6.1 & 6.2: Graph Searching

Frank Stajano Thomas Sauerwald

Lent 2015

55 UNIVERSITY OF
» CAMBRIDGE

Representations of Directed and Undirected Graphs

12345
1fo1 00 1

@ (2) 20101 11
30 1010

n.e 4o 11 01
G @ 5011010

Figure 22.1 Two representations of an undirected graph. (a) An undirected graph G with 5 vertices
and 7 edges. (b) An adjacency-list representation of G. (¢) The adjacency-matrix representation
of G.

.-,,',-, 6.1 & 6.2: Graph Searching TS.

Representations of Directed and Undirected Graphs

[N}
w

(S S
- o o — o~
© - o ~ 0o
- o = = of&
o - o = —|lu

(a) ©)

Figure 22.1 Two representations of an undirected graph. (a) An undirected graph G with 5 vertices
and 7 edges. (b) An adjacency-list representation of G. (¢) The adjacency-matrix representation

of G.
123456
1fo1 0100
200 0001 0
©) ©) 30000 11
410 1000 0
slo 00100
G) O») 610 0000 1
(a) ©)

Figure 22.2 Two representations of a directed graph. (a) A directed graph G with 6 vertices and 8
edges. (b) An adjacency-list representation of G. (¢) The adjacency-matrix representation of G.

6.1 & 6.2: Graph Searching TS.

Graph Searching

Overview

= Graph searching means traversing a graph via the edges in order to
visit all vertices

= useful for identifying connected components, computing the
diameter etc.

-,,a,;, 6.1 & 6.2: Graph Searching TS. 3

Graph Searching

Overview

= Graph searching means traversing a graph via the edges in order to
visit all vertices

= useful for identifying connected components, computing the
diameter etc.

= Two strategies: Breadth-First-Search and Depth-First-Search

E:? 6.1 & 6.2: Graph Searching TS. 3

Graph Searching

Overview

= Graph searching means traversing a graph via the edges in order to
visit all vertices

= useful for identifying connected components, computing the
diameter etc.

= Two strategies: Breadth-First-Search and Depth-First-Search

Measure time complexity in terms of the size of V and E
(often write just V instead of | V|, and E instead of |E|)

.-,.!.;, 6.1 & 6.2: Graph Searching TS. 3

Outline

Breadth-First Search

.-,.!.;, 6.1 & 6.2: Graph Searching

TS.

Breadth-First Search: Basic Ideas

——— Basic Idea

= Given an undirected/directed graph G = (V, E) and source vertex s

ggg 6.1 & 6.2: Graph Searching TS. 5

Breadth-First Search: Basic Ideas

——— Basic Idea

= Given an undirected/directed graph G = (V, E) and source vertex s
= BFS sends out a wave from s ~~ compute distances/shortest paths

ggg 6.1 & 6.2: Graph Searching TS. 5

Breadth-First Search: Basic Ideas

——— Basic Idea

= Given an undirected/directed graph G = (V, E) and source vertex s
= BFS sends out a wave from s ~~ compute distances/shortest paths
= Vertex Colours:

= Unvisited

Grey = Visited, but not all neighbors (=adjacent vertices)

= Visited and all neighbors

ggg 6.1 & 6.2: Graph Searching TS. 5

Breadth-First-Search: Pseudocode

?: def bfs(G,s)

2:

3:

4: assert(s in G.vertices())
5:

6:

7: for v in G.vertices():

8: v.predecessor = None
9: v.d = Infinity

10: v.colour = "white"
11: Q = Queue()

12:

13:

14: sd=0

15: s.colour = "grey"
16: Q.insert(s)

19: while not Q.isEmpty():

20: u=Q.extract()

21: assert (u.colour == "grey")
22: forvin u.adjacent()

23: if v.colour = "white"
24: v.colour = "grey"
25: v.d = u.d+1

26: v.predecessor = u
27: Q.insert(v)

28: u.colour = "black"

Egg 6.1 & 6.2: Graph Searching TS.

Breadth-First-Search: Pseudocode

. def bfs(G,s)

assert(s in G.vertices())

: for v in G.vertices(): . . .
v.predecessor = None = From any vertex, visit all adjacent

v.d = Infinity i i
g, sy vertices before going any deeper
1

: Q= Queue()

14: sd=0
15: s.colour = "grey"
16: Q.insert(s)

19: while not Q.isEmpty():

20: u=Q.extract()

21: assert (u.colour == "grey")
22: forvin u.adjacent()

23: if v.colour = "white"
24: v.colour = "grey"
25: v.d = u.d+1

26: v.predecessor = u
27: Q.insert(v)

28: u.colour = "black"

% 6.1 & 6.2: Graph Searching TS. 6

Breadth-First-Search: Pseudocode

0: def bfs(G,s)

1

2

3

4: assert(s in G.vertices())

5:

6:

7: f in G.verti : .. .

g ‘(,'S,edéi;'sﬁ(): N = From any vertex, visit all adjacent
9 v.d = Infinity i i

o, W, vertices before going any deeper
11: Q= Queue) = Vertex Colours:

13: ita | = i

s White | = Unvisited

15: s.colour = "grey" = Visi i

IR e Grey = Visited, but not all neighbors
17: —\fiai .

18 ElETed = Visited and all neighbors

19: while not Q.isEmpty():

20: u=Q.extract()

21: assert (u.colour == "grey")
22: forvin u.adjacent()

23: if v.colour = "white"
24: v.colour = "grey"
25: v.d = u.d+1

26: v.predecessor = u
27: Q.insert(v)

28: u.colour = "black"

%g 6.1 & 6.2: Graph Searching TS. 6

Breadth-First-Search: Pseudocode

0: def bfs(G,s)

1

2

3

4: assert(s in G.vertices())

&n

6:

7: f in G.verti : . . .
e = From any vertex, visit all adjacent
9 v.d = Infinity i i
e vertices before going any deeper
]; Q = Queue() = Vertex Colours:

13: ite | = isi

s White | = Unvisited

15: s.colour = "grey" = Visi i

[i Grey = Visited, but not all neighbors
17: \fiel .

18 ElETed = Visited and all neighbors
19: while not Q.isEmpty(): = Runtime ?2?

20: u=Q.extract()
21: assert (u.colour == "grey")
22: forvin u.adjacent()

23: if v.colour = "white"
24: v.colour = "grey"
25: v.d = u.d+1

26: v.predecessor = u
27: Q.insert(v)

28: u.colour = "black"

%g 6.1 & 6.2: Graph Searching TS. 6

Breadth-First-Search: Pseudocode

0: def bfs(G,s)

1

2

3

4: assert(s in G.vertices())

&n

6:

7: f in G.verti : . . .
e = From any vertex, visit all adjacent
9 v.d = Infinity i i
e vertices before going any deeper
]; Q = Queue() = Vertex Colours:

13: ite | = isi

s White | = Unvisited

15: s.colour = "grey" = Visi i

[i Grey = Visited, but not all neighbors
17: \fiel .

18 ElETed = Visited and all neighbors
19: while not Q.isEmpty(): = Runtime ?2?

20: u=Q.extract()
21: assert (u.colour == "grey")
22: forvin u.adjacent()

23: if v.colour = "white"
24: v.colour = "grey"
25: v.d = u.d+1

26: v.predecessor = u
27: Q.insert(v)

28: u.colour = "black"

%g 6.1 & 6.2: Graph Searching TS. 6

Breadth-First-Search: Pseudocode

0
1
2
3
4
&n
6
7
8
9

10:
: Q= Queue()

. def bfs(G,s)

assert(s in G.vertices())

for v in G.vertices():

v.predecessor = None
v.d = Infinity
v.colour = "white"

:sd=0
. s.colour = "grey"
: Q.insert(s)

. while not Q.isEmpty():

u = Q.extract()

assert (u.colour == "grey")

for v in u.adjacent()

if v.colour = "white"

v.colour = "grey"
vd = u.d+1
v.predecessor = u
Q.insert(v)

u.colour = "black"

= From any vertex, visit all adjacent
vertices before going any deeper

= Vertex Colours:
= Unvisited
Grey = Visited, but not all neighbors
= Visited and all neighbors

= Runtime O(V + E)

6.1 & 6.2: Graph Searching

TS. 6

Bre

adth-First-Search: Pseudocode

0: def bfs(G,s)

1

2

3

4: assert(s in G.vertices())

5:

6:

7: f in G.verti : .. .

g "V'Sredé‘z;'sﬁ(): N = From any vertex, visit all adjacent

9 v.d = Infinity i i

o, W, vertices before going any deeper

11: Q= Queue) = Vertex Colours:

13: o | = -~

s White | = Unvisited

15: s.colour = "grey" — Vigj i

IR e Grey = Visited, but not all neighbors
s 2Bt = Visited and all neighbors
19: vhle et Glmp « Runtime O(V + E)

21: assert (u.colour == "grey") i

22: forvin u.adjacent() . .

23: ifv.colour = "white" Assuming that all executions of the FOR-loop
24: v.colour = "grey" ; : A

oE: A O for u takes O(|u.adj|) (adjacency list model!)
26: v.predecessor = u

27: Q.insert(v)

28: u.colour = "black"

% 6.1 & 6.2: Graph Searching TS. 6

Breadth-First-Search: Pseudocode

0
1
2
3
4
&n
6
7
8
9

10:

. def bfs(G,s)
assert(s in G.vertices())
for v in G.vertices(): . . .
vpredecessor = None = From any vertex, visit all adjacent
v.d = Infinity i i
Iy vertices before going any deeper
: Q= Queue() = Vertex Colours:
D edeo White | = Unvisited
: gcigfeur;(:)"grev“ Grey = Visited, but not all neighbors
ElETed = Visited and all neighbors
. while not Q.isEmpty(): . :
L2 Qextract) Runtime O(V + E)
assert (u.colour == "grey") i
for v in u.adjacent() . .
if v.colour = "white" Assuming that all executions of the FOR-loop
.col " " g 5 g
A O for u takes O(|u.adj|) (adjacency list model!)
v.predecessor = u 1\
Q.insert(v) | —
u.colour = "black" [Zuev |U‘adj| - 2|E|]
6.1 & 6.2: Graph Searching TS. 6

Complete Execution of BFS (Figure 22.3)

Queue:

©, = (=)

J‘I% 6.1 & 6.2: Graph Searching

TS.

Complete Execution of BFS (Figure 22.3)

Queue: s

©, = (=)

J‘I% 6.1 & 6.2: Graph Searching

TS.

Complete Execution of BFS (Figure 22.3)

Queue: X

©, = (=)

J‘I% 6.1 & 6.2: Graph Searching

TS.

Complete Execution of BFS (Figure 22.3)

Queue: X

©, = (=)

J‘I% 6.1 & 6.2: Graph Searching

TS.

Complete Execution of BFS (Figure 22.3)

Queue: X r

©, = (=)

J‘I% 6.1 & 6.2: Graph Searching

TS.

Complete Execution of BFS (Figure 22.3)

Queue: X r

©, = (=)

J‘I% 6.1 & 6.2: Graph Searching

TS.

Complete Execution of BFS (Figure 22.3)

Queue: X r w

©, 1 (=)

J‘I% 6.1 & 6.2: Graph Searching

TS.

Complete Execution of BFS (Figure 22.3)

Queue: X r w

©, 1 (=)

ggg 6.1 & 6.2: Graph Searching

TS.

Complete Execution of BFS (Figure 22.3)

Queue: X X w

©, 1 (=)

ggg 6.1 & 6.2: Graph Searching

TS.

Complete Execution of BFS (Figure 22.3)

Queue: X X w

©, 1 (=)

ggg 6.1 & 6.2: Graph Searching

TS.

Complete Execution of BFS (Figure 22.3)

Queue: X X w

©, 1 (=)

ggg 6.1 & 6.2: Graph Searching

TS.

Complete Execution of BFS (Figure 22.3)

Queue: X X w

) 1 (=

ggg 6.1 & 6.2: Graph Searching

TS.

Complete Execution of BFS (Figure 22.3)

Queue: X X w v

@ 1 ©

ggg 6.1 & 6.2: Graph Searching

TS.

Complete Execution of BFS (Figure 22.3)

Queue: X X w v

ggg 6.1 & 6.2: Graph Searching TS.

Complete Execution of BFS (Figure 22.3)

Queue: X X W v

ggg 6.1 & 6.2: Graph Searching TS.

Complete Execution of BFS (Figure 22.3)

Queue: X X W v

o0

ggg 6.1 & 6.2: Graph Searching

TS.

Complete Execution of BFS (Figure 22.3)

Queue: X X W v

o0

ggg 6.1 & 6.2: Graph Searching

TS.

Complete Execution of BFS (Figure 22.3)

Queue: X X W v

—

NV

ggg 6.1 & 6.2: Graph Searching

TS.

Complete Execution of BFS (Figure 22.3)

Queue: X X W v

1 N .
% w X y
ggg 6.1 & 6.2: Graph Searching TS.

Complete Execution of BFS (Figure 22.3)

Queue: X X W v

w

ggg 6.1 & 6.2: Graph Searching

Complete Execution of BFS (Figure 22.3)

Queue: X X W v

ggg 6.1 & 6.2: Graph Searching

Complete Execution of BFS (Figure 22.3)

Queue: X X W v ¢t

E:g 6.1 & 6.2: Graph Searching TS.

Complete Execution of BFS (Figure 22.3)

Queue: X X W X

t

X

E:g 6.1 & 6.2: Graph Searching

TS.

Complete Execution of BFS (Figure 22.3)

Queue: X X W X

t

X

E:g 6.1 & 6.2: Graph Searching

TS.

Complete Execution of BFS (Figure 22.3)

Queue: X X W X

t

X

&g 6.1 & 6.2: Graph Searching

TS.

Complete Execution of BFS (Figure 22.3)

Queue: X X » ¥ f

&g 6.1 & 6.2: Graph Searching TS.

Complete Execution of BFS (Figure 22.3)

Queue: X X » ¥ f

&g 6.1 & 6.2: Graph Searching TS.

Complete Execution of BFS (Figure 22.3)

Queue: X X » ¥ f
r S t u
2
N
% w X y
&g 6.1 & 6.2: Graph Searching TS.

Complete Execution of BFS (Figure 22.3)

Queue: X X W X
r s t
N
v w X

&g 6.1 & 6.2: Graph Searching

TS.

Complete Execution of BFS (Figure 22.3)

Queue: X X W X
r s t
N
v w X

&g 6.1 & 6.2: Graph Searching

TS.

Complete Execution of BFS (Figure 22.3)

Queue: X X » ¥ f
r S t u
2
N
% w X y
&g 6.1 & 6.2: Graph Searching TS.

Complete Execution of BFS (Figure 22.3)

Queue: X X » ¥ f
r S t u
2
N
% w X y
&g 6.1 & 6.2: Graph Searching TS.

Complete Execution of BFS (Figure 22.3)

Queue: X X W X
r s t
N
v w X

% 6.1 & 6.2: Graph Searching

TS.

Complete Execution of BFS (Figure 22.3)

Queue: X X W X
r s t
\2J
v w X

% 6.1 & 6.2: Graph Searching

TS.

Complete Execution of BFS (Figure 22.3)

Queue: X X W X
r s t
\2J
v w X

%g 6.1 & 6.2: Graph Searching

TS.

Complete Execution of BFS (Figure 22.3)

Queue: X X W X
r s t
\2J
v w X

%g 6.1 & 6.2: Graph Searching

TS.

Complete Execution of BFS (Figure 22.3)

Queue: X X W X
r s t
\2J
v w X

% 6.1 & 6.2: Graph Searching

TS.

Complete Execution of BFS (Figure 22.3)

Queue: X X W X
r s t
\2J
v w X

% 6.1 & 6.2: Graph Searching

TS.

Complete Execution of BFS (Figure 22.3)

Queue: X X »w X f X u

% 6.1 & 6.2: Graph Searching TS.

Complete Execution of BFS (Figure 22.3)

Queue: X X »w X f X u

% 6.1 & 6.2: Graph Searching TS.

Complete Execution of BFS (Figure 22.3)

Queue: X X »w X f X u

%g 6.1 & 6.2: Graph Searching TS.

Complete Execution of BFS (Figure 22.3)

Queue: X X W X f X v vy

% 6.1 & 6.2: Graph Searching TS.

Complete Execution of BFS (Figure 22.3)

Queue: X X W X

% 6.1 & 6.2: Graph Searching

TS.

Complete Execution of BFS (Figure 22.3)

Queue: X X W X

X

X

y

% 6.1 & 6.2: Graph Searching

TS.

Complete Execution of BFS (Figure 22.3)

Queue: X X W X

X

X

y

% 6.1 & 6.2: Graph Searching

TS.

Complete Execution of BFS (Figure 22.3)

Queue: X X W X

X

X

y

% 6.1 & 6.2: Graph Searching

TS.

Complete Execution of BFS (Figure 22.3)

Queue: X X W X

X

X

y

% 6.1 & 6.2: Graph Searching

TS.

Complete Execution of BFS (Figure 22.3)

Queue: X X W X

X

X

y

% 6.1 & 6.2: Graph Searching

TS.

Complete Execution of BFS (Figure 22.3)

Queue: X X W X f X ¥ v

% 6.1 & 6.2: Graph Searching TS.

Complete Execution of BFS (Figure 22.3)

Queue: X X W X f X ¥ v

% 6.1 & 6.2: Graph Searching TS.

Complete Execution of BFS (Figure 22.3)

Queue: X X W X

X

X

y

% 6.1 & 6.2: Graph Searching

TS.

Complete Execution of BFS (Figure 22.3)

Queue: X X W X f X ¥ v

% 6.1 & 6.2: Graph Searching TS.

Complete Execution of BFS (Figure 22.3)

Queue: X X »® X f X ¥ X

% 6.1 & 6.2: Graph Searching TS.

Complete Execution of BFS (Figure 22.3)

Queue: X X @ Xt X ¥ X

% 6.1 & 6.2: Graph Searching TS.

Complete Execution of BFS (Figure 22.3)

Queue: X X @ Xt X ¥ X

% 6.1 & 6.2: Graph Searching TS.

Complete Execution of BFS (Figure 22.3)

Queue: X X @ Xt X ¥ X

% 6.1 & 6.2: Graph Searching TS.

Outline

Depth-First Search

.-,.!.;, 6.1 & 6.2: Graph Searching

TS.

Depth-First Search: Basic Ideas

Basic Idea

= Given an undirected/directed graph G = (V, E) and source vertex s

=

J‘I% 6.1 & 6.2: Graph Searching TS. 9

Depth-First Search: Basic Ideas

[—

]

Basic Idea

= Given an undirected/directed graph G = (V, E) and source vertex s
= As soon as we discover a vertex, explore from it ~~ Solving Mazes

n

J‘I% 6.1 & 6.2: Graph Searching TS. 9

Depth-First Search: Basic Ideas

[—

]

Basic Idea

= Given an undirected/directed graph G = (V, E) and source vertex s
= As soon as we discover a vertex, explore from it ~~ Solving Mazes
= Two time stamps for every vertex: Discovery Time, Finishing Time

n

J‘I% 6.1 & 6.2: Graph Searching TS. 9

Depth-First-Search: Pseudocode

def dfs(G,s):

assert(s in G.vertices())

for v in G.vertices():
v.predecessor = None
v.colour = "white"

0:
1:
2
3
4
58
6
7
8
9
0: dfsRecurse(G,s)

_

def dfsRecurse(G,s):
s.colour = "grey"
s.d = time()
for v in s.adjacent()
if v.colour = "white"
v.predecessor = s
dfsRecurse(G,v)
s.colour = "black"
s.f = time()

@ Re @@y =@

6.1 & 6.2: Graph Searching TS.

Depth-First-Search: Pseudocode

def dfs(G,s):

0:

1:

2

3

4: assert(s in G.vertices())

gf = We always go deeper before visiting
7: forvin G.vertices(): other neighbors

8 v.predecessor = None

9 v.colour = "white"

0: dfsRecurse(G,s)

—

def dfsRecurse(G,s):
s.colour = "grey"
s.d = time()
for v in s.adjacent()
if v.colour = "white"
v.predecessor = s
dfsRecurse(G,v)
s.colour = "black"
s.f =time()

@ Re @@y =@

6.1 & 6.2: Graph Searching TS. 10

Depth-First-Search: Pseudocode

def dfs(G,s):

0:
1:
2
3
4: assert(s in G.vertices())

gf = We always go deeper before visiting
7: for v in G.vertices(): other neighbors

8

9

0

v.predecessor = None = Discovery and Finish times, .d and .f
v.colour = "white"

dfsRecurse(G,s)

_

def dfsRecurse(G,s):
s.colour = "grey"
s.d = time()
for v in s.adjacent()
if v.colour = "white"
v.predecessor = s
dfsRecurse(G,v)
s.colour = "black"
s.f = time()

@ Re @@y =@

6.1 & 6.2: Graph Searching TS. 10

Depth-First-Search: Pseudocode

0: def dfs(G,s):
1:
2
&
4: assert(s in G.vertices())
gf = We always go deeper before visiting
7. for v in G.vertices(): other neighbors
£ UpTESCEEEsel s e = Discovery and Finish times, .d and .f
9 v.colour = "white"
10: dfsRecurse(G,s) = Vertex Colours:
White | = Unvisited
0: def dfsRecurse(G.s): Grey = Visited, but not all neighbors
1. s.colour = "grey
2: sd=time() el = Visited and all neighbors
3: forvin s.adjacent() - 9
4: if v.colour = "white"
53 v.predecessor = s
6: dfsRecurse(G,v)
7: s.colour = "black"
8: s.f=time()
% 6.1 & 6.2: Graph Searching TS. 10

Depth-First-Search: Pseudocode

0: def dfs(G,s):
1:
2
3
4: assert(s in G.vertices())
gf = We always go deeper before visiting
7. for v in G.vertices(): other neighbors
£ UpTESCEEEsel s e = Discovery and Finish times, .d and .f
9 v.colour = "white"
10: dfsRecurse(G,s) = Vertex Colours:
White | = Unvisited
?3 desf ggg‘i"”fzﬁf;s): Grey = Visited, but not all neighbors
: s.colour = y
2: s.d=time() Bl = Visited and all neighbors
3: forvin s.adjacent() - 9
4: if v.colour = "white"
58 v.predecessor = s
6: dfsRecurse(G,v)
7: s.colour = "black"
8: s.f=time()
ggg 6.1 & 6.2: Graph Searching TS. 10

Depth-First-Search: Pseudocode

0: def dfs(G,s):
1:
2
3
4: assert(s in G.vertices())
gf = We always go deeper before visiting
7. for v in G.vertices(): other neighbors
£ UpTESCEEEsel s e = Discovery and Finish times, .d and .f
9 v.colour = "white"
10: dfsRecurse(G,s) = Vertex Colours:
White | = Unvisited
?3 desf ggg‘i"“f%f?;s): Grey = Visited, but not all neighbors
: s.colour = y
2: s.d=time() B]Ee = Visited and all neighbors
3: forvin s.adjacent() - 9
4: if v.colour = "white" * Runtime O(V + E)
58 v.predecessor = s
6: dfsRecurse(G,v)
7: s.colour = "black"
8: s.f=time()
ggg 6.1 & 6.2: Graph Searching TS. 10

Complete Execution of DFS

S w
X z
r
ggg 6.1 & 6.2: Graph Searching TS. 11

Complete Execution of DFS

S

ggg 6.1 & 6.2: Graph Searching

Complete Execution of DFS

S

ggg 6.1 & 6.2: Graph Searching

Complete Execution of DFS

S

ggg 6.1 & 6.2: Graph Searching

Complete Execution of DFS

ggg 6.1 & 6.2: Graph Searching

Complete Execution of DFS

ggg 6.1 & 6.2: Graph Searching

Complete Execution of DFS

ggg 6.1 & 6.2: Graph Searching

Complete Execution of DFS

ggg 6.1 & 6.2: Graph Searching

Complete Execution of DFS

ggg 6.1 & 6.2: Graph Searching

Complete Execution of DFS

ggg 6.1 & 6.2: Graph Searching

Complete Execution of DFS

ggg 6.1 & 6.2: Graph Searching

Complete Execution of DFS

%g 6.1 & 6.2: Graph Searching

Complete Execution of DFS

% 6.1 & 6.2: Graph Searching

Complete Execution of DFS

% 6.1 & 6.2: Graph Searching

Complete Execution of DFS

% 6.1 & 6.2: Graph Searching

Complete Execution of DFS

% 6.1 & 6.2: Graph Searching

Complete Execution of DFS

% 6.1 & 6.2: Graph Searching

Complete Execution of DFS

% 6.1 & 6.2: Graph Searching TS.

Complete Execution of DFS

% 6.1 & 6.2: Graph Searching

Complete Execution of DFS

Eﬁ 6.1 & 6.2: Graph Searching

Complete Execution of DFS

Eﬁ 6.1 & 6.2: Graph Searching

Complete Execution of DFS

Eg 6.1 & 6.2: Graph Searching

Complete Execution of DFS

Eg 6.1 & 6.2: Graph Searching

Complete Execution of DFS

Eg 6.1 & 6.2: Graph Searching

Complete Execution of DFS

S

Eg 6.1 & 6.2: Graph Searching TS.

Complete Execution of DFS

S

Eg 6.1 & 6.2: Graph Searching TS.

Complete Execution of DFS

S

Eg 6.1 & 6.2: Graph Searching TS.

Complete Execution of DFS

~
Lo

Eg 6.1 & 6.2: Graph Searching TS.

Complete Execution of DFS

Eg 6.1 & 6.2: Graph Searching

Complete Execution of DFS

w

Eg 6.1 & 6.2: Graph Searching TS.

Complete Execution of DFS

w

Eg 6.1 & 6.2: Graph Searching TS.

Complete Execution of DFS

w

Eg 6.1 & 6.2: Graph Searching TS.

Complete Execution of DFS

w

Eg 6.1 & 6.2: Graph Searching TS.

Complete Execution of DFS

w

Eg 6.1 & 6.2: Graph Searching TS.

Complete Execution of DFS

Eg 6.1 & 6.2: Graph Searching

Complete Execution of DFS

Eg 6.1 & 6.2: Graph Searching

Complete Execution of DFS

Eg 6.1 & 6.2: Graph Searching

Complete Execution of DFS

Eg 6.1 & 6.2: Graph Searching

Complete Execution of DFS

w

Eg 6.1 & 6.2: Graph Searching TS.

Complete Execution of DFS

174

Eg 6.1 & 6.2: Graph Searching TS.

Complete Execution of DFS

Eg 6.1 & 6.2: Graph Searching

Paranthesis Theorem (Theorem 22.7)

9 10111213141516

8

7
(s (v(y (xx) (r(uu)ny)v)s)(w(zzw)

12

TS.

6.1 & 6.2: Graph Searching

e

Outline

Topological Sort

.-,.!.;, 6.1 & 6.2: Graph Searching

TS.

Topological Sort

pants

shoes

ggg 6.1 & 6.2: Graph Searching

TS.

Topological Sort

?
T
shoes

jacket

pants
Problem
= Given: a directed acyclic graph (DAG)
= Goal: Output a linear ordering of all vertices

ggg 6.1 & 6.2: Graph Searching TS. 14

Topological Sort

? socks
\
pants shoes
T

Problem
‘ = Given: a directed acyclic graph (DAG)

jacket = Goal: Output a linear ordering of all vertices

[socksj [undershorts)—{pantsshoesj [watch]
ggg 6.1 & 6.2: Graph Searching TS. 14

Topological Sort

\’
pants @
T e
.........

Problem
‘ = Given: a directed acyclic graph (DAG)

jacket = Goal: Output a linear ordering of all vertices

[socksj [undershorts)—{pantsshoesj [watch]
ggg 6.1 & 6.2: Graph Searching TS. 14

Topological Sort

\’
pants @
T e
.........

Problem
‘ = Given: a directed acyclic graph (DAG)

jacket = Goal: Output a linear ordering of all vertices

[socks] [undershorts)—{pantsshoes] [watc
Egg 6.1 & 6.2: Graph Searching TS. 14

Solving Topological Sort

\(watch

pants shoes
(oot

Knuth’s Algorithm (1968)

= Perform DFS’s so that all vertices are visited
= Qutput vertices in decreasing order of their finishing time

o

J‘I% 6.1 & 6.2: Graph Searching TS.

Solving Topological Sort

\(watch

pants shoes
N
(oot

Knuth’s Algorithm (1968)

= Perform DFS’s so that all vertices are visited
= Qutput vertices in decreasing order of their finishing time

2

[Runtime O(V/+ E)]

t:e

6.1 & 6.2: Graph Searching TS.

¥
e
k|

Solving Topological Sort

\(watch

pants shoes
N
(oot

Knuth’s Algorithm (1968)

= Perform DFS’s so that all vertices are visited
= Qutput vertices in decreasing order of their finishing time
AN

2

[Runtime O(V + E)] tices — use DFS directly!

74
[Don’t need to sort the ver-]

Egg 6.1 & 6.2: Graph Searching TS.

Execution of Knuth’s Algorithm

Eg 6.1 & 6.2: Graph Searching

TS.

Execution of Knuth’s Algorithm

Eg 6.1 & 6.2: Graph Searching

TS.

Execution of Knuth’s Algorithm

Eg 6.1 & 6.2: Graph Searching

TS.

Execution of Knuth’s Algorithm

Eg 6.1 & 6.2: Graph Searching

TS.

Execution of Knuth’s Algorithm

Eg 6.1 & 6.2: Graph Searching

TS.

Execution of Knuth’s Algorithm

w z

Eg 6.1 & 6.2: Graph Searching

TS.

Execution of Knuth’s Algorithm

Eg 6.1 & 6.2: Graph Searching

TS.

Execution of Knuth’s Algorithm

Eg 6.1 & 6.2: Graph Searching

TS.

Execution of Knuth’s Algorithm

Eg 6.1 & 6.2: Graph Searching

TS.

Execution of Knuth’s Algorithm

w z S v

Eg 6.1 & 6.2: Graph Searching

TS.

Execution of Knuth’s Algorithm

Eg 6.1 & 6.2: Graph Searching

TS.

Execution of Knuth’s Algorithm

©0000

Eg 6.1 & 6.2: Graph Searching TS.

Execution of Knuth’s Algorithm

w z S v

Eg 6.1 & 6.2: Graph Searching

TS.

Execution of Knuth’s Algorithm

w z s v y r

Eg 6.1 & 6.2: Graph Searching TS.

Execution of Knuth’s Algorithm

13/16

Eg 6.1 & 6.2: Graph Searching

TS.

Execution of Knuth’s Algorithm

13/16

Eg 6.1 & 6.2: Graph Searching

TS.

Execution of Knuth’s Algorithm

13/16

Eg 6.1 & 6.2: Graph Searching

TS.

Execution of Knuth’s Algorithm

13/16

Eg 6.1 & 6.2: Graph Searching TS. 16

Execution of Knuth’s Algorithm

13/16

Eg 6.1 & 6.2: Graph Searching TS. 16

Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order.]

Eﬁ 6.1 & 6.2: Graph Searching TS. 17

Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order.]

Proof:

6.1 & 6.2: Graph Searching TS. 17

£ Fd
Gl
YEY

Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order.]

Proof:
s
= Consider any edge (u, v) € E(G) being explored, @

ggg 6.1 & 6.2: Graph Searching TS. 17

Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order.]

Proof:

= Consider any edge (u, v) € E(G) being explored, @
= u is grey and we have to show that v.f < u.f

ggg 6.1 & 6.2: Graph Searching TS. 17

Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order.]

Proof:

= Consider any edge (u, v) € E(G) being explored, @
= u is grey and we have to show that v.f < u.f

1. Ifv is grey,

ggg 6.1 & 6.2: Graph Searching TS. 17

Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order.]

Proof:

= Consider any edge (u, v) € E(G) being explored, @
= u is grey and we have to show that v.f < u.f

1. Ifv is grey,

ggg 6.1 & 6.2: Graph Searching TS. 17

Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order.]

Proof:
= Consider any edge (u, v) € E(G) being explored, @
= u is grey and we have to show that v.f < u.f

1. If v is grey, then there is a cycle
(can’t happen, because G is acyclic!). ey

6.1 & 6.2: Graph Searching TS. 17

£ Fd
Gl
YEY

Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order.]

Proof:
= Consider any edge (u, v) € E(G) being explored, @
= u is grey and we have to show that v.f < u.f

1. If v is grey, then there is a cycle :
(can’t happen, because G is acyclicl). b

2. If v is black, C "@

ggg 6.1 & 6.2: Graph Searching TS. 17

Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order.]

Proof:
= Consider any edge (u, v) € E(G) being explored, @
= u is grey and we have to show that v.f < u.f

1. If v is grey, then there is a cycle :
(can’t happen, because G is acyclicl). b

2. Ifv is black, then v.f < u.f. M

ggg 6.1 & 6.2: Graph Searching TS. 17

Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order.]

Proof:

= Consider any edge (u, v) € E(G) being explored, @
= u is grey and we have to show that v.f < u.f

1. If v is grey, then there is a cycle
(can’t happen, because G is acyclic!).

2. If v is black, then v.f < u.f. M
3. If v is white,

ggg 6.1 & 6.2: Graph Searching TS. 17

Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order.]

Proof:

= Consider any edge (u, v) € E(G) being explored, @
= u is grey and we have to show that v.f < u.f

1. If v is grey, then there is a cycle
(can’t happen, because G is acyclic!).

2. If v is black, then v.f < u.f. H
3. If v is white, we call DFS(v) and v.f < u.f. 0 @

ggg 6.1 & 6.2: Graph Searching TS. 17

Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order.]

Proof:

= Consider any edge (u, v) € E(G) being explored,
= u is grey and we have to show that v.f < u.f

1. If v is grey, then there is a cycle
(can’t happen, because G is acyclic!).
2. Ifv is black, then v.f < u.f.
3. If v is white, we call DFS(v) and v.f < u.f.

= Inall cases v.f < u.f, so v appears after u.

ggg 6.1 & 6.2: Graph Searching TS.

Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order.]

Proof:

= Consider any edge (u, v) € E(G) being explored,
= u is grey and we have to show that v.f < u.f

1. If v is grey, then there is a cycle
(can’t happen, because G is acyclic!).
2. Ifv is black, then v.f < u.f.
3. If v is white, we call DFS(v) and v.f < u.f.

= Inall cases v.f < u.f, so v appears after u.

ggg 6.1 & 6.2: Graph Searching TS.

Summary of Graph Searching

Breadth-First-Search

= vertices are processed by a queue

= computes distances and shortest paths
~ similar idea used later in Prim’s and Dijkstra’s algorithm

= Runtime O(V + E)

6.1 & 6.2: Graph Searching TS.

Summary of Graph Searching

~——— Breadth-First-Search

= vertices are processed by a queue

= computes distances and shortest paths
~ similar idea used later in Prim’s and Dijkstra’s algorithm

= Runtime O(V + E)

~——— Depth-First-Search

= vertices are processed by recursive calls (= stack)
= discovery and finishing times

= application: Topogical Sorting of DAGs

= Runtime O(V + E)

6.1 & 6.2: Graph Searching TS.

Outline

Minimum Spanning Tree Problem

6.1 & 6.2: Graph Searching

TS.

Minimum Spanning Tree Problem

~——— Minimum Spanning Tree Problem —

= Given: undirected, connected
graph G = (V, E, w) with
non-negative edge weights

\-,,',-, 6.1 & 6.2: Graph Searching

TS.

20

Minimum Spanning Tree Problem

~——— Minimum Spanning Tree Problem —
= Given: undirected, connected
graph G = (V, E, w) with
non-negative edge weights
= Goal: Find a subgraph C E of
minimum total weight that links
all vertices

._la- 6.1 & 6.2: Graph Searching

TS.

20

Minimum Spanning Tree Problem

~——— Minimum Spanning Tree Problem —
= Given: undirected, connected
graph G = (V, E, w) with
non-negative edge weights
= Goal: Find a subgraph C E of
minimum totalflweight that links
all vertices A
I 1
[Must be necessarily a tree!]

J

.,a 6.1 & 6.2: Graph Searching TS. 20

Minimum Spanning Tree Problem

~——— Minimum Spanning Tree Problem —
= Given: undirected, connected
graph G = (V, E, w) with
non-negative edge weights
= Goal: Find a subgraph C E of
minimum total weight that links
all vertices

Applications
= Street Networks, Wiring Electronic Components, Laying Pipes

= Weights may represent distances, costs, travel times, capacities,
resistance etc.

.-,,!.-, 6.1 & 6.2: Graph Searching TS. 20

Generic Algorithm

def minimum spanningTree (G)
A = empty set of edges
while A does not span all vertices yet:
add a safe edge to A

Ww N B O

% 6.1 & 6.2: Graph Searching TS.

21

Generic Algorithm

def minimum spanningTree (G)
A = empty set of edges
while A does not span all vertices yet:
add a safe edge to A

Ww N B O

Definition
An edge of G is safe if by adding the edge to A, the resulting subgraph
is still a subset of a minimum spanning tree.

%g 6.1 & 6.2: Graph Searching TS. 21

Generic Algorithm

0: def minimum spanningTree (G)
iLg A = empty set of edges
2: while A does not span all vertices yet:
3: add a safe edge to A
— Definition N

An edge of G is safe if by adding the edge to A, the resulting subgraph
is still a subset of a minimum spanning tree.

\ J

How to find a safe edge?

ggg 6.1 & 6.2: Graph Searching TS. 21

Finding safe edges

Definitions

* a cutis a partition of V into at least
two disjoint sets

-..a 5 6.1 & 6.2: Graph Searching

TS.

22

Finding safe edges

Definitions

* a cutis a partition of V into at least
two disjoint sets

= acut respects A C E if no edge of
A goes across the cut

6.1 & 6.2: Graph Searching

TS.

22

Finding safe edges

Definitions

* a cutis a partition of V into at least
two disjoint sets

= acut respects A C E if no edge of
A goes across the cut

,,a 5 6.1 & 6.2: Graph Searching

TS.

22

Finding safe edges

Definitions

* a cutis a partition of V into at least
two disjoint sets

= acut respects A C E if no edge of
A goes across the cut

,,a 5 6.1 & 6.2: Graph Searching

TS.

22

Finding safe edges

Definitions

* a cutis a partition of V into at least
two disjoint sets

= acut respects A C E if no edge of
A goes across the cut

Theorem

Let A C E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

-,,a,;, 6.1 & 6.2: Graph Searching TS. 22

	Breadth-First Search
	Depth-First Search
	Topological Sort
	Minimum Spanning Tree Problem

