Determinism and Fail-stop Races for
Sane Multiprocessing

Luis Ceze, University of Washington

joint work with Owen Anderson, Tom Bergan, Joe Devietti, Nick Hunt, Brandon Lucia, Jacob Nelson,
Steve Gribble, Dan Grossman, Mark Oskin, Karin Strauss, Shaz Qadeer and Hans Boehm.

S a Safe MultiProcessing Architectures
at the University of Washington

Guest Lecture at University of Cambridge, November 2013.

You probably heard this many times

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”'pa

You probably heard this many times

* Era of “free” performance is over. |2

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

You probably heard this many times

* Era of “free” performance is over. |2

- Most of compute power now scaling in terms of cores

* Mostly due to power and complexity reasons. Copy & Paste in VLSI :)

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

You probably heard this many times

* Era of “free” performance is over. |2

- Most of compute power now scaling in terms of cores

* Mostly due to power and complexity reasons. Copy & Paste in VLSI :)

- Shared memory is most popular
» Within a box

- Simplifies data movement, makes synchronization harder

- Shared memory vs. Message passing almost a religious argument

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. I"p

You probably heard this many times

* Era of “free” performance is over. |2

- Most of compute power now scaling in terms of cores

* Mostly due to power and complexity reasons. Copy & Paste in VLSI :)

- Shared memory is most popular
» Within a box

- Simplifies data movement, makes synchronization harder

- Shared memory vs. Message passing almost a religious argument

* This talk:

- Shared-memory multiprocessors. Bringing more safety and sanity to
parallel programming.

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. [11]

A multithreaded voting machine

shared variable

thread O thread 1

while (more votes) {
load t <-

while (more votes) {
load t <-

t++
store t ->

t++
store t ->

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. SaI"pa

A multithreaded voting machine

shared variable

thread O thread 1

while (more votes) { while (more votes) {
load t <- load t <-
t++ t++
store t -> store t ->

votes == votes ==

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

A multithreaded voting machine

shared variable

thread O thread 1

while (more votes) { while (more votes) {
load t <- load t <-
t++ t++
store t -> store t ->

votes == votes == votes == 1

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

Two Key Problems

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”'pa

Two Key Problems

* Data races

» deep impact on memory model and language semantics (see JMM), pretty
much all languages converging to data-race-free models

« usually incorrect and hard to debug

- reliability issues: surprising software failures

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

Two Key Problems

* Data races

» deep impact on memory model and language semantics (see JMM), pretty
much all languages converging to data-race-free models

« usually incorrect and hard to debug

- reliability issues: surprising software failures

* Nondeterminism
« debugging is hard: heisenbugs
* testing is hard: can’t test each input just once
- fault tolerant replicas might not behave the same way

* opens timing-based security attacks

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

Two Key Problems

* Data races

» deep impact on memory model and language semantics (see JMM), pretty
much all languages converging to data-race-free models

« usually incorrect and hard to debug

- reliability issues: surprising software failures

* Nondeterminism
« debugging is hard: heisenbugs
* testing is hard: can’t test each input just once
- fault tolerant replicas might not behave the same way

* opens timing-based security attacks

*Note: these two are orthogonal

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

What if...
We Made Data-Races Fail-Stop?

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”'pa

What if...
We Made Data-Races Fail-Stop?

Semantics are clear
and simple Better data-race

debugging Safety: races can’t
cause problems

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

What if...
We Made Data-Races Fail-Stop?

Semantics are clear
and simple Better data-race

debugging Safety: races can’t
cause problems

When a data-race occurs, throw an exception!

(we have div by 0, segfault, why not concurrency errors?)

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

What if...
We Made Data-Races Fail-Stop?

Semantics are clear
and simple Better data-race

debugging Safety: races can't
cause problems

When a data-race occurs, throw an exception!

(we have div by 0, segfault, why not concurrency errors?)

Can we provide strong detection guarantees at a low cost?

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

What if...
We Removed Non-determinism?

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”'pa

What if...
We Removed Non-determinism?

- Development: bugs are reproducible by default, test each input
only once

- Deployment: software behaves as tested, enables replication for
fault tolerance, timing-based attacks harder

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”lpa

What If...
We Removed Non-determinism?

- Development: bugs are reproducible by default, test each input
only once

- Deployment: software behaves as tested, enables replication for
fault tolerance, timing-based attacks harder

Effectively, make arbitrary parallel programs behave like sequential programs...

Can we remove undesired nondeterminism without removing
performance?

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

An aside on memory consistency
models and the C/C++ standard model.

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

What is a Memory Consistency Model?

- Define what values a read can return in shared-memory
programs

- What values do you expect the loads below to get? (x,y both start with 0).

thread 1 thread 2
1d x st 1 2>V
1d v st 1 -x
thread 1 thread 2
st 1 2vy st 1 29X
1d x 1d vy

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

What is a Memory Consistency Model?

- Define what values a read can return in shared-memory

programs

- What values do you expect the loads below to get? (x,y both start with 0).

thread 1 thread 2
1d x st 1 2>V
1d v st 1 -x
thread 1 thread 2
st 1 2vy st 1 29X
1d x 1d vy

How about (1,0)?

uis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

What is a Memory Consistency Model?

- Define what values a read can return in shared-memory

programs

- What values do you expect the loads below to get? (x,y both start with 0).

thread 1 thread 2
1d x st 1 2>V
1d v st 1 -x
thread 1 thread 2
st 1 2vy st 1 29X
1d x 1d vy

How about (1,0)?

How about (0,0)?

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

Sequential Consistency (SC)

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”'pa

Sequential Consistency (SC)

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

Sequential Consistency (SC)

[Lamport’79]

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

Sequential Consistency (SC)

Per-processor program order: memory operations from individual
processors maintain program order

[Lamport’79]

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

Sequential Consistency (SC)

Per-processor program order: memory operations from individual
processors maintain program order

[Lamport’79]

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

Sequential Consistency (SC)

Global Order

Per-processor program order: memory operations from individual
processors maintain program order

[Lamport’79]

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

Sequential Consistency (SC)

Global Order

st A

14 C

st C

Per-processor program order: memory operations from individual
processors maintain program order

[Lamport’79]

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

Sequential Consistency (SC)

Global Order

st A

14 C

st C

Per-processor program order: memory operations from individual
processors maintain program order

Single sequential order: the memory operations from all processors

maintain a single sequential order
[Lamport’79]

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. [11]

Sequential Consistency (SC)

P2 Global Order
st A
st A
st C 1d C
1d D
st C
v v

Per-processor program order: memory operations from individual
processors maintain program order

Single sequential order: the memory operations from all processors

maintain a single sequential order
[Lamport’79]

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. [11]

Sequential Consistency (SC)

P2 Global Order
st A
st A st A
st C 1d C
1d D st C
st C
1d D
v v

Per-processor program order: memory operations from individual
processors maintain program order

Single sequential order: the memory operations from all processors

maintain a single sequential order
[Lamport’79]

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. [11]

Sequential Consistency Implications

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”'pa

Sequential Consistency Implications

- What are the implications of that to:
- compiler optimizations?

- hardware optimizations?

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

Sequential Consistency Implications

- What are the implications of that to:
- compiler optimizations?

- hardware optimizations?

« Conclusion:

* Need to give freedom to compiler writers and HW designers
 Perhaps at the cost of your sanity :)

- Many “relaxed” models: TSO (x86), Weak Ordering (PPC/ARM), etc.

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

C/C++ Standard on Memory Model

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”'pa

C/C++ Standard on Memory Model

* Sequential Consistency...

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”lpa

C/C++ Standard on Memory Model

* Sequential Consistency...

- for Data-Race Free programs

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

What is a data-race?

* Many “intuitive” definitions

« One technical definition: two accesses from different threads; at least one a
write; accessing the same location; without explicit happens-before
ordering via synchronization

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

What is a data-race?

* Many “intuitive” definitions

« One technical definition: two accesses from different threads; at least one a
write; accessing the same location; without explicit happens-before
ordering via synchronization

Thread | Thread 2

Acquire(K)

T Rd Y

S Wr. X

Release(K) \%, Acquire(M)
Rd X :
We Y
Release (M)

! |

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

What is a data-race?

* Many “intuitive” definitions

« One technical definition: two accesses from different threads; at least one a
write; accessing the same location; without explicit happens-before
ordering via synchronization

Thread | Thread 2 Thread | Thread 2
|
l Acquire(K)
Acquilire(K) SRR :
—— TR 5 Rd Y
W X e W rX
: r. X:
""""""""""""""""""""""" £ A : M Release(K)p f HB
Release(K) \x qu;lrﬂ) ,)ssq;lre
We Y e
Release (M) Releae(K)
| | ! '

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. I"p

C/C++ Standard on Memory Model

* Sequential Consistency for Data-Race Free programs

 What does that mean?

- If execution of a program has no races, you can reason about it in a
sequentially consistent way

« And execution behaves as some interleaving of regions without
synchronization operations

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

Sequential Consistency for DRF Example

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”'pa

Sequential Consistency for DRF Example

Th"Tad | Thread 2
Acquire(K)
Release(K)
Rd T
S ammmmnn I/\T.]:.'"T“ Acqulre(K)
Aequire() IR
Rd Y - .
L renes :
RN | 4 Release(K)
Release (L) l

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. S jjjPa

Sequential Consistency for DRF Example

Thread |

Acquire(K)

Release (K)

Rd T-=
Wr Ta.

.IIIIIIIIIIIIII'

Acquire(L)

Rd Y:

W

dEIEEIEEEEER IYI

Release (L)

\

Thread 2

Acquire(K)

Rd X

Wr 7

Release (K)

|

Some global ordering

Rd Y=
N 1A o 4

Rd X

Wr 7

Rd T-
Wr T.

Rd

r
EEEEEEEEEER

Rd Y-
I ¢ i €

Rd T-
Wr Ta.

]
u
u
]
u
.IIIIIIIIIIIIII'
S EEEEEEEEEEEEER

X

Rl
X Q.

.'_CZ

Rd Y

Wr

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

C/C++ Standard on Memory Model

- What does that buy?

* A *lot* of freedom to compiler and hardware

- e.g., HW buffers, loop-inv code motion, CSE, etc.

* Pretty much can do whatever reordering as long as it does not cross
synchronization

*Key is to determine if there is a race...
- very hard to do statically

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

Concurrency Exceptions: The Vision

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”'pa

Concurrency Exceptions: The Vision

- Concurrency bugs drive people nuts

« Show asynchronous, non-local behavior
« Often lead to silent failures

- Significantly complicate language semantics

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

Concurrency Exceptions: The Vision

- Concurrency bugs drive people nuts

« Show asynchronous, non-local behavior
« Often lead to silent failures

- Significantly complicate language semantics

= (Generate an exception when a concurrency occurs
 Put them in the same category as Div-by-zero, SEGFAULTSs, etc

« Which concurrency errors? When should the exception be delivered? To
what threads?

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

Concurrency Exceptions: The Vision

- Concurrency bugs drive people nuts

« Show asynchronous, non-local behavior
« Often lead to silent failures

- Significantly complicate language semantics

= (Generate an exception when a concurrency occurs
 Put them in the same category as Div-by-zero, SEGFAULTSs, etc

« Which concurrency errors? When should the exception be delivered? To
what threads?

- We are starting with data-races

- Well defined, doesn’t require programmer annotations, language semantics

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

Goals In Supporting Races as Exceptions

High-Performance - Always-on detection

Precise detection - No false positives

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

Conflict Exceptions

[ISCA’10]

Thread | Thread 2
Acquire(K)

Rd Y

Wr X
Release (K)

Rd T

Wr T Acquire (M)
Acquire(L) Rd X

Rd Y ce

Wr Y

Wr Y Release (M)

Release (L) l

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. SaI"pa

Conflict Exceptions

[ISCA’10]
Thread | Thread 2
Acquire(K)
= Rd Y
Eresssesssssssenens wr X
Release (K)
Synchronization-Free Rd T
Regions ,mmwmw;ﬂf ,,,,, Em Acquire (M)
Acquire (L) Rd X =
' Rd Y e e
e WE Y o
N Wr Y: Release (M)
Release (L) l

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

Conflict Exceptions ...

Thread | Thread 2

Acquire(K)

Synchronization-Free
Regions

Acquire (M)

.Release(L)- l

\

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

Conflict Exceptions

[ISCA'10]
Thread | Thread 2
Acquire(K)
= Rd Y
Eresssesssssssenens wr X
Release (K)
Synchronization-Free Rd T
Regions N Lo i T Acquire(M) Exception
' : _ Delivered
Here

.Release(L)- l

\

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

Conflict Exceptions ...

Thread | Thread 2

Acquire(K)

Synchronization-Free
Regions

Here

.Release(L)- l

\

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

Conflict Exceptions

lgnoring “unimportant” races is key to performance
(much lower space and time overheads)

Precisely detect only races that can effect consistency

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. [11]

lgnoring “unimportant” races is key to performance
(much lower space and time overheads)

Precisely detect only races that can effect consistency

The Guarantee:
Exception-Thrown?! There was a data-race.

Exception-Free? Sequential Consistency.

(dramatically simplifies checking, while making PL and systems people happy :).
n

Language Level Benefits

Reordering in SFRs
s legal

Acqulre(K)

Release(K)

Acquire(K)

||

Wr64_Low Xi
‘Wr64 Hi X |

Release (K)

Granularity
independence

Exception-Free
executions are SC

llllllllllllllllllll

||||||||||||||||||||

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

Language Level Benefits

Programming model
Is largely the same

pthread lock(K)

WL Z o : !
pthread unlock(K) f 5\\\\i§9giﬁz

Racy programs are well-
behaved

Race semantics are
simpler

Wb kb
w such that w.v = rwand W(r) = w = 7.

5.4, Causality Requirements for Executions
A well-formed execution

. sw hb
= (P,A,E;,:;,u!,‘/,g,—’)

is validated by eommitting actions from” A. If all of the
actions in A can becommitted, then the execution satisfies
the causality requirements of the Java memory model.

Starting with the emptwset as’Co, we perform a sequence
of steps where we take actions from the set of actions A and
add them to a set of copfmitted actions C; to get a new
set of committed actions C,. ;. Tondemonstrate that this is
reasonable, for each 7; we need to demonstrate an execution
E; containing Cthat meets certain conditions.

Formally, an”execution E satisfies the causality require-
ments of the Java memory model if and only if there exist

e Séts of actions Cp, C1, ... such that

Co=10
CI C Cl‘l

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

Debugging and Reliability

Concurrent, conflicting SFRs All races have some exceptional
throw exceptions schedule
Acq(K)
Rd X
Wr X |
Exception Handling: Log Damage Control: Shut
+ Recover down buggy module

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

Hardware Transactional Memory

- Versioning
+ Byte-level conflict detection

+ Exception support

ni

Hardware/Software Interface

New Instructions:
BeginRegion and EndRegion

Synchronization Operations
are Singleton Regions

Exceptions Thrown Precisely
Before Conflicting Instruction

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

Hardware/Software Interface

New Instructions: Acquire (K)
BeginRegion and EndRegion BeginRegion
Rd Y
S Wr X:
Synchronization Operations EndRegion
are Singleton Regions Release (K)
Exceptions Thrown Precisely BeglnReéloTn
Before Conflicting Instruction ________________________ er
EndRegion

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

Access Monitoring

N-bit Line-level
Access Bits Supplied Bit
| | 1
Local Read
Local Write
Remote Read
Remote Write

N-byte Cache Line

sajpa

Access Monitoring

N-bit Line-level
Access Bits Supplied Bit
| | 1
Local Read
Local Write
Remote Read
Remote Write

N-byte Cache Line

Exception Test: compare local and remote bits

sajpa

Access Monitoring

N-bit Line-level
Access Bits Supplied Bit
| | 1
Local Read
Local Write
Remote Read
Remote Write

N-byte Cache Line

Exception Test: compare local and remote bits

Overheads significantly reduced via type-safety and reusing
data-array for access bits. pscaisu

sajpa

Leveraging Coherence Support

CPU | CPU 2
Read Read Request
Coherence
Actions m Local R
Read | 7S v ‘Wiite
Rep|)' Bits Bits
CPU |
Write Write/Invalidate
Coherence
' : Local Local
Actions FEEHEEE Invalidate | lecl | Lo
Ack Bits Bits

sampa

Now that we know how to get SC
executions (or an exception)....

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

Deterministic Multiprocessing

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”'pa

Deterministic Multiprocessing at 10,000’

[ASPLOS’09, ASPLOS’10, OSDI’10, ASPLOS’11]

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”'pa

Deterministic Multiprocessing at 10,000’

[ASPLOS’09, ASPLOS’10, OSDI’10, ASPLOS’11]

* DMP provides execution-level determinism for arbitrary
multithreaded programs:

a

Deterministic Multiprocessing at 10,000’

[ASPLOS’09, ASPLOS’10, OSDI’10, ASPLOS’11]

* DMP provides execution-level determinism for arbitrary
multithreaded programs:

- execution is only function of explicit inputs => single execution per input

a

Deterministic Multiprocessing at 10,000’

[ASPLOS’09, ASPLOS’10, OSDI’10, ASPLOS’11]

* DMP provides execution-level determinism for arbitrary
multithreaded programs:

- execution is only function of explicit inputs => single execution per input

- this is not record-replay of multithreaded programs

a

Deterministic Multiprocessing at 10,000’

[ASPLOS’09, ASPLOS’10, OSDI’10, ASPLOS’11]

* DMP provides execution-level determinism for arbitrary
multithreaded programs:

- execution is only function of explicit inputs => single execution per input

- this is not record-replay of multithreaded programs

*Key idea: conceptually serialize execution, recover
parallelism while preserving serial execution semantics

original _\‘_
s parallelism

communication
recovered

serialized
a

Deterministic Multiprocessing at 10,000’

[ASPLOS’09, ASPLOS’10, OSDI’10, ASPLOS’11]

* DMP provides execution-level determinism for arbitrary
multithreaded programs:

- execution is only function of explicit inputs => single execution per input

- this is not record-replay of multithreaded programs

*Key idea: conceptually serialize execution, recover
parallelism while preserving serial execution semantics

- several techniques to make this fast: actual goal is to preserve inter-
thread communication, still freedom left for efficient schedules

original __
s parallelism

communication
recovered

serialized

Deterministic Process Groups (DPGs)

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”'pa

Deterministic Process Groups (DPGs)

E Thread, E
: Thread; :
E Process A E

deterministic box

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

Deterministic Process Groups (DPGs)

Thread,

Thread; i

Process A

deterministic box

System ensures:
o [internal] nondeterminism is eliminated

(for shared-memory, pipes, signals, local files, ...)

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"’pa

Deterministic Process Groups (DPGs)

Thread, | ~af 3 network)
| O §

Thread; E'Thread3 P 06; ; eor IO)
B

Process A Process B 3

deterministic box

System ensures:

internal

nondeterminism is eliminated

(for shared-memory, pipes, signals, local files, ...)

external

nondeterminism funneled through shim program

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

C network)
(user I/O)

Thread,

Thread> Threads

Process A Process B

: n '
ef 3 |
| O §
b 1

i O |
i o
o
» 3 %

deterministic box

System ensures:

e¢|internal|l nondeterminism is eliminated
(for shared-memory, pipes, signals, local files, ...)

*| external| nondeterminism funneled through shim program

Shim Program:

* user-space program that precisely controls all |lexternal
nondeterministic inputs I

Internal

External

Determinism Nondeterminism

shared
memory

pipes

private
files

i

deterministic box

""""""""" g ~ ®
N T R ’ .ﬂ

users real time

{ U
Process | - ' g)[network)
222 'U .’
Process 2 < 8 >‘ pipe '< --------------- 2
e | |8 ——=
<-4 @ {->{ shared file j‘ r
Process 3 3 P
S

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

users real time
memory

4 network J

Precisely controls
all external inputs

' (shared] (" f ---------------------- Jl ‘

(pipes] Prg‘:g’ses'

private |
files Process 2| <«---

22

: Process 3

Q -
A _ Y.

* value of input data
* time input data arrives |

deterministic box "

Aside: Using DPGs When Constructing Apps

webserver

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”'pa

Aside: Using DPGs When Constructing Apps

. deterministic part
. (in a DPG)

webserver

'nondeterministic part
(in a shim)

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

deterministic part
. (in a DPG)

'nondeterministic part
(in a shim)

low-level

: request |
| processing
webserver

network I/O |
(bundle into requests) !

* behaves deterministically w.r.t. requests rather than packets

ni

deterministic part
. (in a DPG)

'nondeterministic part
(in a shim)

low-level

: request |
| processing
webserver

network I/O |
(bundle into requests) !

PURS RSN SW RSP VTS W “w-s_q-sj

* behaves deterministically w.r.t. requests rather than packets

Shim program defines the nondeterministic interface

ni

How is determinism actually enforced?

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”'pa

Starting simple: DMP-Serial

quantum round

4 \
T, —n quantumé . deterministic quantum size
: (in logical time, e.g., instructions)
. . . +
T2 . deterministic scheduling
T, . determinism

time —

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

Can we do better?

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”'pa

Can we do better?

*Only need to serialize communicating instructions

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

Can we do better?

*Only need to serialize communicating instructions

- Break each quantum into communication-free parallel
mode and communicative serial mode

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

Can we do better?

*Only need to serialize communicating instructions

- Break each quantum into communication-free parallel
mode and communicative serial mode

Q

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

Can we do better?

*Only need to serialize communicating instructions

- Break each quantum into communication-free parallel
mode and communicative serial mode

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

Can we do better?

*Only need to serialize communicating instructions

- Break each quantum into communication-free parallel
mode and communicative serial mode

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

Can we do better?

*Only need to serialize communicating instructions

* Break each quantum into communication-free parallel
mode and communicative serial mode

- Need to know when communication happens

- The Memory Ownership Table (MOT) tracks information about ownership

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. [11]

Parallel Serial

a N)
T - -—l —>
T3 n | n i >
time —» end of round

Parallel mode: no communication (can write only to private data)
Serial mode: arbitrary communication

ni

MOT Parillel Serial

' N R
X | owned-by T ;
T . l—l —>
y shared D
T2 :: :,‘ —
Z | owned-by T> :\
T3 | ‘= ll >
time — end of round

Parallel mode: no communication (can write only to private data)
Serial mode: arbitrary communication

ni

MOT Parillel Serial

o N)
X | owned-by T E ;
TI - — —>
y shared L
T2 : \,‘ —
Z | owned-by T> L
T3 | : \‘I i >
time > end of round

Parallel mode: no communication (can write only to private data)
Serial mode: arbitrary communication

Important: State of the MOT needs to evolve deterministically; updates are limited to serial suffix

ni

DMP-TM: Recovering Parallelism with Speculation

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”'pa

DMP-TM: Recovering Parallelism with Speculation

* DMP-0O conservatively assumes that all cache line state
transitions are communication

- ...but many transitions are not communication

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

DMP-TM: Recovering Parallelism with Speculation

* DMP-0O conservatively assumes that all cache line state
transitions are communication

* ...but many transitions are not communication

*Use TM support to speculate that a quantum is not
Involved in communication

* If communication happens, rollback + re-execute

- Commit quanta in a deterministic order

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. [11]

DMP-TM

¢ quanta are implicit transactions
e commit quanta in deterministic order

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

DMP-TM

parallel

¢ quanta are implicit transactions

e commit quanta in deterministic order

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

DMP-TM

parallel
commit

' N,

T, —am
T,

T, —A

¢ quanta are implicit transactions
e commit quanta in deterministic order

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

DMP-TM

parallel
| corﬂnqnit * quanta are implicit transactions
éwrx e commit quanta in deterministic order
Ty —“ —g' e rollback+restart on conflicts
rd

.|I—a | mi—an

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. I"p

DMP-TM

parallel
| corﬂnqnit * quanta are implicit transactions
Eer : e commit quanta in deterministic order
T, i~ e rollback+restart on conflicts
nl- b

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. I"p

DMP-TM

T

T,

parallel
| 00;:““ ¢ quanta are implicit transactions
3 e commit quanta in deterministic order
. : Wr .
W T e rollback+restart on conflicts
rd X . ¢ leverage (best effort) HTM support
B I

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. [11]

DMP-TM

parallel
| CO;‘:‘“ ¢ quanta are implicit transactions
" e commit quanta in deterministic order
. s wr .
Y . T e rollback+restart on conflicts
. rd X . ¢ leverage (best effort) HTM support
5 ¢ functionally equivalent to DMP-Serial
e - —

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. III

DMP-TM Overheads

parallel
commit

EAE

T, —m

time —

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

DMP-TM Overheads

parallel rollbacks

/\ e can use relaxed conflict
detection like TLS & other
T, TLS tricks like forwarding
T; —H H
time —

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. [11]

parallel
commit

EAE

T, —m;

rollbacks

e can use relaxed conflict
detection like TLS & other
TLS tricks like forwarding

commit

¢ lots of TM techniques to
make commit fast

time —

ni

DMP-TM Overheads

parallel
commit

EAE

T, —m;

T, —m

T, —II m

rollbacks

e can use relaxed conflict
detection like TLS & other
TLS tricks like forwarding

commit

¢ lots of TM techniques to
make commit fast

iImbalance

¢ better quantum formation

time —

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. [11]

DMP-0O and DMP-TM Evaluation

runtime normalized to

nondet execution

1.5

1.4

1.3

1.1

1.0

4 8 16 4 8 16

splash2

(HW version)

B DMP-O
DMP-TM
B DMP-TMForward

parsec
threads

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

DMP-0O and DMP-TM Evaluation

runtime normalized to

nondet execution

1.5

1.4

1.3

1.1

1.0

(HW version)

B DMP-O
DMP-TM
B DMP-TMForward

4 8 16

parsec

16

threads

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

DMP-0O and DMP-TM Evaluation

runtime normalized to

nondet execution

1.5

1.4

1.3

1.1

1.0

4 8

splash2

(HW version)

B DMP-O
DMP-TM
B DMP-TMForward

speculation
S P

gap
4 8 16

16

parsec
threads

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

Can we get most of the benefits of speculation
without the costs of speculation?

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”'pa

Can we get most of the benefits of speculation
without the costs of speculation?

transactions

Isolation
+
atomicity

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”'pa

Can we get most of the benefits of speculation
without the costs of speculation?

isolation is
sufficient for |
determinism transactions

iIsolation
+
atomicity

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”'pa

Can we get most of the benefits of speculation
without the costs of speculation?

isolation is
sufficient for _
determinism transactions

isolation
+
atomicity

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”'pa

Can we get most of the benefits of speculation
without the costs of speculation?

isolation is
sufficient for |
determinism transactions

Isolation

+
atomicity

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa fjjPa

Can we get most of the benefits of speculation
without the costs of speculation?

isolation is

sufficient for
determinism store buffers

Isolation

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”'pa

DMP-Buffering: Trading consistency for performance

heard that before? ;)

parallel mode: buffer all

parallel stores (no communication)

Ty .

time —

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

DMP-Buffering: Trading consistency for performance

heard that before? ;)

parallel mode: buffer all
parallel stores (no communication)

K—H;

wr A
Ty __F

rd A

time —

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

DMP-Buffering: Trading consistency for performance

heard that before? ;)

parallel mode: buffer all
parallel stores (no communication)

K—H;

wr A
Ty __F

rd A

time —

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

DMP-Buffering: Trading consistency for performance

heard that before? ;)

parallel mode: buffer all
parallel stores (no communication)

wrA rdA :
=

" ™Nda

T, —H

time —

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

DMP-Buffering: Trading consistency for performance

heard that before? :)

parallel mode: buffer all

parallel stores (no communication)
) commit mode:
: deterministically publish
T buffers
1 .
T, —a
T3 -
time —

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

DMP-Buffering: Trading consistency for performance

heard that before? :)

parallel mode: buffer all
stores (no communication)

deterministically publish

parallel _
commit _

A commit mode:
buffers

Ty . .

T, —m n

T3 | H

time —

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

DMP-Buffering: Trading consistency for performance

heard that before? :)

parallel mode: buffer all
stores (no communication)

deterministically publish

serial mode: for atomic ops

parallel _
commit _

A commit mode:
buffers

Ty . .

T, —m n

T3 | H

time —

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

DMP-Buffering: Trading consistency for performance

heard that before? :)

parallel mode: buffer all
stores (no communication)

deterministically publish

serial mode: for atomic ops

parallel _
commit _
A commit mode:

T buffers
1 . .
lock A
T, —= .
lock A :
T3 | l

time —

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

DMP-Buffering: Trading consistency for performance

heard that before? :)

parallel mode: buffer all

para"ecl:ommlt stores (no communication)
A commit mode:
i deterministically publish
T .g .g buffers
' P serial mode: for atomic ops
Serlal
Iock A
T, _—
Iock A
T;
time —

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

DMP-B “Correctness”

parallel _
commit

EAE

Ty - H —

serial

A

)

——

—

T, —= |
E N

time —

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

DMP-B “Correctness”

parallel mode (isolated threads)

parallel _
commit

EAE

T, l l
i derial

A

)

—
—
—

ni—e mw
mE m N

time —

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. SaI"pa

DMP-B “Correctness”

parallel mode (isolated threads)

parallel _ +
commit _ _ _
A commit mode (logically serial)
2 .. —
i derial
Te . m N

time —

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

DMP-B “Correctness”

parallel mode (isolated threads)

parallel _ +
commit _ : :
A commit mode (logically serial)
. oL serial mode (like DMP-Serial)
1 .. P
i derial

time —

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

DMP-B “Correctness”

parallel mode (isolated threads)

parallel _ +
commit _ : :
A commit mode (logically serial)
. .. serial mode (like DMP-Serial)
. derial

determinism — not guaranteed to be SC

A

L
B ——
L]
L
L
L]
L]
L
L]
L
L
L]
L
L
.
1 —-
L
.
L
L
.
L
L
.
L
L
.
L
L]
.
L
B ——
.
L
L]
.
L
L]
.
L

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. I"p

T, —= 1 |
"I |

time —

DMP-B Overheads

parallel _
commit

EAE

Ty _H_HE

i gerial
AN

)

T, —= |
E N

serial mode

time —

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

DMP-B Overheads

parallel _
commit

EAE

Ty _H_HE

i gerial
AN

)

T, —= |
E N

serial mode
Imbalance

time —

Lu

is Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

DMP-B Overheads

parallel

serial mode

commit
T, ll
serlal
T, —m x
I, I
time —

Lu

is Ceze

- Determinism and Fail-Stop Races,

Imbalance

NWCPP Jan 2011. S@JIIPA

* C/C++ compiler pass for LLVM

* yes, the previous results were for a HW-implementation... sorry

* Runtime library that replaces pthreads library, schedules
threads and tracks inter-thread communication

*|Intel 8-core 2.4GHz Xeon with 10GB RAM, 64-bit Ubuntu
8.10

*SPLASH2 and PARSEC

ni

DMP-B Evaluation (2/2)

runtime normalized to

hondet execution

6.0

50

4.0

3.0

20

1.0

B DMVP-O
" DMP-B

splash2

2 4 8
threads parsec

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”'pa

runtime normalized to

DMP-B Evaluation (2/2)

hondet execution

B DMVP-O
" DMP-B

splash2

2 4 8
threads parsec

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”'pa

runtime normalized to

DMP-B Evaluation (2/2)

hondet execution

6.0

50

4.0

3.0

20

1.0

43(2% .,
1ty

B DMVP-O
" DMP-B

splash2

2 4 8
parsec

threads

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”'pa

Improving Balance: Better Quantum Building

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”'pa

Improving Balance: Better Quantum Building

* Any deterministic policy will work

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

Improving Balance: Better Quantum Building

* Any deterministic policy will work

- We want quanta that are free of communication

* N0 communication — no serialization, no rollbacks

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

Improving Balance: Better Quantum Building

* Any deterministic policy will work

- We want quanta that are free of communication

* N0 communication — no serialization, no rollbacks

Leverage

* synchronization: end quantum at release points
* sharing: end quantum after bursty shared accesses

- program structure (backedges, syscalls, etc...)

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

DMP-* Tradeoffs

PERFORMANCE/ —>
SCALABILITY

COMPLEXITY —>

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

DMP-* Tradeoffs

PERFORMANCE/ —>
SCALABILITY

DMP-Serial DMP-O DMP-B DMP-HB DMP-TM DMP-TMFwd

COMPLEXITY —

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

DMP-* Tradeoffs

- D &X> - -} Y} e e e

DMP-Serial DMP-O DMP-B DMP-HB DMP-TM DMP-TMFwd

SCALABILITY

PERFORMANCE/ —>

COMPLEXITY —>

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”'pa

DMP-* Tradeoffs

PERFORMANCE/ —>
SCALABILITY

- D &X> - -} Y} e e e

DMP-Serial DMP-O DMP-B DMP-HB| DMP-TM DMP-TMFwd

no speculation speculation
COMPLEXITY —>

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”'pa

DMP-* Tradeoffs

PERFORMANCE/ —>
SCALABILITY

DMP-Serial DMP-O DMP-B DMP-HB|) DMP-TM DMP-TMFwd

no speculation
COMPLEXITY —>

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”'pa

speculation

DM
DM
DM

P-0: Low overheads, ok (not great) scalability

P-B: More overheads, good scalabillity

P-TM: Even more overheads, great scalability (tricks)

- Exacerbates inherent lack of scalability of applications

* Relaxing memory ordering helps a lot, even more so than in nondet MPs

* Implementations:
« HW implementation: ~5% to 50%

- Compiler implementation: 2x to 3x (instrumentation cost)

* OS (paging tricks): 0% to 10x (false sharing at page granularity)

ni

In case you want to learn more...

*DMP:

* “Deterministic Shared Memory Multiprocessing”, ASPLOS’09, IEEE Micro Top
Picks

« “CoreDet: A Compiler and Runtime System for Deterministic Multithreaded
Execution”, ASPLOS’10

* “Deterministic Process Groups in dOS”, OSDI’10
« “RCDC: A Relaxed Consistency Deterministic Computer”, ASPLOS’11

- FailStop Races:

« “A Case for System Support for Concurrency Exceptions”, Usenix HotPar’'09

« “Conflict Exceptions”, ISCA'10

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. [11]

Determinism and Fail-stop Races_ for
Sane Multiprocessing

Luis Ceze, University of Washington

S a Safe MultiProcessing Architectures
at the University of Washington

DMP-TSO breaking SC
Thread | Thread 2

Dekker’s Algorithm
(there is a data race)

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”'pa

DMP-TSO breaking SC
Thread | Thread 2

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”'pa

DMP-TSO breaking SC
Thread | Thread 2

I9|eJed

reordered

JIWIWOD

This is deterministic ...

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”'pa

DMP-TSO breaking SC
Thread | Thread 2

I9|eJed

JIWIWOD

Dynamic Bug Avoidance from 10,000’

[ISCA’08, ISCA'10]

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”'pa

Dynamic Bug Avoidance from 10,000’

[ISCA’08, ISCA'10]

thread O thread 1

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”Ipa

Dynamic Bug Avoidance from 10,000’

[ISCA’08, ISCA'10]

thread O thread 1

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”Ipa

Dynamic Bug Avoidance from 10,000’

[ISCA’08, ISCA'10]

thread O thread 1

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”Ipa

Dynamic Bug Avoidance from 10,000’

[ISCA'08, ISCA'10]

thread O thread 1

"
Ty
‘‘‘‘‘
et
.

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. SaI"pa

Dynamic Bug Avoidance from 10,000’

[ISCA'08, ISCA'10]

thread O thread 1

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. SaI"pa

Dynamic Bug Avoidance from 10,000’

[ISCA'08, ISCA'10]

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. SaI"pa

Dynamic Bug Avoidance from 10,000’

[ISCA'08, ISCA'10]

thread O thread 1

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. SaI"pa

Dynamic Bug Avoidance from 10,000’

[ISCA'08, ISCA'10]

thread O thread 1

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. SaI"pa

Dynamic Bug Avoidance from 10,000’

[ISCA'08, ISCA'10]

thread O thread 1

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. SaI"pa

Dynamic Bug Avoidance from 10,000’

[ISCA'08, ISCA'10]

thread O thread 1

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. SaI"pa

Dynamic Bug Avoidance from 10,000’

[ISCA'08, ISCA'10]

thread O thread 1

votes ==

votes ==

votes ==
*Dynamically detect patterns of buggy interleavings

*Steer the execution away from possibly bad interleavings

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. SaI"pa

DM
DM
DM

P-0: Low overheads, ok (not great) scalability

P-B: More overheads, good scalabillity

P-TM: Even more overheads, great scalability (tricks)

- Exacerbates inherent lack of scalability of apps

* relaxing memory model helps a lot, even more so than in nondet MPs

* HW implementation: ~5% to 50%

- Compiler implementation: 2x to 3x (instrumentation cost)

*OS

(paging): 0% to 10x (false sharing at page gran.)
n

Ongoing DMP Research

* Support for program instrumentation robustness

* need to make sure behavior stays the same

- Improving scalability

* more memory model experiments
- Testing

* Applications to distributed systems

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. [11]

Related work

Approach

Project(s)

Record+Replay

Limited Determinism

Systems Issues

Deterministic
Languages

FDR [Xu, ISCA ‘03]
ReRun [Hower, ISCA ‘08]
Capo [Montesinos, ASPLOS ‘09]

Kendo [Olszewski, ASPLOS ‘09]
Grace [Berger, OOPSLA ‘09]

dOS [Bergan, OSDI ‘10]
Determinator [Aviram, OSDI ‘10]
[Cui, OSDI ‘10]

NESL, JADE
CILK, ORCS, DPJ

Corensic DMP Hypervisor.

Or how about Making Errors Failstop?

[ISCA’10]
Fail-Stop Semantics for Data-Races

Semantics are clear Better data-race Safely: races can’t cause
and simple debugging problems

When a data-race occurs, throw an exception

The Guarantee:
Exception-Thrown? There was a data-race.
Exception-Free? Sequential Consistency.

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

CoreDet: Compiler and Runtime System

[ASPLOS’10]

* An implementation of DMP in software

- DMP-Ownership: simple, reasonable overheads, but poor scalability
« Our goal with this implementation: preserve scalability

*New DMP technique: DMP-Buffering

* better scalability, but more overheads
* no speculation (easier to implement than DMP-TM)

* key insight: relaxed memory consistency (specifically, TSO)

* yes, deterministic relaxed consistency :)

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

DMP-Buffering

Parallel Commit Serial
A : .
o TN~
T_I a .H l—l —
; \
T2 m_ , —
T3 - 4 L — >

Parallel mode: buffer stores locally
* ends at synchronization (atomic ops and fences), and quantum boundaries
Commit mode: publish local store buffers

* happens semantically in serial for determinism
» executes in parallel for performance

Serial mode: used for synchronization (e.g. atomic ops)

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. [11]

CoreDet: Implementation

* A compiler
* instruments the code with calls to the runtime

- static optimizations to remove instrumentation

* A runtime library
 scheduling threads
* tracks inter-thread communication

- deterministic wrappers for: pthreads, malloc, etc...

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

Bugaboo

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”'pa

From Interleavings To Communication

(blkOut

-0 |

v

Interleaving

*http://www.availabilitydigest.com/private/0203/northeast_blackout.pdf

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

From Interleavings To Communication

blkOut = 0

Interleaving

*http://www.availabilitydigest.com/private/0203/northeast_blackout.pdf
Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”lpa

From Interleavings To Communication

blkOut = 0

| Communication
Interleaving (via blkOut)

*http://www.availabilitydigest.com/private/0203/northeast_blackout.pdf
Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

Finding Bugs with Communication Graphs

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”'pa

Finding Bugs with Communication Graphs

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”'pa

Finding Bugs with Communication Graphs

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”'pa

Finding Bugs with Communication Graphs

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”'pa

Finding Bugs with Communication Graphs

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”'pa

Debugging With Communication Graphs
From 10,000’

1. Collect communication graphs,
and label them as Buggy or Correct

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”lpa

Debugging With Communication Graphs
From 10,000’

1. Collect communication graphs,
and label them as Buggy or Correct

2. ldentify edges in Buggy graphs,
but not in Correct graphs

L]
n
n
L]

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

Debugging With Communication Graphs
From 10,000’

1. Collect communication graphs,
and label them as Buggy or Correct

2. ldentify edges in Buggy graphs,
but not in Correct graphs

3. Inspect code involved in Buggy-
only edges

~#

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

System Design Requirements

i Graphs Must Encode Enough Information
A. to ldentify Buggy Communication

Graph Collection Must be Cheap

Debugging Must Be Simple

Luis

Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

a» Making Useful

“@ Communication Graphs

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. III

A More Interesting Example

é)
Lstr = geItStr())
4 D
Llen = getLlen();)

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"’pa

(éfr = getStr();

'|_|]

()
3
I

getLen();

Multi-Variable Atomicity Violation can result
in reads of inconsistent str and len

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

Communication Alone Is Insufficient

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”'pa

Communication Alone Is Insufficient

==X
==

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”'pa

Communication Alone Is Insufficient

0..
L 4

getStr();

len

|

getLen();

There is no edge in the Buggy graph that isn’t in the Correct

\.

graph!

y,

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

Adding Context to Graphs

TIN]

X
4

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”'pa

Adding Context to Graphs

These writes should not be interleaved...
-

. .
@

TIRT

X
4

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

Adding Context to Graphs

These writes should not be interleaved...

...S0 these instructions should be
ordered before, or after both writes

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"’pa

Adding Context to Graphs

These writes should not be interleaved...

...S0 these instructions should be
ordered before, or after both writes

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"’pa

Adding Context to Graphs

These writes should not be interleaved...

...S0 these instructions should be
ordered before, or after both writes

Communication graphs do not encode
relative ordering of communications

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

Adding Context to Graphs

These writes should not be interleaved...

...S0 these instructions should be
ordered before, or after both writes

Communication graphs do not encode D ‘e

relative ordering of communications J

Communication Context is a short history of preceding
communication events added to each node

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

Adding Context to Graphs

These writes should not be interleaved...

7~

Context encodes ordering amongst communication
events, enabling more general bug detection

Communication Context is a short history of preceding
communication events added to each node

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

Context-Aware Communication Graphs

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”'pa

Context-Aware Communication Graphs

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”'pa

Context-Aware Communication Graphs

(éfr = getStr();

&)
o)
I

getLen();

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

Context-Aware Communication Graphs

Context
A
(éfr = getStr();
C D

&)
o)
I

getLen();

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

Context-Aware Communication Graphs

(éfr = getStr();

&)
o)
I

getLen();

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

Context-Aware Communication Graphs

47
1%
(éfr = getStr();
D

&)
o)
I

getLen();

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

Context-Aware Communication Graphs

(éfr = getStr();

&)
o)
I

getLen();

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

Context-Aware Communication Graphs

Rem Wr

(éfr = getStr();

&)
o)
I

getLen();

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

Context-Aware Communication Graphs

Rem Wr

&cr = getStr();

Rem Wr

Loc Rd

&)
o)
I

getLen(); >

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

Context-Aware Communication Graphs

Rem Wr

&cr = getStr();

getLen(); Hem Rd(:) -

&)
o)
I

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

Context-Aware Communication Graphs

X

y

Rem Wr

Loc Wr

Loc Wr

Rem Rd

Rem Wr

Rem Wr

Rem Wr

Rem Wr

Rem Wr

Loc Rd

Loc Rd

Rem Rd *
- C >

Rem Rd

Rem Rd

7

Rem Rd

Rem Rd

Loc Wr

Loc Rd

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

Context-Aware Communication Graphs

Rem Wr

Rem Wr

Rem Wr

Rem Wr

Loc Rd

VE

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

Loc Rd |

This edge is uniquely buggy
In this context-aware graph

 Debugging With Bugaboo

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. [11]

Labeled Graph Debugging

Starting with a bug report

or buggy behauvior...
Bug #20677 Race condition betwe
Submitted: 24 Jun 2006 19:28
Reporter: Kristian Nielsen
Status: Verified
Category: Server: ClusterRep
Version: mysql-5.1
Assigned to:
Tags: 5.1.12
Triage: Triaged: D1 (Critical)

Cilan I I MNavinlanmne I I CAibs Ciilhmnimnine I l_

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

Labeled Graph Debugging

Starting with a bug report

or buggy behauvior...
Bug #20677 Race condition betwe
Submitted: 24 Jun 2006 19:28
Reporter: Kristian Nielsen
Status: Verified
Category: Server: ClusterRep
Version: mysql-5.1
Assigned to:
Tags: 5.1.12
Triage: Triaged: D1 (Critical)

...collect graphs from
many runs, labeling as
buggy or correct

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

Labeled Graph Debugging

Starting with a bug report

or buggy behauvior...
Bug #20677 Race condition betwe ...COllect graphs from
Submitted: 24 Jun 2006 19:28 many runs, labeling as
Reporter: Kristian Nielsen buggy or CorreCt

Status: \Verified

Category: Server: ClusterRep

Version: mysql-5.1

Assigned to: Find edges in any
Tags: 5.1.12 buggy graph, and in
Triage: Triaged: D1 (Critical)
no correct graph

Cilan I I Mavialamane I I CAdis Cuilawmn immine- l [_

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Salllpa

Labeled Graph Debugging

Starting with a bug report

or buggy behauvior...
Bug #20677 Race condition betwe ...COllect graphs from
Submitted: 24 Jun 2006 19:28 many runs, Iabeling as
Reporter: Kristian Nielsen buggy or COI’I’eC’[

Status: Verified

Category: Server: ClusterRep

Version: mysql-5.1

Assigned to: Find edges in any
Tags: 5.1.12 buggy graph, and in
Triage: Triaged: D1 (Critical)
no correct graph

Rank the resulting edges, giving high rank to: g
Rare communication events
«Communication in a rare context —GE-...

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

Anomaly-Based Bug Detection

The Bugs-As-Anomalies Hypothesis:
Programs usually work correctly, hence bugs are anomalies

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

Anomaly-Based Bug Detection

The Bugs-As-Anomalies Hypothesis:
Programs usually work correctly, hence bugs are anomalies

By looking for anomalies, , N
we are likely to find bugs

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

Anomaly-Based Bug Detection

The Bugs-As-Anomalies Hypothesis:
Programs usually work correctly, hence bugs are anomalies

By looking for anomalies,
we are likely to find bugs

Frequency

900000
000000

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

Anomaly-Based Bug Detection

The Bugs-As-Anomalies Hypothesis:
Programs usually work correctly, hence bugs are anomalies

By looking for anomalies,
we are likely to find bugs

Frequency

Likely bugs are low-frequency
communication events

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

Anomaly-Based Bug Detection

The Bugs-As-Anomalies Hypothesis:
Programs usually work correctly, hence bugs are anomalies

By looking for anomalies,
we are likely to find bugs

Frequency

Likely bugs are low-frequency
communication events

Fully Automatic Detection - No
labeling required

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. SaI"pa

Avg. # Inspection Required

Bug Detection Capability

To Find A Known Bug

-
o

6

4

0

Labeled Debugging
B Anomaly-Based Detection

ILLLl 1l

R\
& F & K P @ ‘
é\@ &’bﬁ \$ «O O,\//\ ; \(o\(\ @oé .\,5'((&(0 \/,\Q QQ
¥ ¥ gy Y ¢ N & gV g
Synthetic Bugs Bug Kernels Full Applications

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. SaI"pa

DMP-Ownership Example

store A
store P

JWIL
dWI1

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. SaI”pa

DMP-Ownership Example

mem ownher
A PO
B shared
P pO
Q p2

Sharing Table

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. SaI”pa

DMP-Ownership Example

parallel]CPU SfC“'US parallel parallel

mode mode mode

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”'pa

DMP-Ownership Example

store A store B store Q
store P load A store B

parallel parallel parallel
mode mode | mode

dWI1

—
m
7 4
mem owner \/

A PO
B shared
P pO
Q p2

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”lpa

DMP-Ownership Example

store A store B store Q
store P load A store B

parallel parallel parallel
mode mode | mode

dWI1

—
m
7 4
mem owner \/

A PO
B shared
P pO
Q p2

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”lpa

DMP-Ownership Example

store A store B store Q
store P load A store B

parallel parallel parallel
mode mode | mode

dWI1

—
m
7 4
mem owner \/

A pO
B shared
P pO
Q p2

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa”lpa

DMP-Ownership Example

store A store B store Q
store P load A store B

parallel parallel parallel
mode mode mode
store A

dWI1

< _IWIL

mem owner

A pO
B shared
P pO
Q p2

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

DMP-Ownership Example

store A store B store Q
store P load A store B

parallel parallel parallel
mode mode mode

S S
-2 =
v :

mem owner \/

A PO

B shared

P pO

Q p2

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

DMP-Ownership Example

store A store B store Q
store P load A store B

parallel parallel parallel
mode mode done mode

S S
-2 =
v :

mem owner \/

A PO

B shared

P pO

Q p2

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

DMP-Ownership Example

store A store B store Q
store P load A store B

parallel parallel parallel
mode mode done mode
store A

dWI1

< _IWIL

mem owner

A PO
B shared
P pO
Q p2

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

DMP-Ownership Example

store A store B store Q
store P load A store B

parallel parallel parallel
mode mode done mode

. -
-2 =
v s

mem owner \/

A PO

B shared

P pO

Q p2

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

DMP-Ownership Example

store A store B store Q
store P load A store B

parallel parallel parallel
mode mode done mode

S -
-2 =
v s

mem owner \/

A PO

B shared

P pO

Q p2

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

DMP-Ownership Example

store A store B store Q
__Sstore P load A store B

parallel parallel parallel
mode mode done mode

= 5
: :
))
‘mem owner |
A PO
B shared
P pO
Q p2

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"’pa

DMP-Ownership Example

store A store B store Q
__Sstore P load A store B

parallel parallel parallel
mode done mode done mode

= 5
: :
))
‘mem owner |
A PO
B shared
P pO
Q p2

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"’pa

DMP-Ownership Example

store A store B store Q
__store P lToad A store B

parallel parallel parallel
mode done mode done mode

= E
- -
))
‘mem owner |
A PO
B shared
P pO
Q p2

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"’pa

DMP-Ownership Example

store A store B store Q
__store P load A store B

parallel parallel parallel
mode done mode done mode done

= E
- -
))
‘mem owner |
A PO
B shared
P pO
Q p2

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"’pa

DMP-Ownership Example

store A store B store Q
__Sstore P load A store B

serial parallel parallel
mode mode done mode done

= E
- -
))
‘mem owner |
A PO
B shared
P pO
Q p2

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"’pa

DMP-Ownership Example

store B store Q
__load A store B

parallel parallel
mode done mode done

store A
store P

serial
mode

= E
- -
))
‘mem owner |
A PO
B shared
P pO
Q p2

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"’pa

DMP-Ownership Example

store B store Q
__load A store B

serial parallel
mode mode done

store A
store P

serial
mode

= E
- z
))
‘mem owner |
A PO
B shared
P pO
Q p2

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"’pa

DMP-Ownership Example

store A store B store Q
store P load A store B

serial serial parallel
mode mode mode done
store A

JWI1L
dWI1L

store P
7 4
store B
mem| owner |

A PO
B sherree p 1l
P pO
Q p2

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

DMP-Ownership Example

store A store B store Q
store P Toad A store B

serial serial parallel
mode mode mode done

store A

dWI1L

~

'
mem owner
oo

< 3WIL

A

B shered pl
P pO

Q p2

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

DMP-Ownership Example

store A store B store Q
store P load A store B

serial serial

mode mode
store A
store P

serial
mode

dWI1L

7
store B '

< 3WIL

mem owner

A ror
B shered ptp2

P pO

Q p2

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"lpa

DMP-Ownership Example

.
Parallel Prefix

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"’pa

DMP-Ownership Example

store A

| store A | .
Parallel Prefix
| storer |

store P

store B

| store B
Serial Suffix

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"’pa

DMP-Ownership Example

store A .
\Parallel Prefix
store P | I

store B

Serial Suffix

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"’pa

DMP-Ownership Example

store P

Quantum Round

load A

store B

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"’pa

DMP-Ownership Example

Sl Quantum Round

store P

load A

store B

store B

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"’pa

DMP-Ownership Example

SN Quantum Round

store P

load A

store B

store B

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. Sa"’pa

Thread | Thread 2

Dekker’s Algorithm
(no data race)

8l

serial

parallel +
. . commit
Synchronization
happens sequentially
serial

~5(iockmy)

commit

paralle| +

commit
82

serial

Synchronization parallel +
0 commit
is a full fence

paralle| +

commit
83

serial

Synchronization parallel +
0 commit
is a full fence

parallel +
commit

~

Data race free programs are sequentially consistent
(required by C++ and Java memory models)

8%

