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Support Vector Machines
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e SVMs are a maximum margin, binary, classifier:

— related to minimising generalisation error;
— unique solution (compare to neural networks);
— may be kernelised - training/classification a function of dot-product (x, x;).

e Successfully applied to many tasks - how to apply to speech and language?
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Training SVMs

e The training criterion can be expressed as

{w,b} = argmax {min{||z —z;|;w'z+b=0,i=1,...,n}}

w,b

e This can be expressed as the constrained optimisation (y; € {—1,1})

A 1
{w,b} = argmin {§||w||2} subject to y; (WTCCZ' +b)>1 Vi

w,b

e In practice the dual is optimised

mn
o= argmax E o — — g g azozjyzyja: Tip, W= E QYT
; i=1

z—lj 1

subject to a; > 0 and > 1 | auy; =0 (13 is determined given the values of &)
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Non-Separable Data

e Data is not always linearly separable - there's no margin!

— how to train a system in this (realistic) scenario

correct margi edge (x-class) e Introduce slack-variables
/ (© support vector (o—class)
/ X ] support vector (x—class)

— for each training sample x; introduce &;
% — relaxes constraint: y; (WTCE‘@' — b) >1-¢;
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x | ® Modifies the training criterion to be
constraints: y; (W'a; +b) >1-¢&, & >0

hyperplane

exén]ple of &

. 1 z
W, b} = argmin { =||w||*+C D &
(.} = argmin 51w +.0 3

correct margin edge (o-class) 1=

e Tunable parameter C - balances margin and upper-bound on training errors

— again dual form is optimised, but now constraint modified to be: 0 < a; < C
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Classification with SVMs

e Given trained parameters @ and b classification is based on

gl)=w'x+b= Z yioux, x + b, =

{ wi, If g(CE‘) > ()
=1

wo, Otherwise

— this yields a linear decision boundary - limited
— classification is based on observations where o; > 0 - the support vectors

e Consider a non-linear transform of the features ¢(x) - the feature-space
— a linear decision boundary in the feature-space is non-linear in original space
e Training and classification can then be implemented in this transformed space

— classification again based on the support vectors

wi, If g(CU) >0
wo, otherwise
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The “Kernel Trick”
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e Consider a simple mapping from a 2-dimensional to 3-dimensional space

— 5 -

, k(mi, xy) = d(xi) P(x)

T )2

e Efficiently implemented using a Kernel: k(z;, x;) = ¢(x;)" d(x;) = (z] x;
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Kernels for Language Processing

e Many standard kernels for fixed length feature vectors

e In language processing applications, data is not always represented by vectors

cat sat on the mat .. word sequences (variable length sequences)
()
OO
e  ® trees (for example parse trees)
(»)

o

e Different kernels are used depending on the structures being compared

graphs showing connections between variables

— many are based on convolutional kernels
— an important consideration is the computational cost for particular form
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String Kernel
e For sequences input space has variable dimension:

— use a kernel to map from variable to a fixed length;
— Fisher kernels are one example for acoustic modelling;
— String kernels are an example for text.

e Consider the words cat, cart, bar and a character string kernel

cca c¢c-t c¢c-r ar r-t b-a b-r
¢(cat) 1 A 0 0 0 0 0
¢(cart) | 1 \? A 1 1 0 0
¢ar) | O 0O 0O 1 0 1 A

k(cat,cart) =1+ \°, k(cat,bar) =0, k(cart,bar)=1

e Successfully applied to various text classification tasks:

— how to make process efficient (and more general)?
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Weighted Finite-State Transducers

e A weighted finite-state transducer is a weighted directed graph:
— transitions labelled with an input symbol, output symbol, weight.

e An example transducer, T, for calculating binary numbers: a=0, b=1

b:b/1 b:b/2 |
a1 Qa2 Input | State Seq. | Output Weight
bab b12 bab -
b:b/1 @ 122 bab 4

For this sequence output weight: wgt [babo T| =5

e Standard (highly efficient) algorithms exist for various operations:

— combining transducer, T1 o Ty;
— inverse, T~ !, swap the input and output symbols in the transducer.

e May be used for efficient implementation of string kernels.
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Rational Kernels

e A transducer, T, for the string kernel (gappy bigram) (vocab {a,b})

b:g/1 b: e/A b: g/l

The kernel is: k(w;,w;) = wgt (w; o (ToT 1) o w;]
e This form can also handle uncertainty in decoding (w = w1, ..., wnN):
— lattices can be used rather than the 1-best output.
e This form encompasses various standard feature-spaces and kernels:
— bag-of-words and N-gram counts, gappy N-grams (string Kernel),

e Successfully applied to a multi-class call classification task.
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Tree Kernels

e Tree kernels count the numbers of shared subtrees between trees 7; and 75

— the feature-space, ¢ (71), can be defined as

i (T1) = ) Lin); ILi(n) =

{ 1, sub-tree 7 rooted at node n
neVq

0, otherwise

e Can be made computationally efficient by recursively using a counting function

KT, T) =¢(T) d(T2) = > Y flni,no);

n1€EV] no€Vy

— if productions from n; and ns differ f(ny,n2) =0

I ni=n
— for leaves f(ny,n9) = { 0 o;herwiZSe

— for non-leaf nodes f(n1,n3) = Hﬁfh(nl)(l + f(ch(n,%),ch(ng,1)))
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Tree Kernel Example

\@ g B

Tree 1(71) Tree 2 (732)

e The set of common sub-trees (and number) for these two graphs

@@@\@

o @O @ (1) (1)

— for these trees:

k(Th,T2) =5
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Graph Kernels

e An alternative form of kernel is based on graphs, G = {V, &}
e 5 nodes/vertices, V ={A,B,C, D, E}, 6 edges, £

e e \arious attributes:
1, (vi,v5) €&

G — adjacency matrix, A: a;; = 0. otherwise
Y

G G — walk length k—1, w = {v1,..., v}, (Vi_1,v;) €E

— edges may also have weights associated with it
e e Walks of length k£ can be computed using A*

e For the example graph above

0O 01 0 O 1 1 0 1 1 o 1 4 2 1
O 0 1 1 O 1 2 1 1 2 1 2 6 5 2
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Graph Kernels

How close are two graphs, G; and G5 to each other?

e Set of kernels that operate on these graphs - k(G1, Go)

— based on common paths/walks in the two graphs
— could consider longest/shortest paths

e Random walk kernel counts the number of matching walks in the two graphs

— based in the product graph of G; and G», G,
Gy graph of all identically labelled nodes and edges from G; and G5

[Vl [ oo [ Vxl
k(G1,Go) = Y | Y A"A/nl| = Z lexp (AAy)],;
1,7=1 [n=0 ij 1,7=1

— A, is the adjacency matrix for the product graph G,
— A is a scalar to weight the contribution of longer walks
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Perceptron Algorithm

e It is possible to use kernel functions on other classifiers

e Consider the perceptron algorithm (lecture 2). which can be written as

Initialise w=0, k=0 and b=0;
Until all points correctly classified do:
k=k+1;
if x; is misclassified then
W = W + YT
b="04 yi

— this yields the linear decision boundary defined by w, b

e C(lassification based on

wi, If g(iE) > 0

— L
gl@)=wz+b w= { wy, otherwise
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Kernelised Perceptron Algorithm

e The kernelised version of the algorithm may be described as

Initialise a; =0, 1=1,....n, k=0 and b=0;
Until all points correctly classified do:
k=k+1;

if x; i1s misclassified then
ap = o+ 1
b=>0+4 ys

— “Lagrange multiplier’, «;, the number of times sample ax; is mis-recognised

e Classification is then performed based on (as for the SVM)

wo, oOtherwise

g(x) = > yik(w, ;) +b, ©= { wi, if g(x) >0
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