
sa pa Safe MultiProcessing Architectures

at the University of Washington

Determinism and Fail-stop Races for
Sane Multiprocessing

Luis Ceze, University of Washington
!

joint work with Owen Anderson, Tom Bergan, Joe Devietti, Nick Hunt, Brandon Lucia, Jacob Nelson,
Steve Gribble, Dan Grossman, Mark Oskin, Karin Strauss, Shaz Qadeer and Hans Boehm.

Guest Lecture at University of Cambridge, November 2013.

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

You probably heard this many times

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

You probably heard this many times

•Era of “free” performance is over.

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

You probably heard this many times

•Era of “free” performance is over.

•Most of compute power now scaling in terms of cores

• Mostly due to power and complexity reasons. Copy & Paste in VLSI :)

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

You probably heard this many times

•Era of “free” performance is over.

•Most of compute power now scaling in terms of cores

• Mostly due to power and complexity reasons. Copy & Paste in VLSI :)

•Shared memory is most popular

• Within a box

• Simplifies data movement, makes synchronization harder

• Shared memory vs. Message passing almost a religious argument

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

You probably heard this many times

•Era of “free” performance is over.

•Most of compute power now scaling in terms of cores

• Mostly due to power and complexity reasons. Copy & Paste in VLSI :)

•Shared memory is most popular

• Within a box

• Simplifies data movement, makes synchronization harder

• Shared memory vs. Message passing almost a religious argument

•This talk:

• Shared-memory multiprocessors. Bringing more safety and sanity to

parallel programming.

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

A multithreaded voting machine

while (more_votes) {!
 load t <- votes!
 t++!
 store t -> votes!
}

thread 0 thread 1
while (more_votes) {!
 load t <- votes!
 t++!
 store t -> votes!
}

shared variable

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

A multithreaded voting machine

while (more_votes) {!
 load t <- votes!
 t++!
 store t -> votes!
}

thread 0 thread 1
while (more_votes) {!
 load t <- votes!
 t++!
 store t -> votes!
}

load
store
load
store

votes == 2

load
store
load
store

votes == 2

shared variable

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

A multithreaded voting machine

while (more_votes) {!
 load t <- votes!
 t++!
 store t -> votes!
}

thread 0 thread 1
while (more_votes) {!
 load t <- votes!
 t++!
 store t -> votes!
}

load
store
load
store

votes == 2

load
store
load
store

votes == 2

load
load
store
store

votes == 1

shared variable

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Two Key Problems

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Two Key Problems

•Data races
• deep impact on memory model and language semantics (see JMM), pretty

much all languages converging to data-race-free models

• usually incorrect and hard to debug

• reliability issues: surprising software failures

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Two Key Problems

•Data races
• deep impact on memory model and language semantics (see JMM), pretty

much all languages converging to data-race-free models

• usually incorrect and hard to debug

• reliability issues: surprising software failures

•Nondeterminism
• debugging is hard: heisenbugs

• testing is hard: can’t test each input just once

• fault tolerant replicas might not behave the same way

• opens timing-based security attacks

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Two Key Problems

•Data races
• deep impact on memory model and language semantics (see JMM), pretty

much all languages converging to data-race-free models

• usually incorrect and hard to debug

• reliability issues: surprising software failures

•Nondeterminism
• debugging is hard: heisenbugs

• testing is hard: can’t test each input just once

• fault tolerant replicas might not behave the same way

• opens timing-based security attacks

•Note: these two are orthogonal

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

What if...
We Made Data-Races Fail-Stop?

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

What if...
We Made Data-Races Fail-Stop?

Semantics are clear
and simple Better data-race

debugging Safety: races can’t
cause problems

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

What if...
We Made Data-Races Fail-Stop?

Semantics are clear
and simple Better data-race

debugging Safety: races can’t
cause problems

When a data-race occurs, throw an exception!!
(we have div by 0, segfault, why not concurrency errors?)

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

What if...
We Made Data-Races Fail-Stop?

Semantics are clear
and simple Better data-race

debugging Safety: races can’t
cause problems

When a data-race occurs, throw an exception!!
(we have div by 0, segfault, why not concurrency errors?)

Can we provide strong detection guarantees at a low cost?

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

What if...
We Removed Non-determinism?

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

What if...
We Removed Non-determinism?

•Development: bugs are reproducible by default, test each input
only once!

•Deployment: software behaves as tested, enables replication for
fault tolerance, timing-based attacks harder

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

What if...
We Removed Non-determinism?

Can we remove undesired nondeterminism without removing
performance?

!
Effectively, make arbitrary parallel programs behave like sequential programs...

•Development: bugs are reproducible by default, test each input
only once!

•Deployment: software behaves as tested, enables replication for
fault tolerance, timing-based attacks harder

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

An aside on memory consistency
models and the C/C++ standard model.

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

What is a Memory Consistency Model?

•Define what values a read can return in shared-memory
programs

• What values do you expect the loads below to get? (x,y both start with 0).

 st 1 →"y
 st 1 →"x

thread"1" thread"2"
 ld x
 ld y

 st 1 →"x
 ld y

thread"1" thread"2"
 st 1 →"y
 ld x

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

What is a Memory Consistency Model?

•Define what values a read can return in shared-memory
programs

• What values do you expect the loads below to get? (x,y both start with 0).

 st 1 →"y
 st 1 →"x

thread"1" thread"2"
 ld x
 ld y

 st 1 →"x
 ld y

thread"1" thread"2"
 st 1 →"y
 ld x

How about (1,0)?

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

What is a Memory Consistency Model?

•Define what values a read can return in shared-memory
programs

• What values do you expect the loads below to get? (x,y both start with 0).

 st 1 →"y
 st 1 →"x

thread"1" thread"2"
 ld x
 ld y

 st 1 →"x
 ld y

thread"1" thread"2"
 st 1 →"y
 ld x

How about (1,0)?

How about (0,0)?

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Sequential Consistency (SC)

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Sequential Consistency (SC)

P1 P2 P3 PN...

Memor
y

st A st C ld C ld A

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Sequential Consistency (SC)

P1 P2 P3 PN...

Memor
y

st A st C ld C ld A

[Lamport’79]

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Sequential Consistency (SC)

Per-processor program order: memory operations from individual
processors maintain program order

P1 P2 P3 PN...

Memor
y

st A st C ld C ld A

[Lamport’79]

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Sequential Consistency (SC)

Per-processor program order: memory operations from individual
processors maintain program order

P1 P2 P3 PN...

Memor
y

st A st C ld C ld A

P1

st A
ld C

st C

[Lamport’79]

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Sequential Consistency (SC)

Per-processor program order: memory operations from individual
processors maintain program order

P1 P2 P3 PN...

Memor
y

st A st C ld C ld A

Global OrderP1

st A
ld C

st C

[Lamport’79]

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Sequential Consistency (SC)

Per-processor program order: memory operations from individual
processors maintain program order

P1 P2 P3 PN...

Memor
y

st A st C ld C ld A

Global OrderP1

st A
ld C

st C

st A

ld C

st C

[Lamport’79]

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Sequential Consistency (SC)

Per-processor program order: memory operations from individual
processors maintain program order
Single sequential order: the memory operations from all processors
maintain a single sequential order

P1 P2 P3 PN...

Memor
y

st A st C ld C ld A

Global OrderP1

st A
ld C

st C

st A

ld C

st C

[Lamport’79]

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Sequential Consistency (SC)

Per-processor program order: memory operations from individual
processors maintain program order
Single sequential order: the memory operations from all processors
maintain a single sequential order

P1 P2 P3 PN...

Memor
y

st A st C ld C ld A

Global OrderP1

st A
ld C

st C

P2

st A
st C

ld D

st A

ld C

st C

[Lamport’79]

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Sequential Consistency (SC)

Per-processor program order: memory operations from individual
processors maintain program order
Single sequential order: the memory operations from all processors
maintain a single sequential order

P1 P2 P3 PN...

Memor
y

st A st C ld C ld A

Global OrderP1

st A
ld C

st C

P2

st A
st C

ld D

st A

ld C

st C

st A

st C

ld D

[Lamport’79]

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Sequential Consistency Implications

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Sequential Consistency Implications

•What are the implications of that to:

• compiler optimizations?

• hardware optimizations?

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Sequential Consistency Implications

•What are the implications of that to:

• compiler optimizations?

• hardware optimizations?

•Conclusion:

• Need to give freedom to compiler writers and HW designers

• Perhaps at the cost of your sanity :)

• Many “relaxed” models: TSO (x86), Weak Ordering (PPC/ARM), etc.

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

C/C++ Standard on Memory Model

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

C/C++ Standard on Memory Model

•Sequential Consistency...

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

C/C++ Standard on Memory Model

•Sequential Consistency...

• for Data-Race Free programs

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

What is a data-race?

•Many “intuitive” definitions

• One technical definition: two accesses from different threads; at least one a

write; accessing the same location; without explicit happens-before
ordering via synchronization

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

What is a data-race?

•Many “intuitive” definitions

• One technical definition: two accesses from different threads; at least one a

write; accessing the same location; without explicit happens-before
ordering via synchronization

Acquire(K)

Release(K) Acquire(M)

Release(M)

Rd Y
Wr X

Rd X

Wr Y
...

Thread 1 Thread 2

Race

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

What is a data-race?

•Many “intuitive” definitions

• One technical definition: two accesses from different threads; at least one a

write; accessing the same location; without explicit happens-before
ordering via synchronization

Acquire(K)

Release(K) Acquire(M)

Release(M)

Rd Y
Wr X

Rd X

Wr Y
...

Thread 1 Thread 2

Race

Acquire(K)

Release(K)
Acquire(K)

Release(K)

Rd Y
Wr X

Rd X

Wr Y
...

Thread 1 Thread 2

HB

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

C/C++ Standard on Memory Model

•Sequential Consistency for Data-Race Free programs

•What does that mean?

• If execution of a program has no races, you can reason about it in a

sequentially consistent way

• And execution behaves as some interleaving of regions without
synchronization operations

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Sequential Consistency for DRF Example

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Sequential Consistency for DRF Example

Acquire(K)

Release(K)

Acquire(L)

Release(L)

Rd Y
Wr X

Rd T
Wr T

Rd Y

Wr Y
...

Thread 1

Acquire(K)

Release(K)

Rd X

Wr Z
...

Thread 2

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Sequential Consistency for DRF Example

Acquire(K)

Release(K)

Acquire(L)

Release(L)

Rd Y
Wr X

Rd T
Wr T

Rd Y

Wr Y
...

Thread 1

Acquire(K)

Release(K)

Rd X

Wr Z
...

Thread 2 Rd Y
Wr X

Rd T
Wr T

Rd Y

Wr Y
...

Rd X

Wr Z
...

Some global ordering

Rd Y
Wr X

Rd T
Wr T

Rd Y

Wr Y
...

Rd X

Wr Z
...

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

C/C++ Standard on Memory Model

•What does that buy?

• A *lot* of freedom to compiler and hardware

• e.g., HW buffers, loop-inv code motion, CSE, etc.

• Pretty much can do whatever reordering as long as it does not cross
synchronization

•Key is to determine if there is a race...

• very hard to do statically

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Concurrency Exceptions: The Vision

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Concurrency Exceptions: The Vision

•Concurrency bugs drive people nuts

• Show asynchronous, non-local behavior

• Often lead to silent failures

• Significantly complicate language semantics

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Concurrency Exceptions: The Vision

•Concurrency bugs drive people nuts

• Show asynchronous, non-local behavior

• Often lead to silent failures

• Significantly complicate language semantics

➡Generate an exception when a concurrency occurs

• Put them in the same category as Div-by-zero, SEGFAULTs, etc

• Which concurrency errors? When should the exception be delivered? To
what threads?

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Concurrency Exceptions: The Vision

•Concurrency bugs drive people nuts

• Show asynchronous, non-local behavior

• Often lead to silent failures

• Significantly complicate language semantics

➡Generate an exception when a concurrency occurs

• Put them in the same category as Div-by-zero, SEGFAULTs, etc

• Which concurrency errors? When should the exception be delivered? To
what threads?

•We are starting with data-races

• Well defined, doesn’t require programmer annotations, language semantics

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Goals In Supporting Races as Exceptions

High-Performance - Always-on detection

Precise detection - No false positives

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Conflict Exceptions

Acquire(K)

Release(K)

Acquire(L)

Release(L)

Acquire(M)

Release(M)

Rd Y
Wr X

Rd T
Wr T

Rd Y

Wr Y
...

Rd X

Wr Y
...

Thread 1 Thread 2

[ISCA’10]

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Conflict Exceptions

Acquire(K)

Release(K)

Acquire(L)

Release(L)

Acquire(M)

Release(M)

Rd Y
Wr X

Rd T
Wr T

Rd Y

Wr Y
...

Rd X

Wr Y
...

Thread 1 Thread 2

Synchronization-Free	

Regions

[ISCA’10]

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Conflict Exceptions

Acquire(K)

Release(K)

Acquire(L)

Release(L)

Acquire(M)

Release(M)

Rd Y
Wr X

Rd T
Wr T

Rd Y

Wr Y
...

Rd X

Wr Y
...

Thread 1 Thread 2

Conflict!

Synchronization-Free	

Regions

[ISCA’10]

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Conflict Exceptions

Acquire(K)

Release(K)

Acquire(L)

Release(L)

Acquire(M)

Release(M)

Rd Y
Wr X

Rd T
Wr T

Rd Y

Wr Y
...

Rd X

Wr Y
...

Thread 1 Thread 2

Conflict!

Exception	

Delivered	

Here

Synchronization-Free	

Regions

[ISCA’10]

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Conflict Exceptions

Acquire(K)

Release(K)

Acquire(L)

Release(L)

Acquire(M)

Release(M)

Rd Y
Wr X

Rd T
Wr T

Rd Y

Wr Y
...

Rd X

Wr Y
...

Thread 1 Thread 2

Conflict!

Undetected Race
Exception	

Delivered	

Here

Synchronization-Free	

Regions

[ISCA’10]

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Conflict Exceptions

Acquire(K)

Release(K)

Acquire(L)

Release(L)

Acquire(M)

Release(M)

Rd Y
Wr X

Rd T
Wr T

Rd Y

Wr Y
...

Rd X

Wr Y
...

Thread 1 Thread 2

Conflict!

Undetected Race Exception!
Delivered!

Here

Synchronization-Free!
Regions

Precisely detect only races that can effect consistency

Ignoring “unimportant” races is key to performance	

(much lower space and time overheads)

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Conflict Exceptions

Acquire(K)

Release(K)

Acquire(L)

Release(L)

Acquire(M)

Release(M)

Rd Y
Wr X

Rd T
Wr T

Rd Y

Wr Y
...

Rd X

Wr Y
...

Thread 1 Thread 2

Conflict!

Undetected Race Exception!
Delivered!

Here

Synchronization-Free!
Regions

Precisely detect only races that can effect consistency

Ignoring “unimportant” races is key to performance	

(much lower space and time overheads)

The Guarantee:	

Exception-Thrown? There was a data-race.	

Exception-Free? Sequential Consistency.

(dramatically simplifies checking, while making PL and systems people happy :).

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Language Level Benefits

Acquire(K)

Release(K)

Reordering in SFRs
is legal

Granularity
independence

Rd Y
Wr X

Acquire(K)

Release(K)

Wr64_Low X
Wr64_Hi X

Exception-Free
executions are SC

Acq(K)

Rel(K)

Rd X
Wr X

Acq(K)

Rel(K)

Rd X
Wr X

✓

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Language Level Benefits

pthread_lock(K)

pthread_unlock(K)

Programming model
is largely the same

Racy programs are well-
behaved

Rd Y
Wr X

Race semantics are
simpler

Wr Q
Wr Z

Acq(K)
Rd X
Wr X

Acq(L)

Rd X

!

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Debugging and Reliability

Concurrent, conflicting SFRs
throw exceptions

Acq(K)
Rd X
Wr X

Acq(L)

Rd X

!

All races have some exceptional
schedule

Exception Handling: Log
+ Recover

Damage Control: Shut
down buggy module

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Hardware Support in a Nutshell

Hardware Transactional Memory

- Versioning
+ Byte-level conflict detection

+ Exception support

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Hardware/Software Interface

New Instructions:	

BeginRegion and EndRegion

Synchronization Operations
are Singleton Regions

Exceptions Thrown Precisely
Before Conflicting Instruction

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Hardware/Software Interface

Rd Y
Wr X

Rd T
Wr T

Acquire(K)

Release(K)

BeginRegion

EndRegion

BeginRegion

EndRegion

New Instructions:	

BeginRegion and EndRegion

Synchronization Operations
are Singleton Regions

Exceptions Thrown Precisely
Before Conflicting Instruction

sa pa

Access Monitoring

...
...

N-byte Cache Line

N-bit	

Access Bits

Local Read
Local Write

Remote Read
Remote Write

Line-level	

Supplied Bit

sa pa

Access Monitoring

...
...

N-byte Cache Line

N-bit	

Access Bits

Local Read
Local Write

Remote Read
Remote Write

Exception Test: compare local and remote bits

Line-level	

Supplied Bit

sa pa

Access Monitoring

...
...

N-byte Cache Line

N-bit	

Access Bits

Local Read
Local Write

Remote Read
Remote Write

Exception Test: compare local and remote bits

Line-level	

Supplied Bit

Overheads significantly reduced via type-safety and reusing
data-array for access bits. [ISCA‘11sub]

sa pa

Leveraging Coherence Support

CPU 1 CPU 2

Read Request

Read 	

Reply

Local
Write	

Bits

Remote
Write	

Bits

V

CPU 1 CPU 2

Write/Invalidate

Invalidate	

Ack

Local
Write	

Bits

Local
Read	

Bits

Read
Coherence

Actions

Write
Coherence

Actions

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Now that we know how to get SC
executions (or an exception)....

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Deterministic Multiprocessing

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Deterministic Multiprocessing at 10,000’
6

[ASPLOS’09, ASPLOS’10, OSDI’10, ASPLOS’11]

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

•DMP provides execution-level determinism for arbitrary
multithreaded programs:

Deterministic Multiprocessing at 10,000’
6

[ASPLOS’09, ASPLOS’10, OSDI’10, ASPLOS’11]

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

•DMP provides execution-level determinism for arbitrary
multithreaded programs:
• execution is only function of explicit inputs => single execution per input

Deterministic Multiprocessing at 10,000’
6

[ASPLOS’09, ASPLOS’10, OSDI’10, ASPLOS’11]

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

•DMP provides execution-level determinism for arbitrary
multithreaded programs:
• execution is only function of explicit inputs => single execution per input

• this is not record-replay of multithreaded programs

Deterministic Multiprocessing at 10,000’
6

[ASPLOS’09, ASPLOS’10, OSDI’10, ASPLOS’11]

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

•DMP provides execution-level determinism for arbitrary
multithreaded programs:
• execution is only function of explicit inputs => single execution per input

• this is not record-replay of multithreaded programs

•Key idea: conceptually serialize execution, recover
parallelism while preserving serial execution semantics

Deterministic Multiprocessing at 10,000’
6

[ASPLOS’09, ASPLOS’10, OSDI’10, ASPLOS’11]

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

•DMP provides execution-level determinism for arbitrary
multithreaded programs:
• execution is only function of explicit inputs => single execution per input

• this is not record-replay of multithreaded programs

•Key idea: conceptually serialize execution, recover
parallelism while preserving serial execution semantics
• several techniques to make this fast: actual goal is to preserve inter-

thread communication, still freedom left for efficient schedules

Deterministic Multiprocessing at 10,000’
6

[ASPLOS’09, ASPLOS’10, OSDI’10, ASPLOS’11]

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Deterministic Process Groups (DPGs)

Thread1

Process A

Thread2 Thread3

Process B

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Deterministic Process Groups (DPGs)

Thread1

Process A

deterministic box

Thread2 Thread3

Process B

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Deterministic Process Groups (DPGs)

Thread1

Process A

deterministic box

Thread2 Thread3

Process B

System ensures:
• internal nondeterminism is eliminated 

(for shared-memory, pipes, signals, local files, ...)

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Deterministic Process Groups (DPGs)

Thread1

Process A

deterministic box
shim

 program

network

Thread2 Thread3

Process B

System ensures:
• internal nondeterminism is eliminated 

(for shared-memory, pipes, signals, local files, ...)

• external nondeterminism funneled through shim program

user I/O

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Deterministic Process Groups (DPGs)

Thread1

Process A

deterministic box

Shim Program:

shim
 program

network

Thread2 Thread3

Process B

System ensures:
• internal nondeterminism is eliminated 

(for shared-memory, pipes, signals, local files, ...)

• external nondeterminism funneled through shim program

• user-space program that precisely controls all external
nondeterministic inputs

user I/O

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Internal
Determinism

External
Nondeterminism

network

deterministic box

users

pipe

shared file

Process 4

shared	

memory

pipes

private	

files

shim
 program

real time

Process 1

Process 2

Process 3

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Internal
Determinism

External
Nondeterminism

network

deterministic box

users

pipe

shared file

Process 4

shared	

memory

pipes

private	

files

shim
 program

Precisely controls  
all external inputs

• value of input data	

• time input data arrives

real time

Process 1

Process 2

Process 3

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Aside: Using DPGs When Constructing Apps

webserver

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Aside: Using DPGs When Constructing Apps

webserver

deterministic part	

(in a DPG)

nondeterministic part	

(in a shim)

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Aside: Using DPGs When Constructing Apps

webserver

deterministic part	

(in a DPG)

nondeterministic part	

(in a shim)

request	

processing

low-level	

network I/O	

(bundle into requests)

• behaves deterministically w.r.t. requests rather than packets

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Aside: Using DPGs When Constructing Apps

webserver

deterministic part	

(in a DPG)

nondeterministic part	

(in a shim)

request	

processing

low-level	

network I/O	

(bundle into requests)

Shim program defines the nondeterministic interface

• behaves deterministically w.r.t. requests rather than packets

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

How is determinism actually enforced?

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Starting simple: DMP-Serial

quantum

time →

T1

T2

T3

deterministic quantum size
(in logical time, e.g., instructions)
+
deterministic scheduling
!
determinism

quantum round

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Can we do better?

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Can we do better?

•Only need to serialize communicating instructions

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Can we do better?

•Only need to serialize communicating instructions

•Break each quantum into communication-free parallel
mode and communicative serial mode

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Can we do better?

•Only need to serialize communicating instructions

•Break each quantum into communication-free parallel
mode and communicative serial mode

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Can we do better?

•Only need to serialize communicating instructions

•Break each quantum into communication-free parallel
mode and communicative serial mode

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Can we do better?

•Only need to serialize communicating instructions

•Break each quantum into communication-free parallel
mode and communicative serial mode

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Can we do better?

•Only need to serialize communicating instructions

•Break each quantum into communication-free parallel
mode and communicative serial mode

•Need to know when communication happens
• The Memory Ownership Table (MOT) tracks information about ownership

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Parallel Serial

Parallel mode: no communication (can write only to private data)	

Serial mode: arbitrary communication

end of roundtime

T1

T3

T2

DMP-O (Ownership)

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Parallel Serial

Parallel mode: no communication (can write only to private data)	

Serial mode: arbitrary communication

end of roundtime

T1

T3

T2

MOT

x owned-by T1

y shared

z owned-by T2

:	

:

:	

:

DMP-O (Ownership)

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Parallel Serial

Parallel mode: no communication (can write only to private data)	

Serial mode: arbitrary communication

end of roundtime

T1

T3

T2

MOT

x owned-by T1

y shared

z owned-by T2

:	

:

:	

:

Important: State of the MOT needs to evolve deterministically; updates are limited to serial suffix

DMP-O (Ownership)

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-TM: Recovering Parallelism with Speculation

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-TM: Recovering Parallelism with Speculation

•DMP-O conservatively assumes that all cache line state
transitions are communication

• …but many transitions are not communication

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-TM: Recovering Parallelism with Speculation

•DMP-O conservatively assumes that all cache line state
transitions are communication

• …but many transitions are not communication

•Use TM support to speculate that a quantum is not
involved in communication

• If communication happens, rollback + re-execute

• Commit quanta in a deterministic order

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-TM

T1

T2

T3

•quanta are implicit transactions

•commit quanta in deterministic order

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-TM

T1

T2

T3

parallel
•quanta are implicit transactions

•commit quanta in deterministic order

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-TM

T1

T2

T3

commit
parallel

•quanta are implicit transactions

•commit quanta in deterministic order

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-TM

T1

T2

T3

commit
parallel

•quanta are implicit transactions

•commit quanta in deterministic order

•rollback+restart on conflicts
wr X

rd X

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-TM

T1

T2

T3

commit
parallel

•quanta are implicit transactions

•commit quanta in deterministic order

•rollback+restart on conflicts
wr X

rd X rd X

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-TM

T1

T2

T3

commit
parallel

•quanta are implicit transactions

•commit quanta in deterministic order

•rollback+restart on conflicts

•leverage (best effort) HTM support

wr X

rd X rd X

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-TM

T1

T2

T3

commit
parallel

•quanta are implicit transactions

•commit quanta in deterministic order

•rollback+restart on conflicts

•leverage (best effort) HTM support

•functionally equivalent to DMP-Serial

wr X

rd X rd X

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-TM Overheads

time →

T1

T2

T3

commit
parallel

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-TM Overheads

time →

T1

T2

T3

commit
parallel rollbacks

•can use relaxed conflict
detection like TLS & other
TLS tricks like forwarding

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-TM Overheads

time →

T1

T2

T3

commit
parallel rollbacks

•can use relaxed conflict
detection like TLS & other
TLS tricks like forwarding

commit
•lots of TM techniques to

make commit fast

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-TM Overheads

time →

T1

T2

T3

commit
parallel rollbacks

•can use relaxed conflict
detection like TLS & other
TLS tricks like forwarding

commit
•lots of TM techniques to

make commit fast

imbalance
•better quantum formation

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-O and DMP-TM Evaluation
ru

nt
im

e
no

rm
al

iz
ed

 to

no
nd

et
 e

xe
cu

tio
n

1.0

1.1

1.3

1.4

1.5

threads

4 8 16 4 8 16

DMP-O
DMP-TM
DMP-TMForward

splash2 parsec

(HW version)

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-O and DMP-TM Evaluation
ru

nt
im

e
no

rm
al

iz
ed

 to

no
nd

et
 e

xe
cu

tio
n

1.0

1.1

1.3

1.4

1.5

threads

4 8 16 4 8 16

DMP-O
DMP-TM
DMP-TMForward

splash2 parsec

scalability

(HW version)

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-O and DMP-TM Evaluation
ru

nt
im

e
no

rm
al

iz
ed

 to

no
nd

et
 e

xe
cu

tio
n

1.0

1.1

1.3

1.4

1.5

threads

4 8 16 4 8 16

DMP-O
DMP-TM
DMP-TMForward

speculation  
gap

splash2 parsec

(HW version)

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Can we get most of the benefits of speculation
without the costs of speculation?

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Can we get most of the benefits of speculation
without the costs of speculation?

transactions

!

isolation
+

atomicity

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Can we get most of the benefits of speculation
without the costs of speculation?

transactions

!

isolation
+

atomicity

isolation is
sufficient for
determinism

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Can we get most of the benefits of speculation
without the costs of speculation?

transactions

!

isolation
+

atomicity

isolation is
sufficient for
determinism

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Can we get most of the benefits of speculation
without the costs of speculation?

transactions

!

isolation
+

atomicity

isolation is
sufficient for
determinism

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Can we get most of the benefits of speculation
without the costs of speculation?

isolation is
sufficient for
determinism store buffers

!

isolation

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-Buffering: Trading consistency for performance

time →

T1

T2

T3

parallel
parallel mode: buffer all

stores (no communication)

heard that before? :)

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-Buffering: Trading consistency for performance

time →

T1

T2

T3

parallel
parallel mode: buffer all

stores (no communication)

wr A

rd A

heard that before? :)

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-Buffering: Trading consistency for performance

time →

T1

T2

T3

parallel
parallel mode: buffer all

stores (no communication)

wr A

rd A

heard that before? :)

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-Buffering: Trading consistency for performance

time →

T1

T2

T3

parallel
parallel mode: buffer all

stores (no communication)

wr A

rd A

rd A

heard that before? :)

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-Buffering: Trading consistency for performance

time →

T1

T2

T3

parallel
parallel mode: buffer all

stores (no communication)
commit mode:

deterministically publish
buffers

heard that before? :)

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-Buffering: Trading consistency for performance

time →

T1

T2

T3

commit
parallel

parallel mode: buffer all
stores (no communication)

commit mode:
deterministically publish
buffers

heard that before? :)

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-Buffering: Trading consistency for performance

time →

T1

T2

T3

commit
parallel

parallel mode: buffer all
stores (no communication)

commit mode:
deterministically publish
buffers

serial mode: for atomic ops

heard that before? :)

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-Buffering: Trading consistency for performance

time →

T1

T2

T3

commit
parallel

parallel mode: buffer all
stores (no communication)

commit mode:
deterministically publish
buffers

serial mode: for atomic ops
lock A

lock A

heard that before? :)

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-Buffering: Trading consistency for performance

time →

T1

T2

T3

commit
parallel

parallel mode: buffer all
stores (no communication)

commit mode:
deterministically publish
buffers

serial mode: for atomic opsserial
lock A

lock A

heard that before? :)

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-B “Correctness”

time →

T1

T2

T3

commit
parallel

serial

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-B “Correctness”

time →

T1

T2

T3

commit
parallel

serial

parallel mode (isolated threads)

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-B “Correctness”

time →

T1

T2

T3

commit
parallel

serial

parallel mode (isolated threads)
+
commit mode (logically serial)

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-B “Correctness”

time →

T1

T2

T3

commit
parallel

serial

parallel mode (isolated threads)
+
commit mode (logically serial)
+
serial mode (like DMP-Serial)

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-B “Correctness”

time →

T1

T2

T3

commit
parallel

serial

parallel mode (isolated threads)
+
commit mode (logically serial)
+
serial mode (like DMP-Serial)

determinism —- not guaranteed to be SC

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-B Overheads

time →

T1

T2

T3

commit
parallel

serial

serial mode

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-B Overheads

time →

T1

T2

T3

commit
parallel

serial

serial mode
imbalance

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-B Overheads

time →

T1

T2

T3

commit
parallel

serial

serial mode
imbalance

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

•C/C++ compiler pass for LLVM

• yes, the previous results were for a HW-implementation... sorry

•Runtime library that replaces pthreads library, schedules
threads and tracks inter-thread communication

• Intel 8-core 2.4GHz Xeon with 10GB RAM, 64-bit Ubuntu
8.10

•SPLASH2 and PARSEC

DMP-B Evaluation (1/2)

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-B Evaluation (2/2)
ru

nt
im

e
no

rm
al

iz
ed

 to

no
nd

et
 e

xe
cu

tio
n

1.0

2.0

3.0

4.0

5.0

6.0

threads

2 4 8 2 4 8

DMP-O
DMP-B

splash2 parsec

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-B Evaluation (2/2)
ru

nt
im

e
no

rm
al

iz
ed

 to

no
nd

et
 e

xe
cu

tio
n

1.0

2.0

3.0

4.0

5.0

6.0

threads

2 4 8 2 4 8

DMP-O
DMP-B

splash2 parsec

scalability

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-B Evaluation (2/2)
ru

nt
im

e
no

rm
al

iz
ed

 to

no
nd

et
 e

xe
cu

tio
n

1.0

2.0

3.0

4.0

5.0

6.0

threads

2 4 8 2 4 8

DMP-O
DMP-B

splash2 parsec

scalability

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Improving Balance: Better Quantum Building

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Improving Balance: Better Quantum Building

•Any deterministic policy will work

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Improving Balance: Better Quantum Building

•Any deterministic policy will work

•We want quanta that are free of communication

• no communication → no serialization, no rollbacks

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Improving Balance: Better Quantum Building

•Any deterministic policy will work

•We want quanta that are free of communication

• no communication → no serialization, no rollbacks

•Leverage

• synchronization: end quantum at release points

• sharing: end quantum after bursty shared accesses

• program structure (backedges, syscalls, etc...)

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-* Tradeoffs
PE

R
FO

R
M

AN
C

E/
!

SC
AL

AB
IL

IT
Y

COMPLEXITY

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-* Tradeoffs

DMP-Serial DMP-O DMP-B DMP-HB DMP-TM DMP-TMFwdPE
R

FO
R

M
AN

C
E/
!

SC
AL

AB
IL

IT
Y

COMPLEXITY

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-* Tradeoffs

DMP-Serial DMP-O DMP-B DMP-HB DMP-TM DMP-TMFwdPE
R

FO
R

M
AN

C
E/
!

SC
AL

AB
IL

IT
Y

COMPLEXITY

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-* Tradeoffs

DMP-Serial DMP-O DMP-B DMP-HB DMP-TM DMP-TMFwdPE
R

FO
R

M
AN

C
E/
!

SC
AL

AB
IL

IT
Y

no speculation speculation

COMPLEXITY

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-* Tradeoffs

DMP-Serial DMP-O DMP-B DMP-HB DMP-TM DMP-TMFwdPE
R

FO
R

M
AN

C
E/
!

SC
AL

AB
IL

IT
Y

no speculation speculation

COMPLEXITY

give up SC

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Performance Summary

•DMP-O: Low overheads, ok (not great) scalability

•DMP-B: More overheads, good scalability

•DMP-TM: Even more overheads, great scalability (tricks)

•Exacerbates inherent lack of scalability of applications

• Relaxing memory ordering helps a lot, even more so than in nondet MPs

• Implementations:

• HW implementation: ~5% to 50%

• Compiler implementation: 2x to 3x (instrumentation cost)

• OS (paging tricks): 0% to 10x (false sharing at page granularity)

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

In case you want to learn more...

•DMP:

• “Deterministic Shared Memory Multiprocessing”, ASPLOS’09, IEEE Micro Top

Picks

• “CoreDet: A Compiler and Runtime System for Deterministic Multithreaded
Execution”, ASPLOS’10

• “Deterministic Process Groups in dOS”, OSDI’10

• “RCDC: A Relaxed Consistency Deterministic Computer”, ASPLOS’11

•FailStop Races:

• “A Case for System Support for Concurrency Exceptions”, Usenix HotPar’09

• “Conflict Exceptions”, ISCA’10

sa pa Safe MultiProcessing Architectures

at the University of Washington

Luis Ceze, University of Washington
!
!
!

?

Determinism and Fail-stop Races for
Sane Multiprocessing

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-TSO breaking SC

 A = 1!
 if (B == 0)!
 ...

 B = 1!
 if (A == 0)!
 ...

Thread 1 Thread 2

Dekker’s Algorithm	

(there is a data race)

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-TSO breaking SC

 A = buffer[A] B = buffer[B]

Thread 1 Thread 2

 buffer[A] = 1!
 if (B == 0)!
 ...

 buffer[B] = 1!
 if (A == 0)!
 ...

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-TSO breaking SC

 A = buffer[A]

 B = buffer[B]

Thread 1 Thread 2
parallel

com
m

it

 buffer[A] = 1!
 if (B == 0)!
 ...

 buffer[B] = 1!
 if (A == 0)!
 ...

This is deterministic . . .

re
or

de
re

d

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-TSO breaking SC

 A = buffer[A]

 B = buffer[B]

Thread 1 Thread 2
parallel

com
m

it

 buffer[A] = 1!
 if (B == 0)!
 ...

 buffer[B] = 1!
 if (A == 0)!
 ...

. . . but not sequentially consistent	

(cycle in the happens-before graph)But data race free programs are sequentially consistent	

(required by C++ and Java memory models)

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Dynamic Bug Avoidance from 10,000’
[ISCA’08, ISCA’10]

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Dynamic Bug Avoidance from 10,000’

thread 0 thread 1

[ISCA’08, ISCA’10]

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Dynamic Bug Avoidance from 10,000’

thread 0 thread 1

[ISCA’08, ISCA’10]

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Dynamic Bug Avoidance from 10,000’

bug!

thread 0 thread 1

[ISCA’08, ISCA’10]

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Dynamic Bug Avoidance from 10,000’

bug!

thread 0 thread 1

load
load
store
store

votes == 1

[ISCA’08, ISCA’10]

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Dynamic Bug Avoidance from 10,000’

bug!

thread 0 thread 1

load
load
store
store

votes == 1

[ISCA’08, ISCA’10]

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Dynamic Bug Avoidance from 10,000’

bug!

thread 0 thread 1

load
load
store
store

votes == 1

[ISCA’08, ISCA’10]

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Dynamic Bug Avoidance from 10,000’

bug!

thread 0 thread 1

load
load
store
store

votes == 1

[ISCA’08, ISCA’10]

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Dynamic Bug Avoidance from 10,000’

bug!

thread 0 thread 1

load
load
store
store

votes == 1
load
store
load
store

votes == 2

[ISCA’08, ISCA’10]

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Dynamic Bug Avoidance from 10,000’

bug!

thread 0 thread 1

load
load
store
store

votes == 1
load
store
load
store

votes == 2

[ISCA’08, ISCA’10]

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Dynamic Bug Avoidance from 10,000’

bug!

thread 0 thread 1

load
load
store
store

votes == 1
load
store
load
store

votes == 2

load
store
load
store

votes == 2

[ISCA’08, ISCA’10]

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Dynamic Bug Avoidance from 10,000’

bug!

thread 0 thread 1

•Dynamically detect patterns of buggy interleavings

•Steer the execution away from possibly bad interleavings

load
load
store
store

votes == 1
load
store
load
store

votes == 2

load
store
load
store

votes == 2

[ISCA’08, ISCA’10]

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

What about performance? :)

•DMP-O: Low overheads, ok (not great) scalability

•DMP-B: More overheads, good scalability

•DMP-TM: Even more overheads, great scalability (tricks)

•Exacerbates inherent lack of scalability of apps

• relaxing memory model helps a lot, even more so than in nondet MPs

!

•HW implementation: ~5% to 50%

•Compiler implementation: 2x to 3x (instrumentation cost)

•OS (paging): 0% to 10x (false sharing at page gran.)

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Ongoing DMP Research

•Support for program instrumentation robustness

• need to make sure behavior stays the same

• Improving scalability

• more memory model experiments

•Testing

•Applications to distributed systems

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Approach Project(s)

Record+Replay FDR [Xu, ISCA ‘03]

ReRun [Hower, ISCA ‘08]

Capo [Montesinos, ASPLOS ‘09]
Limited Determinism Kendo [Olszewski, ASPLOS ‘09]  

Grace [Berger, OOPSLA ‘09]

Systems Issues dOS [Bergan, OSDI ‘10]

Determinator [Aviram, OSDI ‘10]

[Cui, OSDI ‘10]
Deterministic

Languages
NESL, JADE

CILK, ORCS, DPJ

Related work

Corensic DMP Hypervisor.

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Or how about Making Errors Failstop?
Fail-Stop Semantics for Data-Races

Semantics are clear
and simple

Better data-race
debugging

Safety: races can’t cause
problems

When a data-race occurs, throw an exception

The Guarantee:!
Exception-Thrown? There was a data-race.!
Exception-Free? Sequential Consistency.

[ISCA’10]

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

CoreDet: Compiler and Runtime System

•An implementation of DMP in software

• DMP-Ownership: simple, reasonable overheads, but poor scalability

•Our goal with this implementation: preserve scalability

•New DMP technique: DMP-Buffering

• better scalability, but more overheads

• no speculation (easier to implement than DMP-TM)

• key insight: relaxed memory consistency (specifically, TSO)

• yes, deterministic relaxed consistency :) 

[ASPLOS’10]

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

T1

T3

T2

Parallel mode: buffer stores locally

Commit mode: publish local store buffers

Serial mode: used for synchronization (e.g. atomic ops)

• ends at synchronization (atomic ops and fences), and quantum boundaries

• happens semantically in serial for determinism!
• executes in parallel for performance

Parallel SerialCommit

DMP-Buffering

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

CoreDet: Implementation

•A compiler

• instruments the code with calls to the runtime

• static optimizations to remove instrumentation

•A runtime library

• scheduling threads

• tracks inter-thread communication

• deterministic wrappers for: pthreads, malloc, etc...

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Bugaboo

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

From Interleavings To Communication

blkOut = 0

while(blkOut)!
 Alarm();

blkOut = 1

Interleaving

*http://www.availabilitydigest.com/private/0203/northeast_blackout.pdf

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

From Interleavings To Communication

blkOut = 0

while(blkOut)!
 Alarm();

blkOut = 1

Interleaving

*http://www.availabilitydigest.com/private/0203/northeast_blackout.pdf

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

From Interleavings To Communication

blkOut = 0

while(blkOut)!
 Alarm();

blkOut = 1

Interleaving
Communication!

(via blkOut)
*http://www.availabilitydigest.com/private/0203/northeast_blackout.pdf

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Finding Bugs with Communication Graphs

blkOut = 0

while(blkOut)!
 Alarm();

blkOut = 1

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Finding Bugs with Communication Graphs

blkOut = 0

while(blkOut)!
 Alarm();

blkOut = 1

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Finding Bugs with Communication Graphs

blkOut = 0

while(blkOut)!
 Alarm();

blkOut = 1

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Finding Bugs with Communication Graphs

blkOut = 0

while(blkOut)!
 Alarm();

blkOut = 1

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Finding Bugs with Communication Graphs

blkOut = 0

while(blkOut)!
 Alarm();

blkOut = 1

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Debugging With Communication Graphs
From 10,000’

1. Collect communication graphs,
and label them as Buggy or Correct

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Debugging With Communication Graphs
From 10,000’

1. Collect communication graphs,
and label them as Buggy or Correct

2. Identify edges in Buggy graphs,
but not in Correct graphs

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Debugging With Communication Graphs
From 10,000’

1. Collect communication graphs,
and label them as Buggy or Correct

blkOut = 0 while(blkOut)!
 Alarm();

2. Identify edges in Buggy graphs,
but not in Correct graphs

3. Inspect code involved in Buggy-
only edges

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Graphs Must Encode Enough Information
to Identify Buggy Communication

Graph Collection Must be Cheap

Debugging Must Be Simple
Debug

System Design Requirements

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Making Useful
Communication Graphs

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

A More Interesting Example

str = getStr();

len = getLen();

int l = len;

string s = str;

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

A More Interesting Example

str = getStr();

len = getLen();

int l = len;

string s = str;

Multi-Variable Atomicity Violation can result
in reads of inconsistent str and len

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

int l = len;

string s = str;

Communication Alone Is Insufficient

str = getStr();

len = getLen();

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

int l = len;

string s = str;

Communication Alone Is Insufficient

str = getStr();

len = getLen();

✗

✓

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

int l = len;

string s = str;

Communication Alone Is Insufficient

str = getStr();

len = getLen();

There is no edge in the Buggy graph that isn’t in the Correct
graph!

✗

✓

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

✓

Adding Context to Graphs

✗

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

✓

Adding Context to Graphs

These writes should not be interleaved... ✗

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

✓

Adding Context to Graphs

These writes should not be interleaved...

...so these instructions should be
ordered before, or after both writes

✗

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

✓

Adding Context to Graphs

These writes should not be interleaved...

...so these instructions should be
ordered before, or after both writes

✗

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

✓

Adding Context to Graphs

These writes should not be interleaved...

...so these instructions should be
ordered before, or after both writes

✗

Communication graphs do not encode
relative ordering of communications

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

✓

Adding Context to Graphs

These writes should not be interleaved...

...so these instructions should be
ordered before, or after both writes

Communication Context is a short history of preceding
communication events added to each node

✗

Communication graphs do not encode
relative ordering of communications

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

✓

Adding Context to Graphs

These writes should not be interleaved...

...so these instructions should be
ordered before, or after both writes

Communication Context is a short history of preceding
communication events added to each node

✗

Communication graphs do not encode
relative ordering of communications

Context encodes ordering amongst communication
events, enabling more general bug detection

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

int l = len;

string s = str;

Context-Aware Communication Graphs

str = getStr();

len = getLen();

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

int l = len;

string s = str;

Context-Aware Communication Graphs

str = getStr();

len = getLen();

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

int l = len;

string s = str;

Context-Aware Communication Graphs

str = getStr();

len = getLen();

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

int l = len;

string s = str;

Context-Aware Communication Graphs

str = getStr();

len = getLen();

{Context

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

int l = len;

string s = str;

Context-Aware Communication Graphs

str = getStr();

len = getLen();

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

int l = len;

string s = str;

Context-Aware Communication Graphs

str = getStr();

len = getLen();

{Node

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

int l = len;

string s = str;

Context-Aware Communication Graphs

str = getStr();

len = getLen();

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

int l = len;

string s = str;

Context-Aware Communication Graphs

str = getStr();

len = getLen();

Rem Wr

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

int l = len;

string s = str;

Context-Aware Communication Graphs

str = getStr();

len = getLen();

Rem Wr

Rem Wr
Loc Rd

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

int l = len;

string s = str;

Context-Aware Communication Graphs

str = getStr();

len = getLen();

Loc Wr
Rem Rd
Rem Rd

Rem Wr

Rem Wr
Loc Rd

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Context-Aware Communication Graphs

Loc Wr
Rem Rd
Rem Rd

Rem Wr

Rem Wr

Loc Rd

Loc Wr

Loc Wr

Rem Rd
Rem Rd

Rem Wr
Rem Wr

Loc Rd

Loc Rd

Rem Wr
Rem Wr

Rem Rd
Rem Rd

✗ ✓

✓

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Context-Aware Communication Graphs

Loc Wr
Rem Rd
Rem Rd

Rem Wr

Rem Wr

Loc Rd

Loc Wr

Loc Wr

Rem Rd
Rem Rd

Rem Wr
Rem Wr

Loc Rd

Loc Rd

Rem Wr
Rem Wr

Rem Rd
Rem Rd

This edge is uniquely buggy
in this context-aware graph

✗ ✓

✓

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Debugging With BugabooDebug

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Labeled Graph Debugging

Starting with a bug report
or buggy behavior...

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Labeled Graph Debugging

Starting with a bug report
or buggy behavior...

...collect graphs from
many runs, labeling as

buggy or correct

✓
✗

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Labeled Graph Debugging

Starting with a bug report
or buggy behavior...

...collect graphs from
many runs, labeling as

buggy or correct

✓
✗

Find edges in any
buggy graph, and in

no correct graph

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Labeled Graph Debugging

Starting with a bug report
or buggy behavior...

...collect graphs from
many runs, labeling as

buggy or correct

✓
✗

Find edges in any
buggy graph, and in

no correct graph

Rank the resulting edges, giving high rank to:
•Rare communication events
•Communication in a rare context

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Anomaly-Based Bug Detection
The Bugs-As-Anomalies Hypothesis:!

Programs usually work correctly, hence bugs are anomalies

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Anomaly-Based Bug Detection
The Bugs-As-Anomalies Hypothesis:!

Programs usually work correctly, hence bugs are anomalies

By looking for anomalies, !
we are likely to find bugs

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Anomaly-Based Bug Detection
The Bugs-As-Anomalies Hypothesis:!

Programs usually work correctly, hence bugs are anomalies

By looking for anomalies, !
we are likely to find bugs

Fr
eq

ue
nc

y

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Anomaly-Based Bug Detection
The Bugs-As-Anomalies Hypothesis:!

Programs usually work correctly, hence bugs are anomalies

By looking for anomalies, !
we are likely to find bugs

Likely bugs are low-frequency
communication events

Fr
eq

ue
nc

y

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Anomaly-Based Bug Detection
The Bugs-As-Anomalies Hypothesis:!

Programs usually work correctly, hence bugs are anomalies

By looking for anomalies, !
we are likely to find bugs

Likely bugs are low-frequency
communication events

Fr
eq

ue
nc

y
Fully Automatic Detection - No
labeling required

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

Bug Detection Capability

0

2

4

6

8

10

Ban
kA

cc
t

Circ
ula

rLi
st

Lo
g &

 Swee
p

Mult
i-O

rder

Moz
-js

Str

Moz
-js

Int
erp

Moz
-m

ac
NetI

O

Moz
-Tx

tFr
am

e

MyS
QL-I

DIni
t

MyS
QL-B

inL
og

Apac
he

-Lo
gS

z

PBZip2-O
rder

AGet-
Mult

Va
r

Labeled Debugging
Anomaly-Based Detection

34.0
19.2

12.0
80.2

14.5

Av
g.

 #
 In

sp
ec

tio
n

R
eq

ui
re

d!
 T

o
Fi

nd
 A

 K
no

w
n

Bu
g

Full ApplicationsBug KernelsSynthetic Bugs

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-Ownership Example

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-Ownership Example

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-Ownership Example

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-Ownership Example

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-Ownership Example

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-Ownership Example

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-Ownership Example

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-Ownership Example

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-Ownership Example

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-Ownership Example

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-Ownership Example

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-Ownership Example

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-Ownership Example

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-Ownership Example

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-Ownership Example

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-Ownership Example

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-Ownership Example

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-Ownership Example

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-Ownership Example

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-Ownership Example

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-Ownership Example

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-Ownership Example

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-Ownership Example

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-Ownership Example

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-Ownership Example

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-Ownership Example

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-Ownership Example

Luis Ceze - Determinism and Fail-Stop Races, NWCPP Jan 2011. sa pa

DMP-Ownership Example

DMP-Buffering

 A = 1!
 tmp1 = B

Thread 1 Thread 2
 lock(L)

 unlock(L)

 lock(L)

 unlock(L)

 if (tmp1 == 0)!
 ...

 B = 1!
 tmp2 = A

 if (tmp2 == 0)!
 ...

Dekker’s Algorithm	

(no data race)

���81

DMP-Buffering

 A = 1!
 tmp1 = B

 lock(L)

 unlock(L)

 lock(L)

 unlock(L)

 if (tmp1 == 0)!
 ...

 B = 1!
 tmp2 = A

 if (tmp2 == 0)!
 ...

parallel +	

commit

serial

serial

parallel +	

commit

serial

parallel +	

commit

Synchronization
happens sequentially

���82

DMP-Buffering

 A = 1!
 tmp1 = B

 lock(L)

 unlock(L)

 lock(L)

 unlock(L)

 if (tmp1 == 0)!
 ...

 B = 1!
 tmp2 = A

 if (tmp2 == 0)!
 ...

parallel +	

commit

serial

serial

parallel +	

commit

serial

parallel +	

commit

Synchronization
is a full fence

���83

DMP-Buffering

 A = 1!
 tmp1 = B

 lock(L)

 unlock(L)

 lock(L)

 unlock(L)

 if (tmp1 == 0)!
 ...

 B = 1!
 tmp2 = A

 if (tmp2 == 0)!
 ...

parallel +	

commit

serial

serial

parallel +	

commit

serial

parallel +	

commit

Synchronization
is a full fence

Data race free programs are sequentially consistent	

(required by C++ and Java memory models)

���84

