5.3: Disjoint Sets

Frank Stajano Thomas Sauerwald

Lent 2015

Outline

Disjoint Sets

5.3: Disjoint Sets

TS.

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

g oy 5.3: Disjoint Sets TS.

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

ho=makeSet (x)

-,_a,, 5.3: Disjoint Sets TS.

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

ho=makeSet (x)

-,_a,, 5.3: Disjoint Sets TS.

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

ho=makeSet (x)

g oy 5.3: Disjoint Sets TS.

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle
* Handle FindSet (Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

g oy 5.3: Disjoint Sets TS. 3

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle
* Handle FindSet (Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

hi=findSet (y)

g oy 5.3: Disjoint Sets TS. 3

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle
* Handle FindSet (Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

hi=findSet (y)

g oy 5.3: Disjoint Sets TS. 3

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle
= Handle FindSet (Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x
* Handle Union (Handle h, Handle gq)
Precondition: h # g
Behaviour: merge two disjoint sets and return handle of new set

5.3: Disjoint Sets TS. 3

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle
= Handle FindSet (Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x
* Handle Union (Handle h, Handle gq)
Precondition: h # g
Behaviour: merge two disjoint sets and return handle of new set

hs=Union (hy, h3)

5.3: Disjoint Sets TS. 3

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle
= Handle FindSet (Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x
* Handle Union (Handle h, Handle gq)
Precondition: h # g
Behaviour: merge two disjoint sets and return handle of new set

hs=Union (hy, h3)

g g 5.3: Disjoint Sets TS. 3

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle
= Handle FindSet (Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x
* Handle Union (Handle h, Handle gq)
Precondition: h # g
Behaviour: merge two disjoint sets and return handle of new set

hs=Union (hy, h3)

5.3: Disjoint Sets TS. 3

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle
= Handle FindSet (Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x
* Handle Union (Handle h, Handle gq)
Precondition: h # g
Behaviour: merge two disjoint sets and return handle of new set

hs=Union (hy, h3)

g g 5.3: Disjoint Sets TS. 3

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle
= Handle FindSet (Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x
* Handle Union (Handle h, Handle gq)
Precondition: h # g
Behaviour: merge two disjoint sets and return handle of new set

5.3: Disjoint Sets TS. 3

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle
= Handle FindSet (Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x
* Handle Union (Handle h, Handle gq)
Precondition: h # g
Behaviour: merge two disjoint sets and return handle of new set

hs=Union (hy, ho)

5.3: Disjoint Sets TS. 3

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle
= Handle FindSet (Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x
* Handle Union (Handle h, Handle gq)
Precondition: h # g
Behaviour: merge two disjoint sets and return handle of new set

hs=Union (hy, ho)

g g 5.3: Disjoint Sets TS. 3

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle
= Handle FindSet (Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x
* Handle Union (Handle h, Handle gq)
Precondition: h # g
Behaviour: merge two disjoint sets and return handle of new set

hs=Union (hy, ho)

5.3: Disjoint Sets TS. 3

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle
= Handle FindSet (Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x
* Handle Union (Handle h, Handle gq)
Precondition: h # g
Behaviour: merge two disjoint sets and return handle of new set

hs=Union (hy, ho)

5.3: Disjoint Sets TS. 3

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

= Handle MakeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle
= Handle FindSet (Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x
* Handle Union (Handle h, Handle gq)
Precondition: h # g
Behaviour: merge two disjoint sets and return handle of new set

hs=Union (hy, ho)

5.3: Disjoint Sets TS. 3

First Attempt: List Implementation

hy
v
P+
he
v
..

ol
B 5.3: Disjoint Sets TS. 4

First Attempt: List Implementation

UNION-Operation Union(hy, hy)

PPP"
.—> y2

¥

)
g 5.3: Disjoint Sets TS. 4

First Attempt: List Implementation

UNION-Operation Union(h, h2) Need to find
last element!
hy
v
h2 /”

5.3: Disjoint Sets TS. 4

First Attempt: List Implementation

UNION-Operation Union(h, h2) Need to find
I
= Add exira pointer to the last h last element!
element in each list .
h2 /”

5.3: Disjoint Sets TS. 4

First Attempt: List Implementation

UNION-Operation

= Add exira pointer to the last
element in each list

Union(hy, hy) | Need to find

last element!
hy
v
’/
h2 /’

5.3: Disjoint Sets

TS. 4

First Attempt: List Implementation

UNION-Operation Union(hy, hy)
» Add exira pointer to the last
; . hy
element in each list J
= UNION takes constant time

.

v
..

5.3: Disjoint Sets TS.

First Attempt: List Implementation

UNION-Operation Union(hy, hp)
» Add exira pointer to the last h
. . 1
element in each list J
= UNION takes constant time

..

FIND-Operation

5.3: Disjoint Sets TS.

First Attempt: List Implementation

UNION-Operation Union(hy, hy)
» Add exira pointer to the last
; . hy
element in each list J
= UNION takes constant time

..

FIND-Operation

FindSet(z)

ha
v
R ERE

5.3: Disjoint Sets TS. 4

First Attempt: List Implementation

UNION-Operation Union(hy, hy)
» Add exira pointer to the last
; . hy
element in each list J
= UNION takes constant time
h2 /’ ’

FIND-Operation

» Add backward pointer to the list
head from everywhere FindSet(z)

ha
v
R ERE

)
g 5.3: Disjoint Sets TS. 4

First Attempt: List Implementation

UNION-Operation Union(hy, hy)
» Add exira pointer to the last
; . hy
element in each list J
= UNION takes constant time
h2 /’ ’

FIND-Operation

» Add backward pointer to the list
head from everywhere FindSet(z)

5.3: Disjoint Sets TS. 4

First Attempt: List Implementation

UNION-Operation Union(hy, hy)
» Add exira pointer to the last
; . hy
element in each list J
= UNION takes constant time
h2 /’ ’

FIND-Operation

» Add backward pointer to the list
head from everywhere FindSet(z)

= FIND takes constant time hy

5.3: Disjoint Sets TS. 4

First Attempt: List Implementation

UNION-Operation Union(hy, hy)

» Add exira pointer to the last
element in each list

hy
v

= UNION takes constant time
.

2

FIND-Operation

» Add backward pointer to the list
head from everywhere FindSet(z)

= FIND takes constant time hy

5.3: Disjoint Sets TS. 4

First Attempt: List Implementation

UNION-Operation Union(hy, hy)
» Add exira pointer to the last
; . hy
element in each list J
= UNION takes constant time
h2 /”
Vo,

FIND-Operation

Need to update all }

backward pointers!
= Add backward pointer to the list

head from everywhere FindSet(z)
= FIND takes constant time

5.3: Disjoint Sets TS. 4

First Attempt: List Implementation

UNION-Operation Union(hy, hy)
» Add exira pointer to the last
; . hy
element in each list J
= UYnioN-takes-constanttime
h2 /”
Vo7

FIND-Operation

Need to update all }

backward pointers!
= Add backward pointer to the list

head from everywhere FindSet(z)
= FIND takes constant time

5.3: Disjoint Sets TS. 4

First Attempt: List Implementation (Analysis)

d =DisjointSet()

5.3: Disjoint Sets TS.

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xp)

5>

B 5.3: Disjoint Sets TS.

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xp)

hi = d MakeSet(xq)

B

5>

ol
B 5.3: Disjoint Sets TS.

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xp)

hi = d MakeSet(xq)
ho = d.Union(h1 s ho)

B

5>

ol
B 5.3: Disjoint Sets TS.

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xp)

hi = d MakeSet(xq)
ho = d.Union(h1 s ho)

i
B 5.3: Disjoint Sets

TS.

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xp)

hi = d MakeSet(xq)
ho = d.Union(h1 s ho)

i
B 5.3: Disjoint Sets

TS.

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xp)

hi = d MakeSet(xq)
ho = d.Union(h1 s ho)

B

i
B 5.3: Disjoint Sets

TS.

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xp)

hi = d MakeSet(xq)
ho = d.Union(h1 s ho)

B

i
B 5.3: Disjoint Sets

TS.

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xp)

hi = d MakeSet(xq)
ho = d.Union(h1 s ho)
h, = d MakeSet(x»)

B

(57 5.3: Disjoint Sets

TS.

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xp)

hi = d MakeSet(xq)
ho = d.Union(h1 s ho)
h, = d MakeSet(x»)
ho = d.UI‘liOn(hg7 ho)

B

(57 5.3: Disjoint Sets

TS.

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xp)

hi = d MakeSet(xq)
ho = d.Union(h1 s ho)
h, = d MakeSet(x»)
ho = (:1.[]1['1.'1.01'1(/727 ho)

]

Xo

B 5.3: Disjoint Sets

TS.

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xp)

hi = d MakeSet(xq)
ho = d.Union(h1 s ho)
h, = d MakeSet(x»)
ho = d.UI‘liOn(hg7 ho)

(57 5.3: Disjoint Sets

TS.

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xp)

hi = d MakeSet(xq)
ho = d.Union(h1 s ho)
h, = d MakeSet(x»)
ho = d.Union(hg, ho)

i
B 5.3: Disjoint Sets

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xp)

hi = d MakeSet(xq)
ho = d.Union(h1 s ho)
h, = d MakeSet(x»)
ho = d.Union(hg, ho)

B 5.3: Disjoint Sets

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xp)

hi = d MakeSet(xq)
ho = d.Union(h1 s ho)
h, = d MakeSet(x»)
ho = d.Union(hg, ho)
hs = d MakeSet(x3)

B 5.3: Disjoint Sets

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xp)

hi = d MakeSet(xq)
ho = d.Union(h1 s ho)
h, = d MakeSet(x»)
ho = d.Union(hg, ho)
h; = d MakeSet(x3)
ho = d.Union(ha, ho)

hs
¥

gD 5.3: Disjoint Sets

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xp)

hi = d MakeSet(xq)
ho = d.Union(h1 s ho)
h, = d MakeSet(x»)
ho = d.Union(hg, ho)
h; = d MakeSet(x3)
ho = d.Union(ha, ho)

B

gD 5.3: Disjoint Sets

TS.

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xp)

hi = d MakeSet(xq)
ho = d.Union(h1 s ho)
h, = d MakeSet(x»)
ho = d.Union(hg, ho)
h; = d MakeSet(x3)
ho = d.Union(ha, ho)

B

(%]

[x]

gD 5.3: Disjoint Sets

TS.

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xp)

hi = d MakeSet(xq)
ho = d.Union(h1 s ho)
h, = d MakeSet(xz)
ho = d.Union(hg, ho)
hs = d MakeSet(x3)
ho = d.Union(hg, ho)

ol
gD 5.3: Disjoint Sets TS. 5

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xp)

hi = d MakeSet(xq)
ho = d.Union(h1 s ho)
h, = d MakeSet(x»)
ho = d.Union(hg, ho)
h; = d MakeSet(x3)
ho = d.Union(ha, ho)

gD 5.3: Disjoint Sets TS. 5

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xp)

hi = d MakeSet(xq)
ho = d.Union(h1 s ho)
h, = d MakeSet(x»)
ho = (:1.'01['1.'1.01'1(/727 ho)
hs = d MakeSet(x3)
ho = d.Union(hg, ho)

[Cost for n UNION operations: 7 , i = ©(n?)]

5.3: Disjoint Sets TS. 5

First Attempt: List Implementation (Analysis)

d =DisjointSet()
hy = d MakeSet(xp)

hi = d MakeSet(xq)
ho = d.Union(h1 s ho)
h, = d MakeSet(xz)
ho = d.Union(hg, ho)
hs = d MakeSet(x3)
ho = d.Union(hg, ho)

[better to append shorter list to longer ~~ Weighted-Union Heuristic]
¥
[Cost for n UNION operations: 7 , i = ©(n?)]

ol
gD 5.3: Disjoint Sets TS. 5

Weighted-Union Heuristic

Weighted-Union Heuristic

= Keep track of the length of each list

-,_a,, 5.3: Disjoint Sets TS.

Weighted-Union Heuristic

Weighted-Union Heuristic
= Keep track of the length of each list
= Append shorter list to the longer list (breaking ties arbitrarily)

¥

g 5.3: Disjoint Sets TS.

Weighted-Union Heuristic

Weighted-Union Heuristic

= Keep track of the length of each list

= Append shorter list to the longer list (breaking ties arbitrarily)
N

[can be done easily without significant overhead j

g 5.3: Disjoint Sets TS.

Weighted-Union Heuristic

Weighted-Union Heuristic

= Keep track of the length of each list

= Append shorter list to the longer list (breaking ties arbitrarily)
N

[can be done easily without significant overhead j

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKE-SET operations, takes O(m + n - log n) time.

5.3: Disjoint Sets TS. 6

Weighted-Union Heuristic

Weighted-Union Heuristic

= Keep track of the length of each list

= Append shorter list to the longer list (breaking ties arbitrarily)
N

[can be done easily without significant overhead)

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKE-SET operations, takes O(m + n - log n) time.
N

Amortized Analysis: Every operation has amortized cost
O(log n), but there may be operations with total cost ©(n).

B 5.3: Disjoint Sets TS. 6

Analysis of Weighted-Union Heuristic

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKE-SET operations, takes O(m + n - log n) time.

5.3: Disjoint Sets TS. 7

Analysis of Weighted-Union Heuristic

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKE-SET operations, takes O(m + n - log n) time.

Proof:

5.3: Disjoint Sets TS. 7

Analysis of Weighted-Union Heuristic

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKE-SET operations, takes O(m + n - log n) time.

Proof:
= n MAKE-SET operations = at most n — 1 UNION operations

5.3: Disjoint Sets TS. 7

Analysis of Weighted-Union Heuristic

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKE-SET operations, takes O(m + n - log n) time.

Proof:
= n MAKE-SET operations = at most n — 1 UNION operations
= Consider element x and the number of updates of the backward pointer

ol
B 5.3: Disjoint Sets TS. 7

Analysis of Weighted-Union Heuristic

ho
¥

R

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKE-SET operations, takes O(m + n - log n) time.

Proof:
= n MAKE-SET operations = at most n — 1 UNION operations
= Consider element x and the number of updates of the backward pointer

ol
B 5.3: Disjoint Sets TS. 7

Analysis of Weighted-Union Heuristic

ho hy
¥ ¥

R =

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKE-SET operations, takes O(m + n - log n) time.

Proof:
= n MAKE-SET operations = at most n — 1 UNION operations
= Consider element x and the number of updates of the backward pointer

B 5.3: Disjoint Sets TS. 7

Analysis of Weighted-Union Heuristic

ho hy
¥ ¥

L P
afaiafutuscialn

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKE-SET operations, takes O(m + n - log n) time.

Proof:
= n MAKE-SET operations = at most n — 1 UNION operations
= Consider element x and the number of updates of the backward pointer

(57 5.3: Disjoint Sets TS. 7

Analysis of Weighted-Union Heuristic

ho hy
¥ ¥

L P
afaiaintncialn

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKE-SET operations, takes O(m + n - log n) time.

Proof:

= n MAKE-SET operations = at most n — 1 UNION operations
= Consider element x and the number of updates of the backward pointer
= After each update of x, its set increases by a factor of at least 2

B 5.3: Disjoint Sets TS.

Analysis of Weighted-Union Heuristic

ho hy
¥ ¥

L P
afaiaintncialn

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKE-SET operations, takes O(m + n - log n) time.

Proof:
= n MAKE-SET operations = at most n — 1 UNION operations
= Consider element x and the number of updates of the backward pointer
= After each update of x, its set increases by a factor of at least 2

= Backward pointer of x is updated at most log, n times

B 5.3: Disjoint Sets TS. 7

Analysis of Weighted-Union Heuristic

H0
00000

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKE-SET operations, takes O(m + n - log n) time.

Proof:
= n MAKE-SET operations = at most n — 1 UNION operations
= Consider element x and the number of updates of the backward pointer
= After each update of x, its set increases by a factor of at least 2

= Backward pointer of x is updated at most log, n times

= Other updates for UNION, MAKE-SET & FIND-SET take O(1) time per
operation

i
B 5.3: Disjoint Sets TS. 7

Analysis of Weighted-Union Heuristic

H0
00000

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKE-SET operations, takes O(m + n - log n) time.

Proof:
= n MAKE-SET operations = at most n — 1 UNION operations
= Consider element x and the number of updates of the backward pointer
= After each update of x, its set increases by a factor of at least 2

= Backward pointer of x is updated at most log, n times

= Other updates for UNION, MAKE-SET & FIND-SET take O(1) time per
operation O

i
B 5.3: Disjoint Sets TS. 7

Analysis of Weighted-Union Heuristic

H0
00000

Theorem 21.1

Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKE-SET operations, takes O(m + n - log n) time.
N

Proof: (Can we improve on this further?]

= n MAKE-SET operations = at most n — 1 UNION operations
= Consider element x and the number of updates of the backward pointer
= After each update of x, its set increases by a factor of at least 2

= Backward pointer of x is updated at most log, n times

= Other updates for UNION, MAKE-SET & FIND-SET take O(1) time per
operation O

i
B 5.3: Disjoint Sets TS. 7

How to Improve?

|<-ho

Doubly-Linked List
« MAKE-SET: O(1)
« FIND-SET: O(n)
= UNION: O(1)

ol
B 5.3: Disjoint Sets TS.

How to Improve?

Doubly-Linked List Weighted-Union Heuristic
= MAKE-SET: O(1) = MAKE-SET: O(1)
= FIND-SET: O(n) = FIND-SET: O(1)
= UNION: O(1) = UNION: O(log n) (amortized)

i
gD 5.3: Disjoint Sets TS. 8

How to Improve?

hy

| HORCRORO

Basic ldea: Update Backward
Pointers only during FIND

Doubly-Linked List Weighted-Union Heuristic
= MAKE-SET: O(1) = MAKE-SET: O(1)
= FIND-SET: O(n) = FIND-SET: O(1)
= UNION: O(1) = UNION: O(log n) (amortized)

ol
gD 5.3: Disjoint Sets TS. 8

Disjoint Sets via Forests

Forest Structure
= Set is represented by a rooted tree with root being the representative
= Every node has pointer .p to its parent (for root x, x.p = x)

g g 5.3: Disjoint Sets TS. 9

Disjoint Sets via Forests

{b,c,e, h}

Forest Structure
= Set is represented by a rooted tree with root being the representative
= Every node has pointer .p to its parent (for root x, x.p = x)

g g 5.3: Disjoint Sets TS. 9

Disjoint Sets via Forests

{b,c,e, h}

Forest Structure
= Set is represented by a rooted tree with root being the representative
= Every node has pointer .p to its parent (for root x, x.p = x)

= UNION: Merge the two trees

5.3: Disjoint Sets TS. 9

Disjoint Sets via Forests

{b,c.e h} {d.f,g}

e

Forest Structure
= Set is represented by a rooted tree with root being the representative
= Every node has pointer .p to its parent (for root x, x.p = x)

= UNION: Merge the two trees

5.3: Disjoint Sets TS. 9

Disjoint Sets via Forests

{b7 C7 ea h} {da f7g} {b7 C7 d7 e7 f7g7 h}

N O
ONROIENO () (@
(v) » © ©

Forest Structure

= Set is represented by a rooted tree with root being the representative
= Every node has pointer .p to its parent (for root x, x.p = x)
= UNION: Merge the two trees

5.3: Disjoint Sets TS. 9

Disjoint Sets via Forests

{b,c,e, h} {d,f,g}

o
ofcllNG
® ®

Forest Structure

{b,c,d,e,f,g,h}

()
()
OO,
@ ©

= UNION: Merge the two trees
=

= Set is represented by a rooted tree with root being the representative
= Every node has pointer .p to its parent (for root x, x.p = x)

[Append tree of smaller height ~~ Union by Rank j

5.3: Disjoint Sets

TS.

Disjoint Sets via Forests

{b7 C7 e7 h} {d7 f:g} {b7 C7 d’ e7 f7g7 h}

é rank =2 és rank =2 6 rank =3
@& © @ OO
O, () @ © ©

Forest Structure

= Set is represented by a rooted tree with root being the representative
= Every node has pointer .p to its parent (for root x, x.p = x)
= UNION: Merge the two trees

=

[Append tree of smaller height ~~ Union by Rank j

gD 5.3: Disjoint Sets TS. 9

Disjoint Sets via Forests

{b, c, e, h} {d,f, g} {b,c,d,e,f,g,h}
(Rank may be just an upper bound on the height!]

0 v 0
° rank =2 rank =2 0 rank =3

Forest Structure
= Set is represented by a rooted tree with root being the representative
= Every node has pointer .p to its parent (for root x, x.p = x)
= UNION: Merge the two trees

=

\
[Append tree of smaller height ~~ Union by Rank)

s
ol 5.3: Disjoint Sets TS. 9

Disjoint Sets via Forests

{b, c, e, h} {d,f, g} {b,c,d,e,f,g,h}
(Rank may be just an upper bound on the height!]

0 4 0
° rank =2 rank =2 3 0 rank =3

AN

Forest Structure
= Set is represented by a rooted tree with root being the representative
= Every node has pointer .p to its parent (for root x, x.p = x)
= UNION: Merge the two trees

=

\
[Append tree of smaller height ~~ Union by Rank)

s
ol 5.3: Disjoint Sets TS. 9

Path Compression during FIND-SET

FindSet (x)
if x#xp
Xx.p =FindSet (x.p)
return x.p

w N B O

B 5.3: Disjoint Sets

TS.

10

Path Compression during FIND-SET

[b]

: FindSet (x)
if x#xp

X.p =FindSet (x.p)
return x.p

0

1:
2:
3:

5.3: Disjoint Sets

TS.

10

Path Compression during FIND-SET

[b]

: FindSet (x)
if x#xp

X.p =FindSet (x.p)
return x.p

0

1:
2:
3:

5.3: Disjoint Sets

TS.

10

Path Compression during FIND-SET

: FindSet (x)
if x#xp

X.p =FindSet (x.p)
return x.p

0

1:
2:
3:

5.3: Disjoint Sets

TS.

10

Path Compression during FIND-SET

: FindSet (x)
if x#xp

X.p =FindSet (x.p)
return x.p

0

1:
2:
3:

5.3: Disjoint Sets

TS.

10

Path Compression during FIND-SET

: FindSet (x)
if x#xp

X.p =FindSet (x.p)
return x.p

0

1:
2:
3:

5.3: Disjoint Sets

TS.

Path Compression during FIND-SET

: FindSet (x)
if x#xp

X.p =FindSet (x.p)
return x.p

0

1:
2:
3:

5.3: Disjoint Sets

TS.

Path Compression during FIND-SET

E‘

: FindSet (x)
if x#xp

X.p =FindSet (x.p)
return x.p

0

1:
2:
3:

5.3: Disjoint Sets

TS.

Path Compression during FIND-SET

E

: FindSet (x)
if x#xp

Xx.p =FindSet (x.p)
return x.p

0

1:
2:
3:

5.3: Disjoint Sets

TS.

Path Compression during FIND-SET

E

: FindSet (x)
if x#xp

Xx.p =FindSet (x.p)
return x.p

0

1:
2:
3:

5.3: Disjoint Sets

TS.

Path Compression during FIND-SET

: FindSet (x)
if x#xp

Xx.p =FindSet (x.p)
return x.p

0

1:
2:
3:

5.3: Disjoint Sets

TS.

Path Compression during FIND-SET

: FindSet (x)
if x#xp

Xx.p =FindSet (x.p)
return x.p

0

1:
2:
3:

5.3: Disjoint Sets

TS.

Path Compression during FIND-SET

w N B O

FindSet (x)
if x#xp
Xx.p =FindSet (x.p)
return x.p

5.3: Disjoint Sets

TS.

Path Compression during FIND-SET

w N B O

FindSet (x)
if x#xp
Xx.p =FindSet (x.p)
return x.p

5.3: Disjoint Sets

TS.

Path Compression during FIND-SET

[b]

FindSet (x)
if x#xp
Xx.p =FindSet (x.p)
return x.p

w N B O

B 5.3: Disjoint Sets

TS.

Path Compression during FIND-SET

[b]

FindSet (x)
if x#xp
Xx.p =FindSet (x.p)
return x.p

w N B O

YR
SE

5.3: Disjoint Sets

TS.

Path Compression during FIND-SET

[b]

FindSet (x)
if x#xp
Xx.p =FindSet (x.p)
return x.p

w N B O

¥
¥

gD 5.3: Disjoint Sets

TS.

Path Compression during FIND-SET

o]
0.
e @
& @

FindSet (x)
if x#xp
Xx.p =FindSet (x.p)
return x.p

w N B O

¥
¥

Sl 5.3: Disjoint Sets TS. 10

Path Compression during FIND-SET

FindSet (x)
if x#xp
Xx.p =FindSet (x.p)
return x.p

w N B O

ol 5.3: Disjoint Sets TS. 10

Path Compression during FIND-SET

Maintaining the exact height would be
costly, hence rank is only an upper bound!

FindSet (x)
if x#xp
X.p =FindSet (x.p)
return x.p

w N B O

gD 5.3: Disjoint Sets TS.

Combining Union by Rank and Path Compression

Theorem 21.14

Any sequence of m MAKE-SET, UNION, FIND-SET operations, n of
which are MAKE-SET operations, can be performed in O(m-«a(n)) time.

s
ol 5.3: Disjoint Sets TS. 11

Combining Union by Rank and Path Compression

——— Theorem 21.14

Any sequence of m MAKE-SET, UNION, FIND-SET operations, n of
which are MAKE-SET operations, can be performed in O(m-«a(n)) time.

\.

for0 < n<2,
for n =3,

fora < n<7,

for 8 < n <2047,
for 2048 < n < 10%°

a(n) =

A WN = O

5.3: Disjoint Sets TS. 11

Combining Union by Rank and Path Compression

——— Theorem 21.14

Any sequence of m MAKE-SET, UNION, FIND-SET operations, n of
which are MAKE-SET operations, can be performed in O(m-«a(n)) time.

\.

for0 < n<2,
forn=3,

fora < n<7,

for 8 < n <2047,
for 2048 < n < 10%°

a(n) =

A WN = O

More than the number of atoms in the universe!

5.3: Disjoint Sets TS. 11

Combining Union by Rank and Path Compression

——— Theorem 21.14

Any sequence of m MAKE-SET, UNION, FIND-SET operations, n of
which are MAKE-SET operations, can be performed in O(m-«a(n)) time.

\.

0 for0<n<2,
1 forn=3,
a(n=4q 2 for4a<n<7,
3 for8<n<2047,
4 for2048 < n< 10%
” = =

log*(n), the iterated logarithm, satifies
a(n) < log*(n), but still log*(108) = 5.

5.3: Disjoint Sets TS.

Combining Union by Rank and Path Compression

——— Theorem 21.14

Any sequence of m MAKE-SET, UNION, FIND-SET operations, n of
which are MAKE-SET operations, can be performed in O(m-«a(n)) time.
/4

\.

[In practice, «(n) is a small constant]

for0 < n<2,
for n =3,

fora < n<7,

for 8 < n <2047,
for 2048 < n < 10%°

a(n) =

A WN = O

5.3: Disjoint Sets TS. 11

Combining Union by Rank and Path Compression

[Data Structure is essentially optimal! (for more details see CLRS)]

——— Theorem 21.14 \\

Any sequence of m MAKE-SET, UNION, FIND-SET operations, n of
which are MAKE-SET operations, can be performed in O(m-«a(n)) time.
/4

\.

[In practice, «(n) is a small constant]

for0 < n<2,
for n =3,

fora < n<7,

for 8 < n <2047,
for 2048 < n < 10%°

a(n) =

A WN = O

ol 5.3: Disjoint Sets TS. 11

Simulating the Effects of Union by Rank and Path Compression

5.3: Disjoint Sets TS. 12

Simulating the Effects of Union by Rank and Path Compression

Experimental Setup

1. Initialise singletons 1,2, ...,300
2. Forevery 1 </ <300, pick arandom 1 < r < 300, r # i and
perform UNION(FIND(/), FIND(r))

3. Perform j € {0,100, 200, 300,600,900} many FIND(r), where
1 < r <300 is random

)
g g 5.3: Disjoint Sets TS. 12

Union by Rank without Path Compression

=

=7\

AN

PRAD
N 7

\

4

A

1

<y

)

S

XN
1S

=

) Z} N
/‘Mﬁ’
A

X
YT AT
LB PO |

M
(e
SN

INNVAY

N
W

5.3: Disjoint Sets

Union by Rank with Path Compression

252212222231222205 5,
12,
22

233 21y,
1
22

3‘22

1
S2,
24
3 “ 2
25, 212
2214, 22222
3332221122221322"

il

0

5.3: Disjoint Sets TS.

After 100 additional FINDs

o #&P ,
Y
RS

ORRSN % <

(IR
i DI
SN AR N -
AR
A ‘

15

TS.

5.3: Disjoint Sets

After 200 additional FINDs

.
NOF
{ I

Vo

\S7ZZAWV. AN

SES

<X

XA

N

16

TS.

5.3: Disjoint Sets

After 300 additional FINDs

17

v = 4 "o
- LT~

TS.

5.3: Disjoint Sets

After 600 additional FINDs

2
P
1
2y,

1 4 21
1y 1
1 21
BAALEETRPTPRRRRRRRALL

0

5.3: Disjoint Sets TS.

After 900 additional FINDs

2
P
1
2q,

1 4 21
1y 1
1 PRl
BAALEETRPIPRIRRERIALL

0

5.3: Disjoint Sets TS.

Outline

Introduction to Graphs and Graph Searching

gy g 5.3: Disjoint Sets

TS.

20

Origin of Graph Theory

Source: Wikipedia

Seven Bridges at Kénigsberg 1737

"m 5.3: Disjoint Sets TS.

21

Origin of Graph Theory

éource: Wikipedia Source: Wikipedia
Seven Bridges at Kénigsberg 1737 \ Leonhard Euler (1707-1783)

Is there a tour which crosses
each bridge exactly once?

g 5.3: Disjoint Sets TS. 21

Origin of Graph Theory

éource: Wikipedia Source: Wikipedia
Seven Bridges at Kénigsberg 1737 \ Leonhard Euler (1707-1783)

Is there a tour which crosses
each bridge exactly once?

g 5.3: Disjoint Sets TS. 21

Origin of Graph Theory

Source: Wikipedia Source: Wikipedia

Seven Bridges at Kénigsberg 1737 \ Leonhard Euler (1707-1783)

@ Is there a tour which crosses

each bridge exactly once?
©
©

g 5.3: Disjoint Sets TS. 21

Origin of Graph Theory

Source: Wikipedia Source: Wikipedia

Seven Bridges at Kénigsberg 1737 \ Leonhard Euler (1707-1783)

o Is there a tour which crosses

. each bridge exactly once?

g 5.3: Disjoint Sets TS. 21

Origin of Graph Theory

Source: Wikipedia Source: Wikipedia
Seven Bridges at Kénigsberg 1737 \ Leonhard Euler (1707-1783)

o Is there a tour which crosses
' each bridge ?(actly once?
e Q Is there a tour which visits every

island exactly once?

5.3: Disjoint Sets TS. 21

Origin of Graph Theory

Source: Wikipedia Source: Wikipedia
Seven Bridges at Kénigsberg 1737 \ Leonhard Euler (1707-1783)

o Is there a tour which crosses

' each bridge ?(actly once?

e Q Is there a tour which visits every
island exactly once?

. ~» 1B course: Complexity Theory

gy g 5.3: Disjoint Sets TS. 21

What is a Graph?

Directed Graph
A graph G = (V, E) consists of:
= V: the set of vertices
= E: the set of edges (arcs)

5.3: Disjoint Sets

TS.

22

What is a Graph?

Directed Graph
A graph G = (V, E) consists of:
= V: the set of vertices
= E: the set of edges (arcs)

5.3: Disjoint Sets

TS.

22

What is a Graph?

Directed Graph
A graph G = (V, E) consists of:

= V: the set of vertices .'
= E: the set of edges (arcs) e o

V={1,234}
E= {(172)’ (173)7 (273)7 (37 1)7 (374)}

5.3: Disjoint Sets TS. 22

What is a Graph?

~—— Directed Graph
A graph G = (V, E) consists of:
= V: the set of vertices

= E: the set of edges (arcs)

\ J

~—— Undirected Graph —m0—ououo
A graph G = (V, E) consists of:

= V: the set of vertices

= E: the set of (undirected) edges

Ve

V={1,234}
E= {(172)’ (173)7 (273)7 (37 1)7 (374)}

0'9

5.3: Disjoint Sets

TS. 22

What is a Graph?

~—— Directed Graph
A graph G = (V, E) consists of:
= V: the set of vertices

= E: the set of edges (arcs)

\ J

~—— Undirected Graph —m0—ououo
A graph G = (V, E) consists of:

= V: the set of vertices

= E: the set of (undirected) edges

Ve

V={1,234}
E= {(172)’ (173)7 (273)7 (37 1)7 (374)}

Ve

V= {1,234}
E= {{172}7{173}7 {273}7 {374}}

5.3: Disjoint Sets

TS. 22

What is a Graph?

~—— Directed Graph N
A graph G = (V, E) consists of:
= V: the set of vertices

= E: the set of edges (arcs)

\ J

~—— Undirected Graph —m0—ououo
A graph G = (V, E) consists of:

= V: the set of vertices

= E: the set of (undirected) edges

\. J

~——— Paths and Connectivity —————o

= A sequence of edges between
two vertices forms a path

Ve

V={1234}
E= {(172)’ (173)7 (273)7 (37 1)7 (374)}

Ve

V={1,2,3,4}
E= {{172}7{173}7 {273}7 {374}}

5l 5.3: Disjoint Sets

TS. 22

What is a Graph?

~—— Directed Graph N
A graph G = (V, E) consists of:
= V: the set of vertices

= E: the set of edges (arcs)

\ J

~—— Undirected Graph —m0—ououo
A graph G = (V, E) consists of:

= V: the set of vertices

= E: the set of (undirected) edges

\. J

~——— Paths and Connectivity —————o

= A sequence of edges between
two vertices forms a path

Path p = (1,2,3,4)

07

V={1234}
E= {(172)’ (173)7 (273)7 (37 1)7 (374)}

Ve

V={1,2,3,4}
E= {{172}7{173}7 {273}7 {374}}

5.3: Disjoint Sets

TS. 22

What is a Graph?

~—— Directed Graph N
A graph G = (V, E) consists of:
= V: the set of vertices

= E: the set of edges (arcs)

\ J

~—— Undirected Graph —m0—ououo
A graph G = (V, E) consists of:

= V: the set of vertices

= E: the set of (undirected) edges

\. J

~——— Paths and Connectivity —————o

= A sequence of edges between
two vertices forms a path

Path p = (1,2,3, 1), which is a cycle

Ve

V={1234}
E= {(172)’ (173)7 (273)7 (37 1)7 (374)}

Ve

V={1,2,3,4}
E= {{172}7{173}7 {273}7 {374}}

5.3: Disjoint Sets

TS. 22

What is a Graph?

~—— Directed Graph N
A graph G = (V, E) consists of:
= V: the set of vertices

= E: the set of edges (arcs)

\ J

~—— Undirected Graph —m0—ououo
A graph G = (V, E) consists of:

= V: the set of vertices

= E: the set of (undirected) edges

\. J

~——— Paths and Connectivity —————o

= A sequence of edges between
two vertices forms a path

Ve

V={1234}
E= {(172)’ (173)7 (273)7 (37 1)7 (374)}

Ve

V={1,2,3,4}
E= {{172}7{173}7 {273}7 {374}}

5l 5.3: Disjoint Sets

TS. 22

What is a Graph?

~—— Directed Graph

= V: the set of vertices
= E: the set of edges (arcs)

\ J

~—— Undirected Graph —m0—ououo
A graph G = (V, E) consists of:

= V: the set of vertices

= E: the set of (undirected) edges

\. J

~——— Paths and Connectivity —————o

= A sequence of edges between
two vertices forms a path

A graph G = (V, E) consists of: LG is not a DAG

\. J

07

V={1234}
E= {(172)’ (173)7 (273)7 (37 1)7 (374)}

Ve

V=1{1,234}
E = {{172}7{173}7 {273}7 {374}}

i
B 5.3: Disjoint Sets

TS. 22

What is a Graph?

~—— Directed Graph

= V: the set of vertices
= E: the set of edges (arcs)

\ J

~—— Undirected Graph —m0—ououo
A graph G = (V, E) consists of:

= V: the set of vertices

= E: the set of (undirected) edges

\. J

~——— Paths and Connectivity —————o

= A sequence of edges between
two vertices forms a path

= If each pair of vertices has a
path linking them, then G is
connected

A graph G = (V, E) consists of: LG is not a DAG

\. J

07

V={1234}
E= {(172)’ (173)7 (273)7 (37 1)7 (374)}

Ve

V=1{1,234}
E = {{172}7{173}7 {273}7 {374}}

i
B 5.3: Disjoint Sets

TS. 22

What is a Graph?

~—— Directed Graph
A graph G = (V, E) consists of: LG is not a DAG

= V: the set of vertices
G is not (strongly e o
L connected

v7{1,2,3,4}

= E: the set of edges (arcs) (

\

~——— Undirected Graph

= V: the set of vertices

= E: the set of (undirected) edges o'e

\.

~——— Paths and Connectivity —| G is connected e o
= A sequence of edges between

two vertices forms a path V={1234}

= If each pair of vertices has a E={{1,2},{1,3},{2,3},{3,4}}
path linking them, then G is
connected

\.

5
ol 5.3: Disjoint Sets TS. 22

A graph G = (V, E) consists of: E={(1,2),(1,3),(2,3),(3,1),(3,4)}

What is a Graph?

~—— Directed Graph
A graph G = (V, E) consists of: LG is not a DAG

= V: the set of vertices
G is not (strongly e o
L connected

= E: the set of edges (arcs) (

\

~——— Undirected Graph

V7{1,2,3,4}
A graph G = (V, E) consists of: | E=1{(1.2).(1.3).(2.3).(3,1),(3,4)}

: (Later: edge-weighted graphs G = (V, E, w)

\.

~——— Paths and Connectivity —| G is connected

= A sequence of edges between

two vertices forms a path V=1{1,234}

= If each pair of vertices has a E={{1,2},{1,3},{2,3},{3,4}}
path linking them, then G is
connected

\.

ol 5.3: Disjoint Sets TS. 22

Representations of Directed and Undirected Graphs

12345
1fo1 00 1

@ (2) 20101 11
30 1010

n.e 4o 11 01
G @ 5011010

Figure 22.1 Two representations of an undirected graph. (a) An undirected graph G with 5 vertices
and 7 edges. (b) An adjacency-list representation of G. (¢) The adjacency-matrix representation
of G.

Sl
) 5.3: Disjoint Sets TS.

23

Representations of Directed and Undirected Graphs

[N}
w

(S S
- o o — o~
© - o ~ 0o
- o = = of&
o - o = —|lu

(a) ©)

Figure 22.1 Two representations of an undirected graph. (a) An undirected graph G with 5 vertices
and 7 edges. (b) An adjacency-list representation of G. (¢) The adjacency-matrix representation

of G.
123456
1fo1 0100
200 0001 0
©) ©) 30000 11
410 1000 0
slo 00100
G) O») 610 0000 1
(a) ©)

Figure 22.2 Two representations of a directed graph. (a) A directed graph G with 6 vertices and 8
edges. (b) An adjacency-list representation of G. (¢) The adjacency-matrix representation of G.

5.3: Disjoint Sets TS.

23

Representations of Directed and Undirected Graphs

[N}
w

(S S
- o o — o~
© - o ~ 0o
- o = = of&
o - o = —|lu

(a) ©)

Figure 22.1 Two representations of an undirected graph. (a) An undirected graph G with 5 vertices
and 7 edges. (b) An adjacency-list representation of G. (¢) The adjacency-matrix representation

of G.
123456
1fo1 0100
200 0001 0
©) ©) 30000 11
410 1000 0
slo 00100
G) O») 610 0000 1
(a) ©)

Figure 22.2 Two representations of a directed graph. (a) A directed graph G with 6 vertices and 8
edges. (b) An adjacency-list representation of G. (¢) The adjacency-matrix representation of G.

5.3: Disjoint Sets TS.

23

	Disjoint Sets
	Introduction to Graphs and Graph Searching

