturally-exposed hardware block, called¢neote tation, e.g., Amazon reported that the rendering of a sin-
memory controlle{RMC), that safely exposes the global ad- gle page typically requires access to over 150 services [17]
dress space to applications. The RMC is integrated into eachThese interactions introduce significant latency overbead

node’s coherence hierarchy, providing for a frictionléos/- that constrain the practical extent of sharding and the com-
latency interface between the processor, memory, andthe in plexity of deployed algorithms. For instance, latency adns
terconnect fabric. erations force Facebook to restrict the number of sequentia
data accesses to fewer than 150 per rendered web page [50].
Our primary contributions are: Recent work examining sources of network latency over-

e the RMC — a simple, hardwired, on-chip architectural head in datacenters found that a typical deployment based
block that services remote memory requests through lo- " commodity technologies may incur over 13an round-
cally cache-coherent interactions and interfaces directl Irip latency between a pair of servers [50]. According to
with an on-die network interface. Each operation han- the study, principal sources of latency overhead include
dled by the RMC is converted into a set of stateless re- the operating system stack, NIC, and intermediate network
quest/reply exchanges between two nodes; switches. While 100s may seem insignificant, we observe

- . . . that many applications, including graph-based applioatio

a minimal programming model with architectural sup- and those that rely on key-value stores, perform minimal

portj provided by the RMC’. for one-sided memory op- computation per data item loaded. For example, read op-
erations that access a partitioned global address SPaCq ations dominate key-value store traffic, and simply retur
The model is exposed through lightweight libraries, '

_ . 2 . the object in memory. With 1000x difference in data access
V.Vh'Ch .""'S.‘? |mplement communication and synchroniza- latency between local DRAM (100ns) and remote memory
tion primitives in software; (100us), distributing the dataset, although necessary, incurs
¢ a preliminary evaluation of soNUMA using cycle- a dramatic performance overhead.

accurate full-system simulation demonstrating that the
approach can achieve latencies within a small factor of
local DRAM and saturate the available bandwidth;

Server architectures. Today’s datacenters employ com-
modity technologies due to their favorable cost-perforogan
characteristics. The end result issaale-outarchitecture

an soNUMA emulation platform built using a hypervisor  characterized by a large number of commodity servers con-
that runs applications at normal wall-clock speeds and pected via commodity networking equipment. Two architec-
features remote latencies within 5x of what a hardware- tural trends are emerging in scale-out designs_

assisted RMC should provide. First, System-on-Chips (SoC) provide high chip-level in-

The rest of the paper is organized as follows: we motivate tegration and are a major trend in servers. Current server
SoNUMA (§2). We then describe the essential elements of SOCs combine many processing cores, memory interfaces,
the sONUMA architectures@), followed by a description of ~ @nd /O to reduce cost and improve overall efficiency by
the design and implementation of the RM§1Y, the soft- eliminating extra system components, e.g., Calxeda’s ECX-
ware support§s), and the proposed communication proto- 1000 SoC [9] combines four ARM Cortex-A9 cores, mem-
col (§6). We evaluate our desig®) and discuss additional ~ Ory controller, SATA interface, and a fabric switch [8] irdo
aspects of the workiB). Finally, we place sONUMA in the ~ compact die with a 5W typical power draw.

context of prior work §9) and conclude§(L0). Second, system integrators are starting to ofereless
fabricsthat can seamlessly interconnect hundreds of server
2. Why Scale-Out NUMA? nodes into fat-tree or torus topologies [18]. For instance,

Calxeda’s on-chip fabric router encapsulates Ethernetdsa
while energy-efficient processors run the standard TCP/IP
and UDP/IP protocols as if they had a standard Ethernet
NIC [16]. The tight integration of NIC, routers and fabric
2.1 Datacenter Trends leads to a reduction in the number of components in the
system (thus lowering cost) and improves energy efficiency
by minimizing the number of chip crossings. However, such
glueless fabrics alone do not substantially reduce latency
gecause of the high cost of protocol processing at the end
points.

In this section, we discuss key trends in datacenter applica
tions and servers, and identify specific pain points thatcaff
the latency of such deployments.

Applications. Today’s massive web-scale applications,

such as search or analytics, require thousands of comput
ers and petabytes of storage [60]. Increasingly, the trend
has been toward deeper analysis and understanding of dat
in response to real-time queries. To minimize the latency,
datacenter operators have shifted hot datasets from disk toRemote DMA. RDMA enables memory-to-memory data

DRAM, necessitating terabytes, if not petabytes, of DRAM transfers across the network without processor involvémen
distributed across a large number of servers. on the destination side. By exposing remote memory and re-
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Request size (B \te(;/) © shared physical memory. Unfortunately, large-scale sbari

9 y of physical memory is challenging for two reasons. First is

the sheer cost and complexity of scaling up hardware co-
herence protocols. Chief bottlenecks here include state ov
. . . L head, high bandwidth requirements, and verification com-
liable connections directly to user-level applicationBARA plexity. The second is the fault-containment challenge of a
eliminates all kernel pverheads. Furthermore, one-sided r single operating system instance managing a massive phys-
mote memory operations are handled entirely by the adapteric,| aqdress space, whereby the failure of any one node can
without interrupting th? destination core. RDMA Is SUP-  {a1e down the entire system by corrupting shared state [11].
ported on lossless fabrics such as InfiniBand [26] and Con- Sharing caches even within the same socket can be expen-
verged Ethernet [25] that scale to thousands of nodes and can; o Indeed, recent work shows that partitioning a single
offer remote memory read latency as low as sLdpi4]. many-core socket into multiple coherence domains improves

Although historically ~associated with the high- he execution efficiency of scale-out workloads that do not
performance computing market, RDMA is now making p,ve shared datasets [33].

inroads into web-scale data centers, such as Microsoft o
Bing [54]. Latency-sensitive key-value stores such as PCI&/DMA latencies limit performance. I/O bypass ar-
RAMCloud [43] and Pilaf [38] are using RDMA fabrics to  chitectures have successfully removed most sources of la-

Figure 1: Netpipe benchmark on a Calxeda microserver.

achieve object access latencies of as lowas 5 tency except the PCle bus. Studies have shown that it
o takes 400-500ns to communicate short bursts over the PCle
2.2 Obstacles to Low-Latency Distributed Memory bus [21], making such transfers 7-8x more expensive, in

As datasets grow, the trend is toward more sophisticatedterms of latency, than local DRAM accesses. Furthermore,
algorithms at ever-tightening latency bounds. While SoCs, PCle does not allow for the cache-coherent sharing of con-
glueless fabrics, and RDMA technologies help lower net- trol structures between the system and the 1/0 device, lead-
work latencies, the network delay per byte loaded remainsing to the need of replicating system state such as page ta-
high. Here, we discuss principal reasons behind the difficul bles into the device and system memory. In the latter case,
of further reducing the latency for in-memory applications  the device memory serves as a cache, resulting in additional
DMA transactions to access the state. SoC integration alone

Node scalability is power-limited. As voltage scalin . .
y P 9 9 does not eliminate these overheads, since IP blocks often

grinds to a halt, future improvements in compute density at ) . ] .
the chip level will be limited. Power limitations will exten use DMA internally to communicate with the main proces-
beyond the processor and impact the amount of DRAM that sor [5].

can be integrated in a given unit of volume (which governs Distance matters. Both latency and cost of high-speed
the limits of power delivery and heat dissipation). Togethe communication within a datacenter are severely impacted
power constraints at the processor and DRAM levels will by distance. Latency is insignificant and bandwidth is cheap
limit the server industry’s ability to improve the perfornee within a rack, enabling low-dimensional topologies (e.g.,
and memory capacity of scale-up configurations, thus accel-3-D torus) with wide links and small signal propagation de-
erating the trend toward distributed memory systems. lays (e.g., 20ns for a printed circuit board trace spanning a
44U rack). Beyond a few meters, however, expensive optical

on networks to communicate. Unfortunately, today’s deep transceivers must be used, and non-negotiable propagation
network stacks require a significant amount of processing d€lays (limited by the speed of light) quickly exceed DRAM
per network packet which factors considerably into end-to- 2CC€sS time. The combination of cost and delay puts a natu-
end latency. Figure 1 shows the network performance be- ral limit to the size of tightly interconnected systems.

tween two directly-connected Calxeda EnergyCore ECX-

1000 SoCs, measured using the standsstipe bench- 3. Scale-Out NUMA

mark [55]. The fabric and the integrated NICs provide This work introduces soNUMA, an architecture and pro-
10Gbps worth of bandwidth. gramming model for low-latency distributed memory.

Deep network stacks are costly. Distributed systems rely



[ App J [ App J data soNUMA's memory fabric bears semblance (at the link
and network layer, but not at the protocol layer) to the QPI
and HTX solutions that interconnect sockets together into
multiple NUMA domains. In such fabrics, parallel trans-
fers over traces minimize pin-to-pin delays, short message
(header + a payload of a single cache line) minimize buffer-
) ing requirements, topology-based routing eliminateslgost
NUMA fabric CAM or TCAM lookups, and virtual lanes ensure deadlock
/ freedom. Although Fig. 2 illustrates a 2D-torus, the design
is not restricted to any particular topology.

Figure 2: SONUMA overview. 4. Remote Memory Controller

The foundational component of soONUMA is the RMC, an
architectural block that services remote memory accesses
originating at the local node, as well as incoming requests

[ 05s control

soNUMA addresses each of the obstacles to low-latency de-

scribed in§2.2. sONUMA is designed for a scale-out model ,m remote nodes. The RMC integrates into the proces-
with physically distributed processing and memory: (IB{ T gor's coherence hierarchy via a private L1 cache and com-

places deep network stacks with a lean memory fabric; (ii) o nicates with the application threads via memory-mapped

te_sch3w§ tsyslterg(;mde coherence in 'ftjvor'OfF?h/?g):?lkpartl- queues. We first describe the software interf#eel(), pro-
loned virtual address space accessible via RMDA-IIKE 18- yiqe 3 functional overview of the RMGi4.2), and describe
mote memory operations with copy semantics; (iii) replaces ;o microarchitecturesg.3).

transfers over the slow PCle bus with cheap cache-to-cache
transfers; and (iv) is optimized for rack-scale deployrsent 4.1 Hardware/Software Interface

where distance is minuscule. In effect, our design goal is to soNUMA provides application nodes with the abstraction of
borrow the desirable qualities of ccNUMA and RDMA with-  globally addressable, virtual address spaces that can-be ac
out their respective drawbacks. cessed via explicit memory operations. The RMC exposes
Fig. 2 identifies the essential components of SONUMA. thjs abstraction to applications, allowing them to safeiy a
At a high level, soONUMA combines a lean memory fab- directly copy data to/from global memory into a local buffer
ric with an RDMA-like programming model in a rack-scale  ysing remote write, read, and atomic operations, without ke
system. Applications access remote portions of the global ne| intervention. The interface offers atomicity guarastat
virtual address space through remote memory operations. Athe cache-line granularity, and no ordering guarantedswit
new architecturally-exposed block, themote memory con-  or across requests.
troller (RMC), converts these operations into network trans-  gsogNUMA's hardware/software interface is centered
actions and directly performs the memory accesses. Appli- around four main abstractions directly exposed by the RMC:
cations directly communicate with the RMC, bypassing the (j) the context identifier{tx_id), which is used by all nodes
operating system, which gets involved only in setting up the participating in the same application to create a global ad-
necessary in-memory control data structures. dress space; (ii) the context segment, a range of the node’s
Unlike traditional implementations of RDMA, which op-  address space which is globally accessible by others; (iii)
erate over the PCI bUS, the RMC benefits from a tight in- the gueue pair (QP), used by app”cations to schedule remote
tegration into the processor’s cache coherence hieraithy. memory operations and get notified of their completion; and
particular, the processor and the RMC share all data struc-(iv) local buffers, which can be used as the source or desti-
tures via the cache hierarchy. The implementation of the nation of remote operations‘
RMC is further simplified by limiting the architectural sup- The QP model consists of a work queue (WQ), a bounded
port to one-sided remote memory read, write, and atomic op- buffer written exclusively by the application, and a comple
erations, and by unrolling multi-line requests at the seurc tion queue (CQ), a bounded buffer of the same size written
RMC. As a result, the protocol can be implemented in a exclusively by the RMC. The CQ entry contains the index of

stateless manner by the dgstipation node. . the completed WQ request. Both are stored in main memory
The RMC converts application commands into remote re- and coherently cached by the cores and the RMC alike. In
quests that are sent to tmetwork interfacg(Nl). The NI each operation, the remote address is specified by the com-

is connected to an on-chip low-radix router with reliable, pination of <node_id, ctx_id, offset>. Other param-
point-to-point links to other sONUMA nodes. The notion of  eters include the length and the local buffer address.
fast low-radix routers borrows from supercomputer intarco ,

nects; for instance, the mesh fabric of the Alpha 21364 con- 42 RMC Overview
nected 128 nodes in a 2D torus using an on-chip router with The RMC consists of three hardwired pipelines that inter-
a pin-to-pin delay of just 11ns [39]. act with the queues exposed by the hardware/software in-
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Figure 3: RMC internal architecture and functional ovewi the three pipelines.
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terface and with the NI. These pipelines are responsible for remote writes and atomic operations, the RMC accesses the
request generation, remote request processing, and tequesocal node’s memory to read the required data, which it then
completion, respectively. They are controlled by a configu- encapsulates into the generated packet(s). For each teques
ration data structure, th@ontext TablgCT), and leverage = the RMC generates a transfer identifiet {) that allows the

an internal structure, thaflight Transaction Table (ITT) source RMC to associate replies with requests.

The CT is maintained in memory and is initialized by sys- Remote transactions in sONUMA operate at cache line
tem software (seg5.1). The CT keeps track of all registered granularity. Coarser granularities, in cache-line-simrdti-
context segments, queue pairs, and page table root adsiresseples, can be specified by the application vialkegth field
Each CT entry, indexed by itstx_id, specifies the address in the WQ request. The RMC unrolls multi-line requests in
space and a list of registered QPs (WQ, CQ) for that context. hardware, generating a sequence of line-sized read or write
Multi-threaded processes can register multiple QPs for the transactions. To perform unrolling, the RMC uses the ITT,
same address space artk_id. Meanwhile, the ITTisused  which tracks the number of completed cache-line transac-
exclusively by the RMC and keeps track of the progress of tions for each WQ request and is indexed by the request’s
each WQ request. tid.

Fig. 3a shows the high-level internal organization of the i I .
RMC and its NI. The three pipelines are connected to distinct Remote Request Processing Pipeline (RRPP). This

gueues of the NI block, which is itself connected to a low- pipeline handles incoming requests originating from remot
. o . . RMCs. The soNUMA protocol is stateless, which means that
radix router block with support for two virtual lanes. While

each of the three pipelines implements its own datapath andFhe RRPP can process remote requests using only the values

control logic, all three share some common data structures ™ the header and the local configuration state. Specifically

. the RRPP uses thetx_id to access the CT, computes the
and hardware components. For example, they arbitrate for_. . . .
; virtual address, translates it to the corresponding physic
access to the common L1 cache via the MMU.

Fig. 3b highlights the main states and transitions for the a}ddress, an.d' thgn performs a read, write, or atomic opera
: T o . tion as specified in the request. The RRPP always completes
three independent pipelines. Each pipeline can have multi- ) S
; S » . by generating a reply message, which is sent to the source.
ple transactions in flight. Most transitions require an MMU ; :
. : . Virtual addresses that fall outside of the range of the speci
access, which may be retired in any order. Therefore, trans-

actions will be reordered as thev flow throuah a pipeline fied security context are signaled through an error message,
Y ghapip " whichis propagated to the offending thread in a speciayrepl

Request Generation Pipeline (RGP). The RMC initiates packet and delivered to the application via the CQ.

remote memory access transactions in response to an appliRequest Completion Pipeline (RCP). This pipeline han-
cation’s remote memory requests (reads, writes, atoniios).  dles incoming message replies. The RMC extractstthe
detect such requests, the RMC polls on each registered WQand uses it to identify the originating WQ entry. For reads
Upon a new WQ request, the RMC generates one or moreand atomics, the RMC then stores the payload into the ap-
network packets using the information in the WQ entry. For plication’s memory at the virtual address specified in the re



quest’'s WQ entry. For multi-line requests, the RMC com- Finally, the RMC dedicates two registers for the CT and
putes the target virtual address based on the buffer base adiTT base addresses, as well as a small lookaside structure,
dress specified in the WQ entry and the offset specified in theCT cache (C¥) that caches recently accessed CT entries
the reply message. to reduce pressure on the MAQ. The CT$ includes the con-
The ITT keeps track of the number of completed cache- text segment base addresses and bounds, PT roots, and the
line requests. Once the last reply is processed, the RMC sig-queue addresses, including the queues’ head and tail é1dice
nals the request's completion by writing the index of the The base address registers and the CT$ are read-only-shared
completed WQ entry into the corresponding CQ and moving by the various RMC pipeline stages.
the CQ head pointer. Requests can therefore complete out of
order and, when they do, are processed out of order by the5_  Software Support
application. Remote write acknowledgments are processe
similarly to read completions, although remote writes natu
rally do not require an update of the application’'s memory a
the source node.

dWe now describe the system and application software sup-

t port required to expose the RMC to applications and enable
the soONUMA programming mode§5.1 describes the op-
erating system device drivej5.2 describes the lower-level

4.3 Microarchitectural Support wrappers that efficiently expose the hardware/software in-

The RMC implements the logic described above using a Setterfa_tce to ap.plications. Finall§5.3 describe:?‘ higher—level
of completely decoupled pipelines, affording concurreincy routlngs that mplement qnsohuted (;ommunlcat|on and syn
the handling of different functions at low area and design chronization without additional architectural support.

cost. The RMC features two separate interfaces: a coher-
ent memory interface to a private L1 cache and a network
interface to the on-die router providing system-level con- The role of the operating system on an sONUMA node is to
nectivity. The memory interface block (MMU) contains a establish the global virtual address spaces. This incltiges
TLB for fast access to recent address translations, regjuire Mmanagement of the context namespace, virtual memory, QP
for all accesses to application data. TLB entries are taggedregistration, etc. The RMC device driver manages the RMC
with address space identifiers corresponding to the applica itself, responds to application requests, and interacts wi
tion context. TLB misses are serviced by a hardware pagethe virtual memory subsystem to allocate and pin pages in
walker. The RMC provides two interfaces to the L1 cache — physical memory. The RMC device driver is also responsible
a conventional word-wide interface as well as a cache-line- for allocating the CT and ITT on behalf of the RMC.

wide interface. The former is used to interact with the appli ~ Unlike a traditional RDMA NIC, the RMC has direct ac-
cation and to perform atomic memory operations. The lat- cess to the page tables managed by the operating system,
ter enables efficient atomic reads and writes of entire cacheleveraging the ability to share cache-coherent data struc-
lines, which is the granularity of remote memory accesses in tures. As a result, the RMC and the application both operate

5.1 Device Driver

soNUMA. using virtual addresses of the application’s process dmee t
The RMC's integration into the node’s coherence hierar- data structures hé}VG be_en in_itialized. . '
chy is a critical feature of SONUMA that eliminates wasteful ~ The RMC device driver implements a simple security

data copying of control structures, and of page tables in par model in which access control is granted on aqier_id ba-
ticular. It also reduces the latency of the application/RMC sis. To join a global address spacetx_id>, a process first
interface by eliminating the need to set up DMA transfers of opens the devicgdev/rmc_contexts/<ctx_id>, which
ring buffer fragments. To further ensure high throughpat an  requires the user to have appropriate permissions. All sub-
low latency at high load, the RMC allows multiple concur- Sequent interactions with the operating system are done by
rent memory accesses in f|ight ViMmory Access Queue issuing ioctl calls via the previously-opened file dESCFip-
(MAQ). The MAQ handles all memory read and write oper- tor. In effect, SONUMA relies on the built-in operating sys-
ations, including accesses to application data, WQ and CQtem mechanism for access control when opening the context,
interactions, page table walks, as well as ITT and CT ac- and further assumes that all operating system instances of a
cesses. The number of outstanding operations is limited bySONUMA fabric are under a single administrative domain.
the number of miss status handling registers at the RMC'’s L1 Finally, the RMC notifies the driver of failures within the
cache. The MAQ supports out-of-order Comp|etion of mem- SONUMA fabric, including the loss of links and nodes. Such
ory accesses and provides store-to-load forwarding. transitions typically require a reset of the RMC's statej an
Each pipeline has its own arbiter that serializes the mem- may require a restart of the applications.
ory access requests from the pipeline’s several stages and i
forwards the requests to the MAQ. The latter keeps track of ©-2 Access Library
each request’s originating arbiter, and responds to the¢ on The QPs are accessed via a lightweight API, a set of
the memory access is completed. Upon such a response, th€/C++ inline functions that issue remote memory com-
arbiter feeds the data to the corresponding pipeline stage. mands and synchronize by polling the completion queue.



We expose a synchronous (blocking) and an asynchronousfloat *async.dest.addr [MAX WQ_SIZE];

(non-blocking) set of functions for both reads and writes.

Vertex 1buf [MAX _WQ_SIZE];

The asynchronous API is comparable in terms of function- jn1ine void pagerank_async (int slot, void *arg) {

ality to the Split-C programming model [15].
Fig. 4 illustrates the use of the asynchronous API for

the implementation of the classic PageRank graph algo-

rithm [45]. rmc_wait_for_slot processes CQ events (call-
ing pagerank_async for all completed slots) until the head
of the WQ is free. It then returns the freed slot where the
next entry will be scheduledmc_read_async (similar to
Split-C’s get) requests a copy of a remote vertex into a lo-
cal buffer. Finallyrmc_drain_cq waits until all outstanding
remote operations have completed while performing the re-
maining callbacks.

This programming model is efficient as: (i) the callback
(pagerank_async) does not require a dedicated execution
context, but instead is called directly within the main tdg
(if) when the callback is an inline function, it is passed as a
argument to another inline functioi{c_wait_for_slot),
thereby enabling compilers to generate optimized code- with
out any function calls in the inner loop; (iii) when the algo-

rithm has no read dependencies (as is the case here), asyn-
chronous remote memory accesses can be fully pipelined to

hide their latency.

To summarize, soONUMA's programming model com-
bines true shared memory (by the threads running within
a cache-coherent node) with explicit remote memory op-

erations (when accessing data across nodes). In the Paget

Rank example, thes_local flag determines the appropri-

*async_dest_addr[slot] += 0.85 *
lbuf [slot] .rank[superstep’2] / 1lbuf[slot].out_degree;

void pagerank_superstep(QP *qp) {

int evenodd = (superstep+1) % 2;
for(int v=first_vertex; v<=last_vertex; v++) {
vertices[v] .rank[evenodd] = 0.15 / total_num_vertices;
for(int e=vertices[v].start; e<vertices[v].end; e++) {
if (edges[el.is_local) {
// shared memory model
Vertex *v2 = (Vertex *)edgesl[e].v;
vertices[v] .rank[evenodd] += 0.85 *
v2->rank [superstep%2] / v2->out_degree;
} else {
// flow control
int slot = rmc_wait_for_slot (qp, pagerank_async);
// setup callback arguments
async_dest_addr[slot] = &vertices[v].rank[evenodd];
// issue split operation
rmc_read_async (qp, slot,

edges[e] .nid, //remote node ID

edges[e] .offset, //offset
&lbuf [slot], //local buffer
sizeof (Vertex)); //len
}
}
rmc_drain_cq (Qp, pagerank_async);
superstep++;

ate course of action to separate intra-node accesses (wherBigure 4: Computing a PageRank superstep in soONUMA
the memory hierarchy ensures cache coherence) from interthrough a combination of remote memory accesses (via the

node accesses (which are explicit).
Finally, the RMC access library exposes atomic opera-

tions such as compare-and-swap and fetch-and-add as inline

functions. These operations are executed atomically mithi

asynchronous API) and local shared memory.

the local cache coherence hierarchy of the destination.node buffer is an array of cache-line sized structures that ¢onta

5.3 Messaging and Synchronization Library

By providing architectural support for only read, write and Payload. Flow-contro nie
g that piggybacks existing communication.

atomic operations, soNUMA reduces hardware cost an
complexity. The minimal set of architecturally-supported
operations is not a limitation, however, as many standar

header information (such as the length, memory location,
and flow-control acknowledgements), as well as an optional

control is implemented via a credit scheme

For small messages, the sender creates packets of prede-

g fined size, each carrying a portion of the message content as

communication and synchronization primitives can be built Part of the payload. It thepusheshe packets into the peer's

buffer. To receive a message, the receiver polls on the local

in software on top of these three basic primitives. In con- ' i
trast, RDMA provides hardware support (in adapters) for un- PUffer. In the common case, the send operation requires a
singlermc_write, and it returns without requiring any im-

solicited send and receive messages on top of reliable con-=>"""% vS < o
nections, thus introducing significant complexity (e.@t-p plicit synchronization between the peers. A similar messag
connection state) into the design [47]. ing approach based on remote writes outperforms the default

send/receive primitives of InfiniBand [32].
Unsolicited communication. To communicate usingend For large messages stored within a registered global ad-
andreceive operations, two application instances must first dress space, the sender only provides the base address and
each allocate a bounded buffer from their own portion of the size to the receiver's bounded buffer. The receiver then
global virtual address space. The sender always writegto th pulls the content using a singlemc_read and acknowl-
peer’s buffer usingmc_write operations, and the content edges the completion by writing a zero-length message into
is read locally from cached memory by the receiver. Each the sender’s bounded buffer. This approach delivers atdirec



memory-to-memory communication solution, but requires ¢ Source I Destination
synchronization between the peers. g WQ entry I

At compile time, the user can define the boundary be- § st rid|oploffsetenj&ibuf] :
tween the two mechanisms by setting a minimal message-—— 7/ ————T————, AT T T
size threshold: push has lower latency since small message:$  / Vo 4 = ® 7/: L8 re_a: L
complete through a singlenc_write operation and also al- ¢l v ¥ | etx id offSZt 1
lows for decoupled operations. The pull mechanism leads to [dst nidsrc_nid] oploffsetietx idtid] | ~ % 7
higher bandwidth since it eliminates the intermediate pack ) : [+ ] [src_nid]tid]offset|payioad|
tization and copy step. _ Reapkt | Reapkt  Replypkt

inject inject

Barrier synchronization. We have also implemented a % Rea/Reply
simple barrier primitive such that nodes sharingtx_id % ® o ®
can synchronize. Each participating node broadcasts the ar Router credits Router

rival at a barrier by issuing@rite to an agreed upon offset
on each of its peers. The nodes then poll locally until all of
them reach the barrier.

Figure 5: Communication protocol for a remote read.

o ctx_id corresponding to that WQ. The RMC specifies the
6. Communication Protocol destination node via ast_nid field. The request packet is

soNUMAs communication protocol naturally follows the —theninjected into the fabric and the packet is deliveredi¢o t
design choices of the three RMC pipelines at the protocol target node’s RMC. The receiving RMC's RRPP decodes the
layer. At the link and routing layers, our design borrowsriro ~ Packet, computes the local virtual address usingecthe id

existing memory fabric architectures (e_g_, QP| or HTX) to and theoffset found in it and translates that virtual ad-
minimize pin-to-pin delays. dress to a physical address. This stateless handling dbes no

. , ) , require any software interaction on the destination node. A
Link layer.  The memory fabric delivers messages reliably gq0n a5 the request is completed in the remote node’s mem-
over high-speed pomt—to-pom.t links with credit-basedvflo ory hierarchy, its RMC creates a reply packet and sends it
control. The message MTU is large enough to support a p,ck 1o the requesting node. Once the reply arrives to the
fixed-size header and an optional cache-line-sized payload yigina| requester, the RMC's RCP completes the transactio
Each point-to-point physical link has two virtual lanes to by writing the payload into the corresponding local buffer
support deadlock-free request/reply protocols. and by notifying the application via a CQ entry (not shown

Routing layer. The routing-layer header contains the des- in Fig. 5).
tination and source address of the nodes in the fabric ]
(<dstnid, srcnid>).dst_nidis used for routing, and 7. Evaluation
src_nid to generate the reply packet. 7.1 Methodology
The router’'s forwarding logic directly maps destination
addresses to outgoing router ports, eliminating expensive
CAM or TCAM lookups found in networking fabrics. While
the actual choice of topology depends on system specifics,
low-dimensional k-ary n-cubes (e.g., 3D torii) seem well-
matched to rack-scale deployments [18].

To evaluate soNUMA, we designed and implemented two
platforms: (i) development platform — a software prototype
of SONUMA based on virtual machines used to debug the
protocol stack, formalize the API, and develop large-scale
applications; and (ii) cycle-accurate model — a full-syste
simulation platform modeling the proposed RMC.

Protocol layer. The RMC protocol is a simple request-

reply protocol, with exactly one reply message generated pevelopment platform.  Our software SONUMA prototype

for each request. The WQ entry specifies éise nid, the is based on the Xen hype_rvisor [3] and_ a conv_entio_nal cc-
command (e.gread, write, Of atomic), theoffset, the NUMA server, on top of which we map (pin) multiple virtual

length and the local buffer address. The RMC copies the machines to distinct NUMA domains. This includes both
dst_nid into the routing header, determines thex id virtual CPUs and memory page frames. The server we use

associated with the WQ, and generates th&. The tid for the proLotype '23 a modernh A'r\]AD Cl)ptelron sr:arvr?r W'thh
serves as an index into the ITT and allows the source RMC 4 CPU sockets (12 cores each, three-level cache hierarchy,

to map each reply message to a WQ and the correspondingw'vl_|(3j LLC) af‘f} éﬁgﬁ:g RAM' Th2e memorly(/ subsystem
WQ entry. Thetid is opaque to the destination node, but is provides us wit omains (2 per socket).

transferred from the request to the associated reply packet . Fig. 6 shows our setup. Each |n(_j|V|dua! VMrepresents an
independent soONUMA node, running an instance of the full

Fig. 5 illustrates the actions taken by the RMCs for a re- software stack. The stack includes all user-space lilwarie
mote read of a single cache line. The RGP in the requestingapplications, the OS kernel, as well as the complete RMC
side’s RMC first assigns aid for the WQ entry and the  device driver inside it. The driver is a Linux kernel mod-
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Figure 6: soNUMA development platform. Each node is im-
plemented by a different VMRMCemu runs on dedicated vir-

Cycle-accurate model. To assess the performance impli-
cations of the RMC, we use the Flexus full-system simula-
tor [59]. Flexus extends the Virtutech Simics functionahsi
ulator with timing models of cores, caches, on-chip protoco
controllers, and interconnect. Flexus models the SPARC v9
ISA and is able to run unmodified operating systems and ap-
plications. In its detailed OoO timing mode with the RMCs
implemented, Flexus simulates “only” 5000 instructions pe
second, a slowdown of about six orders of magnitude com-
pared to real hardware.

We model simple nodes, each featuring a 64-bit ARM
Cortex-Al5-like core and an RMC. The system parameters
are summarized in Table 1. We extend Flexus by adding a
detailed timing model of the RMC based on the microarchi-
tectural description i§4. The RMC and its private L1 cache

tual CPUs and communicates with peers via shared memory.are fully integrated into the node’s coherence domain. Like

ule that responds to user library commands throigtt1,

enabling WQ/CQ registration, buffer management, and se-

curity context registration.

In this platform, we have implemented an RMC em-
ulation module (RMCemu), which runs in kernel space.
RMCemu implements the RMC logic and the sSONUMA wire
protocol (for a total of 3100LOC). The module exposes the
hardware/software interface describedsthl to the RMC

the cores, the RMC supports 32 memory accesses in flight.
Fig. 3b illustrates how the logic is modeled as a set of fi-
nite state machines that operate as pipelines and eliminate
the need for any software processing within the RMC. We
model a full crossbar with reliable links between RMCs and
a flat latency of 50ns, which is conservative when compared
to modern NUMA interconnects, such as QPIl and HTX.

7.2 Microbenchmark: Remote Reads

device driver and applications. RMCemu runs as a pair of e first measure the performance of remote read opera-
kernel threads pinned to dedicated virtual CPUs, one run- 10ns between two nodes for both the development platform
ning RGP and RCP, the other RRPP of Fig. 3b. All of the and the Flexus-based simulated hardware platform. The mi-

user-level data structures and buffers get memory-mappedcroPenchmark issues a sequence of read requests of varying
by the device driver into the kernel virtual address space at SiZ€ t0 @ preallocated buffer in remote memory. The buffer

registration time, and thus become visible to the RMCem
threads.

u Size exceeds the LLC capacity in both setups. We measure (i)

remote read latency with synchronous operations, whereby

We emulate a full crossbar and run the protocol described the iSsuing core spins after each read request until thg repl

in §6. Each pair of nodes exchanges protocol request/reply

is received, and (ii) throughput using asynchronous reads,

messages via a set of queues, mapped via the hypervisotVnere the issuing core generates a number of non-blocking
into the guest physical address spaces of the VMs (thereread requests before processing the replies (similar tatyig

are two queue pairs per VM pair, emulating virtual lanes).
To model the distributed nature of an sONUMA system, we
pin each emulated node to a distinct NUMA domain such
that every message traverses one of the server’s chipipo-ch
links. However, for the 16-node configuration, we collocate
two VMs per NUMA domain.

Core ARM Cortex-Al15-like; 64-bit, 2GHz, 000,
3-wide dispatch/retirement, 60-entry ROB
L1 Caches | splitI/D, 32KB 2-way, 64-byte blocks,
2 ports, 32 MSHRs, 3-cycle latency (tag+data)
L2 Cache | 4MB, 2 banks, 16-way, 6-cycle latency
Memory cycle-accurate model using DRAMSIm2 [49]
4GB, 8KB pages, single DDR3-1600 channe|.
DRAM latency: 60ns; bandwidth: 12GBps
RMC 3 independent pipelines (RGP, RCP, RRPP).
32-entry MAQ, 32-entry TLB
Fabric Inter-node delay: 50ns

Table 1: System parameters for simulation on Flexus.

Fig. 7 plots the latency and bandwidth of remote read
operations. Because of space limitations, we only show the
latency graph on the emulation side. We run the micro-
benchmark in both single-sided (only one node reads) and
double-sided (both nodes read from each other) mode.

Fig. 7a shows the remote read latency on the simulated
hardware as a function of the request size. For small re-
guest sizes, the latency is around 300ns, of which 80ns are
attributed to accessing the memory (cache hierarchy and
DRAM combined) at the remote node and 100ns to round-
trip socket-to-socket link latency. The end-to-end lajeisc
within a factor of 4 of the local DRAM access latency. In
the double-sided mode, we find that the average latency in-
creases for larger message sizes as compared to the single-
sided case. The reason for the drop is cache contention, as
each node now has to both service remote read requests and
write back the reply data.

Fig. 7b plots the bandwidth between two simulated
soNUMA nodes using asynchronous remote reads. For 64B
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requests, we can issue 10M operations per second. For pagethreshold to 0 ando in two separate runs. The black curve
sized requests (8KB), we manage to reach 9.6GBps, which isshows the performance of our unsolicited primitives with th
the practical maximum for a DDR3-1600 memory channel. threshold set to the appropriate value and both mechanisms
Thanks to the decoupled pipelines of the RMC, the double- enabled at the same time. The minimal half-duplex latency is
sided test delivers twice the single-sided bandwidth. 340ns and the bandwidth exceeds 10Gbps with messages as

Fig. 7c shows the latency results on the development small as 4KB. For the largest request size evaluated (8KB),
platform. The baseline latency is 1.5 which is 5x the the bandwidth achieved is 12.8 Gbps, a 1.6x increase over
latency on the simulated hardware. However, we notice that Quad Data Rate InfiniBand for the same request size [24].
the latency increases substantially with larger requestssi  To illustrate the importance of having a combinatiopegh
On the development platform, the RMC emulation module and pull mechanisms in the user library, we additionally
becomes the performance bottleneck as it unrolls large WQ plot in grey their individual performance.
requests into cache-line-sized requests. We apply the same methodology on the development
platform. The minimal half-duplex latency (see Fig. 8c) is
1.4us, which is only 4x worse than the simulated hardware.
We build a Netpipe [55] microbenchmark to evaluate the However, the threshold is set to a larger value of 1KB for
performance of the soNUMA unsolicited communication optimal performance, and the bandwidth is 1/10th of the
primitives, implemented entirely in softwarg(3). The mi- simulated hardware. Again, we omit the bandwidth graph
crobenchmark consists of the following two components: (i) for the emulation platform due to space limitations. The
a ping-pong loop that uses the smallest message size to derelatively low bandwidth and a different threshold are due
termine the end-to-end one-way latency and (ii) a streaming to the overheads of running the fine-grain communication
experiment where one node is sending and the other receivprotocol entirely in software§f.2).
ing data to determine bandwidth. ) ) .

We study the half-duplex latency (Fig. 8a) and band- /-4 Comparison with InfiniBand/RDMA
width (Fig. 8b) on our simulation platform. The two meth- To put our key results in perspective, Table 2 compares
ods fpull, push) expose a performance tradeoffush is the performance of our simulated sONUMA system with
optimized for small messages, but has significant proces-an industry-leading commercial solution that combines the
sor and packetization overheagsl1 is optimized for large Mellanox ConnectX-3 [36] RDMA host channel adapter
transfers, but requires additional control traffic at thgibe connected to host Xeon E5-2670 2.60Ghz via a PCle-Gen3
ning of each transfer. We experimentally determine the op- bus. In the Mellanox system [14], the servers are connected
timal boundary between the two mechanisms by setting the back-to-back via a 56Gbps InfiniBand link. We consider four

7.3 Microbenchmark: Send/Receive
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Transport soNUMA RDMA/IB 8 SHM (pthreads) —a—soNUMA (bulk) —e—soNUMA (fine-grain)
Dev. Plat. | Sim'd HW [14] g
Max BW (Gbps) 1.8 77 50 a£°
Read RTT (1s) 15 0.3 1.19 8o -
Fetch-and-addu(s) 15 0.3 1.15 &2
IOPS (Mops/s) 1.97 10.9 35 @ 4 cores g2 L — ]
2 " —r—"*
0 T T T T T
. i ni 2 4 8 2 4 8 16
Table 2: A comparison of sONUMA and InfiniBand. #threadeinodes sthreadsincdes

metrics — read bandwidth, read latency, atomic operation Figyre 9: PageRank speedup on simulated HW (left) and on

latency, and IOPS. the development platform (right).
As Table 2 shows, compared to the state-of-the-art

RDMA solution, soONUMA reduces the latency to remote

memory by a factor of four, in large part by eliminating that of the eight machines in the sONUMA setting. Thus,
the PCle bus overheads. sONUMA is also able to operateno benefits can be attributed to larger cache capacity in the
at peak memory bandwidth. In contrast, the PCle-Gen3 bussoNUMA comparison. For the development platform, we
limits RDMA bandwidth to 50 Gbps, even with 56Gbps In-  simply run the application on our ccNUMA server described
finiBand. In terms of IOPS, the comparison is complicated in §7.1, but without a hypervisor running underneath the host
by the difference in configuration parameters: the RDMA so- OS. In this implementation, the application stores two rank
lution uses four QPs and four cores, whereas the SONUMA values for each vertex: the one computed in the previous
configuration uses one of each. Per core, both solutions supsuperstep and the one currently being computed. Barrier
port approximately 10M remote memory operations. synchronization marks the end of each superstep.

We also evaluate the performance of atomic operations  (ji) soNUMA (bulk): This implementation leverages ag-
using fetch-and-add, as measured by the application. Forgregation mechanisms and exchanges ranks between nodes
each of the three platforms, the latency of fetch-and-add is at the end of each superstep, after the barrier. Such an ap-
approximately the same as that of the remote read operationgroach is supported by Pregel [35] as it amortizes high4nter
on that platform. Also, sONUMA provides more desirable node latencies and makes use of wide high-capacity links.
semantics than RDMA. In the case of RDMA, fetch-and-add |n this implementation we exploit spatial locality withinet
is implemented by the host channel adapter, which requiresglobal address space by using multi-line requests at the RMC
the adapter to handle all accesses, even from the local nodelevel. At the end of each superstep, every node uses multiple
In contrast, sONUMA's implementation within the node’s rmc_read_async operations (one per peer) to pull the re-
local cache coherence provides global atomicity guarantee mote vertex information from each of its peers into the local
for any combination of local and remote accesses. memory. This allows a concurrent shuffle phase limited only
by the bisection bandwidth of the system.

(i) soNUMA(fine-grain): This variant leverages the
Large-scale graph processing engines, key-value stards, a fine-grain memory sharing capabilities of sONUMA, as
on-line graph query processing are the obvious candidateshown in Fig. 4. Each node issues ahgc_read_async
applications for sONUMA. All of them perform very little  operation for each non-local vertex. This implementa-
work per data item (if any) and operate on large datasets, andion resembles the shared-memory programming model of
hence typically require large scale-out configurationsigrk  SHM(pthreads), but has consequences: the number of re-
all the data memory resident. Most importantly, they exhibi mote memory operations scales with the number of edges
poor locality as they frequently access non-local data. that span two partitions rather than with the number of ver-

For our application study, we picked graph processing tices per partition.
and the canonical PageRank algorithm [45], and compared We evaluate the three implementations of PageRank on a
three parallel implementations of it. All three are based on subset of the Twitter graph [29] using a naive algorithm that
the widely used Bulk Synchronous Processing model [57], randomly partitions the vertices into sets of equal cailidina
in which every node computes its own portion of the dataset We run 30 supersteps for up to 16 soNUMA nodes on the
(range of vertices) and then synchronizes with other partic development platform. On the simulator, we run a single
ipants, before proceeding with the next iteration (soezhll  superstep on up to eight nodes because of the high execution
superstep). Our three implementations are: time of the cycle-accurate model.

(i) SHM(pthreads) : The baseline is a standard pthreads Fig. 9 (left) shows the speedup over the single-threaded
implementation that assumes cache-coherent memory rathebaseline of the three implementations on the simulated hard
than soNUMA. For the simulated hardware, we model an ware. BothSHM(pthreads) andsoNUMA (bulk) have near
eight-core multiprocessor with 4MB of LLC per core. We identical speedup. In both cases, the speedup trend is de-
provision the LLC so that the aggregate cache size equalstermined primarily by the imbalance resulting from the

7.5 Application Study
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graph partitioning scheme, and not the hardware. However, can take advantage of one-sided read operations [38]. These
soNUMA (fine-grain) has noticeably greater overheads, applications are designed to assume that both client and
primarily because of the limited per-core remote read rate server have access to a low-latency fabric [38, 43], making
(due to the software API's overhead on each request) andthem Killer applications for soONUMA. Beyond these, we
the fact that each reference to a non-local vertex results inalso see deployment opportunities in upper application
a remote read operation. Indeed, each core can only issudiers of the datacenter. For example, Oracle Exalogic today
up to 10 million remote operations per second. As shown in provides a flexible, low-latency platform delivered on a
Fig. 7b, the bandwidth corresponding to 64B requests is arack-scale InfiniBand cluster [44]. Such deployments are
small fraction of the maximum bandwidth of the system. natural candidates for tighter integration using SoC and
Fig. 9 (right) shows the corresponding speedup on the soONUMA.

software development' platform. We identify the same gen- System packaging options. The evaluation of the impact
eral trends as on the simulated hardware, with the caveat thaof system scale and fabric t0p0|ogies is outside of the scope

the higher latency and lower bandwidth of the development of this paper since we focused on the end-behavior of the

platform limit performance. RMC. To be successful, SONUMA systems will have to be
_ ) sufficiently large to capture very large datasets withinma si
8. Discussion gle cluster, and yet sufficiently small to avoid introducing

We now discuss the lessons learned so far in developing"eW classes of problems, such as the need for fault contain-
our soNUMA prototype, known open issues, possible killer ment[11]. Industry solutions today provide rack-inseftiso
applications, and deployment and packaging options. tions th_at are |deal_ly suited for SONUMA, e.g., HPs Moon-
Lessons learned. During our work, we appreciated the shot with 45 cartridges or Calxeda-based Viridis systems

value of having a software development platform capable of }Nit,h 48 nodesr:(n a -2g| chassis. Beyo”‘?' th""‘t’ rack-levell(sc:c—
running at native speeds. By leveraging hardware virtaaliz u_tl_ops Seem [ike viable near_—term options; a 44U rack o

tion and dedicating processing cores to emulate RMCs, we V/1dis chassis can thus provide over 1000 nodes within a
were able to run an (emulated) soNUMA fabric at wall-clock two-meter diameter, affording both low wire delay and mas-

execution time, and use that platform to develop and vatidat S'V& MeMory capacity. -
the protocoL the kernel driver, all user-space |ibrarw Research directions.  This work has demonstrated the ben-

applications. efits on simple microbenchmarks and one application. We
Open issues. Our design provides the ability to support plan_to e_valuate the impact of sONUMA on Iatency-se_nsitive
many variants of remote memory operations that can be han-2Pplications such as in-memory transaction processing sys
dled in a stateless manner by the peer RMC. This includes€MS and on-line query processing. We also see research
read, write, and atomic operations. A complete architectur duestions around system-level resource sharing, e.g:gto ¢
will probably require extensions such as the ability to is- &€ & single-system image or a global filesystem buffer

sue remote interrupts as part of an RMC command, so that¢@che, or torethink resource management in hypervisor clus
nodes can communicate without polling. This will have a ters. Multikernels, such as Barrelfish [4], could be an ideal

number of implications for system software, e.g., to effi- candidate for SONUMA. _ ,
ciently convert interrupts into application messages,oor t We plan to investigate the micro-architectural aspects of

use the mechanisms to build system-level abstractions suctf’® RMC. This includes further latency-reducing optimiza-
as global buffer caches. tions in the RMC and the processor, a reassessment of the

Killer applications. Our primary motivation behind RMC'’s design for SoC'’s with high core counts, and investi-
SONUMA is the conflicting trend of (i) large dataset ap- gation of the flow-control, congestion and occupancy issues

e ST ) . in larger fabrics.
plications .that require tight and 'unpredlc.table sharl'ng' of Our study focused on data sharing within a single
resources; and (ii) manycore designs, which are Opt'mlzedsoNUMA fabric. For verv large datasets. datacenter de-
for throughput rather than resource aggregation. Our ' y 'arg !

) : ployments would likely interconnect multiple rack-scale

soNUMA proposal aims to reconcile these two trends. In ) . .
) . o soNUMA systems using conventional networking technolo-
our evaluation, we chose a simple graph application because

it allows for multiple implementation variants that expose gies. This opens up new systems-level research questions in

different aspects of the proaramming model. even though the areas of resource management (e.g., to maximize local-
P e prog 9 » EVen thoug ity) and networking (e.g., how to use the soNUMA fabric to

the regular, batch-oriented nature of that applicatiorise a

. ) . run network protocols).
a good fit for coarse-grain, scale-out models. Implementing
these variants using the RMC API turned out to be almost 9 Related Work
as easy as using the conventional shared-memory program~'" elate or
ming abstractions. Many applications such as on-line graph Many of the concepts found in remote memory architectures
processing algorithms, in-memory transaction processingtoday and our sONUMA proposal originate from research
systems, and key-value stores demand low latency [50] anddone in the '80s and '90s. In this section we look at the
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relationship between soNUMA and several related concepts.silient to faults [11]. In contrast, SONUMA exposes the ab-
We group prior work into six broad categories. straction of global virtual address spaces on top of mtipl

. . OS instances, one per coherence domain.
Partitioned global address space. PGAS relies on com- P

piler and language support to provide the abstraction of a User-level messaging. User-level messaging eliminates
shared address space on top of non-coherent, distributedhe overheads of kernel transitions by exposing commu-
memory [13]. Languages such as Unified Parallel C [13, nication directly to applications. Hybrid ccNUMA designs
61] and Titanium [61] require the programmer to reason such as FLASH [23], Alewife [1], Fugu [34], and Ty-
about data partitioning and be aware of data structure non-phoon [20] provide architectural support for user-levekme
uniformity. However, the compiler frees the programmer saging in conjunction with cache-coherent memory. In con-
from the burden of ensuring the coherence of the global ad- trast, sSONUMA's minimal design allows for an efficient im-
dress space by automatically converting accesses to remot@lementation of message passing entirely in software using
portions into one-sided remote memory operations that cor- one-sided remote memory operations.
respond to SONUMA's own primitives. PGAS also provides SHRIMP [6] uses a specialized NIC to provide user-
explicit asynchronous remote data operations [7], whish al level messaging by allowing processes to directly write
easily map onto SONUMA's asynchronous library primitives. the memory of other processes through hardware support.
The efficiency of sONUMA remote primitives would allow Cashmere [56] leverages DEC’s Memory Channel [22], a
PGAS implementations to operate faster. remote-write network, to implement a software DSM. Un-
_ o like SHRIMP and Cashmere, soNUMA also allows for di-
Softwaredistributed shared memory.  Software distributed rect reads from remote memory.

shared .merr]nory (DSMg, provri?es ?Iobal cohgrence not Fast Messages [46] target low latency and high bandwidth
present in the memory hierarchies of PGAS and SONUMA. o1t ser-level messages. U-Net [58] removes the en-

Pure software DSM systems such as IVY [31], Mu.nln [10] tire OS/Kernel off the critical path of messaging. These sys
and Threadmarks [2] expose a globgl coher“ent V'_rt,l,’al ad- 4o ms all focus on the efficient implementation of a message
dress space and rely on OS mechanisms to *fault in” pagesgo g |y soNUMA, the RMC provides architectural support
from remote memory on access and propagate changes baCl?or both one-sided read and write operations; messaging is

typically using relaxed memory models. Similarly, softear implemented on top of these basic abstractions.
DSM can be implemented within a hypervisor to create a

cache-coherent global guest-physical address spacegjl2], Remote memory access. Unlike remote write networks,
entirely in user-space via binary translation [51]. Likétso ~ such as SHRIMP and DEC Memory Channel, Remote Mem-
ware DSM, soNUMA operates at the virtual memory level. ory Access provides for both remote reads and remote
Unlike software DSM, soNUMA and PGAS target fine- writes. Such hardware support for one-sided operatioms, si
grained accesses whereas software DSM typically operateslar to sONUMA's, was commercialized in supercomputers
at the page level. Shasta [51] and Blizzard [52] offer fine- such as Cray T3D [27] and T3E [53]. Remote memory ac-
grain DSM through code instrumentation and hardware as- cess can also be implemented efficiently for graph process-
sistance, respectively, but in both cases with non-ndiligi  ing on commodity hardware by leveraging aggressive mul-
software overheads. tithreading to compensate for the high access latency [41].
soNUMA also hides latency but uses asynchronous read op-
erations instead of multithreading.

Today, user-level messaging and RDMA is available in
) ) commodity clusters with RDMA host channel adapters such
AMD HTX archﬂecturgs c_reate a compute fabric of ProCess- 45 Mellanox ConnectX-3 [36] that connect into InfiniBand
ing elements, each W_'th its own local memory, and provide or Converged Ethernet switched fabrics [25]. To reduce com-
cache-coherent [,)hys[cal_ memory Shf?‘””g across the .nOdeSpIexity and enable SoC integration, SONUMA only provides
FLASH and Sun's Wildfire also provide advanced migra- 5 iinimal subset of RDMA operations; in particular, it does
tion and replication techniques to reduce the synchroiozat not support reliable connections, as they require keepeng p

overheads [19]. , . connection state in the adapter.
soNUMA shares the non-uniform aspect of memory with

these designs and leverages the lower levels of the ccNUMANI integration. One advantage of soNUMA over prior
protocols, but does not attempt to ensure cache coherenceproposals on fast messaging and remote one-sided primi-
As a result, SONUMA uses a stateless protocol, whereas cc-tives is the tight integration of the NI into the coherence do
NUMA requires some global state such as directories to en-main. The advantage of such an approach was previously
sure coherence, which limits its scalability. The ccNUMA demonstrated in Coherent Network Interfaces (CNI) [40],
designs provide a global physical address space, allowingwhich leverage the coherence mechanism to achieve low-
conventional single-image operating systems to run on top. latency communication of the NI with the processors, using
The single-image view, however, makes the system less re-cacheable work queues. More recent work showcases the

Cache-coherent memory. ccNUMA designs such as
Alewife [1], Dash [30], FLASH [28], Fugu [34], Ty-
phoon [48], Sun Wildfire [42], and today’s Intel QPI and

13



advantage of integration, but in the context of kernelHleve the 22nd ACM Symposium on Operating Systems PrinciplesRS0S
TCP/IP optimizations, such as a zero-copy receive [5]. Our 2009
RMC is fully integrated into the local cache coherence hi- [5] N. L. Binkert, A. G. Saidi, and S. K. Reinhardt. Integrdtietwork
erarchy and does not depend on local DMA operations. The Interfacz_es for High-Bandwidth TQP/IP. IRroceedings of the _12th

. le desi f the RMC suaaests that integration into the International Conference on Architectural Support for ramming
simple design o gg . " g 5 Languages and Operating Systems (ASPLOS-X0)6.
local cache—coherence dpmam is practical. Our gvaluatpn 6] M. A. Blumrich, K. Li, R. Alpert, C. Dubnicki, E. W. Feltenand
shows that such integration can lead to substantial benefits * * 5 sandberg. Virtual Memory Mapped Network Interface for the
by keeping the control data structures, such as the QPs and  SHRIMP Multicomputer.  InProceedings of the 21st International
page tables, in caches. soNUMA also provides global atom-

Symposium on Computer Architecture (ISC¥994.
icity by implementing atomic operations within a node’s [7] D. Bonachea. Proposal for Extending the UPC Memory Cojydry
cache hierarchy.

Functions and Supporting Extensions to GASNet, Version 2007.

[8] Calxeda Inc. Calxeda Energy Core ECX-1000 Fabric Switcftp:
//www.calxeda.com/architecture/fabric/, 2012.
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[9] Calxeda Inc. ECX-1000 Technical Specification&ttp://www.
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ming model, and communication protocol for low-latency [10] J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Implentemtand
big-data processing. soONUMA eliminates kernel, network Performance of Munin. IfProceedings of the 13th ACM Symposium
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