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Module L101: Machine Learning for Language Processing

Training Latent Variable Models

e This lecture examines the training of generative classifiers with latent variables

— discriminative classifiers will be discussed in the next lecture

e The models are to be trained using maximum likelihood estimation
— could use general approaches such as gradient descent
BUT no guarantees of convergence, need to tune learning rate
e This lecture will describe Expectation Maximisation (EM) and Variational EM

— elegantly handles the case when there are unobserved variables
— guaranteed convergence properties, no parameters to tune
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Fully and Partially Observed Training
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Fully Observed Partially Observed

e Two scenarios need to be considered when training models

— fully observed: all variables observed (including “hidden” state in HMM)
— partially observed: only the observation sequence observed

e For the fully observed case ML estimation performed by counting joint events

e For partially observed case more interesting

— the unobserved state-sequence means it is not possible to simply count
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g

e Maximum likelihood estimate of parameters: A = {p11,...,P1ds---,PM1, - - -

— training data x4, ...

Mixture Model Training

X

e Bernoulli mixture model, x; € {0,1}

P(z) =Y, P(cm)P(z|cm)

d Iy — T
P(x|c,,) = Hi:lpmi(l _pmi)l ’

, &, for the class of interest w

A = argmax H P(x |\) p = argmax Zlog (x| N))

e If the indicator variable, ¢, is known for each of the training example, a,

=1

§ Lri,

T:dr—Cm

=1

Z 1 BUT ¢, not known

T:dr—Cm
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Expectation Maximisation

e Rather than directly optimising the log-likelihood £(\) where

where QAR AE) — Q(AF: AlF]) is a lower-bound on (AR — £(ALF])

o If O(A; )\[k]) can be simply optimised wrt A, then iterate until convergence

Need to select an appropriate form for auxiliary function Q(X; Al¥)
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Jensen’s Inequality

e A useful lower-bound is Jensen’s inequality.
M M

f <Z Amxm> > A S (@m)
m=1 m=1

where f() is any concave function and

Take simple example to left:
Herec=(1—XNa+Xband 0 < A <1

f(c)

(1 —X)a+ Ab)
(1 =A)f(a) +Af(b)

Vv
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Lower-Bound for Mixture Models

e Consider the change in the log likelihood:

)\k—|—1])
LOF — 2ak)y =571 m“’
( Z 8 | B . )

Expand mixture model and multiply numerator/denominator by P(c,,|x;, Al¥)

M
P(cml|zi, A P2, cp | AR
ﬁ}\[k—'_l 1 m | 19 ¥M
( Z 0g< P (x| \F )Z ( P(con|xi, NF)

m=1

Treating P(c,|xi, A¥) as A, for Jensen's inequality (log() concave)

L) ) > P(cpmlai, A1 N
( Z Z ¢ |:I3 ’ Og P(wz’A[k])P(Cm’muA[k])

1=1 m=1
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Definition of Auxiliary Function

e Recalling the desired change

LA = L) > QAT+ AM) — 9(AF; AM) >

Comparing with the derivation from Jensen's inequality

QA+, Zzpcmm, ) log (s, e A1)

1=1 m=1

373 Plenan A¥) (1 (Plen D) + o (e, <))

=1 m=1

e So to ensure that the log-likelihood doesn’t decrease at each iteration

QA XM = Q(AIF; A
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GMM Auxiliary Function Example

e Data generated from the following GMM:
r~04xN(1,1)+0.6xN(-1,1)

Initial estimate of the model parameters is

29 ~ 0.4 x N(0.5,1) + 0.6 x N(—=1,1)

| | | | | | | | |
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Plot shows the variation of the log-likelihood difference and auxiliary function
difference as the estimate of the mean of component 1

— auxiliary function difference always a lower-bound
— peak of auxiliary function about 0.8

— peak of log-likelihood function 1.0

— gradient at current value (0.5) same for both

MPhil in Advanced Computer Science



Module L101: Machine Learning for Language Processing

Mixture Model Training Procedure

e The overall procedure for training a mixture model is:

1.
2.

initialise model parameters A% k=0
compute component posteriors given parameters Al*! and observation x;

P(cp] AFYP(z;|cpp, AR

P(lemiv)‘[k]) — =M
> =1 P(ciI AR P ez, AlH)

)

These are then used to accumulate the sufficient statistics for Q(A; Al*))

. given the posterior derived sufficient statistics find

AR — argmax {Q(A; )\[k])}
A

. unless converged, let k = k + 1 goto (2)
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Bernoulli Mixture Model Updates

e Now consider the training of the mixture of Bernoulli distribution

— substituting the form into the auxiliary function (ignoring component prior)
d

— Z ZP(cmlmi, ALk] Z [wi51og(Amy) + (1 — 245) log(1 — Apyj)]

m=1 i=1 j=1
Differentiate this with respect to A\, gives

8Q >‘ }‘ ZP Cq|213@,)\k [xzr (1 _332'7“)]

Equating this expression to zero to find new estimates AF+1]

(1— k“ ZP (cqlai, A a:zr—)\kﬂ ZP (cqli, AH (A — 24,)
1=1

: : N LS D D P(lewwk[k])%
Rearranging yields: A .~ = ST P ez A
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Update for Component Prior

e Also need to find component prior P(c,,|A*+1]) so maximise wrt A

ZZP Crn|Tiy A )10g( (cm|A))

1=1 m=1

subject to the constraints: S P(cm|A) =1, Plcm|A) >0

m=1

e Use Lagrange optimisation for this constrained optimisation problem

P(cp | AP = ZP (Com|i, AFD)
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General Form for EM
e EM can be applied to a range of tasks (and latent variables)

— consider a set of continuous latent variables, Z
— introduce posterior distribution over latent variables, Z, p(Z| X, \)

L) = F(g(Z,A),\) = / ¢(Z,\) log (p(q)((z’zii‘)) A

os ("3 ) ) o
where ¢(Z,\) = p(Z| X, A)

~ ~

e For any parameter values, e.g. A, and associated posterior distribution q(Z, \),

L) > F (q(z, ), A) — <10g <p((;((zz)\)>\)>>
’ a(Z )

— uses Jensen's inequality to yield a lower-bound
— equality only when A = A
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General Form for EM (cont)

e Using the previous two expressions at iteration k + 1, find parameters A#+1]
L) = F (g(2, A1), AH) < F (g(2, A, 1) < (A1)
where ¢(Z, A*) = p(Z| X, AlF])
— E-step: F (¢(Z, \™), AlF) = £(A¥)) find p(Z| X, AM)
— M-step: .F(q(Z )\[k]),)\[kﬂ]) > F(q(Z,A[k]),)\[k]) find parameters

e |terate until convergence:

— each iteration guaranteed not to decrease the likelihood
— finds a local maximum of the likelihood
— final solution depends on initial parameters L
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Variational EM
e Not always tractable to compute posterior distribution p(Z| X, Al¥)

— introduce a tractable approximation to this ¢(Z), using Jensen’s inequality

LIN) = F (a(2).3) = <1°g (p();(’;)w) >q<z>

e |terations for Variational EM consists of:

— E-step (approximate): ¢¥(Z) = argmax,z) {Fla(2), X))}

— M-step: AFT = argmax, {F(¢™(Z), M)}

e Though this makes the training tractable, not guaranteed to increase likelihood

ﬁ()\[k]) > F (q[k](Z),)\[’f1> < F (q[k](Z),)\[k—H]) < E()\[k-l-l])

e One standard form is the mean-field approximation where ¢(Z) =[], ¢:(2:)
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