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Module L101: Machine Learning for Language Processing

Sequence Models
• So far examined the hidden Markov model (HMM) as a sequence model

– generative model of the data sequence, P (x1, . . . ,xT |q0, . . . , qT+1),
– use Bayes’ rule to yield “class sequence” posteriors P (y|x1, . . . ,xT )
– here y = {y0, . . . , yT+1} (the states are associated with classes)

• HMM parameters usually trained using maximum likelihood

– possible to also use discriminative training criteria to estimate parameters λ
– conditional maximum likelihood, maximise label posterior, P (y|x1, . . . ,xT )
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– sequence r is of length Tr, with observations x
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What about discriminative sequence models?
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Module L101: Machine Learning for Language Processing

Discriminative Sequence Models
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• Simple generative model (left) and discriminative model (right)

– right BN a maximum entropy Markov model (qT+1 dropped for simplicity)

P (q0, . . . , qT |x1, . . . ,xT ) =
T
∏

t=1

P (qt|qt−1,xt)

state posterior probability given by (Zt normalisation term at time t)

P (qt|qt−1,xt) =
1

Zt

exp

(

D
∑

i=1

λifi(qt, qt−1,xt)

)
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Module L101: Machine Learning for Language Processing

Sequence Maximum Entropy Models

• State posteriors modelled in the Maximum Entropy Markov model

– could extend to the complete sequence

P (q0, . . . , qT |x1, . . . ,xT ) =
1

Z
exp

(

D
∑

i=1

λifi(q0, . . . , qT ,x1, . . . ,xT )

)

• Problem is that there are a vast number of possible features

What features to extract from the state/observation sequence?

– need to be able to handle variations in length of the sequence
– keep the number of model parameters λ reasonable
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Module L101: Machine Learning for Language Processing

(Simple) Linear Chain Conditional Random Fields

qqt

xt xt+1

t+1 • Extract features based on undirected graph

– conditional independence assumptions
similar to HMM (though undirected)

• Posterior model becomes

P (q0, . . . , qT |x1, . . . ,xT ) =
1

Z
exp

(

T
∑

t=1

(

Dt
∑

i=1

λt

ifi(qt, qt−1) +

Da
∑

i=1

λa

ifi(qt,xt)

))

– Dt number of transition style features with parameters λt

– Da number of acoustic style features with parameters λa

• This has some relationships to HMMs for particular forms of features
(though training different)
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Module L101: Machine Learning for Language Processing

Linear Chain Conditional Random Fields

qqt

xt xt+1

t+1 • Extract features based on undirected graph

– conditional independence assumptions
extended to previous state

• Posterior model becomes

P (q0, . . . , qT |x1, . . . ,xT ) =
1

Z
exp

(

T
∑

t=1

(

D
∑

i=1

λifi(qt, qt−1,xt)

))

• More interesting than HMM-like features

– features the same as MaxEnt Markov model
– BUT normalised globally not locally
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Module L101: Machine Learning for Language Processing

Normalisation term
• Need to be able to compute the normalisation term efficiently

– initially consider the simple linear chain case

Z =
∑

q∈QT

exp

(

T
∑

t=1

(

Dt
∑

i=1

λt

ifi(qt, qt−1) +

Da
∑

i=1

λa

ifi(qt,xt)

))
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• Consider same topology and observation sequence x1, . . . ,x7 as the HMM
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Module L101: Machine Learning for Language Processing

Total Path Cost to a State/Time
St

at
e

Time

• Red possible partial paths

• Green state of interest

LAdd(a, b) = log (exp(a) + exp(b))

exp(LAdd(a, b)) = exp(a) + exp(b)

• Total path cost to state si at time t is αi(t)

– total path cost to state s4 at time 5 given by (compare to Viterbi)

α4(5) = LAdd

(

α3(4) +

Dt
∑

i=1

λt

ifi(s4, s3), α4(4) +

Dt
∑

i=1

λt

ifi(s4, s4)

)

+

Da
∑

i=1

λa

ifi(s4,x5)
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Module L101: Machine Learning for Language Processing

Forward-Backward Algorithm

• α is related to the forward-”probability” that is used to train HMMs

– recursion for this form of model can be expressed as

αj(t) = log

(

N
∑

k=1

exp

(

αk(t− 1) +

Dt
∑

i=1

λt

ifi(sj, sk)

))

+

Da
∑

i=1

λa

ifi(sj,xt)

– normalisation term can then be expressed as Z = exp(αN(T ))

• There’s also a term related to the backward-”probability”

– consider observation at time t given state sj, βj(t)

βj(t) = log

(

N
∑

k=1

exp

(

βk(t+ 1) +

Dt
∑

i=1

λt

ifi(sk, sj) +

Da
∑

i=1

λa

ifi(sk,xt+1)

))

– designed so that Z =
∑N

i=1 exp (αi(t) + βi(t))

Cambridge University
Engineering Department
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Module L101: Machine Learning for Language Processing

(Aside) HMM-Training using EM

• The forward-backward algorithm used in EM training of HMMs

– enables latent variable posteriors P (Z|X,λ) to be computed
– similar form to simple linear chain CRF

Dt
∑

i=1

λt

ifi(qt = sj, qt−1 = si) : log(P (qt = sj, qt−1 = si)) = log(aij)

Da
∑

i=1

λa

ifi(qt = sj,xt) : log(p(xt|qt = sj)) = log(bj(xt))

• (Log) forward αj(t) and (log) backward probabilities, βj(t):

αj(t) = log(p(x1, . . . ,xt, qt = sj)) = log

(

N
∑

k=1

akj exp (αk(t− 1))

)

+log(bj(xt))

βj(t) = log(p(xt+1, . . . ,xT |qt = sj)) = log

(

N
∑

k=1

ajkbk(xt+1) exp (βk(t+ 1))

)
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Module L101: Machine Learning for Language Processing

(Aside) HMM-Update Formulae

• Forward and backward probabilities can be used to derive posteriors

– at iteration l

γ
[l]
j (t) = P (qt = sj|x1, . . . ,xT ,λ

[l]) = exp
(

α
[l]
j (t) + β

[l]
j (t)− α

[l]
N(T )

)

• Update formulae with Gaussian state output distribution bj(x) = N (x;µj,Σj)

µ
[l+1]
j =

∑T

t=1 γ
[l]
j (t)xt

∑T

t=1 γ
[l]
j (t)

Σ
[l+1]
j =

∑T

t=1 γ
[l]
j (t)xtx

T
t

∑T

t=1 γ
[l]
j (t)

− µ
[l+1]
j µ

[l+1]T
j
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Module L101: Machine Learning for Language Processing

General Sequence CRFs

• The general form of CRF uses an undirected graphical model to define features

– need to be able to handle sequence data - dynamic CRF
– undirected graph repeated each time instance - set of cliques is C

• The posterior probability for this form of model is

P (q0, . . . , qT |x1, . . . ,xT ) =
1

Z
exp

(

T
∑

t=1

∑

C∈C

λT
Cf(qCt,x1, . . . ,xT , t)

)

– λT
C
time-independent parameters associated with clique C

– f(qCt,x1, . . . ,xT , t) time-dependent features extracted from clique C with
time-dependent label sequence qCt

Cambridge University
Engineering Department
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Module L101: Machine Learning for Language Processing

Example of a Sequence CRF

x

t

xt−1

qt−1 q

t

• Cliques associated with linear CRF

C = {C1, C2}

1. transitions: C1 = {qt, qt−1}

2. acoustics: C2 = {qt,xt}

• Posterior model for the simple linear chain CRF

P (q0, . . . , qT |x1, . . . ,xT ) =
1

Z
exp

(

T
∑

t=1

∑

C∈C

λT
Cf(qCt,x1, . . . ,xT , t)

)

=
1

Z
exp

(

T
∑

t=1

(

λtT
f(qt, qt−1) + λaT

f(qt,xt)
)

)

Cambridge University
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Module L101: Machine Learning for Language Processing

Training CRFs

• Training for CRFs is normally fully observed

training observation sequence x1, . . . ,xT

training label sequence y1, . . . , yT

– where yτ ∈ {ω1, . . . , ωK}

• No need to use EM (or related approaches)

– extension to CRFs includes additional latent variables hidden CRFs
– training data for HCRFs only partially observed

• Need to find the model parameters λ so that

λ̂ = argmax
λ

{P (y1, . . . , yT |x1, . . . ,xT ,λ)}

= argmax
λ

{

1

Z
exp

(

D
∑

i=1

λifi(x1, . . . ,xT , y1, . . . , yT )

)}

Cambridge University
Engineering Department
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Module L101: Machine Learning for Language Processing

Generalised Iterative Scaling for CRFs

• CRF (also MaxEnt model) training is a convex optimisation problem

– one solution to train parameters is generalised iterative scaling

λ
[k+1]
i = λ

[k]
i +

1

C
log

(

fi(x1, . . . ,xT , y1, . . . , yT )
∑

q∈QT
P (q|x1, . . . ,xT ,λ[k])fi(x1, . . . ,xT , q)

)

– iterative approach (parameters at iteration k are λ[k])

• (strictly) requires that the features add up to a constant

D
∑

i=1

fi(x1, . . . ,xT , q) = C, ∀q ∈ QT

– extensions relaxes this requirements, e.g. improved iterative scaling

Cambridge University
Engineering Department
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Module L101: Machine Learning for Language Processing

Inference with CRFs

• Recognition with CRFs involves finding the most probable label sequence q̂

q̂ = argmax
q∈QT

{P (q|x1, . . . ,xT )}

= argmax
q∈QT

{

D
∑

i=1

λifi(x1, . . . ,xT , q)

}

– normalisation term Z not used as it is the same for all label sequences

• The Viterbi algorithm is often used to perform recognition

– for the simple linear chain CRF relationship to HMM Viterbi clear:

q̂ = argmax
q∈QT

{

T
∑

t=1

(

Dt
∑

i=1

λt

ifi(qt, qt−1) +

Da
∑

i=1

λa

ifi(qt,xt)

)}
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