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Representations of Directed and Undirected Graphs
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Figure 22.1 Two representations of an undirected graph. (a) An undirected graph G with 5 vertices
and 7 edges. (b) An adjacency-list representation of G. (¢) The adjacency-matrix representation
of G.
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Figure 22.1 Two representations of an undirected graph. (a) An undirected graph G with 5 vertices
and 7 edges. (b) An adjacency-list representation of G. (¢) The adjacency-matrix representation

of G.
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Figure 22.2 Two representations of a directed graph. (a) A directed graph G with 6 vertices and 8
edges. (b) An adjacency-list representation of G. (¢) The adjacency-matrix representation of G.
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Graph Searching

Overview

= Graph searching means traversing a graph via the edges in order to
visit all vertices

= useful for identifying connected components, computing the
diameter etc.
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Graph Searching

Overview

= Graph searching means traversing a graph via the edges in order to
visit all vertices

= useful for identifying connected components, computing the
diameter etc.

= Two strategies: Breadth-First-Search and Depth-First-Search

Measure time complexity in terms of the size of V and E
(often write just V instead of | V|, and E instead of |E|)
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Outline

Breadth-First Search
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Breadth-First Search: Basic Ideas

——— Basic Idea

= Given an undirected/directed graph G = (V, E) and source vertex s
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Breadth-First Search: Basic Ideas

——— Basic Idea

= Given an undirected/directed graph G = (V, E) and source vertex s
= BFS sends out a wave from s ~~ compute distances/shortest paths
= Vertex Colours:

= Unvisited

Grey = Visited, but not all neighbors (=adjacent vertices)

= Visited and all neighbors
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Breadth-First-Search: Pseudocode

?: def bfs(G,s)

2:

3:

4: assert(s in G.vertices())
5:

6:

7: for v in G.vertices():

8: v.predecessor = None
9: v.d = Infinity

10:  v.colour = "white"
11: Q = Queue()

12:

13:

14: sd=0

15: s.colour = "grey"
16: Q.insert(s)

19: while not Q.isEmpty():

20:  u=Q.extract()

21:  assert (u.colour == "grey")
22: forvin u.adjacent()

23: if v.colour = "white"
24: v.colour = "grey"
25: v.d = u.d+1

26: v.predecessor = u
27: Q.insert(v)

28:  u.colour = "black"
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Breadth-First-Search: Pseudocode

. def bfs(G,s)

assert(s in G.vertices())

: for v in G.vertices(): . . .
v.predecessor = None = From any vertex, visit all adjacent

v.d = Infinity i i
g, sy vertices before going any deeper
1

: Q= Queue()

14: sd=0
15: s.colour = "grey"
16: Q.insert(s)

19: while not Q.isEmpty():

20:  u=Q.extract()

21:  assert (u.colour == "grey")
22: forvin u.adjacent()

23: if v.colour = "white"
24: v.colour = "grey"
25: v.d = u.d+1

26: v.predecessor = u
27: Q.insert(v)

28:  u.colour = "black"
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Breadth-First-Search: Pseudocode

0: def bfs(G,s)

1

2

3

4: assert(s in G.vertices())

5:

6:

7: f in G.verti : .. .

g ‘(,'S,edéi;'sﬁ(): N = From any vertex, visit all adjacent
9 v.d = Infinity i i

o, W, vertices before going any deeper
11: Q= Queue) = Vertex Colours:

13: ita | = i

s White | = Unvisited

15: s.colour = "grey" = Visi i

IR e Grey = Visited, but not all neighbors
17: —\fiai .

18 ElETed = Visited and all neighbors

19: while not Q.isEmpty():

20:  u=Q.extract()

21:  assert (u.colour == "grey")
22: forvin u.adjacent()

23: if v.colour = "white"
24: v.colour = "grey"
25: v.d = u.d+1

26: v.predecessor = u
27: Q.insert(v)

28:  u.colour = "black"
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Breadth-First-Search: Pseudocode

0: def bfs(G,s)

1

2

3

4: assert(s in G.vertices())

&n

6:

7: f in G.verti : . . .
e = From any vertex, visit all adjacent
9 v.d = Infinity i i
e vertices before going any deeper
]; Q = Queue() = Vertex Colours:

13: ite | = isi

s White | = Unvisited

15: s.colour = "grey" = Visi i

[ i Grey = Visited, but not all neighbors
17: \fiel .

18 ElETed = Visited and all neighbors
19: while not Q.isEmpty(): = Runtime ?2?

20:  u=Q.extract()
21:  assert (u.colour == "grey")
22: forvin u.adjacent()

23: if v.colour = "white"
24: v.colour = "grey"
25: v.d = u.d+1

26: v.predecessor = u
27: Q.insert(v)

28:  u.colour = "black"
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0: def bfs(G,s)
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2
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4: assert(s in G.vertices())

&n

6:

7: f in G.verti : . . .
e = From any vertex, visit all adjacent
9 v.d = Infinity i i
e vertices before going any deeper
]; Q = Queue() = Vertex Colours:

13: ite | = isi

s White | = Unvisited

15: s.colour = "grey" = Visi i

[ i Grey = Visited, but not all neighbors
17: \fiel .

18 ElETed = Visited and all neighbors
19: while not Q.isEmpty(): = Runtime ?2?

20:  u=Q.extract()
21:  assert (u.colour == "grey")
22: forvin u.adjacent()

23: if v.colour = "white"
24: v.colour = "grey"
25: v.d = u.d+1

26: v.predecessor = u
27: Q.insert(v)

28:  u.colour = "black"
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Breadth-First-Search: Pseudocode

0
1
2
3
4
&n
6
7
8
9

10:
: Q= Queue()

. def bfs(G,s)

assert(s in G.vertices())

for v in G.vertices():

v.predecessor = None
v.d = Infinity
v.colour = "white"

:sd=0
. s.colour = "grey"
: Q.insert(s)

. while not Q.isEmpty():

u = Q.extract()

assert (u.colour == "grey")

for v in u.adjacent()

if v.colour = "white"

v.colour = "grey"
vd = u.d+1
v.predecessor = u
Q.insert(v)

u.colour = "black"

= From any vertex, visit all adjacent
vertices before going any deeper

= Vertex Colours:
= Unvisited
Grey = Visited, but not all neighbors
= Visited and all neighbors

= Runtime O(V + E)
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Bre

adth-First-Search: Pseudocode

0: def bfs(G,s)

1

2

3

4: assert(s in G.vertices())

5:

6:

7: f in G.verti : .. .

g "V'Sredé‘z;'sﬁ(): N = From any vertex, visit all adjacent

9 v.d = Infinity i i

o, W, vertices before going any deeper

11: Q= Queue) = Vertex Colours:

13: o | = -~

s White | = Unvisited

15: s.colour = "grey" — Vigj i

IR e Grey = Visited, but not all neighbors
s 2Bt = Visited and all neighbors
19: vhle et Glmp « Runtime O(V + E)

21:  assert (u.colour == "grey") i

22: forvin u.adjacent() . .

23:  ifv.colour = "white" Assuming that all executions of the FOR-loop
24: v.colour = "grey" ; : A

oE: A O for u takes O(|u.adj|) (adjacency list model!)
26: v.predecessor = u

27: Q.insert(v)

28:  u.colour = "black"
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Breadth-First-Search: Pseudocode

0
1
2
3
4
&n
6
7
8
9

10:

. def bfs(G,s)
assert(s in G.vertices())
for v in G.vertices(): . . .
vpredecessor = None = From any vertex, visit all adjacent
v.d = Infinity i i
Iy vertices before going any deeper
: Q= Queue() = Vertex Colours:
D edeo White | = Unvisited
: gcigfeur;(:)"grev“ Grey = Visited, but not all neighbors
ElETed = Visited and all neighbors
. while not Q.isEmpty(): . :
L2 Qextract) Runtime O(V + E)
assert (u.colour == "grey") i
for v in u.adjacent() . .
if v.colour = "white" Assuming that all executions of the FOR-loop
.col " " g 5 g
A O for u takes O(|u.adj|) (adjacency list model!)
v.predecessor = u 1\
Q.insert(v) | —
u.colour = "black" [ Zuev |U‘adj| - 2|E| ]
6.1 & 6.2: Graph Searching TS. 6



Complete Execution of BFS (Figure 22.3)
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Complete Execution of BFS (Figure 22.3)

Queue: X X w

) 1 (=

ggg 6.1 & 6.2: Graph Searching

TS.



Complete Execution of BFS (Figure 22.3)
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Complete Execution of BFS (Figure 22.3)
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Complete Execution of BFS (Figure 22.3)
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Complete Execution of BFS (Figure 22.3)
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—

NV

ggg 6.1 & 6.2: Graph Searching

TS.



Complete Execution of BFS (Figure 22.3)

Queue: X X W v
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Complete Execution of BFS (Figure 22.3)
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Complete Execution of BFS (Figure 22.3)
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Depth-First Search: Basic Ideas

Basic Idea

= Given an undirected/directed graph G = (V, E) and source vertex s
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Basic Idea
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Depth-First Search: Basic Ideas

[ —

]

Basic Idea

= Given an undirected/directed graph G = (V, E) and source vertex s
= As soon as we discover a vertex, explore from it ~~ Solving Mazes
= Two time stamps for every vertex: Discovery Time, Finishing Time

n
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Depth-First-Search: Pseudocode

def dfs(G,s):

assert(s in G.vertices())

for v in G.vertices():
v.predecessor = None
v.colour = "white"

0:
1:
2
3
4
58
6
7
8
9
0: dfsRecurse(G,s)

_

def dfsRecurse(G,s):
s.colour = "grey"
s.d = time()
for v in s.adjacent()
if v.colour = "white"
v.predecessor = s
dfsRecurse(G,v)
s.colour = "black"
s.f = time()

@ Re @@y =@
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Depth-First-Search: Pseudocode

def dfs(G,s):

0:

1:

2

3

4: assert(s in G.vertices())

gf = We always go deeper before visiting
7:  forvin G.vertices(): other neighbors

8 v.predecessor = None

9 v.colour = "white"

0: dfsRecurse(G,s)

—

def dfsRecurse(G,s):
s.colour = "grey"
s.d = time()
for v in s.adjacent()
if v.colour = "white"
v.predecessor = s
dfsRecurse(G,v)
s.colour = "black"
s.f =time()

@ Re @@y =@
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Depth-First-Search: Pseudocode

def dfs(G,s):

0:
1:
2
3
4: assert(s in G.vertices())

gf = We always go deeper before visiting
7: for v in G.vertices(): other neighbors

8

9

0

v.predecessor = None = Discovery and Finish times, .d and .f
v.colour = "white"

dfsRecurse(G,s)

_

def dfsRecurse(G,s):
s.colour = "grey"
s.d = time()
for v in s.adjacent()
if v.colour = "white"
v.predecessor = s
dfsRecurse(G,v)
s.colour = "black"
s.f = time()

@ Re @@y =@
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Depth-First-Search: Pseudocode

0: def dfs(G,s):
1:
2
&
4: assert(s in G.vertices())
gf = We always go deeper before visiting
7. for v in G.vertices(): other neighbors
£ UpTESCEEEsel s e = Discovery and Finish times, .d and .f
9 v.colour = "white"
10: dfsRecurse(G,s) = Vertex Colours:
White | = Unvisited
0: def dfsRecurse(G.s): Grey = Visited, but not all neighbors
1. s.colour = "grey
2:  sd=time() el = Visited and all neighbors
3: forvin s.adjacent() - 9
4: if v.colour = "white"
53 v.predecessor = s
6: dfsRecurse(G,v)
7:  s.colour = "black"
8: s.f=time()
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Depth-First-Search: Pseudocode

0: def dfs(G,s):
1:
2
3
4: assert(s in G.vertices())
gf = We always go deeper before visiting
7. for v in G.vertices(): other neighbors
£ UpTESCEEEsel s e = Discovery and Finish times, .d and .f
9 v.colour = "white"
10: dfsRecurse(G,s) = Vertex Colours:
White | = Unvisited
?3 desf ggg‘i"”fzﬁf;s): Grey = Visited, but not all neighbors
:  s.colour = y
2:  s.d=time() Bl = Visited and all neighbors
3: forvin s.adjacent() - 9
4: if v.colour = "white"
58 v.predecessor = s
6: dfsRecurse(G,v)
7:  s.colour = "black"
8: s.f=time()
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Depth-First-Search: Pseudocode

0: def dfs(G,s):
1:
2
3
4: assert(s in G.vertices())
gf = We always go deeper before visiting
7. for v in G.vertices(): other neighbors
£ UpTESCEEEsel s e = Discovery and Finish times, .d and .f
9 v.colour = "white"
10: dfsRecurse(G,s) = Vertex Colours:
White | = Unvisited
?3 desf ggg‘i"“f%f?;s): Grey = Visited, but not all neighbors
:  s.colour = y
2:  s.d=time() B]Ee = Visited and all neighbors
3: forvin s.adjacent() - 9
4: if v.colour = "white" * Runtime O(V + E)
58 v.predecessor = s
6: dfsRecurse(G,v)
7:  s.colour = "black"
8: s.f=time()
ggg 6.1 & 6.2: Graph Searching TS. 10
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S w
X z
r
ggg 6.1 & 6.2: Graph Searching TS. 11



Complete Execution of DFS

S

ggg 6.1 & 6.2: Graph Searching



Complete Execution of DFS

S

ggg 6.1 & 6.2: Graph Searching



Complete Execution of DFS

S

ggg 6.1 & 6.2: Graph Searching



Complete Execution of DFS

ggg 6.1 & 6.2: Graph Searching



Complete Execution of DFS

ggg 6.1 & 6.2: Graph Searching



Complete Execution of DFS

ggg 6.1 & 6.2: Graph Searching



Complete Execution of DFS

ggg 6.1 & 6.2: Graph Searching



Complete Execution of DFS

ggg 6.1 & 6.2: Graph Searching



Complete Execution of DFS

ggg 6.1 & 6.2: Graph Searching



Complete Execution of DFS

ggg 6.1 & 6.2: Graph Searching



Complete Execution of DFS

%g 6.1 & 6.2: Graph Searching



Complete Execution of DFS

% 6.1 & 6.2: Graph Searching



Complete Execution of DFS

% 6.1 & 6.2: Graph Searching



Complete Execution of DFS

% 6.1 & 6.2: Graph Searching



Complete Execution of DFS

% 6.1 & 6.2: Graph Searching



Complete Execution of DFS

% 6.1 & 6.2: Graph Searching



Complete Execution of DFS

% 6.1 & 6.2: Graph Searching TS.



Complete Execution of DFS

% 6.1 & 6.2: Graph Searching



Complete Execution of DFS

Eﬁ 6.1 & 6.2: Graph Searching



Complete Execution of DFS

Eﬁ 6.1 & 6.2: Graph Searching



Complete Execution of DFS

Eg 6.1 & 6.2: Graph Searching



Complete Execution of DFS

Eg 6.1 & 6.2: Graph Searching



Complete Execution of DFS

Eg 6.1 & 6.2: Graph Searching



Complete Execution of DFS

S

Eg 6.1 & 6.2: Graph Searching TS.



Complete Execution of DFS

S

Eg 6.1 & 6.2: Graph Searching TS.



Complete Execution of DFS

S

Eg 6.1 & 6.2: Graph Searching TS.



Complete Execution of DFS

~
Lo

Eg 6.1 & 6.2: Graph Searching TS.



Complete Execution of DFS

Eg 6.1 & 6.2: Graph Searching



Complete Execution of DFS

w

Eg 6.1 & 6.2: Graph Searching TS.



Complete Execution of DFS

w

Eg 6.1 & 6.2: Graph Searching TS.



Complete Execution of DFS

w

Eg 6.1 & 6.2: Graph Searching TS.



Complete Execution of DFS

w

Eg 6.1 & 6.2: Graph Searching TS.



Complete Execution of DFS

w

Eg 6.1 & 6.2: Graph Searching TS.



Complete Execution of DFS

Eg 6.1 & 6.2: Graph Searching



Complete Execution of DFS

Eg 6.1 & 6.2: Graph Searching



Complete Execution of DFS

Eg 6.1 & 6.2: Graph Searching



Complete Execution of DFS

Eg 6.1 & 6.2: Graph Searching



Complete Execution of DFS

w

Eg 6.1 & 6.2: Graph Searching TS.



Complete Execution of DFS

174

Eg 6.1 & 6.2: Graph Searching TS.



Complete Execution of DFS

Eg 6.1 & 6.2: Graph Searching



Paranthesis Theorem (Theorem 22.7)
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Problem
= Given: a directed acyclic graph (DAG)
= Goal: Output a linear ordering of all vertices
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Solving Topological Sort

\( watch

pants shoes
N
(oot

Knuth’s Algorithm (1968)

= Perform DFS’s so that all vertices are visited
= Qutput vertices in decreasing order of their finishing time

2

[ Runtime O(V/+ E) ]
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Solving Topological Sort

\( watch

pants shoes
N
(oot

Knuth’s Algorithm (1968)

= Perform DFS’s so that all vertices are visited
= Qutput vertices in decreasing order of their finishing time
AN

2

[ Runtime O(V + E) ] tices — use DFS directly!

74
[Don’t need to sort the ver-]
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Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order. ]

Proof:

= Consider any edge (u, v) € E(G) being explored,
= u is grey and we have to show that v.f < u.f

1. If v is grey, then there is a cycle
(can’t happen, because G is acyclic!).
2. Ifv is black, then v.f < u.f.
3. If v is white, we call DFS(v) and v.f < u.f.

= Inall cases v.f < u.f, so v appears after u.
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Theorem 22.12
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Proof:
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Summary of Graph Searching

Breadth-First-Search

= vertices are processed by a queue

= computes distances and shortest paths
~ similar idea used later in Prim’s and Dijkstra’s algorithm

= Runtime O(V + E)
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Summary of Graph Searching

~——— Breadth-First-Search

= vertices are processed by a queue

= computes distances and shortest paths
~ similar idea used later in Prim’s and Dijkstra’s algorithm

= Runtime O(V + E)

~——— Depth-First-Search

= vertices are processed by recursive calls (= stack)
= discovery and finishing times

= application: Topogical Sorting of DAGs

= Runtime O(V + E)

6.1 & 6.2: Graph Searching TS.
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Minimum Spanning Tree Problem

~——— Minimum Spanning Tree Problem —

= Given: undirected, connected
graph G = (V, E, w) with
non-negative edge weights
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~——— Minimum Spanning Tree Problem —
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Minimum Spanning Tree Problem

~——— Minimum Spanning Tree Problem —
= Given: undirected, connected
graph G = (V, E, w) with
non-negative edge weights
= Goal: Find a subgraph C E of
minimum totalflweight that links
all vertices A
I 1
[Must be necessarily a tree!]

J
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Minimum Spanning Tree Problem

~——— Minimum Spanning Tree Problem —
= Given: undirected, connected
graph G = (V, E, w) with
non-negative edge weights
= Goal: Find a subgraph C E of
minimum total weight that links
all vertices

Applications
= Street Networks, Wiring Electronic Components, Laying Pipes

= Weights may represent distances, costs, travel times, capacities,
resistance etc.
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Generic Algorithm

def minimum spanningTree (G)
A = empty set of edges
while A does not span all vertices yet:
add a safe edge to A

Ww N B O
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Generic Algorithm

def minimum spanningTree (G)
A = empty set of edges
while A does not span all vertices yet:
add a safe edge to A

Ww N B O

Definition
An edge of G is safe if by adding the edge to A, the resulting subgraph
is still a subset of a minimum spanning tree.
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Generic Algorithm

0: def minimum spanningTree (G)
iLg A = empty set of edges
2: while A does not span all vertices yet:
3: add a safe edge to A
— Definition N

An edge of G is safe if by adding the edge to A, the resulting subgraph
is still a subset of a minimum spanning tree.

\ J

How to find a safe edge?
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Finding safe edges

Definitions

* a cutis a partition of V into at least
two disjoint sets
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Finding safe edges

Definitions

* a cutis a partition of V into at least
two disjoint sets

= acut respects A C E if no edge of
A goes across the cut

Theorem

Let A C E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

-,,a,;, 6.1 & 6.2: Graph Searching TS. 22
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