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Module L101: Machine Learning for Language Processing

Graphical Models

• Graphical models have their origin in several areas of research

– a union of graph theory and probability theory
– framework for representing, reasoning with, and learning complex problems.

• Used for for multivariate (multiple variable) probabilistic systems, encompass:

– language models (Markov Chains);
– mixture models;
– factor analysis;
– hidden Markov models;
– Kalman filters

• 4 lectures will examine forms, training and inference with these systems
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Module L101: Machine Learning for Language Processing

Basic Notation
• A graph consists of a collection of nodes and edges.

– Nodes, or vertices, are usually associated with the variables
distinction between discrete and continuous ignored in this initial discussion

– Edges connect nodes to one another.

• For undirected graphs absence of an edge between nodes indicates conditional
independence

– graph can be considered as representing dependencies in the system
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C

D

A

E

• 5 nodes, {A,B,C,D,E}, 6 edges

• Various operations on sets of these:

– C1 = {A,C}; C2 = {B,C,D}; C3 = {C,D,E}
– union: S = C1 ∪ C2 = {A,B,C,D}
– intersection: S = C1 ∩ C2 = {C}
– removal: C1 \ S = {A}
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Conditional Independence

• A fundamental concept in graphical models is the conditional independence.

– consider three variables, A, B and C. We can write

P (A,B,C) = P (A)P (B|A)P (C|B,A)

– if C is conditionally independent of A given B, then we can write

P (A,B,C) = P (A)P (B|A)P (C|B)

– the value of A does not affect the distribution of C if B is known.

• Graphically this can be described as

A B C

• Conditional independence is important when modelling highly complex systems.
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Forms of Graphical Model
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Undirected Graph Factor Graph Bayesian Network

• For the undirected graph probability calculation based on

P (A,B,C,D,E) =
1

Z
P (A,C)P (B,C,D)P (C,D,E)

where Z is the appropriate normalisation term

– this is the same as the product of the three factors in the factor graph

• This course will concentrate on Bayesian Networks
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Bayesian Networks

• A specific form of graphical model are Bayesian networks:

– directed acyclic graphs (DAGs)
– directed: all connections have arrows associated with them;
– acyclic: following the arrows around it is not possible to complete a loop

• The main problems that need to be addressed are:

– inference (from observation it’s cloudy infer probability of wet grass).
– training the models;
– determining the structure of the network (i.e. what is connected to what)

• The first two issues will be addressed in these lectures.

– the final problem of is an area of on-going research.
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Notation

• In general the variables (nodes) may be split into two groups:

– observed (shaded) variables are the ones we have knowledge about.
– unobserved (unshaded) variables are ones we don’t know about and therefore

have to infer the probability.

• The observed/unobserved variables may differ between training and testing

– e.g. for supervised training know the class of interest

• We need to find efficient algorithms that allow rapid inference to be made

– preferably a general scheme that allows inference over any Bayesian network

• First, three basic structures are described in the next slides

– detail effects of observing one of the variables on the probability
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Standard Structures

• Structure 1

A BA C B C

– C not observed: P (A,B) =
∑

C P (A,B,C) = P (A)
∑

C P (C|A)P (B|C)
then A and B are dependent on each other.

– C = T observed: P (A,B|C = T) = P (A)P (B|C = T)
A and B are then independent. The path is sometimes called blocked.

• Structure 2

C

A B A B

C

– C not observed: P (A,B) =
∑

C P (A,B,C) =
∑

C P (C)P (A|C)P (B|C)
then A and B are dependent on each other.

– C = T observed: P (A,B|C = T) = P (A|C = T)P (B|C = T)
A and B are then independent.
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Standard Structures (cont)
• Structure 3

A

C

B A

C

B

– C not observed:

P (A,B) =
∑

C

P (A,B,C) = P (A)P (B)
∑

C

P (C|A,B) = P (A)P (B)

A and B are independent of each other.
– C = T observed:

P (A,B|C = T) =
P (A,B,C = T)

P (C = T)
=

P (C = T|A,B)P (A)P (B)

P (C = T)

A and B are not independent of each other if C is observed.

• Two variables are dependent if a common child is observed - explaining away
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Simple Example

Cloudy

Wet Grass

Sprinkler Rain
C  P(S=T)
T     0.1
F     0.5

S  R   P(W=T)
T  T      0.99

F  T      0.90
F  F      0.00

T  F      0.90

C  P(R=T)
T     0.8
F     0.1

P(C=T) = 0.8 • Consider the Bayesian network to left

– whether the grass is wet, W
– whether the sprinkler has been used, S
– whether it has rained, R
– whether the it is cloudy C

• Associated with each node

– conditional probability table (CPT)

• Yields a set of conditional independence assumptions so that:

P (C,S,R,W ) = P (C)P (S|C)P (R|C)P (W |S,R)

• Possible to use CPTs for inference: Given C = T what is

P (W = T|C = T) =
∑

S={T,F}

∑

R={T,F}

P (C = T, S, R,W = T)

P (C = T)
= 0.7452
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General Inference

• A general approach for inference with BNs is message passing

– no time in this course for detailed analysis of general case
– very brief overview here

• Process involves identifying:

– Cliques C: fully connected (every node is connected to every other node)
subset of all the nodes.

– Separators S: the subset of the nodes of a clique that are connected to
nodes outside the clique.

– Neighbours N : the set of neighbours for a particular clique.

• Thus given the value of the separators for a clique it is conditionally independent
of all other variables.
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Simple Inference Example

Cloudy

Wet Grass

Sprinkler Rain

Cloudy

Wet Grass

RainSprinkler

Cloudy

RainSprinkler

Wet Grass

RainSprinkler

Bayesian Network Moral Graph Junction Tree

• Two cliques: C1 = {C,S,R}, C2 = {S,R,W}, one separator: S12 = {S,R}

– pass message between cliques: φ12(S12) =
∑

C P (C1)

– message is: φ12(S12) = P (S|C = T)P (R|C = T)

– CPT associated with message to the right

S R P ()
T T 0.08
T F 0.02
F T 0.72
F F 0.18
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Beyond Naive Bayes’ Classifier
• Consider classifiers for the class given sequence: x1, x2, x3

x1 x2

ω

x3 2x0

ω

x3x x4x1

P (ωj)
∏3

i=1P (xi|ωj) P (ωj)P (x0|ωj)
∏4

i=1P (xi|xi−1, ωj)

• Consider the simple generative classifiers above (with joint distribution)

– naive-Bayes’ classifier on left (conditional independent features given class)
– for the classifier on the right - a bigram model
∗ addition of sequence start feature x0 (note P (x0|ωj) = 1)
∗ addition of sequence end feature xd+1 (variable length sequence)

• Decision now based on a more complex model

– this is the approach used for generating (class-specific) language models
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Language Modelling

• In order to use Bayes’ decision rule need to be able to have the prior of a class

– many speech and language processing this is the sentence probability P (w)
– examples include speech recognition, machine translation

P (w) = P (w0, w1, . . . wk, wK+1) =
K+1
∏

k=1

P (wk|w0, . . . wk−2, wk−1)

– K words in sentence w1, . . . , wk

– w0 is the sentence start marker and wK+1 is sentence end marker.
– require word by word probabilities of partial strings given a history

• Can be class-specific - topic classification (select topic τ given text w)

τ̂ = argmax
τ

{P (τ |w)} = argmax
τ

{P (w|τ)P (τ)}

Cambridge University
Engineering Department
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N-Gram Language Models

• Consider a task with a vocabulary of V words (LVCSR 65K+)

– 10-word sentences yield (in theory) V 10 probabilities to compute
– not every sequence is valid but number still vast for LVCSR systems

Need to partition histories into appropriate equivalence classes

• Assume words conditionally independent given previous N − 1 words: N = 2

P (bank|I, robbed, the) ≈ P (bank|I, fished, from, the) ≈ P (bank|the)

– simple form of equivalence mappings - a bigram language model

P (w) =

K+1
∏

k=1

P (wk|w0, . . . wk−2, wk−1) ≈
K+1
∏

k=1

P (wk|wk−1)

Cambridge University
Engineering Department
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N-Gram Language Models

• The simple bigram can be extended to general N -grams

P (w) =
K+1
∏

k=1

P (wk|w0, . . . wk−2, wk−1) ≈
K+1
∏

k=1

P (wk|wk−N+1, . . . , wk−1)

• Number of model parameters scales with the size if N (consider V = 65K):

– unigram (N=1): 65K1 = 6.5× 104

– bigram (N=2): 65K2 = 4.225× 109

– trigram (N=3): 65K3 = 2.746× 1014

– 4-gram (N=4): 65K4 = 1.785× 1019

Web comprises about 20 billion pages - not enough data!

• Long-span models should be more accurate, but large numbers of parameters

A central problem is how to get robust estimates and long-spans?

Cambridge University
Engineering Department
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Modelling Shakespeare

• Jurafsky & Martin: N-gram trained on the complete works of Shakespeare

Unigram

• Every enter now severally so, let
• Will rash been and by I the me loves gentle me not slavish page, the and
hour; ill let

Bigram

• What means, sir. I confess she? then all sorts, he is trim, captain.
• The world shall- my lord!

Trigram

• Indeed the duke; and had a very good friend.
• Sweet prince, Fallstaff shall die. Harry of Monmouth’s grave.

4-gram

• It cannot be but so.
• Enter Leonato’s brother Antonio, and the rest, but seek the weary beds of
people sick.

Cambridge University
Engineering Department

MPhil in Advanced Computer Science 16



Module L101: Machine Learning for Language Processing

Assessing Language Models

• Often use entropy, H, or perplexity, PP , to assess the LM

H = −
∑

w∈V

P (w) log2(P (w)), PP = 2H ; V is the set of all possible events

– difficult when incorporating word history into LMs
– not useful to assess how well specific text is modelled with a given LM

• Quality of a LM is usually measures by the test-set perplexity

– compute the average value of the sentence log-probability (LP )

LP = lim
K→∞

−
1

K + 1

K+1
∑

k=1

log2P (wk|w0 . . . wk−2wk−1)

• In practice LP must be estimated from a (finite-sized) portion of test text

– this is a (finite-set) estimate for the entropy
– the test-set perplexity, PP , can be found as PP = 2LP

Cambridge University
Engineering Department
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Language Model Estimation

• Simplest approach to estimating N -grams is to count occurrences

P̂ (wk|wi, wj) =
f(wi, wj, wk)

∑V

k=1 f(wi, wj, wk)
=

f(wi, wj, wk)

f(wi, wj)

f(a, b, c, . . .) = number of times that the word sequence (event) “a b c . . . ”
occurs in the training data

• This is the maximum likelihood estimate

– excellent model of the training ...
– many possible events will not be seen, zero counts - zero probability
– rare events, f(wi, wj) is small, estimates unreliable

• Two solutions discussed here:

– discounting allocating some “counts” to unseen events
– backing-off for rare events reduce the size of N

Cambridge University
Engineering Department
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Maximum Likelihood Training - Example

• As an example take University telephone numbers. Let’s assume that

1. All telephone numbers are 6 digits long
2. All numbers start (equally likely) with “33”, “74” or “76”
3. All other digits are equally likely

What is the resultant perplexity rates for various N -grams?

• Experiment using 10,000 or 100 numbers to train (ML), 1000 to test.

– Perplexity numbers are given below (11 tokens including sentence end):

Language 10000 100
Model Train Test Train Test
equal 11.00 11.00 11.00 11.00

unigram 10.04 10.01 10.04 10.04
bigram 7.12 7.13 6.56 ∞

Cambridge University
Engineering Department
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Discounting

• Need to reallocate some counts

to unseen events

• Must satisfy (valid PMF)

V
∑

k=1

P̂ (wk|wi, wj) = 1
21 43 5 70 16 32 5 6 70 4

P (E) =

r

R

P (E) =

rd

r

R

Discounting

Maximum likelihood
probabilities

Pr
ob

ab
ili

ty

Count Count

Pr
ob

ab
ili

ty

Discounted
probabilities

• General form of discounting

P̂ (ωk|ωi, ωj) = d(f(ωi, ωj, ωk))
f(ωi, ωj, ωk)

f(ωi, ωj)

– need to decide form of d(f(ωi, ωj, ωk)) (and ensure sum-to-one constraint)

Cambridge University
Engineering Department
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Forms of Discounting

• Notation: r=count for an event, nr=number of N -grams with count r

• Various forms of discounting (Knesser-Ney also popular)

– Absolute discounting: subtract constant from each count

d(r) = (r − b)/r

Typically b = n1/(n1 + 2n2) - often applied to all counts

– Linear discounting:
d(r) = 1− (n1/Tc)

where Tc is the total number of events - often applied to all counts.

– Good-Turing discounting: (“mass” observed once = n1, observed r = rnr)

r∗ = (r + 1)nr+1/nr; probability estimates based on r∗

unobserved same “mass” as observed once; once same “mass” as twice etc

Cambridge University
Engineering Department
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Backing-Off

• An alternative to using discounting is to use lower N -grams for rare events

– lower-order N -gram will yield more reliable estimates
– for the example of a bigram

P̂ (wj|wi) =

{

d(f(wi, wj))
f(wi,wj)

f(wi)
f(wi, wj) > C

α(wi)P̂ (wj) otherwise

α(wi) is the back-off weight, it is chosen to ensure that
∑V

j=1 P̂ (wj|wi) = 1

• C is the N -gram cut-off point (can be set for each value of N)

– value of C also controls the size of the resulting language model

• Note that the back-off weight is computed separately for each history and uses
the N − 1’th order N -gram count.

Cambridge University
Engineering Department
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Graphical Model Lectures

• The remaining lectures to do with graphical models will cover

• Latent Variable Models and Hidden Markov Models

– mixture models, hidden Markov models, Viterbi algorithm

• Expectation Maximisation and Variational Approaches

– EM for mixture models and HMMs, extension to variational approaches

• Condition Random Fields

– discriminative sequence models, form of features, parameter estimation

Cambridge University
Engineering Department
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