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Module L101: Machine Learning for Language Processing

Graphical Models

e Graphical models have their origin in several areas of research

— a union of graph theory and probability theory
— framework for representing, reasoning with, and learning complex problems.

e Used for for multivariate (multiple variable) probabilistic systems, encompass:

— language models (Markov Chains);
— mixture models;

— factor analysis;

— hidden Markov models;

— Kalman filters

e 4 lectures will examine forms, training and inference with these systems
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Basic Notation
e A graph consists of a collection of nodes and edges.

— Nodes, or vertices, are usually associated with the variables
distinction between discrete and continuous ignored in this initial discussion
— Edges connect nodes to one another.

e For undirected graphs absence of an edge between nodes indicates conditional
independence

— graph can be considered as representing dependencies in the system

e 5 nodes, {A,B,C,D, E}, 6 edges
e e Various operations on sets of these:

- Cl — {A, C};CQ — {B,C,D}; Cg = {C,D,E}
e G — union: S=CUCy={A,B,C,D}
intersection: S =C;NCy, ={C}

Q — removal: C; \ S = {4}
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Conditional Independence
e A fundamental concept in graphical models is the conditional independence.

— consider three variables, A, B and (. We can write
P(A,B,C)=P(A)P(B|A)P(C|B,A)
— if C' is conditionally independent of A given B, then we can write
P(A,B,C) = P(A)P(B|A)P(C|B)
— the value of A does not affect the distribution of C' if B is known.
e Graphically this can be described as

W—e—

e Conditional independence is important when modelling highly complex systems.
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Forms of Graphical Model

Undirected Graph Factor Graph Bayesian Network

e For the undirected graph probability calculation based on
1
P(A,B,C,D,FE) = EP(A’ CYP(B,C,D)P(C,D, E)

where Z is the appropriate normalisation term
— this is the same as the product of the three factors in the factor graph

e This course will concentrate on Bayesian Networks
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Bayesian Networks

e A specific form of graphical model are Bayesian networks:

— directed acyclic graphs (DAGs)
— directed: all connections have arrows associated with them;
— acyclic: following the arrows around it is not possible to complete a loop

e The main problems that need to be addressed are:

— inference (from observation it’s cloudy infer probability of wet grass).
— training the models;
— determining the structure of the network (i.e. what is connected to what)

e [ he first two issues will be addressed in these lectures.

— the final problem of is an area of on-going research.
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Notation

e In general the variables (nodes) may be split into two groups:

— observed (shaded) variables are the ones we have knowledge about.
— unobserved (unshaded) variables are ones we don't know about and therefore
have to infer the probability.

e The observed/unobserved variables may differ between training and testing

— e.g. for supervised training know the class of interest

e We need to find efficient algorithms that allow rapid inference to be made

— preferably a general scheme that allows inference over any Bayesian network

e First, three basic structures are described in the next slides

— detail effects of observing one of the variables on the probability
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Standard Structures

— C not observed: P(A,B) =) ,P(A,B,C)=P(A)) ., P(C|A)P(B|C)
then A and B are dependent on each other.

— C' =T observed: P(A,B|C =T)=P(A)P(B|C =T)
A and B are then independent. The path is sometimes called blocked.

e Structure 1

e Structure 2

@f\@f\

— C not observed: P(A, B) P(A,B,C)=> ,P(C)P(A|C)P(B|C)
then A and B are dependent on each other.

— (' =T observed: P(A,B|C =T)=P(A|C =T)P(B|C =T)
A and B are then independent.
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Standard Structures (cont)

T e

e Structure 3

— (' not observed:

P(A,B)=) P(A,B,C)=P(A)P(B)Y P(C|A,B) = P(A)P(B)
C C

A and B are independent of each other.
— (' =T observed:
P(A,B,C=T) P(C=T|A,B)P(A)P(B)

PABIC=T) = =P ~ P(C=T)

A and B are not independent of each other if C' is observed.

e Two variables are dependent if a common child is observed - explaining away
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Simple Example

e Consider the Bayesian network to left
— whether the grass is wet, W
i . P(R - — whether the sprinkler has been used, S
l 8? — whether it has rained, R

— whether the it is cloudy C

S R A= e Associated with each node
TF 0:90
FTo0%0 — conditional probability table (CPT)

e Yields a set of conditional independence assumptions so that:
P(C,S,R,W) = P(C)P(S|C)P(R|C)P(W|S,R)

e Possible to use CPTs for inference: Given C =T what is

_TSRW T)
P(W =T|C = = 0.
W=1C=1)= ) > o= 0.7452
S={T,F} R={T,F}
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General Inference

e A general approach for inference with BNs is message passing

— no time in this course for detailed analysis of general case
— very brief overview here

e Process involves identifying:

— Cliques C: fully connected (every node is connected to every other node)
subset of all the nodes.

— Separators S: the subset of the nodes of a clique that are connected to
nodes outside the clique.

— Neighbours N: the set of neighbours for a particular clique.

e Thus given the value of the separators for a clique it is conditionally independent
of all other variables.
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Simple Inference Example

N

g
®
|

Bayesian Network Moral Graph Junction Tree

e Two cliques: C; = {C, S, R}, Co = {5, R, W}, one separator: S12 = {S, R}

— pass message between cliques: ¢12(S12) = Zc P(C1) g f (I)D(%
— message is: $12(Si2) = P(S|C = T)P(R|C =T) T F | 0.02

| | _ F T | 0.72
— CPT associated with message to the right F F | 018
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Beyond Naive Bayes’ Classifier
e Consider classifiers for the class given sequence: x1, xs, 3

W W
X1 Xz X3 Xo—> Xl—> Xz—> Xs—> X4
P(w)) [T;_, P(xi|w;) P(w;)P(zolw;) [Ti_y P(wilwi1, w;)

e Consider the simple generative classifiers above (with joint distribution)

— naive-Bayes' classifier on left (conditional independent features given class)
— for the classifier on the right - a bigram model
+ addition of sequence start feature zy (note P(xg|lw;) = 1)
* addition of sequence end feature x4, (variable length sequence)
e Decision now based on a more complex model

— this is the approach used for generating (class-specific) language models
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Language Modelling

e In order to use Bayes' decision rule need to be able to have the prior of a class

— many speech and language processing this is the sentence probability P(w)
— examples include speech recognition, machine translation

K+1
P(w) = P(’wo, w1, ... Wk, ’wK_|_1) = H P(fwk|w0, c. s WE—9, wk_l)
k=1

— K words in sentence wq, ..., wy
— wq Is the sentence start marker and wg .1 is sentence end marker.
— require word by word probabilities of partial strings given a history

e Can be class-specific - topic classification (select topic 7 given text w)

7 = argmax { P(7|w)} = argmax { P(w|7)P(7)}

T T
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N-Gram Language Models

e Consider a task with a vocabulary of V' words (LVCSR 65K +)

— 10-word sentences yield (in theory) V10 probabilities to compute
— not every sequence is valid but number still vast for LVCSR systems

Need to partition histories into appropriate equivalence classes
e Assume words conditionally independent given previous N — 1 words: N = 2
P(bank|I, robbed, the) ~ P(bank|I, fished, from, the) ~ P(bank|the)

— simple form of equivalence mappings - a bigram language model

K41 K41
P(w) = H P(wg|wo, ... wg_o, wi_1) ~ H P(wg|wik_1)
k=1 k=1
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N-Gram Language Models

e The simple bigram can be extended to general N-grams

K+1 K+1
P(w) = H P(wg|wg, ... wg_o, wi_1) ~ H P(wg|wg—N+1y- o, Wr—1)
k=1 k=1

e Number of model parameters scales with the size if N (consider V = 65K):

— unigram (N=1): 65K! = 6.5 x 10*

— bigram (N=2): 65K% = 4.225 x 10°
— trigram (N=3): 65K° = 2.746 x 10
— 4-gram (N=4): 65K* = 1.785 x 10'?

Web comprises about 20 billion pages - not enough datal

e Long-span models should be more accurate, but large numbers of parameters

A central problem is how to get robust estimates and long-spans?
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Modelling Shakespeare

e Jurafsky & Martin: N-gram trained on the complete works of Shakespeare

Unigram

e Every enter now severally so, let
e Will rash been and by | the me loves gentle me not slavish page, the and
hour; ill let

Bigram
e \What means, sir. | confess she? then all sorts, he is trim, captain.
e The world shall- my lord!
Trigram
e Indeed the duke; and had a very good friend.
e Sweet prince, Fallstaff shall die. Harry of Monmouth’s grave.
4-gram
e It cannot be but so.

e Enter Leonato’s brother Antonio, and the rest, but seek the weary beds of
people sick.
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Assessing Language Models

e Often use entropy, H, or perplexity, PP, to assess the LM

Z P(w)logy(P(w)), PP =2"; Vs the set of all possible events
weV

— difficult when incorporating word history into LMs
— not useful to assess how well specific text is modelled with a given LM

e Quality of a LM is usually measures by the test-set perplexity

— compute the average value of the sentence log-probability (LP)

| Kl
LP = Klgnoo K1 ,; logy P (wg|wg . .. wg_owk_1)

e In practice LP must be estimated from a (finite-sized) portion of test text

— this is a (finite-set) estimate for the entropy
— the test-set perplexity, PP, can be found as PP = 2&F
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Language Model Estimation

e Simplest approach to estimating N-grams is to count occurrences

flwg,wi,we) — fwg, wy, wi)

Z‘k/zl f(ws, wj, w) B f(wi, wy)

P(wklwi,wj) —

f(a,b,c,...) = number of times that the word sequence (event) “abc. ..
occurs in the training data
e This is the maximum likelihood estimate

— excellent model of the training ...
— many possible events will not be seen, zero counts - zero probability
— rare events, f(w;, w;) is small, estimates unreliable

e [wo solutions discussed here:

— discounting allocating some “counts’ to unseen events
— backing-off for rare events reduce the size of N
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Maximum Likelihood Training - Example

e As an example take University telephone numbers. Let's assume that

1. All telephone numbers are 6 digits long
2. All numbers start (equally likely) with “33", “74" or "“76"
3. All other digits are equally likely

What is the resultant perplexity rates for various N-grams?

e Experiment using 10,000 or 100 numbers to train (ML), 1000 to test.

— Perplexity numbers are given below (11 tokens including sentence end):

Language 10000 100
Model Train Test Train Test
equal 11.00 11.00 11.00 11.00

unigram 10.04 | 10.01 10.04 | 10.04
bigram 7.12 7.13 6.56 00
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Discounting
e Need to reallocate some counts Discounting
to unseen even
ts Maximum likelihood Discounted
> | probabilities > | probabilities
o MuSt Sat|Sfy (Va||d PM F) % P(E) — % g P(E) — r}cir
o (@]
& e &
v
P(wk‘wzjw]):1 0O 1 2 3 4 5 6 7 0O 1 2 3 4 5 6 7
k=1 Count Count
e General form of discounting
- f(wsz ',Cdk)
Plwglwi,wyi) = d(f(wi,wj,wr)) >
y ’ y f(w'“w])

— need to decide form of d( f(wi,w;,wk)) (and ensure sum-to-one constraint)
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Forms of Discounting

e Notation: r=count for an event, n,.=number of N-grams with count r
e Various forms of discounting (Knesser-Ney also popular)

— Absolute discounting: subtract constant from each count

d(r)=(r—>5)/r

Typically b = n1/(n1 + 2n3) - often applied to all counts

— Linear discounting:
d(r)=1— (ny/T)
where T, is the total number of events - often applied to all counts.

— Good-Turing discounting: (“mass” observed once = nq, observed r = rn,.)
r* = (r + 1)n,11/n,; probability estimates based on 7*

unobserved same “mass’ as observed once: once same “mass’ as twice etc
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Backing-Off

e An alternative to using discounting is to use lower N-grams for rare events

— lower-order N-gram will yield more reliable estimates
— for the example of a bigram

A(f (wiy ;) S5 fwsywy) > C

P(wlw;) = .
a(w;)P(w,) otherwise
a(w;) is the back-off weight, it is chosen to ensure that Zyzl P(w;|w;) =1

e (' is the N-gram cut-off point (can be set for each value of V)

— value of (' also controls the size of the resulting language model

e Note that the back-off weight is computed separately for each history and uses
the N — 1'th order N-gram count.
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Graphical Model Lectures

e The remaining lectures to do with graphical models will cover

e Latent Variable Models and Hidden Markov Models

— mixture models, hidden Markov models, Viterbi algorithm

e Expectation Maximisation and Variational Approaches

— EM for mixture models and HMMs, extension to variational approaches

e Condition Random Fields

— discriminative sequence models, form of features, parameter estimation
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