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History of the Maximum Flow Problem [Harris, Ross (1955)]

Fig. 5— Soviet and
satellite rail
network

MoSCOW

—— Infernational boundary

~ Regional boundarios of the USSR (they are included a5 o motter of ganeral information)
ting divisins: Thote locatad n Russis are baleved to by cccurately lcotas. Some Ruseln divilons (23,4 and 13) ere
egions and ore o
eligence reports are snevilable. Traln capacitios In R
in Polons are for 666 net Tans (or the squivalant. Train capaci
except in East Germany. In East Germany, train capacities are tho
interdivisional casacities.

o raios or ther aquivtent, Train copaciies
re for 400 net fons (or the equivalent)
e numbers shown in boxes are total

6.6: Maximum flow TS.




Multiple Sources and Multiple Sinks (Figure 26.1)

(a)

Figure 26.3 Converting a multiple-source, multiple-sink maximum-flow problem into a problem
with a single source and a single sink. (a) A flow network with five sources S = {51, 52.53.54.55}
and three sinks 7" = {t1,12,#3}. (b) An equivalent single-source, single-sink flow network. We add
a supersource s and an edge with infinite capacity from s to each of the multiple sources. We also
add a supersink 7 and an edge with infinite capacity from each of the multiple sinks to 7.
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Residual Graph

——— Original Edge

Edgee=(u,v) € E
= flow f(u, v) and capacity c(u, v)

Residual Capacity

c(u,v) —f(u,v) if(uv)eE,
cr(u,v) =< f(v,u) if (v,u) € E,
0 otherwise.

Residual Graph

" G{ = (V, Ef, Cf), Ef = {(U, V)Z Cf(U, V) > 0}

Graph G:
@ 6/17 @

¥

Residual G¢:
11

@ ©®
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Residual Graph with anti-parallel edges

——— Original Edge Grach G
ra :
Edge e = (u,v) € E (& possibly & = (v, u) € E) P
= flow f(u, v) and capacity c(u, v) 6/17
Residual Capacity 2{4
For every pair (u,v) € V x V, :
Cf(uv V) = C(U, V) - f(u7 V)' H
v
Residual Gr:
Residual Graph 13
= G = (V, E;, Cf), Ei = {(U7 V): Cf(U7 V) > 0} 000

2
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Example of a Residual Graph (Handout)

1/14

Flow network G

Residual Graph G¢
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Example of a Residual Graph (Handout)

0/14

Flow network G

By successively eliminating cycles we can sim-
plify and reduce the “transportation” cost of a flow.
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Example of a Residual Graph (Handout)

0/14

Flow network G

Comment on anti-parallel edges:
= You should know about this possibility

= In the following proofs we will disallow anti-parallel edges
(for convenience)

i
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The Ford-Fulkerson Method (“Enhanced Greedy”)

: def fordFulkerson (G)
initialize flow to 0 on all edges
while an augmenting path in G; can be found:
push 377much extra flow as possible through it

WNRrO

Augmenting path: Path
from source to sink in Gy

Questions:
= How to find an augmenting path? v
= Does this method terminate?
= If it terminates, how good is the solution?
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Max-Flow Min-Cut Theorem
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From Flows to Cuts

Cut

= Acut (S, T)is apartition of Vinto Sand T = V' \ Ssuchthatse S
andte T.

Graph G= (V,E,¢):

5
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From Flows to Cuts

Cut

= Acut (S, T)is apartition of Vinto Sand T = V' \ Ssuchthatse S
andte T.

= The capacity of a cut (S, T) is the sum of capacities of the edges
from Sto T:

«(§T)= > cuv)= >  cuv)

ueS,veT (u,v)€E(S,T)

Graph G= (V,E,¢):

&)
c({s,3},{2,4,5,t}) =
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From Flows to Cuts

Cut

= Acut (S, T)is apartition of Vinto Sand T = V' \ Ssuchthatse S
andte T.

= The capacity of a cut (S, T) is the sum of capacities of the edges
from Sto T:

«(§T)= > cuv)= >  cuv)

ueS,veT (u,v)€E(S,T)

Graph G= (V,E,¢):

c({s,3},{2,4,5,1}) =10+ 9 = 19
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From Flows to Cuts

Cut

= Acut (S, T)is apartition of Vinto Sand T = V' \ Ssuchthatse S
andte T.

= The capacity of a cut (S, T) is the sum of capacities of the edges
from Sto T:

«(§T)= > cuv)= >  cuv)
ueS,veT (u,v)€EE(S,T)

= A mininum cut of a network is a cut whose capacity is minimum over
all cuts of the network.

Graph G= (V,E,¢): |fl =16
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From Flows to Cuts

Flow Value Lemma (Lemma 26.4)

Let f be a flow with source s and sink t, and let (S, T) be any cut of G.
Then the value of the flow is equal to the net flow across the cut, i.e.,

If] = Z f(u,v) — Z f(v, u).

(u,v)EE(S,T) (v,u)€E(T,S)

Graph G= (V,E,¢): |fl =16
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From Flows to Cuts

fl=" > fluv)— > f(v,u).

(u,v)€EE(S,T) (v,u)€E(T,S)
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From Flows to Cuts
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From Flows to Cuts

fl=" > fluv)— > f(v,u).

(u,v)€EE(S,T) (v,u)€E(T,S)
fl=> f(sw)
weV
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From Flows to Cuts

fl=" > fluv)— > f(v,u).

(u,v)€EE(S,T) (v,u)€E(T,S)

|f| = Zf(s,w):Z( Z f(u, w) — Z f(W,u)>

weV ueS ™ (u,w)eE (w,u)eE

Graph G = (V,E,¢): |fl =16

*
L4

[ v
2/2 "8 6/6

L4
r y
.
6/10 e 8/9, : 10/10 C

8+8-6+6=16

'é
(oF
0

5
R 6.6: Maximum flow TS. 1



From Flows to Cuts
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Weak Duality betwen Flows and Cuts

Weak Duality (Corollary 26.5)

Let f be any flow and (S, T) be any cut.

=
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Weak Duality betwen Flows and Cuts

Weak Duality (Corollary 26.5)

Let f be any flow and (S, T) be any cut. Then the value of f is bounded
from above by the capacity of the cut (S, T), i.e.,

[fl <c(S,T).

i
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Max-Flow Min-Cut Theorem

Theorem
The value of the max-flow is equal to the capacity of the min-cut, that is

max |f| = min c¢(S, T).
f S, TCV

S
%E 6.6: Maximum flow TS. 13



Key Lemma

Key Lemma (Theorem 26.6)

The following three conditions are all equivalent for any flow f:
1. fis a maximum flow

2. There is no augmenting path in Gy

3. There exists a cut (S, T) such that ¢(S, T) = |f]

- 5 6.6: Maximum flow TS. 14
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Key Lemma (Theorem 26.6)
The following three conditions are all equivalent for any flow f:

1. fis a maximum flow
2. There is no augmenting path in Gy
3. There exists a cut (S, T) such that ¢(S, T) = |f]
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Key Lemma

Key Lemma (Theorem 26.6)
The following three conditions are all equivalent for any flow f:

1. fis a maximum flow
2. There is no augmenting path in Gy
3. There exists a cut (S, T) such that ¢(S, T) = |f]

Proof 3 = 1:
= Suppose that (S, T) is a cut with c(S, T) = |f|
= By Corollary 26.5, for any flow f, |f| < ¢(S, T) = |f|.
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Key Lemma

Key Lemma (Theorem 26.6)
The following three conditions are all equivalent for any flow f:

1. fis a maximum flow
2. There is no augmenting path in Gy
3. There exists a cut (S, T) such that ¢(S, T) = |f]

Proof 3 = 1:
= Suppose that (S, T) is a cut with c(S, T) = |f|
= By Corollary 26.5, for any flow f, |f| < ¢(S, T) = |f|.
= Hence f is a maximum flow.
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Key Lemma

Key Lemma (Theorem 26.6)

The following three conditions are all equivalent for any flow f:
1. fis a maximum flow

2. There is no augmenting path in Gy

3. There exists a cut (S, T) such that ¢(S, T) = |f]

Proof 1 = 2:
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Key Lemma

Key Lemma (Theorem 26.6)
The following three conditions are all equivalent for any flow f:

1. fis a maximum flow
2. There is no augmenting path in Gy
3. There exists a cut (S, T) such that ¢(S, T) = |f]

Proof 1 = 2:

= For the sake of contradicion, suppose there is an augmenting path with
respect to f.

(3) 5
6/10 2/ 8/9 2/ 10/10
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Key Lemma (Theorem 26.6)
The following three conditions are all equivalent for any flow f:
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2. There is no augmenting path in Gy
3. There exists a cut (S, T) such that ¢(S, T) = |f]

Proof 1 = 2:
= For the sake of contradicion, suppose there is an augmenting path with
respect to f.
= Then we can improve f by increasing the flow along this path.
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Key Lemma

Key Lemma (Theorem 26.6)
The following three conditions are all equivalent for any flow f:
1. fis a maximum flow
2. There is no augmenting path in Gy
3. There exists a cut (S, T) such that ¢(S, T) = |f]

Proof 1 = 2:

= For the sake of contradicion, suppose there is an augmenting path with
respect to f.
= Then we can improve f by increasing the flow along this path.

= Hence f cannot be a maximum flow.
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Key Lemma

Key Lemma (Theorem 26.6)

The following three conditions are all equivalent for any flow f:
1. fis a maximum flow

2. There is no augmenting path in Gy

3. There exists a cut (S, T) such that ¢(S, T) = |f]

Proof 2 = 3:

i
- £ 6.6: Maximum flow TS. 14



Key Lemma

Key Lemma (Theorem 26.6)

The following three conditions are all equivalent for any flow f:
1. fis a maximum flow

2. There is no augmenting path in Gy

3. There exists a cut (S, T) such that ¢(S, T) = |f]

Proof 2 = 3:

= Let f be a flow with no augmenting paths.

- 5 6.6: Maximum flow TS. 14



Key Lemma

Key Lemma (Theorem 26.6)

The following three conditions are all equivalent for any flow f:
1. fis a maximum flow

2. There is no augmenting path in Gy

3. There exists a cut (S, T) such that ¢(S, T) = |f]

Proof 2 = 3:

= Let f be a flow with no augmenting paths.
= Let S be the nodes reachable from sin G¢, T := V\ S
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Key Lemma

Key Lemma (Theorem 26.6)

The following three conditions are all equivalent for any flow f:
1. fis a maximum flow

2. There is no augmenting path in Gy

3. There exists a cut (S, T) such that ¢(S, T) = |f]

Proof 2 = 3:

= Let f be a flow with no augmenting paths.
= Let S be the nodes reachable fromsin G, T:=V\S=s5€ S5,t¢ S.
* (u,v) € E(S,T)
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Key Lemma (Theorem 26.6)

The following three conditions are all equivalent for any flow f:
1. fis a maximum flow

2. There is no augmenting path in Gy

3. There exists a cut (S, T) such that ¢(S, T) = |f]

Proof 2 = 3:

= Let f be a flow with no augmenting paths.
= Let S be the nodes reachable fromsin G, T:=V\S=s5€ S5,t¢ S.
" (u,v) € E(S, T) = f(u,v) = c(u, v).
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Key Lemma (Theorem 26.6)

The following three conditions are all equivalent for any flow f:
1. fis a maximum flow

2. There is no augmenting path in Gy

3. There exists a cut (S, T) such that ¢(S, T) = |f]

Proof 2 = 3:

= Let f be a flow with no augmenting paths.
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Key Lemma (Theorem 26.6)

The following three conditions are all equivalent for any flow f:
1. fis a maximum flow

2. There is no augmenting path in Gy

3. There exists a cut (S, T) such that ¢(S, T) = |f]

Proof 2 = 3:

= Let f be a flow with no augmenting paths.
= Let S be the nodes reachable fromsin G, T:=V\S=s5€ S5,t¢ S.
" (u,v) € E(S, T) = f(u,v) = c(u, v).
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Proof of the Max-Flow Min-Cut Theorem

Key Lemma
The following conditions are equivalent for any flow f:
1. fis a maximum flow.
2. There is no augmenting path in G.
3. There exists a cut (S, T) such thatc(S, T) = |f|.
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Key Lemma
The following conditions are equivalent for any flow f:
1. fis a maximum flow.
2. There is no augmenting path in G.
3. There exists a cut (S, T) such thatc(S, T) = |f|.

Max-Flow Min-Cut Theorem ~- algorithm for computing min-cut:

= Run Ford-Fulkerson until it terminates with a flow frax

= Define S as the set of nodes reachable from sin Gr,and T = V' \ S
= (S, T)is a minimal (s, t)-cut whose capacity is equal t0 |fmax|
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Analysis of Ford-Fulkerson

def FordFulkerson (G)
initialize flow to 0 on all edges
while an augmenting path in G; can be found:
push as much extra flow as possible through it
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initialize flow to 0 on all edges
while an augmenting path in G; can be found:
push as much extra flow as possible through it

wWwNERFrO

Lemma

If all capacities c(u, v) are integral, then the flow at every iteration of
Ford-Fulkerson is integral.
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Analysis of Ford-Fulkerson

def FordFulkerson (G)
initialize flow to 0 on all edges
while an augmenting path in G; can be found:
push as much extra flow as possible through it

wWwNERFrO

Lemma

If all capacities c(u, v) are integral, then the flow at every iteration of
Ford-Fulkerson is integral.

Ve

J

Flow before iteration integral
& capacities in Gy are integral
= Flow after iteration integral
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Analysis of Ford-Fulkerson

0: def FordFulkerson (G)

1: initialize flow to 0 on all edges

2 while an augmenting path in G; can be found:

3 push as much extra flow as possible through it

Lemma

If all capacities c(u, v) are integral, then the flow at every iteration of
Ford-Fulkerson is integral.

Theorem
For integral capacities c(u, v), Ford-Fulkerson terminates after V - C
iterations, where C := maxy,, c(u, v) and returns the maximum flow.
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Analysis of Ford-Fulkerson

0: def FordFulkerson (G)

1 initialize flow to 0 on all edges

2: while an augmenting path in G; can be found:

3 push as much extra flow as possible through it

Lemma

If all capacities c(u, v) are integral, then the flow at every iteration of
Ford-Fulkerson is integral.

Theorem
For integral capacities c(u, v), Ford-Fulkerson terminates after V - C

iterations, where C := maxy,, c(u, v) and returns the maximum flow.
/)

L

at the time of termination, no augmenting path
=- Ford-Fulkerson returns maxflow (Key Lemma)
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Slow Convergence of Ford-Fulkerson (Figure 26.7)

( Number of iterations is at least C := max,,, c(u, v)! )

7

[ For irrational capacities, Ford-Fulkerson 1

may even fail to terminate!
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Summary and Outlook

~——— Ford-Fulkerson Method
= works only for integral (rational) capacities
= Runtime: O(E - |f*]) = O(E - V- C)

~——— Capacity-Scaling Algorithm
= |dea: Find an augmenting path with high capacity
= Consider subgraph of Gy consisting of edges (u, v) with ¢s(u, v) > A
= scaling parameter A, which is initially 2% ¢ and 1 after termination
= Runtime: O(E? - log C)

\

~——— Edmonds-Karp Algorithm

= |dea: Find the shortest augmenting path in Gy
= Runtime: O(E? - V)
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