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Behaviour: create a new set {x} and return its handle
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Weighted-Union Heuristic

= Keep track of the length of each list

= Append shorter list to the longer list (breaking ties arbitrarily)
N

[ can be done easily without significant overhead )

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKE-SET operations, takes O(m + n - log n) time.
N

Amortized Analysis: Every operation has amortized cost
O(log n), but there may be operations with total cost ©(n).
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Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKE-SET operations, takes O(m + n - log n) time.

Proof:
= n MAKE-SET operations = at most n — 1 UNION operations
= Consider element x and the number of updates of the backward pointer
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Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKE-SET operations, takes O(m + n - log n) time.

Proof:
= n MAKE-SET operations = at most n — 1 UNION operations
= Consider element x and the number of updates of the backward pointer
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Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKE-SET operations, takes O(m + n - log n) time.

Proof:

= n MAKE-SET operations = at most n — 1 UNION operations
= Consider element x and the number of updates of the backward pointer
= After each update of x, its set increases by a factor of at least 2
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Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKE-SET operations, takes O(m + n - log n) time.
N

Proof: ( Can we improve on this further? ]

= n MAKE-SET operations = at most n — 1 UNION operations
= Consider element x and the number of updates of the backward pointer
= After each update of x, its set increases by a factor of at least 2

= Backward pointer of x is updated at most log, n times

= Other updates for UNION, MAKE-SET & FIND-SET take O(1) time per
operation O
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How to Improve?

|<-ho

Doubly-Linked List
« MAKE-SET: O(1)
« FIND-SET: O(n)
= UNION: O(1)
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Basic ldea: Update Backward
Pointers only during FIND

Doubly-Linked List Weighted-Union Heuristic
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Disjoint Sets via Forests

Forest Structure
= Set is represented by a rooted tree with root being the representative
= Every node has pointer .p to its parent (for root x, x.p = x)
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Forest Structure

= Set is represented by a rooted tree with root being the representative
= Every node has pointer .p to its parent (for root x, x.p = x)
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Forest Structure

{b,c,d,e,f,g,h}
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= UNION: Merge the two trees
=

= Set is represented by a rooted tree with root being the representative
= Every node has pointer .p to its parent (for root x, x.p = x)

[ Append tree of smaller height ~~ Union by Rank j

5.3: Disjoint Sets
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é rank =2 és rank =2 6 rank =3
@& © @ OO
O, () @ © ©

Forest Structure

= Set is represented by a rooted tree with root being the representative
= Every node has pointer .p to its parent (for root x, x.p = x)
= UNION: Merge the two trees

=

[ Append tree of smaller height ~~ Union by Rank j
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Disjoint Sets via Forests

{b, c, e, h} {d,f, g} {b,c,d,e,f,g,h}
(Rank may be just an upper bound on the height!]

0 v 0
° rank =2 rank =2 0 rank =3

Forest Structure
= Set is represented by a rooted tree with root being the representative
= Every node has pointer .p to its parent (for root x, x.p = x)
= UNION: Merge the two trees

=

\
[ Append tree of smaller height ~~ Union by Rank )
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Disjoint Sets via Forests

{b, c, e, h} {d,f, g} {b,c,d,e,f,g,h}
(Rank may be just an upper bound on the height!]

0 4 0
° rank =2 rank =2 3 0 rank =3

AN

Forest Structure
= Set is represented by a rooted tree with root being the representative
= Every node has pointer .p to its parent (for root x, x.p = x)
= UNION: Merge the two trees

=

\
[ Append tree of smaller height ~~ Union by Rank )

s
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Path Compression during FIND-SET

FindSet (x)
if x#xp
Xx.p =FindSet (x.p)
return x.p

w N B O
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Path Compression during FIND-SET

[b]

: FindSet (x)
if x#xp

X.p =FindSet (x.p)
return x.p

0
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2:
3:
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Path Compression during FIND-SET

: FindSet (x)
if x#xp

X.p =FindSet (x.p)
return x.p

0

1:
2:
3:
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Path Compression during FIND-SET

: FindSet (x)
if x#xp

X.p =FindSet (x.p)
return x.p

0

1:
2:
3:
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Path Compression during FIND-SET

E‘

: FindSet (x)
if x#xp

X.p =FindSet (x.p)
return x.p

0

1:
2:
3:
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Path Compression during FIND-SET

E

: FindSet (x)
if x#xp

Xx.p =FindSet (x.p)
return x.p

0

1:
2:
3:

5.3: Disjoint Sets

TS.



Path Compression during FIND-SET
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if x#xp
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: FindSet (x)
if x#xp

Xx.p =FindSet (x.p)
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Path Compression during FIND-SET

: FindSet (x)
if x#xp

Xx.p =FindSet (x.p)
return x.p
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3:
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Path Compression during FIND-SET

w N B O

FindSet (x)
if x#xp
Xx.p =FindSet (x.p)
return x.p
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Path Compression during FIND-SET

w N B O

FindSet (x)
if x#xp
Xx.p =FindSet (x.p)
return x.p
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Path Compression during FIND-SET

[b]

FindSet (x)
if x#xp
Xx.p =FindSet (x.p)
return x.p

w N B O
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Path Compression during FIND-SET

[b]

FindSet (x)
if x#xp
Xx.p =FindSet (x.p)
return x.p
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Path Compression during FIND-SET

[b]

FindSet (x)
if x#xp
Xx.p =FindSet (x.p)
return x.p

w N B O

¥
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Path Compression during FIND-SET

o]
0.
e @
& @

FindSet (x)
if x#xp
Xx.p =FindSet (x.p)
return x.p

w N B O

¥
¥
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Path Compression during FIND-SET

FindSet (x)
if x#xp
Xx.p =FindSet (x.p)
return x.p

w N B O
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Path Compression during FIND-SET

Maintaining the exact height would be
costly, hence rank is only an upper bound!

FindSet (x)
if x#xp
X.p =FindSet (x.p)
return x.p

w N B O
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Combining Union by Rank and Path Compression

Theorem 21.14

Any sequence of m MAKE-SET, UNION, FIND-SET operations, n of
which are MAKE-SET operations, can be performed in O(m-«a(n)) time.

s
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Combining Union by Rank and Path Compression

——— Theorem 21.14

Any sequence of m MAKE-SET, UNION, FIND-SET operations, n of
which are MAKE-SET operations, can be performed in O(m-«a(n)) time.

\.

for0 < n<2,
for n =3,

fora < n<7,

for 8 < n <2047,
for 2048 < n < 10%°

a(n) =

A WN = O
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Combining Union by Rank and Path Compression

——— Theorem 21.14

Any sequence of m MAKE-SET, UNION, FIND-SET operations, n of
which are MAKE-SET operations, can be performed in O(m-«a(n)) time.

\.

for0 < n<2,
forn=3,

fora < n<7,

for 8 < n <2047,
for 2048 < n < 10%°

a(n) =

A WN = O

More than the number of atoms in the universe!
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Combining Union by Rank and Path Compression

——— Theorem 21.14

Any sequence of m MAKE-SET, UNION, FIND-SET operations, n of
which are MAKE-SET operations, can be performed in O(m-«a(n)) time.

\.

0 for0<n<2,
1 forn=3,
a(n=4q 2 for4a<n<7,
3 for8<n<2047,
4 for2048 < n< 10%
” = =

log*(n), the iterated logarithm, satifies
a(n) < log*(n), but still log*(108) = 5.
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Combining Union by Rank and Path Compression

——— Theorem 21.14

Any sequence of m MAKE-SET, UNION, FIND-SET operations, n of
which are MAKE-SET operations, can be performed in O(m-«a(n)) time.
/4

\.

[ In practice, «(n) is a small constant ]

for0 < n<2,
for n =3,

fora < n<7,

for 8 < n <2047,
for 2048 < n < 10%°

a(n) =

A WN = O
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Combining Union by Rank and Path Compression

[Data Structure is essentially optimal! (for more details see CLRS)]

——— Theorem 21.14 \\

Any sequence of m MAKE-SET, UNION, FIND-SET operations, n of
which are MAKE-SET operations, can be performed in O(m-«a(n)) time.
/4

\.

[ In practice, «(n) is a small constant ]

for0 < n<2,
for n =3,

fora < n<7,

for 8 < n <2047,
for 2048 < n < 10%°

a(n) =

A WN = O
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Simulating the Effects of Union by Rank and Path Compression
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Simulating the Effects of Union by Rank and Path Compression

Experimental Setup

1. Initialise singletons 1,2, ...,300
2. Forevery 1 </ <300, pick arandom 1 < r < 300, r # i and
perform UNION(FIND(/), FIND(r))

3. Perform j € {0,100, 200, 300,600,900} many FIND(r), where
1 < r <300 is random

)
g g 5.3: Disjoint Sets TS. 12



Union by Rank without Path Compression
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Union by Rank with Path Compression
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After 100 additional FINDs
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After 200 additional FINDs
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After 300 additional FINDs
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After 600 additional FINDs
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After 900 additional FINDs
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Outline

Introduction to Graphs and Graph Searching
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Origin of Graph Theory

Source: Wikipedia

Seven Bridges at Kénigsberg 1737
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Origin of Graph Theory

éource: Wikipedia Source: Wikipedia
Seven Bridges at Kénigsberg 1737 \ Leonhard Euler (1707-1783)

Is there a tour which crosses
each bridge exactly once?
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Origin of Graph Theory

Source: Wikipedia Source: Wikipedia

Seven Bridges at Kénigsberg 1737 \ Leonhard Euler (1707-1783)

@ Is there a tour which crosses

each bridge exactly once?
©
©
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Origin of Graph Theory

Source: Wikipedia Source: Wikipedia

Seven Bridges at Kénigsberg 1737 \ Leonhard Euler (1707-1783)

o Is there a tour which crosses

. each bridge exactly once?
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Origin of Graph Theory

Source: Wikipedia Source: Wikipedia
Seven Bridges at Kénigsberg 1737 \ Leonhard Euler (1707-1783)

o Is there a tour which crosses
' each bridge ?(actly once?
e Q Is there a tour which visits every

island exactly once?
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Origin of Graph Theory

Source: Wikipedia Source: Wikipedia
Seven Bridges at Kénigsberg 1737 \ Leonhard Euler (1707-1783)

o Is there a tour which crosses

' each bridge ?(actly once?

e Q Is there a tour which visits every
island exactly once?

. ~» 1B course: Complexity Theory

gy g 5.3: Disjoint Sets TS. 21




What is a Graph?

Directed Graph
A graph G = (V, E) consists of:
= V: the set of vertices
= E: the set of edges (arcs)
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What is a Graph?

Directed Graph
A graph G = (V, E) consists of:

= V: the set of vertices .'
= E: the set of edges (arcs) e o

V={1,234}
E= {(172)’ (173)7 (273)7 (37 1)7 (374)}
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What is a Graph?

~—— Directed Graph
A graph G = (V, E) consists of:
= V: the set of vertices

= E: the set of edges (arcs)

\ J

~—— Undirected Graph —m0—ououo
A graph G = (V, E) consists of:

= V: the set of vertices

= E: the set of (undirected) edges

Ve

V={1,234}
E= {(172)’ (173)7 (273)7 (37 1)7 (374)}

0'9
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What is a Graph?

~—— Directed Graph
A graph G = (V, E) consists of:
= V: the set of vertices

= E: the set of edges (arcs)

\ J

~—— Undirected Graph —m0—ououo
A graph G = (V, E) consists of:

= V: the set of vertices

= E: the set of (undirected) edges

Ve

V={1,234}
E= {(172)’ (173)7 (273)7 (37 1)7 (374)}

Ve

V= {1,234}
E= {{172}7{173}7 {273}7 {374}}
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What is a Graph?

~—— Directed Graph N
A graph G = (V, E) consists of:
= V: the set of vertices

= E: the set of edges (arcs)

\ J

~—— Undirected Graph —m0—ououo
A graph G = (V, E) consists of:

= V: the set of vertices

= E: the set of (undirected) edges

\. J

~——— Paths and Connectivity —————o

= A sequence of edges between
two vertices forms a path

Ve

V={1234}
E= {(172)’ (173)7 (273)7 (37 1)7 (374)}

Ve

V={1,2,3,4}
E= {{172}7{173}7 {273}7 {374}}
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What is a Graph?

~—— Directed Graph N
A graph G = (V, E) consists of:
= V: the set of vertices

= E: the set of edges (arcs)

\ J

~—— Undirected Graph —m0—ououo
A graph G = (V, E) consists of:

= V: the set of vertices

= E: the set of (undirected) edges

\. J

~——— Paths and Connectivity —————o

= A sequence of edges between
two vertices forms a path

Path p = (1,2,3,4)

07

V={1234}
E= {(172)’ (173)7 (273)7 (37 1)7 (374)}

Ve

V={1,2,3,4}
E= {{172}7{173}7 {273}7 {374}}
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What is a Graph?

~—— Directed Graph N
A graph G = (V, E) consists of:
= V: the set of vertices

= E: the set of edges (arcs)

\ J

~—— Undirected Graph —m0—ououo
A graph G = (V, E) consists of:

= V: the set of vertices

= E: the set of (undirected) edges

\. J

~——— Paths and Connectivity —————o

= A sequence of edges between
two vertices forms a path

Path p = (1,2,3, 1), which is a cycle

Ve

V={1234}
E= {(172)’ (173)7 (273)7 (37 1)7 (374)}

Ve

V={1,2,3,4}
E= {{172}7{173}7 {273}7 {374}}
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What is a Graph?

~—— Directed Graph

= V: the set of vertices
= E: the set of edges (arcs)

\ J

~—— Undirected Graph —m0—ououo
A graph G = (V, E) consists of:

= V: the set of vertices

= E: the set of (undirected) edges

\. J

~——— Paths and Connectivity —————o

= A sequence of edges between
two vertices forms a path

A graph G = (V, E) consists of: LG is not a DAG

\. J

07

V={1234}
E= {(172)’ (173)7 (273)7 (37 1)7 (374)}

Ve

V=1{1,234}
E = {{172}7{173}7 {273}7 {374}}
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What is a Graph?

~—— Directed Graph

= V: the set of vertices
= E: the set of edges (arcs)

\ J

~—— Undirected Graph —m0—ououo
A graph G = (V, E) consists of:

= V: the set of vertices

= E: the set of (undirected) edges

\. J

~——— Paths and Connectivity —————o

= A sequence of edges between
two vertices forms a path

= If each pair of vertices has a
path linking them, then G is
connected

A graph G = (V, E) consists of: LG is not a DAG

\. J

07

V={1234}
E= {(172)’ (173)7 (273)7 (37 1)7 (374)}

Ve

V=1{1,234}
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What is a Graph?

~—— Directed Graph
A graph G = (V, E) consists of: LG is not a DAG

= V: the set of vertices
G is not ( strongly e o
L connected

v7{1,2,3,4}

= E: the set of edges (arcs) (

\

~——— Undirected Graph

= V: the set of vertices

= E: the set of (undirected) edges o'e

\.

~——— Paths and Connectivity —| G is connected e o
= A sequence of edges between

two vertices forms a path V={1234}

= If each pair of vertices has a E={{1,2},{1,3},{2,3},{3,4}}
path linking them, then G is
connected

\.

5
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What is a Graph?

~—— Directed Graph
A graph G = (V, E) consists of: LG is not a DAG

= V: the set of vertices
G is not ( strongly e o
L connected

= E: the set of edges (arcs) (

\

~——— Undirected Graph

V7{1,2,3,4}
A graph G = (V, E) consists of: | E=1{(1.2).(1.3).(2.3).(3,1),(3,4)}

: ( Later: edge-weighted graphs G = (V, E, w)

\.

~——— Paths and Connectivity —| G is connected

= A sequence of edges between

two vertices forms a path V=1{1,234}

= If each pair of vertices has a E={{1,2},{1,3},{2,3},{3,4}}
path linking them, then G is
connected

\.
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Representations of Directed and Undirected Graphs

12345
1fo1 00 1

@ (2) 20101 11
30 1010

n.e 4o 11 01
G @ 5011010

Figure 22.1 Two representations of an undirected graph. (a) An undirected graph G with 5 vertices
and 7 edges. (b) An adjacency-list representation of G. (¢) The adjacency-matrix representation
of G.
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Representations of Directed and Undirected Graphs
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(a) ©)

Figure 22.1 Two representations of an undirected graph. (a) An undirected graph G with 5 vertices
and 7 edges. (b) An adjacency-list representation of G. (¢) The adjacency-matrix representation

of G.
123456
1fo1 0100
200 0001 0
©) ©) 30000 11
410 1000 0
slo 00100
G) O») 610 0000 1
(a) ©)

Figure 22.2 Two representations of a directed graph. (a) A directed graph G with 6 vertices and 8
edges. (b) An adjacency-list representation of G. (¢) The adjacency-matrix representation of G.
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Representations of Directed and Undirected Graphs
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Figure 22.1 Two representations of an undirected graph. (a) An undirected graph G with 5 vertices
and 7 edges. (b) An adjacency-list representation of G. (¢) The adjacency-matrix representation

of G.
123456
1fo1 0100
200 0001 0
©) ©) 30000 11
410 1000 0
slo 00100
G) O») 610 0000 1
(a) ©)

Figure 22.2 Two representations of a directed graph. (a) A directed graph G with 6 vertices and 8
edges. (b) An adjacency-list representation of G. (¢) The adjacency-matrix representation of G.
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