Insertion of 'A’

Insertion of 'A’ - Tree empty, inserting as root

Insertion of 'A’ - Fixup of root element: paint black

l\
E/

Insertion of 'A’ - Qutcome

E\

Insertion of 'L’

Insertion of 'L’ - Finding the right position

Insertion of 'L’ - Inserting as right child of 'A’ node

Insertion of 'L" - No property violated, no fixup needed

~

Insertion of 'L’' - Qutcome

/
/

7\

Insertion of 'G’

Insertion of 'G’" - Finding the right position

Insertion of 'G’" - Finding the right position

Insertion of 'G’ - Inserting as left child of 'L’ node

/

/
NULL

/ \

Insertion of 'G’ - Property 4 violated, fixup of 'G’ needed

Fixup of 'G’ - Case 2

Case 2: the parent ('L’, highlighted) is the right child of the grandparent, the uncle is black and the node being
fixed up ('G’) is the left child of the parent. Reduce to case 3 by right-rotating (blue arrows) the parent and then
recursively fixing up the parent ('L’).

Fixup of 'L" - Case 3

/ \

Case 3: the parent ('G’) is the right child of the grandparent ('A’), the uncle is black and the node being fixed up
('L’, highlighted) is the right child of the parent. Color the parent black, the grandparent red and left-rotate around
the grandparent ('A’).

Fixup of 'L" - Case 3

/ \

Case 3: the parent ('G’) is the right child of the grandparent ('A’), the uncle is black and the node being fixed up
('L’, highlighted) is the right child of the parent. Color the parent black, the grandparent red and left-rotate (blue
arrows) around the grandparent ('A’).

Fixup of 'G’ - Done

/ |) \

/ \

Insertion of 'G’ - Qutcome

/ |) \

/ \

Insertion of 'O’

Insertion of 'O’ - Finding the right position

Insertion of 'O’ - Finding the right position

Insertion of 'O’ - Inserting as right child of 'L’ node

Insertion of 'O’ - Property 4 violated, fixup of 'O’ needed

Fixup of 'O’ - Case 1

Case 1: the parent ('L’, highlighted) is the right child of the grandparent ('G’, also highlighted) and the uncle is red.
Paint the parent and the uncle black and paint the grandparent red, then recursively fixup the grandparent ('G’).

Insertion of 'O’ - Fixup of root element: paint black

Insertion of 'O’ - Qutcome

|

Insertion of 'R’

Insertion of 'R’ - Finding the right position

Insertion of 'R’ - Finding the right position

Insertion of 'R’ - Finding the right position

Insertion of 'R’ - Inserting as right child of 'O’ node

Insertion of 'R' - Property 4 violated, fixup of 'R’ needed

/o
/

|
| |
iy

Fixup of 'R’ - Case 3

Case 3: the parent ('O’) is the right child of the grandparent ('L’), the uncle is black and the node being fixed up
('R’, highlighted) is the right child of the parent. Color the parent black, the grandparent red and left-rotate
around the grandparent ('L’).

Fixup of 'R’ - Case 3

Case 3: the parent ('O’) is the right child of the grandparent ('L’), the uncle is black and the node being fixed up
('R’, highlighted) is the right child of the parent. Color the parent black, the grandparent red and left-rotate (blue
arrows) around the grandparent ('L").

Fixup of 'R’ - Done

/0
|
[voc I L
/ \

/ \

Insertion of 'R’ - Qutcome

/0
|
[voc I L
/ \

/ \

Insertion of 'I’

Insertion of 'I" - Finding the right position

7
|
[oc L

/ \
/ \

Insertion of 'I" - Finding the right position

Insertion of 'I" - Finding the right position

Insertion of 'I" - Inserting as left child of 'L’ node

Insertion of 'I' - Property 4 violated, fixup of 'I' needed

Fixup of 'I' - Case 1

/

Case 1: the parent ('L’, highlighted) is the left child of the grandparent ('O’, also highlighted) and the uncle is red.
Paint the parent and the uncle black and paint the grandparent red, then recursively fixup the grandparent ('O’).

Fixup of 'l' - Done

7
/o
(o |

| |
| |

E\
E/

Insertion of 'I' - Qutcome

7
/o
(o |

| |
| |

E\
E/

Insertion of 'T’

Insertion of 'T" - Finding the right position

Insertion of 'T" - Finding the right position

Insertion of 'T" - Finding the right position

Insertion of "T' - Inserting as right child of 'R’ node

Insertion of 'T' - No property violated, no fixup needed

a

/o
(o oL

Insertion of 'T' - Qutcome

a

/o
(o oL

Insertion of 'H’

Insertion of 'H’ - Finding the right position

Insertion of 'H’ - Finding the right position

Insertion of 'H’ - Finding the right position

Insertion of 'H’ - Finding the right position

Insertion of 'H' - Inserting as left child of 'I' node

Insertion of 'H’ - Property 4 violated, fixup of 'H' needed

Fixup of 'H' - Case 3

I
| |

\ I\

\ I\

0L
VY

Case 3: the parent ('I') is the left child of the grandparent ('L’), the uncle is black and the node being fixed up
("H’, highlighted) is the left child of the parent. Color the parent black, the grandparent red and right-rotate
around the grandparent ('L’).

Fixup of 'H' - Case 3

/ \

0L
VY

Case 3: the parent ('I') is the left child of the grandparent ('L’), the uncle is black and the node being fixed up
("H’, highlighted) is the left child of the parent. Color the parent black, the grandparent red and right-rotate (blue
arrows) around the grandparent ('L").

Fixup of 'H' - Done

[

/ | \

\
I |
/ \
o o

Insertion of '"H' - Qutcome

a

o
(o o

/ | \

\
I |
/ \
o o

Insertion of "M’

Insertion of ‘"M’ - Finding the right position

Insertion of ‘"M’ - Finding the right position

Insertion of ‘"M’ - Finding the right position

Insertion of ‘"M’ - Finding the right position

Insertion of ‘"M’ - Inserting as right child of 'L’ node

Insertion of ‘"M’ - Property 4 violated, fixup of "M’ needed

Fixup of 'M' - Case 1

Case 1: the parent ('L’ highlighted) is the right child of the grandparent ('I’, also highlighted) and the uncle is red.
Paint the parent and the uncle black and paint the grandparent red, then recursively fixup the grandparent ('I').

Insertion of ‘"M’ - Property 4 violated, fixup of 'I' needed

Fixup of 'I' - Case 2

Case 2: the parent ('O’, highlighted) is the right child of the grandparent, the uncle is black and the node being
fixed up ('I') is the left child of the parent. Reduce to case 3 by right-rotating (blue arrows) the parent and then
recursively fixing up the parent ('O’).

Fixup of 'O’ - Case 3

/ \ /
i (o I L
Case 3: the parent ('I') is the right child of the grandparent ('G’), the uncle is black and the node being fixed up

('O’, highlighted) is the right child of the parent. Color the parent black, the grandparent red and left-rotate
around the grandparent ('G').

Fixup of 'O’ - Case 3

/ \ /
i (o I L
Case 3: the parent ('I') is the right child of the grandparent ('G’), the uncle is black and the node being fixed up

("O’, highlighted) is the right child of the parent. Color the parent black, the grandparent red and left-rotate (blue
arrows) around the grandparent ('G’).

Fixup of "M’ - Done

Insertion of ‘"M’ - Qutcome

Insertion of 'S’

Insertion of 'S’ - Finding the right position

Insertion of 'S’ - Finding the right position

Insertion of 'S’ - Finding the right position

Insertion of 'S’ - Finding the right position

Insertion of 'S’ - Inserting as left child of "T'" node

Insertion of 'S’ - Property 4 violated, fixup of 'S’ needed

Fixup of 'S’ - Case 2

/
/

| I\
| /
m o o o

Case 2: the parent ('T’, highlighted) is the right child of the grandparent, the uncle is black and the node being
fixed up ('S’) is the left child of the parent. Reduce to case 3 by right-rotating (blue arrows) the parent and then

recursively fixing up the parent ('T").

Fixup of 'T" - Case 3

, 7 /I]
| / |
mufy

| /

/I /

e mm
7\

Case 3: the parent ('S’) is the right child of the grandparent ('R’), the uncle is black and the node being fixed up
('T’, highlighted) is the right child of the parent. Color the parent black, the grandparent red and left-rotate

around the grandparent ('R’).

Fixup of 'T" - Case 3

, 7 /I]
| / |
mufy

/ \

Case 3: the parent ('S’) is the right child of the grandparent ('R’), the uncle is black and the node being fixed up
("T’, highlighted) is the right child of the parent. Color the parent black, the grandparent red and left-rotate (blue
arrows) around the grandparent ('R’).

Fixup of 'S’ - Done

; I |

/N
(oo o B oc L

Insertion of 'S’ - Qutcome

Insertion of 'C’

Insertion of 'C’ - Finding the right position

Insertion of 'C’ - Finding the right position

Insertion of 'C’ - Finding the right position

Insertion of 'C’ - Inserting as right child of 'A’ node

Insertion of 'C’" - No property violated, no fixup needed

Insertion of 'C' - Qutcome

e

/N
/
i I (o I I o IO o

Insertion of 'A’

Insertion of 'A’ - Finding the right position

Insertion of 'A’ - Finding the right position

Insertion of 'A’ - Finding the right position

Insertion of 'A’ - Key found, overwriting

Insertion of "M’

Insertion of ‘"M’ - Finding the right position

Insertion of ‘"M’ - Finding the right position

Insertion of ‘"M’ - Finding the right position

Insertion of ‘"M’ - Finding the right position

Insertion of 'M’" - Key found, overwriting

Insertion of 'B’

Insertion of ‘B’ - Finding the right position

Insertion of ‘B’ - Finding the right position

Insertion of ‘B’ - Finding the right position

Insertion of ‘B’ - Finding the right position

! \ I
NULL UL L UL

/ \ /

| /o |

Insertion of 'B’ - Inserting as left child of 'C' node

Insertion of 'B’ - Property 4 violated, fixup of ‘B’ needed

Fixup of 'B" - Case 2

I\
! \ I}

i

/| \
/' / I\
(roc Qo U
/N
[N L]

Case 2: the parent ('C’, highlighted) is the right child of the grandparent, the uncle is black and the node being
fixed up ('B’) is the left child of the parent. Reduce to case 3 by right-rotating (blue arrows) the parent and then
recursively fixing up the parent ('C’).

Fixup of 'C' - Case 3

\
! \

i

1

/ /0 I\ PN
/ 7 /A |\\
L D WD D o

/ \

Case 3: the parent ('B’) is the right child of the grandparent ('A’), the uncle is black and the node being fixed up
('C’, highlighted) is the right child of the parent. Color the parent black, the grandparent red and left-rotate
around the grandparent ('A’).

Fixup of 'C' - Case 3

i

! \ |

/

| [PN
/ 7 /A |\\
iy D WD D o

/ \

Case 3: the parent ('B’) is the right child of the grandparent ('A’), the uncle is black and the node being fixed up
('C’, highlighted) is the right child of the parent. Color the parent black, the grandparent red and left-rotate (blue
arrows) around the grandparent ('A’).

Fixup of ‘B’ - Done

!

!

/ \ / \
| I I I |
/ \ / \
[0 [[oY [Of [[P [OEY oo

Insertion of 'B’ - Qutcome

\ i

/ | | \ /) \

\

/N |
/ \
O O O O O [

/

Insertion of 'R’

Insertion of 'R’ - Finding the right position

/
/ \ /
;! [N I I\

(o I oL oL L oL L

Insertion of 'R’ - Finding the right position

/ \ / \
; | I \ ; I |

/ \

Insertion of 'R’ - Finding the right position

I\

/ \ / \
; | I \ ; I |

/ \

Insertion of 'R’ - Finding the right position

Insertion of 'R" - Key found, overwriting

Insertion of 'I’

Insertion of 'I" - Finding the right position

S0 [N | I
(oo o B oc L L

Insertion of 'I" - Key found, overwriting

;! [N | roN
(o I oL oL L

Insertion of 'D’

Insertion of 'D’ - Finding the right position

S0 [N | I
(oo o B oc L L

Insertion of 'D’ - Finding the right position

/ \ / \
; | I \ ; I |

/ \

Insertion of 'D’ - Finding the right position

!
! \ !

\

/
S N 0 1A AN

Insertion of 'D’ - Finding the right position

Insertion of 'D’ - Inserting as right child of 'C" node

Insertion of 'D’ - Property 4 violated, fixup of 'D’ needed

Fixup of 'D’' - Case 1

Case 1: the parent ('C’, highlighted) is the right child of the grandparent ('B’, also highlighted) and the uncle is red.
Paint the parent and the uncle black and paint the grandparent red, then recursively fixup the grandparent ('B’).

Insertion of 'D" - Property 4 violated, fixup of 'B’ needed

Fixup of 'B’ - Case 1

Case 1: the parent ('G’, highlighted) is the left child of the grandparent ('I', also highlighted) and the uncle is red.
Paint the parent and the uncle black and paint the grandparent red, then recursively fixup the grandparent ('I').

\
\

\m
lm

Insertion of 'D’ - Fixup of root element: paint black

Insertion of 'D’' - Qutcome

!

\ /

o\ i

I
|
M

Insertion of 'G’

Insertion of 'G’" - Finding the right position

\
\

Insertion of 'G’" - Finding the right position

[roc o I

Insertion of 'G’ - Key found, overwriting

[roc o I

Insertion of 'E’

Insertion of 'E’ - Finding the right position

\
\

Insertion of 'E’ - Finding the right position

[roc o I

Insertion of 'E’ - Finding the right position

Insertion of 'E’ - Finding the right position

/0

I
7
m o O oD oD o

Insertion of 'E’ - Finding the right position

/ : l \
| / \ | \

/ \

Insertion of 'E’ - Inserting as right child of 'D’ node

NULL

Insertion of 'E’ - Property 4 violated, fixup of 'E’ needed

Fixup of 'E" - Case 3

!

/ \ i

|

\

| / |

[uc | o

Case 3: the parent ('D’) is the right child of the grandparent ('C’), the uncle is black and the node being fixed up
('E’, highlighted) is the right child of the parent. Color the parent black, the grandparent red and left-rotate
around the grandparent ('C").

Fixup of 'E" - Case 3

!
(o] o

/ \

Case 3: the parent ('D’) is the right child of the grandparent ('C’), the uncle is black and the node being fixed up
(’E’, highlighted) is the right child of the parent. Color the parent black, the grandparent red and left-rotate (blue
arrows) around the grandparent ('C’).

Fixup of 'E' - Done

/
o]

\

! !

/B |

7
S

o O O O

/ \

/ \

Insertion of 'E’ - Qutcome

I\
I\ |

/

/
iy

Insertion of 'G’

Insertion of 'G’" - Finding the right position

Insertion of 'G’" - Finding the right position

/ \
/ \
| / |
iy e O O O O

/| ,\

Insertion of 'G’ - Key found, overwriting

[
o

[ucc UL

I
| / |

/ | | \

/ \

o O O O O D

Insertion of 'S’

Insertion of 'S’ - Finding the right position

Insertion of 'S’ - Finding the right position

/ \
/ \
| / |
iy e O O O O

/| ,\

Insertion of 'S’ - Finding the right position

/ \ 1

/0 \
/I | / |\
o L] e O O O O

/ | | \

/ \

Insertion of 'S’ - Key found, overwriting

I\
/ \ 1

!

/
y I
|

/

[ucc UL

!
| !
[N NuLL JRNULL
/ \
| I
/ \

Insertion of '’

Insertion of '5" - Finding the right position

i

! \ i

[
o
o]

/ \
/ \

Insertion of '5" - Finding the right position

/ \
/ \
| / |
iy e O O O O

Insertion of '5" - Finding the right position

/

|

[
|

Insertion of '5" - Finding the right position

Insertion of '5" - Inserting as left child of 'A’ node

Insertion of '5' - No property violated, no fixup needed

/ \

[LN
o o O Em o

Insertion of '5’ - Qutcome

!

\ /

/B |

/

| I

/ \
| | ! |
(y oL L]
/ \

/
\ | I
/ N\

Insertion of '0’

Insertion of '0" - Finding the right position

i

! \ i

|
|

|
o

/

\
! o |
e o o o o o

Insertion of '0" - Finding the right position

/ | \

/
! /| \
e o O O o oo

Insertion of '0" - Finding the right position

!

/ | \

/
! /| \
e o O O o oo

Insertion of '0" - Finding the right position

|
| I | \
o]

i

/ / \
| | I
/ \
oy [NULL

Insertion of '0" - Finding the right position

I I\ PN
| oA RN
e o o o

Insertion of ‘0" - Inserting as left child of '5’ node

NUL

Insertion of '0" - Property 4 violated, fixup of '0’ needed

Fixup of '0" - Case 3

[I\ PN
/ \
| / |
y oL (R

|
| I

i O o

Case 3: the parent ('5') is the left child of the grandparent ('A’), the uncle is black and the node being fixed up
('0", highlighted) is the left child of the parent. Color the parent black, the grandparent red and right-rotate around
the grandparent ('A’).

Fixup of '0" - Case 3

Case 3: the parent ('5') is the left child of the grandparent ('A’), the uncle is black and the node being fixed up
('0’, highlighted) is the left child of the parent. Color the parent black, the grandparent red and right-rotate (blue
arrows) around the grandparent ('A’).

Fixup of '0" - Done

I\
! \ !
NULL [NULL [NULL

/

/o P N
o \ N
M O M oL

’ \ \

;0 /A I (BN

Insertion of '’ - Qutcome

I\
! \ !
NULL [NULL [NULL

/

/o IR \
|

/ \ \

|
|
Y o O o o o

’ \ \

;0 /A I (BN

Insertion of '9’

Insertion of '9" - Finding the right position

A N (NN
[o M OO Qo oo

Insertion of '9" - Finding the right position

/
s /N

AN
[\

Insertion of '9" - Finding the right position

!
\

/ /
(ot IO

/
s /N

AN
[\

Insertion of '9" - Finding the right position

!

\ !

! \

NULL

1

NULL

/I \
\
7 [|
\
e o O o o g
/

\ N\
s I |

/N
AN
O O OE M (O O o G

Insertion of '9" - Finding the right position

!

\ !

I\ i

/

| I PN
7 I I \\
o i
’ \ \
S0 P AN [N
UL JNULL] ooy O [o o

Insertion of '9" - Inserting as left child of 'A’ node

\
\

NULL

Insertion of '9" - Property 4 violated, fixup of '9" needed

Fixup of '9" - Case 1

| \
/ | \
/ \

|
/B |

I\

\

\

/

Case 1: the parent ("A’, highlighted) is the right child of the grandparent ('5’, also highlighted) and the uncle is red.
Paint the parent and the uncle black and paint the grandparent red, then recursively fixup the grandparent ('5').

Insertion of '9" - Property 4 violated, fixup of '5' needed

Fixup of '5" - Case 3

| I\
|

!

F g

Case 3: the parent ('B’) is the left child of the grandparent ('G’), the uncle is black and the node being fixed up
(’5’, highlighted) is the left child of the parent. Color the parent black, the grandparent red and right-rotate around
the grandparent ('G’).

Fixup of '5" - Case 3

| I\
|

!

F g

Case 3: the parent ('B’) is the left child of the grandparent ('G’), the uncle is black and the node being fixed up
(’5’, highlighted) is the left child of the parent. Color the parent black, the grandparent red and right-rotate (blue
arrows) around the grandparent ('G').

Fixup of '9" - Done

\
\

/‘ ,
i o

/

|

I

Insertion of '9" - Qutcome

\

/

/
| | I
/
NULL NULL

-

NULL.

Finding the key 'A’

Finding the key 'A’ - inspecting element I

N N
|

, | \

| 7 ;N

/
/ \
noLL I v JNOLL

Finding the key 'A’ - inspecting element 'B’

PN
4 \
/ | | / \ \
NULL [0] L oL

/ \
| , | I

/
\
NULL NULL [NULL NULL I NULL

Finding the key 'A’ - inspecting element '5’

PN
/ \
/ | | / \ \
NULL [0] L oL

/ \
| , | I

/
\
NULL NULL [NULL NULL I NULL

Finding the key 'A’ - inspecting element 'A’

|

o I [

O O O (O G G O oo
/ \

[e RN

e

Finding the key 'A’ - found

I
o !

\
I
Ucc VoL R UL RN

/) \

/l /l \
e

Finding the key 'Z’

Finding the key 'Z’ - inspecting element 'I'

N N
|

, | \

| 7 ;N

/
/ \
noLL I v JNOLL

Finding the key 'Z’ - inspecting element 'O’

PN
4 \
/ | | / \ \
NULL [0] L oL

/ \
| , | I

/
\
NULL NULL [NULL NULL I NULL

Finding the key 'Z’ - inspecting element 'S’

PN
4 \
/ | | / \ \
NULL [0] L oL

/ \
| , | I

/
\
NULL NULL [NULL NULL I NULL

Finding the key 'Z’ - inspecting element 'T’

/) \

/l /l \
e

Finding the key 'Z' - failure, key not found

Finding the predecessor of key 'M’

Finding the predecessor of key "M’ - no left subtree

\
\ \
N

/ \) \

/
! / \
O O G

The node 'M’ has no left subtree. Therefore its predecessor is its first ancestor to the left.

Finding the predecessor of key ‘"M’ - done: 'L’

N
|

\

/ \) \

/ ! / \
Wﬁ
The node 'L’ is the right child of its parent. Therefore it is the predecessor of 'M’.

