
Support Vector Machines and Kernels

for Language Processing

Mark Gales

Lent 2014

Machine Learning for Language Processing: Lecture 7

MPhil in Advanced Computer Science

MPhil in Advanced Computer Science

Module L101: Machine Learning for Language Processing

Support Vector Machines

support vector
support vector

width

decision
boundary

margin

• SVMs are a maximum margin, binary, classifier:

– related to minimising generalisation error;
– unique solution (compare to neural networks);
– may be kernelised - training/classification a function of dot-product (xT

i xj).

• Successfully applied to many tasks - how to apply to speech and language?

Cambridge University
Engineering Department

MPhil in Advanced Computer Science 1

Module L101: Machine Learning for Language Processing

Training SVMs
• The training criterion can be expressed as

{ŵ, b̂} = argmax
w,b

{

min
{

||x− xi||;wTx+ b = 0, i = 1, . . . , n
}}

• This can be expressed as the constrained optimisation (yi ∈ {−1, 1})

{ŵ, b̂} = argmin
w,b

{

1

2
||w||2

}

subject to yi
(

w
Txi + b

)

≥ 1 ∀i

• In practice the dual is optimised

α̂ = argmax
α







n
∑

i=1

αi −
1

2

n
∑

i=1

n
∑

j=1

αiαjyiyjx
T
i xj







, ŵ =
n
∑

i=1

α̂iyixi

subject to αi ≥ 0 and
∑n

i=1αiyi = 0 (b̂ is determined given the values of α̂)

Cambridge University
Engineering Department

MPhil in Advanced Computer Science 2

Module L101: Machine Learning for Language Processing

Non-Separable Data

• Data is not always linearly separable - there’s no margin!

– how to train a system in this (realistic) scenario

support vector (x−class)

support vector (o−class)

width

example of

correct margin edge (x−class)

margin

hyperplane

correct margin edge (o−class)

ξ

• Introduce slack-variables

– for each training sample xi introduce ξi
– relaxes constraint: yi

(

w
Txi + b

)

≥ 1−ξi

• Modifies the training criterion to be
constraints: yi

(

w
Txi + b

)

≥ 1− ξi, ξi ≥ 0

{ŵ, b̂} = argmin
w,b

{

1

2
||w||2 + C

n
∑

i=1

ξi

}

• Tunable parameter C - balances margin and upper-bound on training errors

– again dual form is optimised, but now constraint modified to be: 0 ≤ αi ≤ C

Cambridge University
Engineering Department

MPhil in Advanced Computer Science 3

Module L101: Machine Learning for Language Processing

Classification with SVMs

• Given trained parameters α and b classification is based on

g(x) = w
Tx+ b =

n
∑

i=1

yiαix
T
i x+ b, ω̂ =

{

ω1, if g(x) > 0
ω2, otherwise

– this yields a linear decision boundary - limited
– classification is based on observations where αi > 0 - the support vectors

• Consider a non-linear transform of the features φ(x) - the feature-space

– a linear decision boundary in the feature-space is non-linear in original space

• Training and classification can then be implemented in this transformed space

– classification again based on the support vectors

g(x) = w
Tφ(x) + b =

n
∑

i=1

yiαiφ(xi)
Tφ(x) + b, ω̂ =

{

ω1, if g(x) > 0
ω2, otherwise

Cambridge University
Engineering Department

MPhil in Advanced Computer Science 4

Module L101: Machine Learning for Language Processing

The “Kernel Trick”

1 2 3 4 5 6 7

0

0.5

1

1.5

2

2.5

class one
class two
support vector
class one margin
decision boundary
class two margin

1 2 3 4 5 6 7

0

0.5

1

1.5

2

2.5

class one
class two
support vector
class one margin
decision boundary
class two margin

• Consider a simple mapping from a 2-dimensional to 3-dimensional space

φ

([

x1

x2

])

=





x2
1√

2x1x2

x2
2



 , k(xi,xj) = φ(xi)
Tφ(xj)

• Efficiently implemented using a Kernel: k(xi,xj) = φ(xi)
Tφ(xj) = (xT

i xj)
2

Cambridge University
Engineering Department

MPhil in Advanced Computer Science 5

Module L101: Machine Learning for Language Processing

Kernels for Language Processing

• Many standard kernels for fixed length feature vectors

• In language processing applications, data is not always represented by vectors

... cat sat on the mat .. word sequences (variable length sequences)

A

BB

C A trees (for example parse trees)

B

C

D

A

E

graphs showing connections between variables

• Different kernels are used depending on the structures being compared

– many are based on convolutional kernels
– an important consideration is the computational cost for particular form

Cambridge University
Engineering Department

MPhil in Advanced Computer Science 6

Module L101: Machine Learning for Language Processing

String Kernel

• For sequences input space has variable dimension:

– use a kernel to map from variable to a fixed length;
– Fisher kernels are one example for acoustic modelling;
– String kernels are an example for text.

• Consider the words cat, cart, bar and a character string kernel

c-a c-t c-r a-r r-t b-a b-r

φ(cat) 1 λ 0 0 0 0 0
φ(cart) 1 λ2 λ 1 1 0 0
φ(bar) 0 0 0 1 0 1 λ

k(cat, cart) = 1 + λ3, k(cat, bar) = 0, k(cart, bar) = 1

• Successfully applied to various text classification tasks:

– how to make process efficient (and more general)?

Cambridge University
Engineering Department

MPhil in Advanced Computer Science 7

Module L101: Machine Learning for Language Processing

Weighted Finite-State Transducers

• A weighted finite-state transducer is a weighted directed graph:

– transitions labelled with an input symbol, output symbol, weight.

• An example transducer, T, for calculating binary numbers: a=0, b=1

b:b/1

a:a/2

b:b/2

a:a/1

b:b/1

1 2/1

Input State Seq. Output Weight

bab
1 1 2 bab 1
1 2 2 bab 4

For this sequence output weight: wgt [bab ◦ T] = 5

• Standard (highly efficient) algorithms exist for various operations:

– combining transducer, T1 ◦ T2;
– inverse, T−1, swap the input and output symbols in the transducer.

• May be used for efficient implementation of string kernels.

Cambridge University
Engineering Department

MPhil in Advanced Computer Science 8

Module L101: Machine Learning for Language Processing

Rational Kernels

• A transducer, T, for the string kernel (gappy bigram) (vocab {a, b})

a:a/1

b:b/1

a:a/1

b:b/1

a: /1ε

b: /1ε

a: /1ε

b: /1ε

a:ε/λ

b:ε/λ

21 3/1

The kernel is: k(wi,wj) = wgt
[

wi ◦ (T ◦ T−1) ◦wj

]

• This form can also handle uncertainty in decoding (w = w1, . . . , wN):

– lattices can be used rather than the 1-best output.

• This form encompasses various standard feature-spaces and kernels:

– bag-of-words and N-gram counts, gappy N-grams (string Kernel),

• Successfully applied to a multi-class call classification task.

Cambridge University
Engineering Department

MPhil in Advanced Computer Science 9

Module L101: Machine Learning for Language Processing

Tree Kernels

• Tree kernels count the numbers of shared subtrees between trees T1 and T2
– the feature-space, φ (T1), can be defined as

φi (T1) =
∑

n∈V1

Ii(n); Ii(n) =

{

1, sub-tree i rooted at node n
0, otherwise

• Can be made computationally efficient by recursively using a counting function

k(T1, T2) = φ(T1)Tφ(T2) =
∑

n1∈V1

∑

n2∈V2

f(n1, n2);

– if productions from n1 and n2 differ f(n1, n2) = 0

– for leaves f(n1, n2) =

{

1 n1 = n2

0 otherwise

– for non-leaf nodes f(n1, n2) =
∏# ch(n1)

i=1 (1 + f(ch(n1, i), ch(n2, i)))

Cambridge University
Engineering Department

MPhil in Advanced Computer Science 10

Module L101: Machine Learning for Language Processing

Tree Kernel Example

A

A

B

C

B

A

BB

C A

Tree 1 (T1) Tree 2 (T2)

• The set of common sub-trees (and number) for these two graphs

(1)

B C

C

B

A

A

BB

A

(1) (1) (1) (1)

– for these trees:

k(T1, T2) = 5

Cambridge University
Engineering Department

MPhil in Advanced Computer Science 11

Module L101: Machine Learning for Language Processing

Graph Kernels

• An alternative form of kernel is based on graphs, G = {V , E}

B

C

D

A

E

• 5 nodes/vertices, V = {A,B,C,D,E}, 6 edges, E
• Various attributes:

– adjacency matrix, A: aij =

{

1, (vi, vj) ∈ E
0, otherwise

– walk length k−1, w = {v1, . . . , vk}, (vi−1, vi) ∈ E
– edges may also have weights associated with it

• Walks of length k can be computed using Ak

• For the example graph above

A =













0 0 1 0 0
0 0 1 1 0
1 1 0 1 1
0 1 1 0 1
0 0 1 1 0













A2 =













1 1 0 1 1
1 2 1 1 2
0 1 4 2 1
1 1 2 3 1
1 2 1 1 2













A3 =













0 1 4 2 1
1 2 6 5 2
4 6 4 6 6
2 5 6 4 5
1 2 6 5 2













Cambridge University
Engineering Department

MPhil in Advanced Computer Science 12

Module L101: Machine Learning for Language Processing

Graph Kernels

How close are two graphs, G1 and G2 to each other?

• Set of kernels that operate on these graphs - k(G1,G2)

– based on common paths/walks in the two graphs
– could consider longest/shortest paths

• Random walk kernel counts the number of matching walks in the two graphs

– based in the product graph of G1 and G2, Gx

Gx graph of all identically labelled nodes and edges from G1 and G2

k(G1,G2) =

|Vx|
∑

i,j=1

[

∞
∑

n=0

λnAn
x /n!

]

ij

=

|Vx|
∑

i,j=1

[exp (λAx)]ij

– Ax is the adjacency matrix for the product graph Gx

– λ is a scalar to weight the contribution of longer walks

Cambridge University
Engineering Department

MPhil in Advanced Computer Science 13

Module L101: Machine Learning for Language Processing

Perceptron Algorithm

• It is possible to use kernel functions on other classifiers

• Consider the perceptron algorithm (lecture 2). which can be written as

Initialise w = 0, k = 0 and b = 0;
Until all points correctly classified do:

k=k+1;

if xk is misclassified then

w = w + ykxk

b = b+ yk

– this yields the linear decision boundary defined by w, b

• Classification based on

g(x) = w
Tx+ b, ω̂ =

{

ω1, if g(x) > 0
ω2, otherwise

Cambridge University
Engineering Department

MPhil in Advanced Computer Science 14

Module L101: Machine Learning for Language Processing

Kernelised Perceptron Algorithm

• The kernelised version of the algorithm may be described as

Initialise αi = 0, i = 1, . . . , n, k = 0 and b = 0;
Until all points correctly classified do:

k=k+1;

if xk is misclassified then

αk = αk + 1
b = b+ yk

– “Lagrange multiplier”, αi, the number of times sample xi is mis-recognised

• Classification is then performed based on (as for the SVM)

g(x) =
n
∑

i=1

yiαik(x,xi) + b, ω̂ =

{

ω1, if g(x) > 0
ω2, otherwise

Cambridge University
Engineering Department

MPhil in Advanced Computer Science 15

