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Module L101: Machine Learning for Language Processing

Sequence Models
e So far examined the hidden Markov model (HMM) as a sequence model

— generative model of the data sequence, P(x1,...,®7|qo,---,q711),
— use Bayes' rule to yield “class sequence” posteriors P(y|x1,...,xT)
— here y = {yo,...,yr+1} (the states are associated with classes)

e HMM parameters usually trained using maximum likelihood

— possible to also use discriminative training criteria to estimate parameters A\
— conditional maximum likelihood, maximise label posterior, P(y|x1,..., )

Py P@l”, . 2 |y, A)
Sgcan P@P@,. .. 25 q,\)

R
A= argmax log

— R sequences, labels y(1), ... y(&)

— sequence 7 is of length 7)., with observations CUY), (r)

ooy T,

What about discriminative sequence models?
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Discriminative Sequence Models
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e Simple generative model (left) and discriminative model (right)

— right BN a maximum entropy Markov model (gr11 dropped for simplicity)

P(qo, - - -

,QT|2131,...,CU

T
— H P(Qt|Qt—17 iUt)

t=1

state posterior probability given by (Z; normalisation term at time t)

P(Qt’Qt—la 21375)

1
— exp

<Z>\ fz qt, qt— 1,$t)>
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Sequence Maximum Entropy Models

e State posteriors modelled in the Maximum Entropy Markov model

— could extend to the complete sequence

D
1
P(QO)"')QT|$17° "7wT) — Eexp ZAZfZ(QCb 4T, L1, .. '7wT>
1=1

e Problem is that there are a vast number of possible features

What features to extract from the state/observation sequence?

— need to be able to handle variations in length of the sequence
— keep the number of model parameters A reasonable
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(Simple) Linear Chain Conditional Random Fields

e Extract features based on undirected graph

— Y% Y%
— conditional independence assumptions
similar to HMM (though undirected)

e Posterior model becomes

Dy Dy
P(QO)"')QT’mla"'awT> — Eexp y Sj)\;:f’i(Qth—l) _I_Z)\?fz(Qtamt)
t=1 \i=1 =1

— D, number of transition style features with parameters A"
— D, number of acoustic style features with parameters \?

e This has some relationships to HMMs for particular forms of features
(though training different)
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Linear Chain Conditional Random Fields

q[ CI+1 e Extract features based on undirected graph

— conditional independence assumptions
extended to previous state

e Posterior model becomes

T

P(QO)"')QT’mla"'awT :_eXp p S:)\ifi(Qth—l)wt)
t=1 \i=1

e More interesting than HMM-like features

— features the same as MaxEnt Markov model
— BUT normalised globally not locally
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Normalisation term
e Need to be able to compute the normalisation term efficiently

— initially consider the simple linear chain case

T /Dy D,
Z= ) exp <S: < N filges qe—1) + ZVﬁ(%@t)))
i=1

qeQr t=1 =1
A O
< rn ST
o)
DSOS I ST
gelels ———

Time ]

e Consider same topology and observation sequence x1,...,x7 as the HMM

(@]
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Total Path Cost to a State/Time

A O
J> e Red possible partial paths
H“‘:. >O >
Q / / / / e Green state of interest
© . L _
& ® o—©0 o O

Time
e Total path cost to state s; at time ¢ is «;(t)

— total path cost to state s4 at time 5 given by (compare to Viterbi)

a4<5>—LAdd< +ZA fi(s4,83), a(4 +ZA fi(sa, 54 >+ZA fi(sa, 2s)

/ / / / / LAdd(a, b) = log (exp(a) + exp(b))

l exp(LAdd(a, b)) = exp(a) + exp(b)
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Forward-Backward Algorithm
e « is related to the forward-" probability” that is used to train HMMs

— recursion for this form of model can be expressed as

a;(t) = log <Z exp (ozk(t — 1)+ zt: A fi(sy, sk)>> + i Asfi(sj, o)

k=1 1=1

— normalisation term can then be expressed as Z = exp(an(T))

e There's also a term related to the backward-" probability”

— consider observation at time ¢ given state s;, [5;(?)

N Dy D,
B;(t) = log (Z exp <5k(t 1)+ D A filskrsg) + ) Aifilsk, wt+1)>>
k=1 =1 =1

— designed so that Z = vazl exp (a;(t) 4+ Bi(t))
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Module L101: Machine Learning for Language Processing
(Aside) HMM-Training using EM
e The forward-backward algorithm used in EM training of HMMs

— enables latent variable posteriors P(Z| X, ) to be computed
— similar form to simple linear chain CRF

Dy
Z)\ffi(qt =5j,qt—1 =5;) : log(P(¢: = sj,q—1 = s;)) = log(a;;)
i=1

D,
> N fila =sj,24) ¢ log(p(zelg = s5)) = log(bj ()
1 =1

e (Log) forward «;(t) and (log) backward probabilities, 5;(%):
N

a;(t) =log(p(x1,..., %, ¢ = s;)) = log <Z ak;exp (ag(t — 1))) +log(b;(x:))

k=1

Bj(t) =log(p(xt41, .- -, xr|qr = s5)) = log (Z a;jkbk(11) exp (B (L + 1)))

k=1
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(Aside) HMM-Update Formulae

e Forward and backward probabilities can be used to derive posteriors

— at iteration [
Wj[l](t) :P(Qt: Sjlwl,...,CE‘T,)\[Z]) _exp( ( )_l_ﬁ ( ) K;(T)>

e Update formulae with Gaussian state output distribution b,(x) = N (x; pj, 3;)

1+1] _ Zt 173 ()
“J Zt 17 jl()

sli+1] Zt 1’79 ()wtmt 1] T

~”’ ST gy
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General Sequence CRFs

e The general form of CRF uses an undirected graphical model to define features
— need to be able to handle sequence data - dynamic CRF

— undirected graph repeated each time instance - set of cliques is C

e The posterior probability for this form of model is

P(QO)"')QT’wla"'va)__eXp ZZAC Ctawla"'vavt)
t=1CeC

- )\E time-independent parameters associated with clique C
— f(qct, 1, ..., xp,t) time-dependent features extracted from clique C with
time-dependent label sequence g¢;
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Example of a Sequence CRF

e Cliques associated with linear CRF

C ={C1,Cs}

—qt—l

f

1. transitions: C1 = {q¢, qr—1}

2. acoustics: Co = {q, 4}

¢ E O O O N O N W NN N EE W

@O m = - = s mmwm s EmE-.

e Posterior model for the simple linear chain CRF

P(QO)"')QT’wlv"'va) — _eXp ZZAC thazcla"'awTat)

t=1CelC’
1 T
L tT al
= 7 &XP E (A fqe, gi—1) + X £(qy, wt))
t=1
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Training CRFs

e Training for CRFs is normally fully observed

training observation sequence @®i,...,@TT
training label sequence Yly - v s YT
— where y, € {wy,...,wk}

e No need to use EM (or related approaches)

— extension to CRFs includes additional latent variables hidden CRFs
— training data for HCRFs only partially observed

e Need to find the model parameters A so that

A

A= arginaX{P(yla"'ayT’mla”'7wT7A)}
1 D
— argi\naX Eexp Z)\ifi(wla'"awTaylv"'vyT)
=1
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Generalised lterative Scaling for CRFs

e CRF (also MaxEnt model) training is a convex optimisation problem

— one solution to train parameters is generalised iterative scaling

NN 1 filx1, ..., 27, y1,. .., Y1)

7 i _I__log
C ZqGQT P(q’wlv"'7mT7A[k])fi(w17"'amT7q)

— iterative approach (parameters at iteration k are )\[k])

e (strictly) requires that the features add up to a constant

D
Zfi(mlv"'amTvq):C7 quQT
1=1

— extensions relaxes this requirements, e.g. improved iterative scaling
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Inference with CRFs

e Recognition with CRFs involves finding the most probable label sequence ¢

q argmax { P(q|x1,...,x7)}

qeQr

— argmax Z)\ fi(x1,...,®T,q)
qeQT i=1

— normalisation term Z not used as it is the same for all label sequences
e The Viterbi algorithm is often used to perform recognition

— for the simple linear chain CRF relationship to HMM Viterbi clear:

T

q = argmax S: S‘)\ filae, i1 ‘|'Z)\ fi(as, z¢)

qEQT t—=1 i=1
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