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Module L101: Machine Learning for Language Processing

Introduction

e So far described a number of models for word sequences

— most common are based on N-grams and mixtures of N-grams

e In this lecture we will examine:
— the application of N-grams (and extensions) to topic clustering;
— an alternative generative model latent Dirichlet allocation

e The last slides will not be covered in the lectures - briefly mention

— what happens as the number of clusters tends to infinity
— infinite Gaussian mixture models
— Dirichlet processes
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Module L101: Machine Learning for Language Processing

Unsupervised Document Clustering

e Use a topic-dependent N-gram language model to perform clustering
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— word sequence w = {w1,...,wn}

— start, wgp, and end wy 41 symbols added

— z indicator variable over topics sq, ...

— plate repeated for every document

e Training data fully observed (supervised training) standard N-gram training

— BUT interested in unsupervised clustering - indicator variable z unobserved

e Likelihood of one document with word sequence w can be written as

K

P(w) =) P(sp)P(w|si) =

k=1

N+1

ZP Sk) H P(w;|w;_1, sg)
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Module L101: Machine Learning for Language Processing

Unsupervised Clustering

e The likelihood has been written as marginalising over the latent variable

— standard mixture model - use EM BUT interested in clustering documents
e Rather than using the “soft” assignment in EM, use a hard assignment

AU — argmax {P(skp\[”)P(w(?“)ysk, ,\UJ)}

Sk

— compare to EM where at iteration | compute P(s;|w, AlY)
— allows documents to be clustered together (unique label for each document)

( )

For parameters of component sy, : )\%H] = argmax 4 H Pw™A) 3
A
1]

TiZy =Sk

\ /

e |terative procedure (similar to Viterbi training) - example of K-means clustering

— can initialise model parameters by using K randomly selected examples
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Module L101: Machine Learning for Language Processing

Language Model Components

e For simplicity only consider a unigram language model - for BNs below

— inner plate repeated for each word (start/end symbols ignored as unigram)
— outer plate for each document

Z|—= W Z—= W

S Pl T Plwilss)  TIY, (S0, Plsw) P(wilsy))

e Interesting to contrast two forms of latent variable model

— (left) indicator variable z over space of language models
— (right) indicator variable z over space of language model predictions

e Possible to combine latent variable models (a hierarchical model)
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Module L101: Machine Learning for Language Processing

Bayesian Approaches

e Consider a generative model for class w; (supervised training)

— training data: D ={xy...,x,}
— parametric form of distribution (the model), M, is known (and fixed)
with (unknown) parameters 6

A

e Rather than estimating the parameters of the model, 8, use a distribution
— from training data obtain the posterior distribution over model parameters

p(D|8, M)p(6| M)

PO =DMy

Note MAP 8 = argmax {p(0|D, M)}
0

— p(0|M) is the prior distribution over the model parameters

e Likelihood of an observation x then computed as

p(@|D. M) = [ (|6 M)p(6]D. M)d6 Note MAP p(a|D. M) ~ p(eld. M)
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Module L101: Machine Learning for Language Processing

Distribution of the Mean Estimate

e Consider Bayesian estimation of the mean p of a Gaussian distribution

e Posterior p(u|D, M) variation (from DHS)

p(ulx,, ..., X,)
“ — Gaussian distributed - p ~ N (f, 2)
— prior N(O, 23p)
20
10 o= (nE + 2 - Z Li
1 5 A -1 —1 —1
. | ' ' 1 2= <n2 + 2 )
4 2 0 2 4

e Shape of posterior distribution changes as n increases

— the posterior becomes more sharply peaked (reduced variance)
— MAP estimate (the mode of the distribution) moves towards ML estimate
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Module L101: Machine Learning for Language Processing

Latent Dirichlet Allocation

e Interested in applying Bayesian approaches to language processing

— consider a mixture-of-unigrams language model

N K

Pw) = [ 3. Psw)P(wilsy)

1=1 k=1

where P(sy) is estimated from training data
— alternatively consider a Bayesian version over the topic priors

P(w|a):/ (0]c) (q;PSw wisk)> i6

where p(0|a) obtained from the training data

What form of distribution/latent variable model to use?
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Module L101: Machine Learning for Language Processing

(Reminder) Multinomial Distribution

e Multinomial distribution: z; € {0,...,n}

d d
1=1 =1

zlxzzl

e When n = 1 the multinomial distribution simplifies to

d
P(z]6) = He Y 0i=1, 6;>0
1=1

— a unigram language model with 1-of-V coding (d = V the vocabulary size)
— x; indicates word ¢ of the vocabulary observed, x; = L, word q .observed
0, otherwise

— 0; = P(w;) the probability that word i is seen
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Module L101: Machine Learning for Language Processing

(More) Probability Distributions

e Dirichlet (continuous) distribution with parameters «

F(Zd— ai) ’ a;—1 : ‘
p(x|a) = —==1 sz ©=7;,  for "observations”: sz =1,
iz T(os) ;25 i1

— I'() is the Gamma distribution
— Conjugate prior to the multinomial distribution
(form of posterior p(0|D, M) is the same as the prior p(6|M))

e Poisson (discrete) distribution with parameter ¢

£* exp(—§)

!

P(z|€) =

— probability of the number of events in a specific interval
— here used for number of words in a document
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Module L101: Machine Learning for Language Processing

Dirichlet Distribution Example

e Note: s +y+2=1

e Vector: (a1, as, as)
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Module L101: Machine Learning for Language Processing

Latent Dirichlet Allocation Bayesian Network

£

Qe

e Bayesian Network for Latent Dirichlet Allocation (LDA) is shown above

— explicitly includes dependence on model parameters A = {«, B}

P(w|o, B) = / (0] (HZPskH wisk,ﬂ)>d9

1=1 k=1

— 2z is an indicator variable for one of the K topics: {s1,...,sk}
— inner plate is repeated for IV words, outer plate is repeated for R documents

e Bayesian approach learn posterior distribution of the component priors, 0,

— Dirichlet distribution p(€@|a) = p(6|D, M), and noting P(sy|0) = 0%
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Module L101: Machine Learning for Language Processing

LDA Generative Process

e LDA assumes the following generative process for the words w is a document

1. Choose length of document - N ~ Poisson(§)
2. Choose parameters of multinomial - 8 ~ Dir(«)

3. For each of the N words w,,:
(a) Choose topic: z, ~ Multinomial(8)

(b) Choose word: w, from multinomial probability conditioned on topic z,
with parameters 3

e The parameters that need to be estimated for LDA
- a=A{ay,...,ag}: K parameters

the prior distribution over the multinomial parameters

- B=1{0611,51v,-..,BK1,-..,Brv}: KV parameters
Note [r; > 0, Zyzl Br; = 1 Vk,1 - this is the equivalent of topic-unigrams
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Module L101: Machine Learning for Language Processing

LDA Parameter Estimation

e Given corpus of documents {w, ... w{)} need to estimate a, 3

L(ex. B) = ilog (P, 8)

e Unfortunately likelihood calculation is intractable need to compute

P(wa,ﬁ)r(zk1ak;/<n (92%:1) HZQkH(ﬁkj)l(wi,j) do

— oK
[ 15— Tew i=1k=1

1, w; = word j in the vocabulary
0, otherwise

— P(s%|0) = 0 and P(w;|sg, B) = Bri

— word indicator: I(wz',j) —

e Not possible to use EM: require p(0, z|w, a, 3) = p(g’(f;ﬂ"gf)
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Module L101: Machine Learning for Language Processing

Variational EM (Reference)

Latent Dirichlet Allocation Variational Approximation

e LDA can be estimated using variational EM with the mean-field approximation

— use a variational approximation ¢(8, z|7v, ¢) - see diagram on right

N
10,27, ¢) = a(017) ] | a(zil4:)
i=1
— parameters - minimise KL-divergence: KL(g()||p()) = [ p(x)log (¢()/p()) dx

(v, ¢} = argmin {KL(Q(H, z|v, 9)||p(8, z|w, a“],ﬁm)}

v,P
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Module L101: Machine Learning for Language Processing

LDA and Topic Mixture of Unigrams

B 8 B

ik obi

Latent Dirichlet Allocation Topic Mixture of Unigrams

e Latent Dirichlet allocation - parameters K (1 + V') - continuous mixture

P(uwlar, B) = k=t O / (Hel‘;”) [1>" 6 [1(5ep) | o

N HkK:1 ['(ag) k=1
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Module L101: Machine Learning for Language Processing

Properties of LDA

e LDA is a generative model of a document

— compact model of the data
— infinite component priors represented by K-parameter distribution p(0|a)

— can be combined with standard language model smoothing for 3
e Consider using LDA as a generative model for classification for

— for each class w; estimate {a!/), 31} using all documents from class w;,
— estimate the prior for each class P(w;)
— perform classification for sequence w based on

(W = argmax {P(wj)P(w]a(j), 5(3’))}

“i

e LDA has also been used for a range of language processing applications
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Module L101: Machine Learning for Language Processing

How Many Topics?
e So far not consider the number of topics, K, for LDA

— how about using a Bayesian approach

PwlaW, ... al®) =

N K
ZP / (015 F) (Hzpskwﬂﬂ (wi|sk,6)>d9(K)

1=1 k=1

— each of the priors of infinite mixture models has a Dirichlet distribution

e There's a infinite number of components

— unfortunately an infinite number of parameters a(V, ... a(>®) 3 to train
Can we keep the infinite model, but make it tractable?

e Non-parametric Bayesian approaches: (hierarchical) Dirichlet Processes
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Module L101: Machine Learning for Language Processing

Gaussian Mixture Models

e Consider simpler (illustrative) example - the Infinite Gaussian Mixture Model

e Standard form of M-component Gaussian Mixture Model (GMM) is

p(xz|0,8) = Z P(cm|0)p(x|cm, B) Z P(cm|OIN (x5 pm, Xim)

=1 m=1

Interested in what happens as M — o0?

e Must use Bayesian approaches as the number of parameters infinite
— what sort of prior distributions to use?

e Introduce prior distributions {ayg, 3}

— «p - prior parameter for the Dirichlet distribution
— 3 - prior distribution for Gaussian components
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Module L101: Machine Learning for Language Processing

Infinite Gaussian Mixture Models

B G
b wloned

Gaussian Mixture Model Infinite Gaussian Mixture Model

e From the Bayesian network above

N M
p(x1,...,TN|ao, Go) // (0]ao)p(B|Go) HZ (cm|O)p(xi|cm, B)dOdS

where: 0|ag ~ Dirichlet (%, o %) ;. Bm ~ Gp;  ¢,|0 ~ Multinomial(0)
e Estimate the hyper-parameters from training data, {x1,...,x N} - maximise

L(ag,Gy) =log (p(xy, ..., xN|ag, Gp))

THE END - SLIDES ARE FOR REFERENCE FROM HERE
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Module L101: Machine Learning for Language Processing

Sample-Based Approximations

e Simple approach to approximate integrals is to use

1 Y | |
| f@p(aio)de <y 1@ 20~ p0

— as N — oo the approximation will become an equality
— N needs to increase as dimension x increases - need to sample the space

marginalising is simply sampling

e If a sample can’t be directly generated from the multivariate distribution p(0)

— Gibbs sampling from conditional distributions can be used
(i ) (¢) () (i) (%)

— assume that we have samples x; ", ..., x; ", 2,1, x; generate x,
— sample from
p(ajk’xla vy Lp—1,LEk+1,Ld, 9)

— assumes that possible to sample from the conditional
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Module L101: Machine Learning for Language Processing

Gaussian Mixture Model Sampling

@ p(x]6,8) = > P(cn|0)p(z|cnm, B)

, i N —

0=z =) 3 Plen)p(al,

1

m

e Sampling approach from distribution comprises
1. Generate component indicator z, ~ Multinomial(8)
2. Generate observation: x,, ~ N (3.,)

e Simple to train using EM (see lecture 5)

— non-Bayesian - point estimates of the model parameters {0, 3}
— number of components M fixed
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Module L101: Machine Learning for Language Processing

IGMM Sampling Procedure

How to generate samples from infinite components?

e Gibb's Sampling process to generate {x1,...,xN} for N samples
1. Generate component indicator z,|z_,, (z—p, ={21,-..,2n_1})
( 7?—1 1(z.:.c.
21211 Figy) represented
n—14+og J
P(Zn — Cj Z_n,Oéo) — <
__ %0 :
| "Tian c; unrepresented

2. If component indicted by z,, is unrepresented: 3, ~ G
3. Generate observation: x,, ~ N (3.,)

e At most NN of the infinite possible samples represented

MPhil in Advanced Computer Science
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Module L101: Machine Learning for Language Processing

IGMM Hyper-Parameter Training

e Using Gibb's sampling to training hyper-parameters of Gy

— sampling process to generate {21, 31D} for these N samples, {x;,...,xx}

1. Generate component indicators z<l)|zg%,ﬁ<l_1), x,, (dropped dependence)

( (1)
Zrz 11i( = ’1)] (a:n|,8§-l_1)) c; represented
Pz = cjlag ™V, GHTY) o«
21D
— 1+ - iy | p(xn|B)p ,8|G(()l_1))d6 c;j unrepresented
\
2. Foreach represented component c;,j € {1,..., krep}

sample component mean and variance: B() = {1, () 2?} ~ Gél—l)

3. Update hyper-parameters {ozO ,Gé)} using component values ,By), e

()

krep

(a) increment the counter [ =1+ 1

MPhil in Advanced Computer Science
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Module L101: Machine Learning for Language Processing

IGMM Classification

e So how can we perform classification - need the class-likelihood (prior simple)

— consider observation x given training data for class w;: D = {x1,...,xN}

p(wa D’&Oa GO) _ p(wv Liy--- 7wN|a07 GO)
p(D|0407G0) p(mla"'amN’a07G0)

p(w’D7 &, GO) —

— clearly a non-parametric model - explicit dependence on training observations

e Use a sample-based approximations for numerator/denominator thus

1
p(wlw . 213N|Oé(),GO LZHp o |Z(l) /B(l))

=1 1=1

— follow hyper-parameter training without update to hyper-parameters
— similar for p(x, x1,. .., xN|ag, Go)

MPhil in Advanced Computer Science 24



Module L101: Machine Learning for Language Processing

Dirichlet Processes

e Dirichlet Processes are a generalisation of the Dirichlet distribution

— both can be viewed as distributions over distributions
— BUT Dirichlet processes act over infinite components

e Model has the form
G ~ DP(ag, Go);

— Gy is the base measure (distribution)
— «g Is the concentration parameter

e If the measure is parametrised with 0

— each draw of G from G yields 8. ~ G
— 0g, indicates a 0 function at the parameters for draw k , 0

— Reminder:

/ £(]6)30,d0 = f(|0%)

MPhil in Advanced Computer Science
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Module L101: Machine Learning for Language Processing

R )

Example Dirichlet Process

)

e The likelihood of the word sequence w = {w1,...,wxn} can be expressed as

P(w]ao,Go) = [ P(Glav.Go) [ P(B) [ (61G)P(wl6.G. B)i8dBdG

— G is distributed according to the Dirichlet Process DP(«yg, Gy)
— if K is the number of components associated with the G

P(w|0,G,B) = HZP sx|0) P(w;|sk, B)

1=1 k=1

e BUT can’t share cluster parameters (3) across different draws

— no relationship between clusters ... hierarchical Dirichlet priors

MPhil in Advanced Computer Science
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Module L101: Machine Learning for Language Processing

Dirichlet Processes Generative Process
e Can't directly sample from Dirichlet process - use Gibb's sampling

— behaviour of 6,, given previous n — 1 draw 6+,...,0,,_1
Q0 s 1
0,101, .., 01,00, Go ~ — T aGot ;n_ T acde.
— this is the equivalent of the generative process where
9 _ 0, with probability m for1 <i<(n-—1)
" 0 ~ Gy() with probability n+8rao

e A draw from a Dirichlet process (stick-breaking representation)

- k-1
G = Zﬂ'k(Sgk; 0, ~ G0§ % ~ Beta(l, 040)5 e — wk H(l — wk)
k=1 =1

— Google Chinese Restaurant Process for a simple example
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