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Flow Network

Flow Network

= Abstraction for material (one commaodity!) flowing through the edges
G = (V, E) directed graph without parallel edges

= distinguished nodes: source s and sink ¢
= every edge e has a capacity c(e)
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Flow Network
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A flow is a function f : V x V — R that satisfies:
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Flow Network

Flow

A flow is a function f : V x V — R that satisfies:
= Foreveryu,v e V, f(u,v) < c(u,v)
= Foreveryve V\ {s,t}, 32, ,yee f(U, V) = > nyee f(V, 1)
= Forevery u,v e V, f(u,v) = —f(v,u)

The value of a flow is defined as |f| =3 .\, f(s, V)

How to find a Maximum Flow?

® ® ® ©

6.6: Maximum flow TS.



A First Attempt

Greedy Algorithm

= Start with f(u, v) = 0 everywhere
= Repeat as long as possible:

= Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c(u, v)
= Augment flow along p
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A First Attempt

Greedy Algorithm
= Start with f(u, v) = 0 everywhere

= Repeat as long as possible:
= Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c(u, v)
= Augment flow along p
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A First Attempt

Greedy Algorithm
= Start with f(u, v) = 0 everywhere

= Repeat as long as possible:
= Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c(u, v)
= Augment flow along p
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Residual Graph

——— Original Edge
Edgee=(u,v) € E
= flow f(u, v) and capacity c(u, v)
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Residual Graph

——— Original Edge
Edgee=(u,v) € E
= flow f(u, v) and capacity c(u, v)

Residual Capacity

c(u,v)—f(u,v) if(u,v)eE,
cr(u,v) =< f(v,u) if (v,u) € E,
0 otherwise.

Graph G:
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Residual Graph

——— Original Edge

Edgee=(u,v) € E
= flow f(u, v) and capacity c(u, v)

Residual Capacity

c(u,v) —f(u,v) if(uv)eE,
cr(u,v) =< f(v,u) if (v,u) € E,
0 otherwise.

Residual Graph

" G{ = (V, Ef, Cf), Ef = {(U, V)Z Cf(U, V) > 0}

Graph G:
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Residual Graph with anti-parallel edges

——— Original Edge
Edge e = (u,v) € E (& possibly & = (v, u) € E)
= flow f(u, v) and capacity c(u, v)

Graph G:
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Residual Graph with anti-parallel edges

——— Original Edge
Edge e = (u,v) € E (& possibly & = (v, u) € E)
= flow f(u, v) and capacity c(u, v)

Residual Capacity
For every pair (u,v) € V x V,

ci(u,v) =c(u,v) — f(u,v).

Graph G:
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Residual Graph with anti-parallel edges

——— Original Edge

) Graph G:
Edge e = (u,v) € E (& possibly & = (v, u) € E)

= flow f(u, v) and capacity c(u, v) 6/17
Residual Capacity 2{4

For every pair (u,v) € V x V, :
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Residual Graph with anti-parallel edges

——— Original Edge Grach G
ra :
Edge e = (u,v) € E (& possibly & = (v, u) € E) P
= flow f(u, v) and capacity c(u, v) 6/17
Residual Capacity 2{4
For every pair (u,v) € V x V, :
Cf(uv V) = C(U, V) - f(u7 V)' H
v
Residual Gr:
Residual Graph 13
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Example of a Residual Graph (Handout)

1/14

Flow network G

Residual Graph Gy
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The Ford-Fulkerson Method (“Enhanced Greedy”)

: def fordFulkerson (G)
initialize flow to 0 on all edges
while an augmenting path in G; can be found:
push as much extra flow as possible through it

wWNRrO
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The Ford-Fulkerson Method (“Enhanced Greedy”)

: def fordFulkerson (G)
initialize flow to 0 on all edges
while an augmenting path in G; can be found:
push as much extra flow as possible through it

N

wWNRrO

If f' is a flow in Gf and f a flow
in G, then f + ' is a flow in G
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The Ford-Fulkerson Method (“Enhanced Greedy”)

0: def fordFulkerson (G)

1: initialize flow to 0 on all edges

2 while an augmenting path in G; can be found:

3 push as much extra flow as possible through it

Questions:
= How to find an augmenting path?
= Does this method terminate?
= If it terminates, how good is the solution?
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The Ford-Fulkerson Method (“Enhanced Greedy”)

: def fordFulkerson (G)
initialize flow to 0 on all edges
while an augmenting path in G; can be found:
push as much extra flow as possible through it

wWNRrO

( Using BFS or DFS, we can find an
, L augmenting path in O(V + E) time.
Questions:

V/
= How to find an augmenting path?
= Does this method terminate?
= If it terminates, how good is the solution?

gD 6.6: Maximum flow TS. 8
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From Flows to Cuts

Cut

= Acut (S, T)is apartition of Vinto Sand T = V' \ Ssuchthatse S
andte T.

Graph G= (V,E,¢):
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From Flows to Cuts

Cut

= Acut (S, T)is apartition of Vinto Sand T = V' \ Ssuchthatse S
andte T.

= The capacity of a cut (S, T) is the sum of capacities of the edges
from Sto T:

«(§T)= > cuv)= >  cuv)
ueS,veT (u,v)€EE(S,T)

= A mininum cut of a network is a cut whose capacity is minimum over
all cuts of the network.

Graph G= (V,E,¢): |fl =16
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From Flows to Cuts

Flow Value Lemma (Lemma 26.4)

Let f be a flow with source s and sink t, and let (S, T) be any cut of G.
Then the value of the flow is equal to the net flow across the cut, i.e.,

If] = Z f(u,v) — Z f(v, u).

(u,v)EE(S,T) (v,u)€E(T,S)

Graph G= (V,E,¢): |fl =16

6.6: Maximum flow TS. 1
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