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The Bellman-Ford Algorithm

BELLMAN-FORD (G, w, s)

: assert (s in G.vertices())

: for v in G.vertices()
v.predecessor = None

v.d = Infinity

: repeat |V|-1 times

0
1
2
3:
4: s.d =0
5.
6
7 for e in G.edges()
8
9

if e.start.d + e.weight.d < e.end.d:

10: e.end.d = e.start.d + e.weight
11: e.end.predecessor = e.start

12:

13: for e in G.edges()

14: if e.start.d + e.weight.d < e.end.d:
15: return FALSE

16: return TRUE
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Can we terminate earlier if there is a pass that keeps all .d variables?
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[Yes, because if pass i keeps all .d variables, then so does pass i + 1.]
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The Bellman-Ford Algorithm (modified)

BELLMAN-FORD-NEW (G, w, s)

0: assert(s in G.vertices())

1l: for v in G.vertices()

2: v.predecessor = None

3: v.d = Infinity

4: s.d =0

5:

6: repeat |V| times

7: flag = 0

8: for e in G.edges()

9:

10: if e.start.d + e.weight.d < e.end.d:
11: e.end.d = e.start.d + e.weight
12: e.end.predecessor = e.start
13: flag = 1

14: if flag = 0 return TRUE

15:

16: return FALSE

Can we terminate earlier if there is a pass that keeps all .d variables?

X
[Yes, because if pass i keeps all .d variables, then so does pass i + 1.]
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Dijkstra’s Algorithm

Overview of Dijkstra

= Requires that all edges have non-negative weights
= Use a special order for relaxing edges
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Dijkstra’s Algorithm

Overview of Dijkstra

= Requires that all edges have non-negative weights

= Use a special order for relaxing edges
= The order follows a greedy-strategy (similar to Prim’s algorithm):

1. Maintain set S of vertices u with v.6 = u.d
2. Ateach step, add a vertex v € V'\ S with minimal v.d (= v.¢)
3. Relax all edges leaving v

DIJKSTRA(G,w,s)
0: INITIALIZE(G,s)
1: S=0 can actually skip edges which go to a vertex in S
22Q=V (cf. implementation of Dijksta in the handout)
3: while Q # 0 do
4: u = Extract-Min(Q)
5 S=Su{u}
6: foreach v € G.Adj[u] do
7: RELAX(u, v, w)
8: end for
9: end while
;'l!; 6.4: Single-Source Shortest Paths TS. 22
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Complete Run of Dijkstra (Figure 24.6)

Priority Queue Q:
(37 0)7 (tv 00)7 (Xv 00)7 (y7 00)7 (27 OO)
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Complete Run of Dijkstra (Figure 24.6)
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Complete Run of Dijkstra (Figure 24.6)
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Runtime of Dijkstra’s Algorithm

DIJKSTRA(G,w,s)

: INITIALIZE(G,s)

S=10

Q=V

: while Q # 0 do

u = Extract-Min(Q)

S=Su{u}

for each v € G.Adj[u] do
RELAX(u, v, w)

end for

: end while

©FOENERQROIE NIV O
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S=10

Q=V
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Runtime of Dijkstra’s Algorithm

DOIJlI(I\?I-'I;'lI:{/-\AL(I(;I\EAzg)S) Runtime (using Fibonacci Heaps)
1. 8= ’ = Initialization (I 0-2): O(V)
2: Q=V . )
3: while Q # 0 do ExtractMin (1. 4): O(V - log V)
4:  u = Extract-Min(Q) . DecreaseKey (.7): O(E-1)
5. S=Su{u}
6 foreach v ¢ G.Adj[u] do = Overall: O(Vlog V + E)
7: RELAX(u, v, w)
8: end for
9: end while
;l;
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Correctness of Dijkstra’s Algorithm

Theorem 24.6

For any directed graph G = (V, E) with non-negative edge weights w :
E — R™ and source s, Dijkstra terminates with v.d = u.6 for all u € V.

Proof: | Invariant: If v is extracted, v.d = v.5‘
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Correctness of Dijkstra’s Algorithm

Theorem 24.6

For any directed graph G = (V, E) with non-negative edge weights w :
E — R™ and source s, Dijkstra terminates with v.d = u.6 for all u € V.

Proof: | Invariant: If v is extracted, v.d = v.d‘

= Suppose there is u € V, when extracted,
u.d>u.é

» Let u be the first vertex with this property

= Take a shortest path from s to v and let
(x, y) be the first edge from Sto V\ S

=
ud<y.d

N\

[u is extracted before y]
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E — R™ and source s, Dijkstra terminates with v.d = u.6 for all u € V.

Proof: | Invariant: If v is extracted, v.d = v.d‘

= Suppose there is u € V, when extracted,
u.d>u.é

» Let u be the first vertex with this property

= Take a shortest path from s to v and let
(x, y) be the first edge from Sto V\ S
=
ud<yd=y.sd
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Correctness of Dijkstra’s Algorithm

Theorem 24.6

For any directed graph G = (V, E) with non-negative edge weights w :
E — R™ and source s, Dijkstra terminates with v.d = u.6 for all u € V.

Proof: | Invariant: If v is extracted, v.d = v.d‘

= Suppose there is u € V, when extracted,
u.d>u.é

» Let u be the first vertex with this property

= Take a shortest path from s to v and let
(x, y) be the first edge from Sto V\ S
=
ud<yd=yJd

since x.d = x.6 when x is extracted, and then
(x,y) is relaxed = Convergence Property
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Correctness of Dijkstra’s Algorithm

Theorem 24.6

For any directed graph G = (V, E) with non-negative edge weights w :
E — R™ and source s, Dijkstra terminates with v.d = u.6 for all u € V.

Proof: | Invariant: If v is extracted, v.d = v.d‘
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u.d>u.é
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= Take a shortest path from s to v and let
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=
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Correctness of Dijkstra’s Algorithm

Theorem 24.6

For any directed graph G = (V, E) with non-negative edge weights w :
E — R™ and source s, Dijkstra terminates with v.d = u.6 for all u € V.

Proof: | Invariant: If v is extracted, v.d = v.é‘

= Suppose there is u € V, when extracted,
u.d>u.é

» Let u be the first vertex with this property

= Take a shortest path from s to v and let
(x, y) be the first edge from Sto V\ S

=
uo<ud<yd=y.J

This contradicts that y is on a shortest path
from s to u. O
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Correctness of Dijkstra’s Algorithm

Theorem 24.6

For any directed graph G = (V, E) with non-negative edge weights w :
E — R™ and source s, Dijkstra terminates with v.d = u.6 for all u € V.

Proof: | Invariant: If v is extracted, v.d = v.d‘

= Suppose there is u € V, when extracted,
u.d>u.é

» Let u be the first vertex with this property

= Take a shortest path from s to v and let
(x, y) be the first edge from Sto V\ S

=
ui<ud<yd=yo

This contradicts that y is on a shc()Ltest path
from s to u. [

This step requires non-negative weights! ]
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Correctness of Dijkstra’s Algorithm

Theorem 24.6
For any directed graph G = (V, E) with non-negative edge weights w :
E — R™ and source s, Dijkstra terminates with v.d = u.6 for all u € V.

There are edge cases like
s = x and/ory = u!

Proof: | Invariant: If v is extracted, v.d = v.d‘ {

= Suppose there is u € V, when extracted, N
u.d>u.é

» Let u be the first vertex with this property

= Take a shortest path from s to v and let
(x, y) be the first edge from Sto V\ S

=
ui<ud<yd=yo

This contradicts that y is on a shortest path
from s to u. O
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Formalizing the Problem

——— All-Pairs Shortest Path Problem

= Given: directed graph G= (V,E), V ={1,2,..., n}, with edge
weights represented by a matrix W:

weight of edge (/,j) for anedge (/,)) € E,
Wjj = q 00 if there is no edge from i to j,
0 ifi=j.

i
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Formalizing the Problem

——— All-Pairs Shortest Path Problem

= Given: directed graph G= (V,E), V ={1,2,..., n}, with edge
weights represented by a matrix W:

weight of edge (/,j) for anedge (/,)) € E,
Wjj = q 00 if there is no edge from i to j,
0 ifi=j.

= Goal: Obtain a matrix of shortest path weights L, that is

0 weight of a shortest path from i to j, if jis reachable from i
" oo otherwise.
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Formalizing the Problem

——— All-Pairs Shortest Path Problem

= Given: directed graph G= (V,E), V ={1,2,..., n}, with edge
weights represented by a matrix W:

weight of edge (/,j) for anedge (/,)) € E,
Wjj = q 00 if there is no edge from i to j,
0 ifi=j.

= Goal: Obtain a matrix of shortest path weights L, that is

9 otherwise.

L N\

’ {weight of a shortest path from i to j, ifjis reachable from i
ij =

A\

Here we will only compute the weight of the shortest
path without keeping track of the edges of the path!
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A Recursive Approach

i ko
o @

Basic Idea

Any shortest path from j to j of length k > 2 is the concatenation of
a shortest path of length kK — 1 and an edge

bl ke
o
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A Recursive Approach

i ko
o " —@

Basic Idea

Any shortest path from i to j of length k > 2 is the concatenation of
a shortest path of length kK — 1 and an edge

o
o [

Let £ be min. weight of any path from i to j with at most m edges
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A Recursive Approach

i ko
o " —@

Basic Idea

Any shortest path from i to j of length k > 2 is the concatenation of
a shortest path of length kK — 1 and an edge

o
o [

Let £ be min. weight of any path from i to j with at most m edges
Then ¢/) = w;j, so LV = W
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A Recursive Approach

i ko
o " —@

Basic Idea

= Any shortest path from i to j of length k > 2 is the concatenation of
a shortest path of length kK — 1 and an edge

= Let ") be min. weight of any path from i to j with at most m edges
» Then (") = w;;, so L = W

= How can we obtain L® from L("?
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Basic Idea

= Any shortest path from i to j of length k > 2 is the concatenation of
a shortest path of length kK — 1 and an edge

= Let ") be min. weight of any path from i to j with at most m edges
» Then (") = w;;, so L = W

= How can we obtain L® from L("?

ZE? = min <£E’1j), 1r<nklgn£,(1k) I Wk,j)
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= Any shortest path from i to j of length k > 2 is the concatenation of
a shortest path of length kK — 1 and an edge

= Let ") be min. weight of any path from i to j with at most m edges
» Then (") = w;;, so L = W

= How can we obtain L® from L("?

ZE? = min (EE}), 1r<nk|gn£,(1k) I Wk,j)

) —
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A Recursive Approach

i ko
o " —@

Basic Idea

= Any shortest path from i to j of length k > 2 is the concatenation of
a shortest path of length kK — 1 and an edge

= Let ") be min. weight of any path from i to j with at most m edges
» Then (") = w;;, so L = W

= How can we obtain L® from L("?

ZE? = min (EE}), 1r<nk|gn£,(1k) I Wk,j)

g = min(ff.”}"'), min 650+ Wk,j)
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A Recursive Approach

i ko
o " —@

Basic Idea

= Any shortest path from i to j of length k > 2 is the concatenation of
a shortest path of length kK — 1 and an edge

= Let ") be min. weight of any path from i to j with at most m edges
» Then (") = w;;, so L = W

= How can we obtain L® from L("?

(2) _ i (1) i (1) .
Gy = bl (fu D, i Wk’f) [ Recall that w;; = O! ]

g = min(ﬁf{}"”, min 650+ Wk,j)

’
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A Recursive Approach

i ko
o " —@

Basic Idea

= Any shortest path from i to j of length k > 2 is the concatenation of
a shortest path of length kK — 1 and an edge

= Let ") be min. weight of any path from i to j with at most m edges
» Then (") = w;;, so L = W

= How can we obtain L® from L("?

(2) _ i (1) i (1) .
Gy = bl (fu D, i Wk’f) [ Recall that w;; = O! ]

am — min(ﬁff}’_1),1r<n/jgn£§fz_1) + wk,,-) = 1r<nkign(z§fz“’ + Wk,j)

o
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Example of Shortest Path via Matrix Multiplication (Figure 25.1)
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Example of Shortest Path via Matrix Multiplication (Figure 25.1)

M=w=]|
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Example of Shortest Path via Matrix Multiplication (Figure 25.1)

0 3 8 oo —4 0 3 8 |2 -4
© 0 oo 1 7 3 0 -4 A 7
MD=wW=] co 4 0 o o @@= « 4 0 5 11
2 oo -5 0 oo 2 -1 -5 0 -2
© oo oo 6 0 8 o~© 1 6 0
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Example of Shortest Path via Matrix Multiplication (Figure 25.1)

=min{0 + 00,3 + 1,8 + 00, 00 + 0, 74+6}J

|
o#oo/

0 3 8 [ 4 0 3 2 _4
oo 0 0o 1 7 3 0 1 7
M=W=] cc 4 0 |oo]| o =] « 4 5 11
2 o0 5|0 oo 2 4 -5 0 -2
oo 0o 0o 6 0 8 oo 1 6 0
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Example of Shortest Path via Matrix Multiplication (Figure 25.1)

0 3 8 [0 | —4 0 3 8 2 4
oo 0 oo 1 7 3 0o -4 1 7
M=w=| c0c 4 0 |oo| o P=| o 4 0 5 11
2 oo 5|0 00 2 -1 -5 0 =2
00 00 00 6 0 8 ) 1 6 0
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Example of Shortest Path via Matrix Multiplication (Figure 25.1)

?) = min{0 + 00,3+ 1,8+ 00,00 + 0, 74+6}J

0 3 8 oo -4 0 3 8 2 -4
© 0 e8] 1 7 3 0 —4 1 7
D=—W=]| co 4 0 oo oo @@= « 4 0 5 11
2 o~ -5 0 o) 2 -1 -5 0 -2
o0 oo oo 6 0 8 00 1 6 0
0 3 -3 2 -4
3 0 -4 1 -1
®=17 4 0 5 11
2 -1 -5 0 -2
8 5 1 6 0
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Example of Shortest Path via Matrix Multiplication (Figure 25.1)

?) = min{0 + 00,3+ 1,8+ 00,00 + 0, 74+6}J

0 3 8 o -4 0 3 8 2 —4
oo 0 00 1 7 3 0 —4 1 7
D=—W=]| co 4 0 oo oo @@= « 4 0 5 11
2 o~ -5 0 o) 2 -1 -5 0 -2
o0 oo oo 6 0 8 00 1 6 0
0 3 -3 2 -4 0 1 -3 2 -4
3 0 -4 1 -1 3 0 -4 1 -1
=7 4 0o 5 11 W=7 a4 o 5 2
2 -1 -5 0 -2 2 -1 -5 0 -2
8 5 1 6 0 8 5 1 6 0
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Example of Shortest Path via Matrix Multiplication (Figure 25.1)

0 3 8 oo -4 0 3 8 [2 -4
c© 0 oo 1|7 3 0 -4 1 7
D=—W=]| co 4 0 oo| @@= « 4 0 5 11
2 oo -5 0| 2 -1 -5 0 -2
co oo oo 6 0 8 oo 1 6 0
0 3 -3 2 -4 o 1 -3 2 -4
3 0 4 1 -1 3 0 -4 1 -1
®=|"7 4 0 5 11 =17 4 o 5 [2
2 -1 -5 0 -2 2 -1 -5 -2
8 5 1 6 0 8 5 1.6 0

[eg“; =min{7 — 4,4+ 7,0 + 00,5 + oo, 11 +0}]

gD 6.5: All-Pairs Shortest Paths TS. 6



Example of Shortest Path via Matrix Multiplication (Figure 25.1)

0 3 8 ool -4 0 3 8 2 -4
c© 0 oo 1|7 3 0 -4 1 7
D=—W=]| co 4 0 oo| @@= « 4 0 5 11
2 oo -5 0| 2 -1 -5 0 -2
co oo oo 6 0 8 00 1 6 0
0 3 -3 2 —4 0o 1 -3 2 -4
3 0 4 1 -1 3 0 -4 1 -1
® =774 0 5 11 MW=17 4 o 5 |38
2 1 -5 0 -2 2 -1 -5 —2
8 5 1 6 0 8 5 1. 0

[eg“; =min{7 — 4,4 +7,0 + 00,5 + 0, 11 +0}]
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Computing L(™

(m) __ f (m—1) )
47 = min (4370 + wi)

o LD = [ — [ — = | since every shortest path uses at most
n—1=V|—1 edges (assuming absence of negative-weight cycles)
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Computing L(™

(m) __ f (m—1) )
47 = min (4370 + wi)

o LD = [ — [ — = | since every shortest path uses at most
n—1=V|—1 edges (assuming absence of negative-weight cycles)
= Computing L(™:

;,nv,_ 6.5: All-Pairs Shortest Paths TS. 7



Computing L(™

—1
ﬁ(f]") = 12’1[("’1 (K,(",Z )¢ wk,,->

o LD = [ — [ — = | since every shortest path uses at most
n—1=V|—1 edges (assuming absence of negative-weight cycles)
= Computing L(™:
€7 = min (éfk + Wk,)

1<k<n
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Computing L(™

—1
K(T) = 1kaln (Z,(",Z )¢ wk,,->

o LD = [ — [ — = | since every shortest path uses at most
n—1=V|—1 edges (assuming absence of negative-weight cycles)
= Computing L(™:
€7 = min (éfk + wk,)

1<k<n

(L(m71) W) = Z (E’(E*U X Wk,j)

1<k<n
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Computing L(™

(m) _  mi (m—1) ;
47 = gin, (457" + we)

2 [0 = W = () — = [ since every shortest path uses at most
n—1=V|—1 edges (assuming absence of negative-weight cycles)
= Computing L(™:

(m) __ ; (m—1) )
47 = min (457" + ;)

(L™ wy,; = Z (4,’271) « Wk,j)
1<k<n

= The correspondence is as follows:

min@Z
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Computing L(™

(m) _  mi (m—1) :
47 = gin, (457" + we)

2 [0 = W = () — = [ since every shortest path uses at most
n—1=V|—1 edges (assuming absence of negative-weight cycles)
= Computing L(™:

(m) _ i (m—1) )
47 = o, (4377 )

L wy = > (4,’271) x Wk,f)

1<k<n
= The correspondence is as follows:
min
+

(0. 9]

0

-voxM
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Computing L(™

—1
K(T) = 1g(m (Z,(",Z )¢ wk,,->

o LD = [ — [ — = | since every shortest path uses at most
n—1=V|—1 edges (assuming absence of negative-weight cycles)
= Computing L(™:

1<k<n
L wy = > (4,’271) x Wk,f)
1<k<n

= The correspondence is as follows:

€7 = min (éfk +wk,)

min
+

(0. 9]

0

—LOXM
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Computing L(™

K,(.T) = min (4,(-?,:_1) 4 Wk,j)

1<k<n

2 [0 = W = () — = [ since every shortest path uses at most
n—1=V|—1 edges (assuming absence of negative-weight cycles)

= Computing L(™:
(m)
m (m—1) _ L' can be
by = @ign(‘g”k N Wk") <[computed in O(ns)J

(L(m71) W) = Z ([’(.72*1) X Wk,j)

1<k<n

= The correspondence is as follows:

min
+

(0. 9]

0

- e

te e
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Computing L("-") efficiently

(m) __ i (m—1) )
& = 1;“,('2,,(4,/( + Wk,/)

= For, say, n = 738, we subsequently compute

L(1)7 L(2)7 L(S), L(4), o L(73) — |
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Computing L("-") efficiently

(m) _ i (m—1) ;
47 = o (437" + wes)

[ Takes O(n - n®) = O(n*) ]

= For, say, n = 738, we subsequently compute /
L(1)7 L(2)7 L(S), L(4), o L(73) — |
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Computing L("-") efficiently

(m) _ i (m—1) ;
47 = o (437" + wes)

[ Takes O(n - n®) = O(n*) ]

= For, say, n = 738, we subsequently compute /
L(1)7 L(2)7 /_(3)7 L(4), e L7370 —

= Since we don’t need the intermediate matrices, a more efficient way is

L(1)’ L(2)’ L(4), o L(512), L(1024) _
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Computing L("-") efficiently

(m) _ i (m—1) ;
47 = o (437" + wes)

[ Takes O(n - n®) = O(n*) ]

= For, say, n = 738, we subsequently compute /
L(1)’ L(2)7 /_(3)7 L(4), e L7370 —

= Since we don’t need the intermediate matrices, a more efficient way is

L(1)’ L(2)’ L(4), o L(512), L(1024) _ 4

T~

[ Takes O(log n - n®). ]
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Computing L("-") efficiently

(M) _ i (m—1) ;
47 = o (437" + wes)

[ Takes O(n - n®) = O(n*) ]

= For, say, n = 738, we subsequently compute /
L(1)’ L(2)7 /_(3)7 L(4), e L7370 —

= Since we don’t need the intermediate matrices, a more efficient way is

L(1)’ L(2)’ L(4), o L(512), L(1024) _ 4

~ T~

[We need LW = [®.1® = [®).[ () (see Ex. 25.1-4)] [ Takes O(log n - n®). ]
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= allow negative-weight edges and negative-weight cycles
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Overview

= allow negative-weight edges and negative-weight cycles
= one pass of Bellman-Ford and | V| passes of Dijkstra
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Johnson’s Algorithm

Overview

= allow negative-weight edges and negative-weight cycles

= one pass of Bellman-Ford and | V| passes of Dijkstra
= after Bellman-Ford, edges are reweighted s.t.
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= one pass of Bellman-Ford and | V| passes of Dijkstra
= after Bellman-Ford, edges are reweighted s.t.
= all edge weights are non-negative
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Johnson’s Algorithm

Overview

= allow negative-weight edges and negative-weight cycles
= one pass of Bellman-Ford and | V| passes of Dijkstra

= after Bellman-Ford, edges are reweighted s.t.

= all edge weights are non-negative
= shortest paths are maintained
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Johnson’s Algorithm

Overview
= allow negative-weight edges and negative-weight cycles

= one pass of Bellman-Ford and | V| passes of Dijkstra
= after Bellman-Ford, edges are reweighted s.t.

= all edge weights are non-negative
= shortest paths are maintained

[ Adding a constant to every edge doesn’t work! ]
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Johnson’s Algorithm

Overview
= allow negative-weight edges and negative-weight cycles

= one pass of Bellman-Ford and | V| passes of Dijkstra
= after Bellman-Ford, edges are reweighted s.t.

= all edge weights are non-negative
= shortest paths are maintained

[ Adding a constant to every edge doesn’t work! ]
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How Johnson’s Algorithm works

~—— Johnson’s Algorithm
1. Add a new vertex s and directed edges (s, v), v € V, with weight 0
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How Johnson’s Algorithm works

~—— Johnson’s Algorithm
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= |f there are negative weight cycles, abort
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How Johnson’s Algorithm works

~—— Johnson’s Algorithm

1. Add a new vertex s and directed edges (s, v), v € V, with weight 0
2. Run Bellman-Ford on this augmented graph with source s
= |f there are negative weight cycles, abort
= Otherwise:
1) Reweight every edge (u, v) by w(u, v) = w(u, v) + u.d — v.§
2) Remove vertex s and its incident edges
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1. Add a new vertex s and directed edges (s, v), v € V, with weight 0
2. Run Bellman-Ford on this augmented graph with source s

= |f there are negative weight cycles, abort

= Otherwise:
1) Reweight every edge (u, v) by w(u, v) = w(u, v) + u.d — v.§
2) Remove vertex s and its incident edges

3. For every vertex v € V, run Dijkstra on (G, E, w)
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Correctness of Johnson’s Algorithm

Theorem

For any graph G = (V, E, w) without negative-weight cycles:

1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved
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Comparison of all Shortest-Path Algorithms

_ SSSP APSP negative
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