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The plan

Lecture 12: “functions on arcs”
Lecture 13: Global vs. Local Optimality
Lecture 14: A simple model of a “fixed” BGP

Lecture 15: Proof of convergence of iteration for (some)
non-distributed algebras ...

Lecture 16: ... the proof continues
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Path Weight with functions on arcs?

For graph G = (V, E), and arc path p = (up, u1)(u1, U2)---(Uk_1, Uk)-
Functions on arcs: two natural ways to do this...
Weight function w : E — (S — S). Let f; = w(u;_1, uj).

wi(p) = f(R(--Kk(a)-)) = (hoko-of)(a)

wip) = ffea(---A(@)--)) = (fofro---0f)(a)

How can we “make this work” for path problems?
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Algebra of Monoid Endomorphisms (AME) (See
Gondran and Minoux 2008)

Let (S, @, 0) be a commutative monoid.

(S, ® FC S— S, 0)is an algebra of monoid endomorphisms (AME)
if

evVicF, f(0)=0

e Vfe F,Vvb,ce S, f(bac)=f(b)®f(c)

| will declare these as optional
e Vf,ge F, fog e F (closed)
@ JieF,vVse S, i(s)=s
@ JweF,VneN, wn)=0

v

Note: as with semirings, we may have to drop some of these axioms in
order to model Internet routing ...
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So why do we want AMEs?

Each (closed with w and /) AME can be viewed as a semiring of
functions. Suppose (S, @, F, 0) is an algebra of monoid
endomorphisms. We can turn it into a semiring

F=(F, B, o, w, i

where (f & g)(a) = f(a) ® g(a) and (f o g)(a) = f(g(a)).

But functions are hard to work with....
@ All algorithms need to check equality over elements of a semiring

@ f=gmeansvVac S, f(a) =g(a)
@ S can be very large, or infinite ...

tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applice T.G.Griffin©2014 5/38



How do we represent a set of functions F C S — S?

Assume we a set L and a function

>el—(S—S).
We normally write / > s rather than >(/)(s). We think of / € L as the
index for a function fi(s) = /> s. In this way (L, ©>) can be used to

represent the set of functions

F={fi=Xs.(I>s)|leL}
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Indexed Algebra of Monoid Endomorphisms (IAME)

Let (S, @, 0) be a commutative and idempotent monoid.

A (left) IAME (S, L, &, >, 5)
oer>el—(S—Y9S)
eViel I>0=0
@ dlel,Vse S, I>s=s

@dlel vseS Is=0
evVielL VnnmeS, I>(nem)=(I>n)& (I>m)

When we need closure? Not very often! If needed, it would be

Vi,belL,dhe LLVse S;hk>s=11> (b>S)
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IAME of Matrices

Given a left IAME (S, L, @, >, 0) define the left IAME of matrices
(Mp(S), Mp(L), &, >, J).
For all /,j we have J(i,j) = 0. For A € M,(L) and B, C € M,(S) define
(BoC)(i,j) = B, ))®C(,j)

(A=B)(i, /) = €D A, q)>B(q, )

1<q<n
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Solving (some) equations. Left version here ...
We will be interested in solving for L equations of the form

L=(AxL)®B
Let
A>°B = B
Apkt'B = Ar (AxkB)
and

A-KB = Ar'B o Ax'B @ Ar2B @ --- @ AKB

A>*B = Ar'B o Ar'B @ Ar?B @ --- @ AkBo ---

Definition (g stability)

If there exists a g such that for all B, A>9B = A>9t" B, then A is
g-stable. Therefore, A>*B = A >9B.
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Key results (again)

Theorm 11.1
If Ais g-stable, then L = A >* (B) solves the equation

L=(A>L) & B.

Theorem 11.2
If A is g-stable, then L = A >* (B) solves the equation

L=(A>L) & B.
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Something familiar : Lexicographic product of AMEs

(S, Ls, @s, bg)X(T, Ly, &7, >7) = (SXT, LgxLy, ®sXBT, >gx>T)

Theorem 11.3
D(SX T) <= D(S)AD(T)A(C(S)VK(T)) J
Where
Property Definition
D Va,b,f, f(a® b) = f(a) ® f(b)
C Va,b,f, f(a)=1f(b) = a=>b
K Va, b, f, f(a) = f(b)
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Something new: Functional Union of AMEs

(Sa L17 @a [>1) +III (Sa L27 697 ‘>2) = (Sa L1 H—J L27 @a [>1 H—J [>2)

Fact
D((87 L17 D, >1)+m (87 L27 @, I>2))
<~
D((Sa L17 D, [>1))/\D((Sv L2a @, [>2))
Where
(inl(/)) (>1W2)s = [1>1 8
(inr(/)) (>1W>2)s = [ D>2 S
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Left and Right

(S, {R}, @,right)
Rrights=s

(S. S, @, left)

sy left s, = sy

Facts
The following are always true.

D((S. {R}, @, right))

D((S, S, @, left)) (assuming @ is idempotent)
c((S. {R}, @right))

K((S, S, @,left))
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Scoped Product (Think iBGP/eBGP)
SOT = (S X left(T)) +n, (right(S) X T)

Theorem 11.2
D(SOT) < D(S)AD(T).

eft(T)) 4+ (right(S) X T))
D(S X left(T)) A D(right(S) X T)
D(S) A D(left(T)) A (c(S) Vv K(left(T)))
A D(right(S)) A D(T) A (c(right(S)) vV K(T))
<= D(S)AD(T)
Lexicographic Products in Metarouting. Alexander Gurney, Timothy G.

Griffin. International Conference on Network Protocols (ICNP), 2007.
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Scoped Product

S = (87 LSa ®s, I>S)
T = (T7 LT7 ®eT, [>T)
Sxleft(T) = (SxT,LsxT, ®sxX DT, >g x left)

right(S)x T = (Sx T, {R} xLr, ®sx @7, right x >71)
SOT = (SXIeft(T)) +m (right(S) X T)
— (ST, (Lsx T)&({R} x L7), &5 % &7, &)

Between regions (A € Lg)

inl(\, b)> (s, 1) =(A>ss, b)

Within regions (A € Lr)

inrf(R, \)> (s, t) = (s, A>Tt)

v
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Recall (Lecture 1)
The Algorithm to Algebra (A2A) method
original metric modified metric
+ — +
complex algorithm generic algorithm

Punch Line

A2A attempts to shift complexity from an algorithm to the metric, which
is captured in an algebraic structure — the algebraic properties of that
structure will determine what kind of solution is obtained (global or
local optima).
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Recall puzzle from Lecture 1

name S @, ® 0 1
min_plus N min + 0

max_min N max min 0

name LD LC LK

min_plus Yes Yes No
max_min Yes No No

name definition LD

Widest Shortest-paths min_plus X max_min Yes
Shorest Widest-paths  max_min X min_plus No
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Shorest widest paths

(10, 100)

(5 1)
O )

71

@ node j prefers (10, 100) over (7, 1).
@ node i prefers (5, 2) over (5, 101). J

(5, 1)®((10, 100) & (7, 1)) = (5, 1) ® (10, 100) = (5, 101)
(5, 1)® (10, 101)) & ((5, 1)® (7, 1)) =(5, 101) & (5, 2) = (5, 2)
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Something similar from inter-domain routing in the
global Internet

long path through a customer

L

customer provider

short path through a peer

@ j prefers long path though one of its customers
@ / prefers the shorter path
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Solving (some) equations

If A* exists , then L = A* solves the equation
L=ALal
and R = A* solves the equation

R=RAgl

Towards a “non classical” theory of algebraic path problems ...

If we weaken the axioms of the semiring (drop distributivity, for
example), could it be that we can find examples where A*, L, and R
exist, but are all distinct?

Health warning : matrix multiplication over structures lacking
distributivity is not associative!
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Left-Local Optimality
Say that L is a left locally-optimal solution when

L=(AxL)al

That is, for i # j we have

L(i, j) = EP A, 9) @ L(q, J)
geV

@ L(/, j) is the best possible value given the values L(q, j), for all
out-neighbors g of source i.

@ Rows L(/, _) represents out-trees from / (think Bellman-Ford).
@ Columns L(_, /) represents in-trees to .
@ Works well with hop-by-hop forwarding from i.
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Right-Local Optimality

Say that R is a right locally-optimal solution when

R=RxA)al

That is, for i # j we have

R(i, j) = PR, q) @ A(q. j)
geV

@ R(/, j) is the best possible value given the values R(q, j), for all
in-neighbors g of destination j.

@ Rows L(/, _) represents out-trees from / (think Dijkstra).

@ Columns L(_, /) represents in-trees to .
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With and Without Distributivity

With distributivity

For (bounded) semirings, the three optimality problems are essentially
the same — locally optimal solutions are globally optimal solutions.

A"=L=R

Without distributivity
It may be that A*, L, and R exists but are all distinct.

Back and Forth
L=(AcL)el < LT=(L"g’AT)al

where ® is matrix multiplication defined with a®” b= b ® a
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Example

(5,1>\

(5,1) | (10,5)

(5:4)

~— (5,1) @ (51) —(5

(10,1)

(bandwidth, distance) with lexicographic order (bandwidth first).
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Left-locally optimal paths to node 2
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Right-locally optimal paths to node 2

352 é) 4 2

\

5-2
4—3—>2—d3><—5—>2
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(Distributed) Bellman-Ford can compute left-local
solutions’

A0l — |
At — (A AR o,

@ Bellman-ford algorithm must be modified to ensure only loop-free
paths are inspected.

@ (S, @, 0) is a commutative, idempotent, and selective monoid,
@ (S, ®, 1) is a monoid,

@ 0 is the annihilator for ®,

@ 1 is the annihilator for &,

@ Left strictly inflationarity, L.S.INF :Va,b:a# 0 — a<a®b
@ Herea<b=a=aaohb.

v

Convergence to a unique left-local solution is guaranteed. Currently no
pQI_)LDDmlaJJlOULId_LS_kDDMLDJ)D the number of iterations required.
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Sobrinho’s encoding of the Gao/Rexford rules for BGP
Additive component uses min with

@ 0 is the type of a downstream route,

@ 1 is the type of a peer route, and

@ 2 is the type of an upstream route.

@ o is the type of no route.

Multiplicative component

| 0 1 2

0 0 0o o ™

1|1 o© oo o©

212 2 2 o
00|00 00 00 0O

Note that this is not associative! In addition, this models just the “local
preference” component of BGP. Not this must be combined with a
lexicographic product. Can we improve on this?
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Important properties for algebraic structures of the
form (S, @, F, 0, 1)

property | definition
D Va,be S, fe F : fla®b)=f(a) @ f(b)

INFL |Vae§, feF : a<f(a)
SINFL |Vae S, FEF :a#0 — a<f(a)
K Vabe S, feF : flay=1f(b) = a=0>b

Ko Va,be S, fe F : f(a)y=f(b) = (a=bVf(a)=0)
C Va,be S, feF : fla)=
Cs Va,be S, fe F : f(a)

(
f(b)
# f(b) = (f(a) =0V f(b) =0)
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Stratified Shortest-Paths Metrics

Metrics

(s, d) or oo

@ s+ oois astratum level in {0,1, 2,..., m—1},
@ dis a “shortest-paths” distance,
@ Routing metrics are compared lexicographically

(81, di) < (S2, o) <= (81 <S)V(S1=85ANd; <)
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Stratified Shortest-Paths Policies

Policy has form (f, d)
(f, d)(s, d') = (f(s), d+d")
(f, d)(c0)

(0.9)

where

(s, l‘):{ oo (ifs=00)

(s, t) (otherwise)
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Constraint on Policies

(f, d)

@ Either f is inflationary and 0 < d,
@ or fis strictly inflationary and 0 < d.

Why?

(S.INFL(S) V (INFL(S) A S.INFL(T))) = S.INFL(S x5 T).
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All Inflationary Policy Functions for Three Strata

o X x x * X Kk Kk K X
Km * * x % x x x
Q X X X x
NN B R R BN Ra R
|- ¥ Y — AN ¥R
ol NN AN AN 28388 ¥R

EcoauoT =~ N+~ 3> 3 X
Cw X x x
Kw** x x x x x
Q|x x x x * x X X X *
NN B BN ¥ B o R
NN ¥y a8 R
olleNeNoNoNoNoREE IR R e

©CQ 0T O+ DL - —mX —
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Almost shortest paths

~
8

interpretation
+0

+1

+2

+3
filter 2
filter 1
filter 1, 2
filter O
filter 0, 2
filter 0, 1

* % o+ o+ *+|O

%

¥R R ooy M= olo
g = =88 =88 mMN==
NENDENEIZE B NN

bl S D S T I e s S

a
i
r
X
b
e
f
s
t

w
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Shortest paths with filters, over INF3

A @

(a, 10) (a, 10) (s, 1)
@( (i, 1) \@: (aA)%

Note that the path 5, 4, 2, 1 with weight (1, 3) would be the globally }

best path from node 5 to node 1. But in this case, poor node 5 is left
with no path! The locally optimal solution has R(5, 1) = cc.
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Both D and Kj

This makes combined algebra distributive!

X %t —— =0 T O
288 MNE N =
2388838 NN

¥ M= =00 o0ooo

Why?

(D(S)AD(T)AKGH(S)) = D(Sx5T)
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BGP : standard view

@ 0 is the type of a downstream route,
@ 1 is the type of a peer route, and
@ 2 s the type of an upstream route.

N = OO

N g B
(SISO V)

f
|
o
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“Autonomous” policies

0 1 2||D Ky
f| 0 o0 ocof x %
h|1 1 ocof %

I |1 o0 ool x
o2 2 2| %
Pl2 2 ool *
ql2 ~© 2

rf2 oo oofl x x
tjoo 1 o *
uUujloco 2 2

Vi oo 2 o *
W/ oo oo 2 *
X|oo 0o oofl x %
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