
UNIVERSITY OF

CAMBRIDGE

Numerical Methods
(slides 1–198)

An eleven-lecture course

Dr. D J Greaves

Computer Laboratory, University of Cambridge

http://www.cl.cam.ac.uk/teaching/current/NumMethods

Easter 2014–15 (Rev0)

Numerical Methods 1 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

A Few Cautionary Tales

The main enemy of this course is the simple phrase

“the computer calculated it, so it must be right”.

We’re happy to be wary for integer programs, e.g. having unit tests to check

that

sorting [5,1,3,2] gives [1,2,3,5],

but then we suspend our belief for programs producing real-number values,

especially if they implement a “mathematical formula”.

Numerical Methods 2 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Global Warming (2)

Apocryphal story – Dr X has just produced a new climate modelling program.

Interviewer: what does it predict?

Dr X: Oh, the expected 2–4◦C rise in average temperatures by 2100.

Interviewer: is your figure robust?

Dr X: Oh yes, it only gives small variations in the result when any of the input

data is varied slightly. So far so good.

Interviewer: so you’re pretty confident about your modelling progam?

Dr X: Oh yes, indeed it gives results in the same range even if any of the input

arguments are randomly permuted . . .

Oh dear!

Numerical Methods 3 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Global Warming (3)

What could cause this sort or error?

• the wrong mathematical model of reality (most subject areas lack models

as precise and well-understood as Newtonian gravity)

• a parameterised model with parameters chosen to fit expected results

(‘over-fitting’)

• the model being very sensitive to input or parameter values

• the discretisation of the continuous model for computation

• the build-up or propagation of inaccuracies caused by the finite precision of

floating-point numbers

• plain old programming errors

We’ll only look at the last four, but don’t forget the first two.

Numerical Methods 4 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Real world examples

Find Kees Vuik’s web page “Computer Arithmetic Tragedies” for these and

more:

• Patriot missile interceptor fails to intercept due to 0.1 second being the

‘recurring decimal’ 0.00 1100 1100 . . .2 in binary (1991)

• Ariane 5 $500M firework display caused by overflow in converting 64-bit

floating-point number to 16-bit integer (1996)

• The Sleipner A offshore oil platform sank . . . post-accident investigation

traced the error to inaccurate finite element approximation of the linear

elastic model of the tricell (using the popular FDTD simulator NASTRAN).

The shear stresses were underestimated by 47% . . .

Learn from the mistakes of the past . . .

Numerical Methods 5 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Overall motto: threat minimisation

• Algorithms involving floating point (float and double in Java and C,

[misleadingly named] real in ML and Fortran) pose a significant threat to

the programmer or user.

• Learn to distrust your own näıve coding of such algorithms, and, even more

so, get to distrust others’.

• Start to think of ways of sanity checking (by human or machine) any

floating point value arising from a computation, library or package—unless

its documentation suggests an attention to detail at least that discussed

here (and even then treat with suspicion).

• Just because the “computer produces a numerical answer” doesn’t mean

this has any relationship to the ‘correct’ answer.

Here be dragons!

Numerical Methods 6 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

What’s this course about?

• How computers represent and calculate with ‘real number’ values.

• What problems occur due to the values only being finite (both range and

precision).

• How these problems add up until you get silly answers.

• How you can stop your programs and yourself from looking silly (and some

ideas on how to determine whether existing programs have been silly).

• Chaos and ill-conditionedness.

• Some well-known and widely-used numerical techniques.

• Knowing when to call in an expert—remember there is 50+ years of

knowledge on this and you only get 11 lectures from me.

Numerical Methods 7 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Part 1

Introduction/reminding you what you already

know

Numerical Methods 8 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Reprise: signed and unsigned integers

An 8-bit value such as 10001011 can naturally be interpreted as either a signed

number (27 + 23 + 21 + 20 = 139) or as a signed number

(−27 + 23 + 21 + 20 = −117).

This places the decimal (binary!?!) point at the right-hand end. It could also be

interpreted as a fixed-point number by imagining a decimal point elsewhere

(e.g. in the middle to get) 1000.1011; this would have value

23 + 2−1 + 2−3 + 2−4 = 811
16 = 8.6875.

(The above is an unsigned fixed-point value for illustration, normally we use

signed fixed-point values.)

Numerical Methods 9 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Fixed point values and saturating arithmetic

Fixed-point values are often useful (e.g. in low-power/embedded devices) but

they are prone to overflow. E.g. 2*10001011 = 00010110 so 2*8.6875 =

1.375!! One alternative is to make operations saturating so that 2*10001011 =

11111111 which can be useful (e.g. in digital signal processing of audio). Note

1111.11112 = 15.937510.

An alternative way to greatly reduce or avoid this sort of overflow is to allow

the decimal point to be determined at run-time (by another part of the value)

“floating point” instead of being fixed (independent of the value as above)

“fixed point” – the subject of this part of the course.

Numerical Methods 10 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Back to school

Scientific notation (from Wikipedia, the free encyclopedia)

In scientific notation, numbers are written using powers of ten in the form

a× 10b where b is an integer exponent and the coefficient a is any real number,

called the significand or mantissa.

In normalised form, a is chosen such that 1 ≤ a < 10. It is implicitly assumed

that scientific notation should always be normalised except during calculations

or when an unnormalised form is desired.

What Wikipedia should say: zero is problematic—its exponent doesn’t

matter and it can’t be put in normalised form.

Numerical Methods 11 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Back to school (2)

Steps for multiplication and division:

Given two numbers in scientific notation,

x0 = a0 × 10b0 x1 = a1 × 10b1

Multiplication and division;

x0 ∗ x1 = (a0 ∗ a1)× 10b0+b1 x0/x1 = (a0/a1)× 10b0−b1

Note that result is not guaranteed to be normalised even if inputs are: a0 ∗ a1
may now be between 1 and 100, and a0/a1 may be between 0.1 and 10 (both

at most one out!). E.g.

5.67× 10−5 ∗ 2.34× 102 ≈ 13.3× 10−3 = 1.33× 10−2

2.34× 102/5.67× 10−5 ≈ 0.413× 107 = 4.13× 106

Numerical Methods 12 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Back to school (3)

Addition and subtraction require the numbers to be represented using the

same exponent, normally the bigger of b0 and b1.

W.l.o.g. b0 > b1, so write x1 = (a1 ∗ 10b1−b0)× 10b0 (a shift!) and

add/subtract the mantissas.

x0 ± x1 = (a0 ± (a1 ∗ 10b1−b0))× 10b0

E.g.

2.34× 10−5 + 5.67× 10−6 = 2.34× 10−5 + 0.567× 10−5 ≈ 2.91× 10−5

A cancellation problem we will see more of:

2.34× 10−5 − 2.33× 10−5 = 0.01× 10−5 = 1.00× 10−7

When numbers reinforce (e.g. add with same-sign inputs) new mantissa is in

range [1, 20), when they cancel it is in range [0..10). After cancellation we may

require several shifts to normalise.

Numerical Methods 13 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Significant figures can mislead

When using scientific-form we often compute repeatedly keeping the same

number of digits in the mantissa. In science this is often the number of digits of

accuracy in the original inputs—hence the term (decimal) significant figures

(sig.figs. or sf).

This is risky for two reasons:

• As in the last example, there may be 3sf in the result of a computation but

little accuracy left.

• 1.01× 101 and 9.98× 100 are quite close, and both have 3sf, but changing

them by one ulp (‘unit in last place’) changes the value by nearly 1% (1

part in 101) in the former and about 0.1% (1 part in 998) in the latter.

Later we’ll prefer ‘relative error’.

Numerical Methods 14 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Significant figures can mislead (2)

Scientific form numbers (note unequal gaps)
log scale shows this clearly

✻

0.1

✻

0.2

✻
0.3

✻

0.4

✻

0.5

✻
0.6

✻✻

0.8

✻✻

1.0

✻

2.0

✻
3

✻

4

✻

5

✻
6
✻✻

8

✻✻

10

✻

20

✻
30

✻

40

✻

50

✻
60

✻✻

80

✻✻

100

You might prefer to say sig.figs.(4.56) = − log10 0.01/4.56.

So that sf (1.01) and sf (101) is about 3,

and sf (9.98) and sf (0.0000998) is nearly 4.

Numerical Methods 15 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Get your calculator out!

Scientific calculators use floating point arithmetic units.

Note that physical calculators often work in decimal, but calculator programs

(e.g. xcalc) often work in binary. Many interesting examples on this course

can be demonstrated on a calculator—the underlying problem is floating point

computation and näıve-programmer failure to understand it rather than

programming per se.

Amusing to try (computer output is red)

(1+ 1e20)− 1e20 = 0.000000 1+ (1e20− 1e20) = 1.000000

But everyone knows that (a+ b) + c = a+ (b+ c) (associativity) in maths and

hence (a+ b)− d = a+ (b− d) [just write d = −c]!!!

[This is a demonstration of what we will later define as underflow.]

Numerical Methods 16 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Get your calculator out (2)

How many sig.figs. does it work to/display [example is xcalc]?

1 / 9 = 0.11111111

<ans> - 0.11111111 = 1.111111e-09

<ans> - 1.111111e-9 = 1.059003e-16

<ans> - 1.059e-16 = 3.420001e-22

Seems to indicate 16sf calculated (16 ones before junk appears) and 7/8sf

displayed—note the endearing/buggy(?) habit of xcalc of displaying one fewer

sf when an exponent is displayed.

Stress test it:

sin 1e40 = 0.3415751

Does anyone believe this result? [Try your calculator/programs on it.]

Numerical Methods 17 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Computer Representation

A computer representation must be finite. If we allocate a fixed size of storage

for each then we need to

• fix a size of mantissa (sig.figs.)

• fix a size for exponent (exponent range)

We also need to agree what the number means, e.g. agreeing the base used by

the exponent.

Why “floating point”? Because the exponent logically determines where the

decimal point is placed within (or even outside) the mantissa. This originates as

an opposite of “fixed point” where a 32-bit integer might be treated as having

a decimal point between (say) bits 15 and 16.

Floating point can simple be thought of simply as (a subset of all possible)

values in scientific notation held in a computer.

Numerical Methods 18 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Computer Representation (2)

Nomenclature:

Given a number represented as βe × d0.d1 · · · dp−1 we call β the base (or radix)

and p the precision.

Since e will have a fixed-width finite encoding, its range must also be specified.

All contemporary, general purpose, digital machines use binary and keep β = 2.

For discussion:

1. Discover and explain a rule of thumb that relates the number of digits in a decimal

expression of a value with its binary length.

2. Consider whether (β = 2, p = 24) is less accurate than (β = 10, p = 10) (answer

coming up soon . . .).

3. The IBM/360 series of mainframes used β = 16 which gave some entertaining but

obsolete problems. How does its accuracy compare with β = 2 systems.

Numerical Methods 19 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Decimal or Binary?

Most computer arithmetic is in binary, as values are represented as 0’s and 1’s. However, floating point

values, even though they are represented as bits, can use β = 2 or β = 10.

Most computer programs use the former. However, to some extent it is non-intuitive for humans,

especially for fractional numbers (e.g. that 0.110 is recurring when expressed in binary).

Most calculators work in decimal,

β = 10, since they generally do as much

I/O as internal processing, but various

software calculators work in binary (see

xcalc above).

Charles Babbage’s machines also used

β = 10 which made debugging easier:

just read the value off the digit wheels

in each register!

Numerical Methods 20 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Aside: Spreadsheet Experiments

Microsoft Excel is a particular issue. It tries hard to give the illusion of having

floating point with 15 decimal digits, but internally it uses 64-bit floating point.

This gives rise to a fair bit of criticism and various users with jam on their faces.

Enter the following four items into the four cells named:

A1: 1.2E+200 C1: =A1+B1

B1: 1E+100 D1: =IF(A1=C1)

So far so good?

Can you adjust A1 or B1 so that C1 is displayed like A1 but D1 is false ?

Numerical Methods 21 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Long Multiplication - Using Broadside Addition

Long Multiply Radix 2 Long Multiply Radix 4
fun mpx1(x, y, c) =

if x=0 then c else

let val (x’, n) = (x div 2, x mod 2)

val y’ = y * 2

val c’ = case n of

0 => (c)

| 1 => (c+y)

in mpx1(x’, y’, c’) end

fun mpx2(x, y, c, carry) =

if x=0 andalso carry=0 then c else

let val (x’, n) = (x div 2, x mod 2 + carry)

val y’ = y * 2

val (carry’, c’) = case n of

0 => (0, c)

| 1 => (0, c+y)

| 2 => (1, c)

in mpx2(x’, y’, c’, carry’) end

fun booth(x, y, c, carry) =

if x=0 andalso carry=0 then c else

let val (x’, n) = (x div 4, x mod 4 + carry)

val y’ = y * 4

val (carry’, c’) = case n of

0 => (0, c)

| 1 => (0, c+y)

| 2 => (0, c+2*y)

| 3 => (1, c-y)

| 4 => (1, c)

in booth(x’, y’, c’, carry’)

end

// The mpx2 function does the same as mpx1

// but is styled to look like booth above.

Multiplying or dividing by powers of 2 uses shifts which are

‘free’ in binary hardware. Booth’s algorithm avoids multiplying by 3 using a negative

carry concept.
Broadside is a hardware term meaning doing all the bits in one operation (or clock cycle).

Exercises: Multidigit (long) multiplication is linear or quadratic in word length? Give the code for base/radix 4 multiplication without

Booth’s optimisation. (All exercises shown on slides are also be on the Exercise Sheet(s).)

Numerical Methods 22 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Standard Long Division Algorithm

fun divide N D =

let fun prescale p D = if N>D then prescale (p*2) (D*2) else (p, D)

val (p, D) = prescale 1 D (* left shift loop *)

fun mainloop N D p r =

if p=0 then r (* could also return remainder from N *)

else

(* Binary decision - it either goes or doesnt *)

let val (N, r) = if N >= D then (N-D, r+p) else (N, r)

in mainloop N (D div 2) (p div 2) r

end

in mainloop N D p 0

end

val divide = fn: int -> int -> int

divide 1000000 81;

val it = 12345: int

Exercise: Do these ‘long’ algorithms work with two’s complement numbers? In one or both arguments? If not what changes are needed?

What happens if we divide by zero?

Numerical Methods 23 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Numeric Base Conversions

Computers commonly have to convert between base 10 and base 2.

Early computers and many pocket calculators work internally in base 10 - saves

I/O errors.

COBOL programming language works in base 10 - avoids lost pennies.

Generally, we need the following four conversions:

1. Integer Input (ASCII Characters to Binary)

2. Integer Output (Binary to ASCII)

3. Floating Point Input - (left as an exercise)

4. Floating Point Output

An asymmetry between the input and algorithms arises owing to the computer

typically only having binary arithmetic.

Numerical Methods 24 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Integer Input (ASCII Characters to Binary)

fun atoi [] c = c

| atoi (h::t) c = atoi t (c*10 + ord h - ord #"0")

;

val atoi = fn: char list -> int -> int

atoi (explode "12345") 0;

val it = 12345: int

Method: Input characters are processed in order. The previous running total is

multipled by ten and the new digit added on.

Cost: Linear.

Numerical Methods 25 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Integer Output (Binary to ASCII)

val tens_table = Array.fromList [1,10,100,1000,10000,100000, ...];

fun bin2ascii d0 =

let fun scanup p =

if Array.sub(tens_table, p) > d0 then p-1 else scanup(p+1)

val p0 = scanup 0

fun digits d0 p =

if p<0 then [] else

let val d = d0 div Array.sub(tens_table, p)

val r = d0 - d * Array.sub(tens_table, p)

in chr(48 + d) :: digits r (p-1) end

in digits d0 p0 end

bin2ascii 1234;

val it = [#"1", #"2", #"3", #"4"]: char list

Integer output: this is a variant of the standard long division algorithm.

If x < 0, first print a minus sign and proceed with 0− x.

Exercise: Modify this code to avoid supressing all leading zeros in its special case.

Numerical Methods 26 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Floating Point Output: Double Precision to ASCII

If we want, say 4, significant figures:

1. scale the number so it is in the range 1000 to 9999

2. cast it to an integer

3. convert the integer to ASCII as normal, but either corporally insert a

decimal point or add a trailing exponent denotation.

We first will need some lookup tables:

val f_tens_table = Vector.fromList [1E0,1E1,1E2,1E3,1E4,1E5,1E6,1E7,1E8];

val bin_exps_table = [(1.0E32, 32), (1.0E16, 16), (1.0E8, 8),

(1.0E4, 4), (1.0E2, 2), (1.0E1, 1)];

val bin_fracs_table = [(1.0E~32, 32), (1.0E~16, 16), (1.0E~8, 8),

(1.0E~4, 4), (1.0E~2, 2), (1.0E~1, 1)];

Logarithmically larger tables will be needed for a larger input range.

[See demos/float-to-ascii.]

Numerical Methods 27 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Floating Point Output: Double Precision to ASCII (first half)

fun float_to_string precision d00 =

let val lower_bound = Vector.sub(f_tens_table, precision)

val upper_bound = Vector.sub(f_tens_table, precision+1)

val (d0, sign) = if d00 < 0.0 then (0.0-d00, [#"-"]) else (d00, [])

fun chop_upwards ((ratio, bitpos), (d0, exponent)) =

let val q = d0 * ratio

in if q < upper_bound then (q, exponent - bitpos) else (d0, exponent)

end

fun chop_downwards ((ratio, bitpos), (d0, exponent)) =

let val q = d0 * ratio

in if q > lower_bound then (q, exponent + bitpos) else (d0, exponent)

end

val (d0, exponent) = if d0 < lower_bound then foldl chop_upwards (d0, 0) bin_exps_table

else foldl chop_downwards (d0, 0) bin_fracs_table

val imant = floor d0 (* Convert mantissa to integer. *)

Numerical Methods 28 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Floating Point Output: Double Precision to ASCII (second half)

val exponent = exponent + precision

(* Decimal point will only move a certain distance: outside that range force scientific form. *)

val scientific_form = exponent > precision orelse exponent < 0

fun digits d0 p trailzero_supress =

if p<0 orelse (trailzero_supress andalso d0=0) then [] else

let val d = d0 div Array.sub(tens_table, p)

val r = d0 - d * Array.sub(tens_table, p)

val dot_time = (p = precision + (if scientific_form then 0 else 0-exponent))

val rest = digits r (p-1) (trailzero_supress orelse dot_time)

val rest = if dot_time then #"."::rest else rest (* render decimal point *)

in if d>9 then #"?" :: bin2ascii d0 @ #"!" :: rest else chr(ord(#"0") + d) :: rest end

val mantissa = digits imant precision false

val exponent = if scientific_form then #"e" :: bin2ascii exponent else []

in (d00, imant, implode(sign @ mantissa @ exponent))

end

Numerical Methods 29 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Floating Point Output: Double Precision to ASCII (4)

The key part is on the first page embodying the central iteration (successive

approximation) that scans one of the two lookup tables.

then there is the correction: exponent += precision;

finally we have a lightly modified int to ASCII render with decimal point.

Let’s test it:

map (float_to_string 4) [1.0, 10.0, 1.23456789, ~2.3E19, 4.5E~19];

> val it =

[(1.0, 10000, "1."), (10.0, 10000, "10."), (1.23456789, 12345, "1.2345"),

(~2.3E19, 23000, "-2.3e19"), (4.5E~19, 45000, "4.5e~19")]

Exercise: Explain why this code can handle the range 10±63. Is this sufficient for single and double precision IEEE?

Numerical Methods 30 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Part 2

Floating point representation

Numerical Methods 31 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Standards

In the past every manufacturer produced their own floating point hardware and

floating point programs gave different answers. IEEE standardisation fixed this.

There are two different IEEE standards for floating-point computation.

IEEE 754 is a binary standard that requires β = 2, p = 24 (number of mantissa

bits) for single precision and p = 53 for double precision. It also specifies the

precise layout of bits in a single and double precision.

[Edited quote from Goldberg.]

In 2008 it was augmented to include additional longer binary floating point

formats and also decimal floating formats.

IEEE 854 is more general and allows binary and decimal representation without

fixing the bit-level format.

Numerical Methods 32 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

IEEE 754 Floating Point Representation

Here I give the version used on x86 (similar issues arise as in the ordering of

bytes with an 32-bit integer).

Single precision: 32 bits (1+8+23), β = 2, p = 24

sign
31

expt
30 23

mantissa
22 0

Double precision: 64 bits (1+11+52), β = 2, p = 53

sign
63

expt
62 52

mantissa
51 0

Value represented is typically: (s ?−1 : 1) ∗ 1.mmmmmm ∗ 2eeeee.
Note hidden bit: 24 (or 53) sig.bits, only 23 (or 52) stored!

Numerical Methods 33 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Hidden bit and exponent representation

Advantage of base-2 (β = 2) exponent representation: all normalised numbers

start with a ’1’, so no need to store it.

Like base 10 where normalised numbers start 1..9, in base 2 they start 1..1.

Numerical Methods 34 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Hidden bit and exponent representation (2)

But: what about the number zero? Need to cheat, and while we’re at it we

create representations for infinity too. In single precision:

exponent exponent value represented

(binary) (decimal)

00000000 0 zero if mmmmm = 0

(‘denormalised number’ otherwise)

00000001 1 1.mmmmmm ∗ 2−126

.

01111111 127 1.mmmmmm ∗ 2−0 = 1.mmmmmm

10000000 128 1.mmmmmm ∗ 21
.

11111110 254 1.mmmmmm ∗ 2127
11111111 255 infinity if mmmmm = 0 (‘NaN’s otherwise)

Numerical Methods 35 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Digression (non-examinable)

IEEE define terms emin , emax delimiting the exponent range and programming

languages define constants like

#define FLT_MIN_EXP (-125)

#define FLT_MAX_EXP 128

whereas on the previous slide I listed the min/max exponent uses as

1.mmmmmm ∗ 2−126 to 1.mmmmmm ∗ 2127.

BEWARE: IEEE and ISO C write the above ranges as 0.1mmmmmm ∗ 2−125

to 0.1mmmmmm ∗ 2128 (so all p digits are after the decimal point) so all is

consistent, but remember this if you ever want to use FLT_MIN_EXP or

FLT_MAX_EXP.

I’ve kept to the more intuitive 1.mmmmm form in these notes.

Numerical Methods 36 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Hidden bit and exponent representation (3)

Double precision is similar, except that the 11-bit exponent field now gives

non-zero/non-infinity exponents ranging from 000 0000 0001 representing

2−1022 via 011 1111 1111 representing 20 to 111 1111 1110 representing 21023.

This representation is called “excess-127” (single) or “excess-1023” (double

precision).

Why use it?

Because it means that (for positive numbers, and ignoring NaNs) floating point

comparison is the same as integer comparison. Cool!

Why 127 not 128? The committee decided it gave a more symmetric number

range (see next slide).

Numerical Methods 37 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Solved exercises

What’s the smallest and biggest normalised numbers in single precision IEEE

floating point?

Biggest: exponent field is 0..255, with 254 representing 2127. The biggest

mantissa is 1.111...111 (24 bits in total, including the implicit leading one) so

1.111...111× 2127. Hence almost 2128 which is 28 ∗ 2120 or 256 ∗ 102412, i.e.
around 3 ∗ 1038.
FLT_MAX from <float.h> gives 3.40282347e+38f.

Smallest? That’s easy: −3.40282347e+38! OK, I meant smallest positive. I

get 1.000...000× 2−126 which is by similar reasoning around 16× 2−130 or

1.6× 10−38.

FLT_MIN from <float.h> gives 1.17549435e-38f.

[See demos/numrange float.]

Numerical Methods 38 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Solved exercises (2)

‘denormalised numbers’ can range down to 2−150 ≈ 1.401298e-45, but there is

little accuracy at this level.

And the precision of single precision? 223 is about 107, so in principle 7sf. (But

remember this is for representing a single number, operations will rapidly chew

away at this.)

And double precision? DBL MAX 1.79769313486231571e+308 and DBL MIN

2.22507385850720138e-308 with around 16sf.

How many single precision floating point numbers are there?

Answer: 2 signs * 254 exponents * 223 mantissas for normalised numbers plus 2

zeros plus 2 infinities (plus NaNs and denorms ...).

Numerical Methods 39 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Solved exercises (3)

Which values are representable exactly as normalised single precision floating

point numbers?

Legal Answer: ± ((223 + i)/223)× 2j where 0 ≤ i < 223 and −126 ≤ j ≤ 127

(because of hidden bit)

More Useful Answer: ± i×2j where 0 ≤ i < 224 and −126−23 ≤ j ≤ 127−23

(but strictly only right for j < −126 if we also include denormalised numbers):

Compare: what values are exactly representable in normalised 3sf decimal?

Answer: i× 10j where 100 ≤ i ≤ 999.

Numerical Methods 40 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Solved exercises (4)

So you mean 0.1 is not exactly representable?

Its nearest single precision IEEE number is the recurring ‘decimal’ 0x3dcccccd

(note round to nearest) i.e. 0 011 1101 1 100 1100 1100 1100 1100 1101 .

Decoded, this is 2−4 × 1.100 1100 · · · 11012, or
1
16 × (20 + 2−1 + 2−4 + 2−5 + · · ·+ 2−23).

It’s a geometric progression (that’s what ‘recurring’ means) so you can sum it

exactly, but just from the first two terms it’s clear it’s approximately 1.5/16.

This is the source of the Patriot missile bug.

Numerical Methods 41 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Dividing by a Constant: Example divide by ten.

In binary, one tenth is 0.0001100110011....

Divide a 32 bit unsigned integer by 10 by long multiplication by reciprocal using

the following hand-crafted code:

unsigned div10(unsigned int n)

{ unsigned int q;

q = (n >> 1) + (n >> 2); // Ultimately shifts of 4 and 5.

q = q + (q >> 4); // Replicate: 0.11 becomes 0.110011

q = q + (q >> 8); // 0.110011 becomes 0.110011001100110011

q = q + (q >> 16); // Now have 32 bit’s worth of product.

return q >> 3; // Doing this shift last of all

// gave better intermediate accuracy.

}

More on http://www.hackersdelight.org/divcMore.pdf

Numerical Methods 42 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Solved exercises (5)

BTW, So how many times does

for (f = 0.0; f < 1.0; f += 0.1) { C }

iterate? Might it differ if f is single/double?

NEVER count using floating point unless you really know what you’re doing

(and write a comment half-a-page long explaining to the ‘maintenance

programmer’ following you why this code works and why näıve changes are

likely to be risky).

[See demos/sixthcounting for a demo where float gets this accidentally right and

double gets it accidentally wrong.]

Numerical Methods 43 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Solved exercises (5)

How many sig. figs. do I have to print out a single-precision float to be able to

read it in again exactly?

Answer: The smallest (relative) gap is from 1.11...110 to 1.11...111, a difference

of about 1 part in 224. If this of the form 1.xxx× 10b when printed in decimal

then we need 9 sig.figs. (including the leading ‘1’, i.e. 8 after the decimal point

in scientific notation) as an ulp change is 1 part in 108 and 107 ≤ 224 ≤ 108.

Note that this is significantly more than the 7sf accuracy quoted earlier for float.

[But you may only need 8 sig.figs if the decimal starts with 9.xxx

[See demos/printsigfig.]

Numerical Methods 44 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Signed zeros, signed infinities

Signed zeros can make sense: if I repeatedly divide a positive number by two

until I get zero (‘underflow’) I might want to remember that it started positive,

similarly if I repeatedly double a number until I get overflow then I want a

signed infinity.

However, while differently-signed zeros compare equal, not all ‘obvious’

mathematical rules still hold:

int main() {

double a = 0, b = -a;

double ra = 1/a, rb = 1/b;

if (a == b && ra != rb)

printf("Ho hum a=%f == b=%f but 1/a=%f != 1/b=%f\n", a,b, ra,rb);

return 0; }

Gives:

Ho hum a=0.000000 == b=-0.000000 but 1/a=inf != 1/b=-inf

Numerical Methods 45 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Overflow Exceptions

Overflow is the main potential source of exception.

Using floating point, overflow occurs when an exponent is too large to be

stored.

Overflow exceptions most commonly arise in division and multiplication. Divide

by zero is a special case of overflow.

But addition and subtraction can lead to overflow. When ?

Whether to raise an exception or to continue with a NaN?: If we return

NaN it will persist under further manipulations and be visible in the output.

Underflow is normally ignored silently: whether the overall result is then poor is

down to the quality of the programming.

Numerical Methods 46 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Exceptions versus infinities and NaNs?

The alternatives are to give either a wrong value, or an exception.

An infinity (or a NaN) propagates ‘rationally’ through a calculation and enables

(e.g.) a matrix to show that it had a problem in calculating some elements, but

that other elements can still be OK.

Raising an exception is likely to abort the whole matrix computation and giving

wrong values is just plain dangerous.

The most common way to get a NaN is by calculating 0.0/0.0 (there’s no

obvious ‘better’ interpretation of this) and library calls like sqrt(-1) generally

also return NaNs (but results in scripting languages can return 0 + 1i if, unlike

Java, they are untyped or dynamically typed and so don’t need the result to fit

in a single floating point variable).

Numerical Methods 47 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

IEEE 754 History

Before IEEE 754 almost every computer had its own floating point format with

its own form of rounding – so floating point results differed from machine to

machine!

The IEEE standard largely solved this (in spite of mumblings “this is too

complex for hardware and is too slow” – now obviously proved false). In spite of

complaints (e.g. the two signed zeros which compare equal but which can

compare unequal after a sequence of operators) it has stood the test of time.

However, many programming language standards allow intermediate results in

expressions to be calculated at higher precision than the programmer requested

so f(a*b+c) and { float t=a*b; f(t+c); } may call f with different

values. (Sigh!)

Numerical Methods 48 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

IEEE 754 and Intel x86

Intel had the first implementation of IEEE 754 in its 8087 co-processor chip to

the 8086 (and drove quite a bit of the standardisation). However, while this x87

chip could implement the IEEE standard compiler writers and others used its

internal 80-bit format in ways forbidden by IEEE 754 (preferring speed over

accuracy!).

The SSE2 instruction set on modern Intel x86 architectures (Pentium and

Core 2) includes a separate (better) instruction set which better enables

compiler writers to generate fast (and IEEE-valid) floating-point code.

BEWARE: most modern x86 computers therefore have two floating point units!

This means that a given program for a Pentium (depending on whether it is

compiled for the SSE2 or x87 instruction set) can produce different answers; the

default often depends on whether the host computer is running in 32-bit mode

or 64-bit mode. (Sigh!)

Numerical Methods 49 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Part 3

Floating point operations

Numerical Methods 50 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

IEEE arithmetic

This is a very important slide.

IEEE basic operations (+,−, ∗, / are defined as follows):

Treat the operands (IEEE values) as precise, do perfect mathematical

operations on them (NB the result might not be representable as an IEEE

number, analogous to 7.47+7.48 in 3sf decimal). Round(*) this mathematical

value to the nearest representable IEEE number and store this as result. In the

event of a tie (e.g. the above decimal example) chose the value with an even

(i.e. zero) least significant bit.

[This last rule is statistically fairer than the “round down 0–4, round up 5–9”

which you learned in school. Don’t be tempted to believe the exactly 0.50000

case is rare!]

This is a very important slide.

[(*) See next slide]

Numerical Methods 51 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

IEEE Rounding

In addition to rounding prescribed above (which is the default behaviour) IEEE

requires there to be a global flag which can be set to one of 4 values:

Unbiased which rounds to the nearest value, if the number falls midway it is

rounded to the nearest value with an even (zero) least significant bit. This

mode is required to be default.

Towards zero

Towards positive infinity

Towards negative infinity

Be very sure you know what you are doing if you change the mode, or if you are

editing someone else’s code which exploits a non-default mode setting.

Numerical Methods 52 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Other mathematical operators?

Other mathematical operators are typically implemented in libraries. Examples

are sin, sqrt, log etc. It’s important to ask whether implementations of these

satisfy the IEEE requirements: e.g. does the sin function give the nearest

floating point number to the corresponding perfect mathematical operation’s

result when acting on the floating point operand treated as perfect? [This

would be a perfect-quality library with error within 0.5 ulp and still a research

problem for most functions.]

Or is some lesser quality offered? In this case a library (or package) is only as

good as the vendor’s careful explanation of what error bound the result is

accurate to. ±1 ulp is excellent.

But remember (see ‘ill-conditionedness’ later) that a more important practical issue

might be how a change of 1 ulp on the input(s) affects the output – and hence how

input error bars become output error bars.

Numerical Methods 53 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

The java.lang.Math libraries

Java (http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Math.html) has

quite well-specified math routines, e.g. for asin() “arc sine”

“Returns the arc sine of an angle, in the range of -pi/2 through pi/2. Special

cases:

• If the argument is NaN or its absolute value is greater than 1, then the

result is NaN.

• If the argument is zero, then the result is a zero with the same sign as the

argument.

A result must be within 1 ulp of the correctly rounded result

[perfect accuracy requires result within 0.5 ulp].

Results must be semi-monotonic:

[i.e. given that arc sine is monotonically increasing, this condition requires that

x < y implies asin(x) ≤ asin(y)]

Numerical Methods 54 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Unreported Errors in Floating Point Computations

Overflow is reported (exception or NaN).

When we use floating point, unreported errors (w.r.t. perfect mathematical

computation) essentially arise from two sources:

• quantisation errors arising from the inexact representation of constants in

the program and numbers read in as data. (Remember even 0.1 in decimal

cannot be represented exactly in as an IEEE value, just like 1/3 cannot be

represented exactly as a finite decimal.)

• rounding errors produced by (in principle) every IEEE operation.

These errors build up during a computation, and we wish to be able to get a

bound on them (so that we know how accurate our computation is).

(We’ll also shortly talk about underflow, cancellation and truncation errors.)

Numerical Methods 55 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Errors in Floating Point (2)

It is useful to identify two ways of measuring errors. Given some value a and an

approximation b of a, the

Absolute error is ǫ = |a− b|

Relative error is η =
|a− b|
|a|

[http://en.wikipedia.org/wiki/Approximation_error]

Numerical Methods 56 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Errors in Floating Point (3)

Of course, we don’t normally know the exact error in a program, because if we

did then we could calculate the floating point answer and add on this known

error to get a mathematically perfect answer!

So, when we say the “relative error is (say) 10−6” we mean that the true

answer lies within the range [(1− 10−6)v..(1 + 10−6)v]

x± ǫ is often used to represent any value in the range [x− ǫ..x+ ǫ].

This is the idea of “error bars” from the sciences.

Numerical Methods 57 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Worst-Case Errors in Floating Point Operations

Errors from +,−: these sum the absolute errors of their inputs

(x± ǫx) + (y ± ǫy) = (x+ y)± (ǫx + ǫy)

Errors from ∗, /: these sum the relative errors (if these are small)

(x(1± ηx)) ∗ (y(1± ηy)) = (x ∗ y)(1± (ηx + ηy)± ηxηy)

and we discount the ηxηy product as being negligible.

Beware: when addition or subtraction causes partial or total cancellation the

relative error of the result can be much larger than that of the operands.

Numerical Methods 58 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Random Walk Model for Error Accumulation

Summations 100 random Growth of relative error in p:

values each of ±1 float p = 1.0, x = x̂ + 0.0;

(N=100, a=1). for (i=0;i<100;i++) p=p * x;

If the steps are uncorrelated: expected sum is zero.

If the steps are uncorrelated: expected magnitude is a
√
N .

In the example, factor x was constant (possible correlated behaviour?).

Numerical Methods 59 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Error Amplification is Typically More Important!

Growth of relative error in p: The same computation

float p = 1.0, x = x̂ + 0; but x = x̂± ǫ

for (i=0;i<100;i++) p=p * x; (x̂ is not representable).

The first plots were for when xk is exactly representable (xk = x̂k).

For general x(1± η), final relative error is 100η [work it out yourself].

Simple worst-case analysis dominates random walk model.

Numerical Methods 60 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Gradual loss of significance

Consider the program (c.f. the calculator example earlier)

double x_magic = 10.0/9.0; // x = 1.111111111 ...

double x = x_magic;

for (i=0; i<30; i++)

{ printf("%e\n", x);

x = (x-1.0) * 10.0;

}

[Look at demos/loss sig output on the laptop]

Initially x has around 16sf of accuracy (IEEE double). After every cycle round

the loop it still stores 16sf, but the accuracy of the stored value reduces by 1sf

per iteration.

This is called “gradual loss of significance” and is in practice at least as much a

problem as overflow and underflow and much harder to identify.

Numerical Methods 61 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

What happened: Worst-Case Analysis

Assume x0 = x̂+ α.

Then we repeatedly do xn+1 := (xn − 1.0) ∗ 10.0
Subtract step: x has abs error α and 1.0 is exact, so resultant has abs error α.

Multiply step:

1. Convert abs to rel: we know x− 1 ≃ 0.111 so η = 1/0.111× α ≃ 10α

2. 10.0 is exact, so rel error from multiplication unchanged: η = 10α

3. Convert rel back to abs: value is approx 1.11 so ǫ = η = 10α

We accurately predict the factor of 10 growth in error.

Another starting value would overflow sooner, but the magic starting value

hides the problem.

Numerical Methods 62 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Machine Epsilon

Machine epsilon is defined as the difference between 1.0 and the smallest

representable number which is greater than one, i.e. 2−23 in single precision,

and 2−52 in double (in both cases β−(p−1)). ISO 9899 C says:

“the difference between 1 and the least value greater than 1 that is

representable in the given floating point type”

I.e. machine epsilon is 1 ulp for the representation of 1.0.

For IEEE arithmetic, the C library <float.h> defines

#define FLT_EPSILON 1.19209290e-7F

#define DBL_EPSILON 2.2204460492503131e-16

Numerical Methods 63 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Machine Epsilon (2)

Machine epsilon is useful as it gives an upper bound on the relative error caused

by getting a floating point number wrong by 1 ulp, and is therefore useful for

expressing errors independent of floating point size.

Floating point (β = 2, p = 3) numbers: macheps=0.25

0.0

· · · ✻

0.25

✻✻✻✻

0.5

✻
0.625

✻

0.75

✻
0.875

✻

1.0

✲✛ ✻
1.25

✻

1.5

✻
1.75

✻

2.0

✻
2.5

✻

3.0

(The relative error caused by being wrong by 1 ulp can be up to 50% smaller

than this, consider 1.5 or 1.9999.)

Numerical Methods 64 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Machine Epsilon (3)

Some sources give an alternative (bad) definition: “the smallest number which

when added to one gives a number greater than one”. (With

rounding-to-nearest this only needs to be slightly more than half of our machine

epsilon).

Microsoft MSDN documentation (Feb 2009) gets this wrong:

Constant Value Meaning

FLT EPSILON 1.192092896e-07F Smallest such that

1.0+FLT EPSILON !=1.0

The value is right by the C standard, but the explanation inconsistent with it –

due to rounding. Whoops:

float one = 1.0f, xeps = 0.7e-7f;

printf("%.7e + %.7e = %.7e\n", one, xeps, (float)(xeps+one));

===>>>> 1.0000000e+00 + 6.9999999e-08 = 1.0000001e+00

Numerical Methods 65 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Machine Epsilon (4)

Oh yes, the GNU C library documentation (Nov 2007) gets it wrong too:

FLT_EPSILON

This is the minimum positive floating point number of type

float such that 1.0 + FLT_EPSILON != 1.0 is true.

Again, the implemented value is right, but the explanation inconsistent with it.

Is the alternative definition ‘bad’? It’s sort-of justifiable as almost the maximum

quantisation error in ‘round-to-nearest’, but the ISO standards chose to use

“step between adjacent values” instead.

Numerical Methods 66 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Machine Epsilon (5) – Negative Epsilon

We defined machine epsilon as the difference between 1.0 and the smallest

representable number which is greater than one.

What about the difference between 1.0 and the greatest representable number

which is smaller than one?

In IEEE arithmetic this is exactly 50% of machine epsilon.

Why? Witching-hour effect. Let’s illustrate with precision of 5 binary places (4

stored). One is 20 × 1.0000, the next smallest number is 20 × 0.111111111 . . .

truncated to fit. But when we write this normalised it is 2−1 × 1.1111 and so

its ulp represents only half as much as the ulp in 20 × 1.0001.

Numerical Methods 67 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Revisiting sin 1e40

The answer given by xcalc earlier is totally bogus. Why?

1040 is stored (like all numbers) with a relative error of around machine epsilon.

(So changing the stored value by 1 ulp results in an absolute error of around

1040 ×machine epsilon.) Even for double (16sf), this absolute error of

representation is around 1024. But the sin function cycles every 2π. So we

can’t even represent which of many billions of cycles of sine that 1040 should be

in, let alone whether it has any sig.figs.!

On a decimal calculator 1040 is stored accurately, but I would need π to 50sf to

have 10sf left when I have range-reduced 1040 into the range [0, π/2]. So, who

can calculate sin 1e40? Volunteers?

Numerical Methods 68 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Part 4

Simple maths, simple programs

Numerical Methods 69 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Two Forms of Iteration

When calculating the sum to n we might use a loop:

xn =
n
∑

i=0

1

i+ π

s = 0;

for (int i=0; i<n; i++) s +=;

This is called a map-reduce: the work in the parallel steps is independent and

results are only combined at the end under a commutative and associative

operator.

We have a totally different style of iteration when finding the root of an

equation:

xn+1 =
A/xn + xn

2

The way that errors build up or diminish is very different.

Numerical Methods 70 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Non-iterative programs

Iterative programs need additional techniques, because the program may be

locally sensible, but a small representation or rounding error can slowly grow

over many iterations so as to render the result useless.

So let’s first consider a program with a fixed number of operations:

x =
−b±

√
b2 − 4ac

2a

Or in C/Java:

double root1(double a, double b, double c)

{ return (-b + sqrt(b*b - 4*a*c))/(2*a); }

double root2(double a, double b, double c)

{ return (-b - sqrt(b*b - 4*a*c))/(2*a); }

What could be wrong with this so-simple code?

Numerical Methods 71 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Solving a quadratic

Let’s try to make sure the relative error is small.

Most operations in x = −b±
√
b2−4ac
2a are multiply, divide, sqrt—these add little

to relative error (see earlier): unary negation is harmless too.

But there are two additions/subtractions: b2 − 4ac and −b±
√

(· · ·).

Cancellation in the former (b2 ≈ 4ac) is not too troublesome (why?), but

consider what happens if b2 ≫ 4ac. This causes the latter ± to be problematic

for one of the two roots.

Just consider b > 0 for now, then the problem root (the smaller one in

magnitude) is
−b+

√
b2 − 4ac

2a
.

Numerical Methods 72 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Getting the small root right

x =
−b+

√
b2 − 4ac

2a

=
−b+

√
b2 − 4ac

2a
.
−b−

√
b2 − 4ac

−b−
√
b2 − 4ac

=
−2c

b+
√
b2 − 4ac

These are all equal in maths, but the final expression computes the little root

much more accurately (no cancellation if b > 0).

But keep the big root calculation as

x =
−b−

√
b2 − 4ac

2a

Need to do a bit more (i.e. opposite) work if b < 0
[See demos/quadrat float.]

Numerical Methods 73 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Summing a Finite Series

We’ve already seen (a+ b) + c 6= a+ (b+ c) in general. So what’s the best way

to do (say)
n
∑

i=0

1

i+ π
?

Of course, while this formula mathematically sums to infinity for n = ∞, if we

calculate, using float

1

0 + π
+

1

1 + π
+ · · ·+ 1

i+ π
+ · · ·

until the sum stops growing we get 13.8492260 after 2097150 terms.

But is this correct? Is it the only answer?

[See demos/SumFwdBack.]

Numerical Methods 74 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Summing a Finite Series (2)

Previous slide said: using float with N = 2097150 we obtained

1

0 + π
+

1

1 + π
+ · · ·+ 1

N + π
= 13.8492260

But, by contrast

1

N + π
+ · · ·+ 1

1 + π
+

1

0 + π
= 13.5784464

Using double precision (64-bit floating point) we get:

• forward: 13.5788777897524611

• backward: 13.5788777897519921

So the backwards one seems better. But why?

Numerical Methods 75 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Summing a Finite Series (3)

When adding a+ b+ c it is generally more accurate to sum the smaller two

values and then add the third.

For example: Compare

(14 + 14) + 250 = 280 with

(250 + 14) + 14 = 270

when using 2sf decimal – and carefully note where rounding happens.

So summing backwards is best for the (decreasing) series in the previous slide.

Numerical Methods 76 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Summing a Finite Series (4)

General tips for an accurate result:

• Sum starting from smallest

• Even better, take the two smallest elements and replace them with their

sum (repeat until just one left).

• If some numbers are negative, add them with similar-magnitude positive

ones first (this reduces their magnitude without losing accuracy -

subsequent steps are likely to underflow less).

Numerical Methods 77 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Summing a Finite Series (5)

A neat general algorithm (non-examinable) is Kahan’s summation algorithm:

http://en.wikipedia.org/wiki/Kahan_summation_algorithm

This uses a second variable which approximates the error in the previous step

which can then be used to compensate in the next step.

For our running example, using a pair of single precision variables it yields:

• Kahan forward: 13.5788774

• Kahan backward: 13.5788774

which is within one ulp of the double sum 13.57887778975. . .

A chatty article on summing can be found in Dr Dobb’s Journal:

http://www.ddj.com/cpp/184403224

[demos/SumFwdBack on the course website.]

Numerical Methods 78 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Part 5

Infinitary/limiting computations

Numerical Methods 79 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Rounding versus Truncation Error

Many mathematical processes are infinitary, e.g. limit-taking (including

differentiation, integration, infinite series), and iteration towards a solution.

There are now two logically distinct forms of error in our calculations:

Rounding error the error we get by using finite arithmetic during a

computation. [We’ve talked about this and input quantisation error until now.]

Truncation error (a.k.a. discretisation error) the error we get by stopping an

infinitary process after a finite point. [This is new]

Note the general antagonism: the finer the mathematical approximation the

more operations which need to be done, and hence the worse the accumulated

error. Need to compromise, or really clever algorithms (beyond this course).

Numerical Methods 80 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Illustration—differentiation

Suppose we have a nice civilised function f (we’re not even going to look at

malicious ones). By civilised I mean smooth (derivatives exist) and f(x), f ′(x)

and f ′′(x) are around 1 (i.e. between, say, 0.1 and 10 rather than 1015 or 10−15

or, even worse, 0.0).

Let’s suppose we want to calculate an approximation to f ′(x) at x = 1.0 given

only the code for f .

Mathematically, we define

f ′(x) = lim
h→0

(

f(x+ h)− f(x)

h

)

So, we just calculate (f(x+ h)− f(x))/h, don’t we?

Well, just how do we choose h? Does it matter?

Numerical Methods 81 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Illustration—differentiation (2)

The maths for f ′(x) says take the limit as h tends to zero. But if h is smaller

than machine epsilon (2−23 for float and 2−52 for double) then, for x about

1, x+ h will compute to the same value as x. So f(x+ h)− f(x) will evaluate

to zero!

There’s a more subtle point too: if h is small then f(x+ h)− f(x) will produce

lots of cancelling (e.g. 1.259− 1.257) hence a high relative error (few sig.figs.

in the result). ‘Rounding error.’

But if h is too big, we also lose: e.g. dx2/dx at 1 should be 2, but taking h = 1

we get (22− 12)/1 = 3.0. Again a high relative error (few sig.figs. in the result).

‘Truncation error.’

Numerical Methods 82 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Illustration—differentiation (3)

Answer: the two errors vary oppositely w.r.t. h, so compromise by making the

two errors of the same order to minimise their total effect.

The truncation error can be calculated by Taylor:

f(x+ h) = f(x) + hf ′(x) + h2f ′′(x)/2 +O(h3)

and it works out as approximately hf ′′(x)/2 [check it yourself],

i.e. it is roughly h given the assumption on f ′′ being around 1.

Numerical Methods 83 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Illustration—differentiation (4)

For rounding error use Taylor again, and allow a minimal error of macheps to

creep into f and get (remember we’re also assuming f(x) and f ′(x) is around

1, and we’ll write macheps for machine epsilon):

(f(x+ h)− f(x))/h = (f(x) + hf ′(x)±macheps − f(x))/h

= 1±macheps/h

So the rounding error is macheps/h.

Equating rounding and truncation errors gives h = macheps/h, i.e.

h =
√
macheps (around 3.10−4 for single precision and 10−8 for double).

[See demos/DiffFloat for a program to verify this—note the truncation error is fairly

predictable, but the rounding error is “anywhere in an error-bar”]

Numerical Methods 84 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Illustration—differentiation (5)

The Standard ML example in Wikipedia quotes an alternative form of

differentiation:
f(x+ h)− f(x− h)

2h

But, applying Taylor’s approximation as above to this function gives a

truncation error of

h2f ′′′(x)/3!

The rounding error remains at about macheps/h.

Now, equating truncation and rounding error as above means that say

h = 3
√
macheps is a good choice for h.

Numerical Methods 85 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Illustration—differentiation (6)

There is a serious point in discussing the two methods of differentiation as it

illustrates an important concept.

Usually when finitely approximating some limiting process there is a number like

h which is small, or a number n which is large. Sometimes both occur, e.g.

∫ 1

0
f(x) ≈ 1

n

n
∑

i=1

f(i/n) where h =
1

n
.

Often there are multiple algorithms which mathematically have the same limit

(see the two differentiation examples above), but which have different rates of

approaching the limit (in addition to possibly different rounding error

accumulation which we’re not considering at the moment).

Numerical Methods 86 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Illustration—differentiation (7)

The way in which truncation error is affected by reducing h (or increasing n) is

called the order of the algorithm w.r.t. that parameter (or more precisely the

mathematics on which the algorithm is based).

For example, (f(x+ h)− f(x))/h is a first-order method of approximating

derivatives of smooth function (halving h halves the truncation error.)

On the other hand, (f(x+ h)− f(x− h))/2h is a second-order

method—halving h divides the truncation error by 4.

A large amount of effort over the past 50 years has been invested in finding

techniques which give higher-order methods so a relatively large h can be used

without incurring excessive truncation error (and incidentally, this often reduces

rounding error too).

Don’t assume you can outguess the experts!

Numerical Methods 87 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Root Finding

Commonly we want to find x such that f(x) = 0.

The Bisection Method: a form of successive approximation, is a simple and

robust approach.

1. Choose initial values a, b such that sgn(f(a)) != sgn(f(b))

2. Find mid point c = (a+b)/2;

3. If |f(c)| < desired_accuracy then stop;

4. If sgn(f(c)) == sgn(f(a)) a=c; else b=c;

5. goto 2.

The absolute error is halved at each step so it has linear convergence.

Numerical Methods 88 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

An Example of Convergence Iteration.

Consider the “golden ratio” φ = (1 +
√
5)/2 ≈ 1.618. It satisfies φ2 = φ+ 1.

So, supposing we didn’t know how to solve quadratics, we could re-write this as

“φ is the solution of x =
√
x+ 1”.

Numerically, we could start with x0 = 2 (say) and then set xn+1 =
√
xn + 1,

and watch how the xn evolve (an iteration) . . .

Numerical Methods 89 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Golden ratio iteration

i x err err/prev.err

1 1.7320508075688772 1.1402e-01

2 1.6528916502810695 3.4858e-02 3.0572e-01

3 1.6287699807772333 1.0736e-02 3.0800e-01

4 1.6213481984993949 3.3142e-03 3.0870e-01

5 1.6190578119694785 1.0238e-03 3.0892e-01

. . .

26 1.6180339887499147 1.9762e-14 3.0690e-01

27 1.6180339887499009 5.9952e-15 3.0337e-01

28 1.6180339887498967 1.7764e-15 2.9630e-01

29 1.6180339887498953 4.4409e-16 2.5000e-01

30 1.6180339887498949 0.0000e+00 0.0000e+00

31 1.6180339887498949 0.0000e+00 nan

32 1.6180339887498949 0.0000e+00 nan

Numerical Methods 90 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Golden ratio iteration (2)

What we found was fairly typical (at least near a solution). The error ǫn

(defined to be xn − φ) reduced by a constant fraction each iteration.

This can be seen by expressing ǫn+1 in terms of ǫn:

ǫn+1 = xn+1 − φ =
√
xn + 1− φ

=
√

ǫn + φ+ 1− φ

=
√

φ+ 1

√

1 +
ǫn

φ+ 1
− φ

≈
√

φ+ 1

(

1 +
1

2
.

ǫn
φ+ 1

)

− φ (Taylor)

=
1

2
.

ǫn√
φ+ 1

=
ǫn
2φ

(φ =
√
φ+ 1)

≈ 0.3ǫn

I.E. first-order convergence.

Numerical Methods 91 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Golden ratio iteration (3)

The termination criterion: here we were lucky. We can show mathematically

that if xn > φ then φ ≤ xn+1 ≤ xn, so a suitable termination criterion is

xn+1 ≥ xn.

In general we don’t have such a nice property, so we terminate when

|xn+1 − xn| < δ for some prescribed threshold δ.

Nomenclature:

When ǫn+1 = kǫn we say that the iteration exhibits “first-order convergence”.

For the iteration xn+1 = f(xn) then k is merely f ′(σ) where σ is the solution

of σ = f(σ) to which iteration is converging.

For the example iteration this was 1/2φ.

Numerical Methods 92 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Golden ratio iteration (4)

What if, instead of writing φ2 = φ+ 1 as the iteration xn+1 =
√
xn + 1, we

had instead written it as xn+1 = x2n − 1?

Putting g(x) = x2 − 1, we have g′(φ) = 2φ ≈ 3.236. Does this mean that the

error increases: ǫn+1 ≈ 3.236ǫn?

[See demos/Golden and demos/GoldenBad]

Numerical Methods 93 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Golden ratio iteration (5)

Yes! This is a bad iteration (magnifies errors).

Putting x0 = φ+ 10−16 computes xi as below:

i x err err/prev.err

1 1.6180339887498951 2.2204e-16

2 1.6180339887498958 8.8818e-16 4.0000e+00

3 1.6180339887498978 2.8866e-15 3.2500e+00

4 1.6180339887499045 9.5479e-15 3.3077e+00

5 1.6180339887499260 3.1086e-14 3.2558e+00

6 1.6180339887499957 1.0081e-13 3.2429e+00

7 1.6180339887502213 3.2641e-13 3.2379e+00

. . .

32 3.9828994989829472 2.3649e+00 3.8503e+00

33 14.8634884189986121 1.3245e+01 5.6009e+00

34 219.9232879817058688 2.1831e+02 1.6482e+01

Numerical Methods 94 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Limit Cycles

An iteration may enter an infinite loop called a Limit Cycle.

1. This may be mathematically correct (e.g. Newton iteration of a pseudo

root where the function just fails to kiss the x-axis).

2. It may arise from discrete (and non-monotone) floating point details.

Where is my beautiful root?

Numerical Methods 95 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Termination Condition Summary

When should we stop our iteration ?

1. After a pre-determined cycle count limit ?

2. When two iterations result in the same value?

3. When the root moves less than a given relative amount ?

4. When the error stops decreasing ? (When back substitution is cheap.)

5. When error is within a pre-determined tolerance?

Numerical Methods 96 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Iteration issues

• Choose your iteration well.

• Determine a termination criterion.

For real-world equations (possibly in multi-dimensional space) neither of these

are easy and it may well be best to consult an expert or use an off-the-shelf

package.

Numerical Methods 97 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Newton–Raphson

Given an equation of the form f(x) = 0 then the Newton-Raphson iteration

improves an initial estimate x0 of the root by repeatedly setting

xn+1 = xn − f(xn)

f ′(xn)

See http://en.wikipedia.org/wiki/Newton’s_method for geometrical

intuition – intersection of a tangent with the x-axis.

Numerical Methods 98 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Newton–Raphson (2)

Letting σ be the root of f(x) which we hope to converge to, and putting

ǫn = xn − σ as usual gives:

ǫn+1 = xn+1 − σ = xn − f(xn)

f ′(xn)
− σ = ǫn − f(xn)

f ′(xn)

= ǫn − f(σ + ǫn)

f ′(σ + ǫn)

= ǫn − f(σ) + ǫnf
′(σ) + ǫ2nf

′′(σ)/2 +O(ǫ3n)

f ′(σ) + ǫnf ′′(σ) +O(ǫ2n)

= ǫn − ǫn
f ′(σ) + ǫnf

′′(σ)/2 +O(ǫ2n)

f ′(σ) + ǫnf ′′(σ) +O(ǫ2n)

≈ ǫ2n
f ′′(σ)
2f ′(σ)

+O(ǫ3n) (by Taylor expansion)

This is quadratic convergence.

Numerical Methods 99 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Newton–Raphson (3)

Pros and Cons:

• Quadratic convergence means that the number of decimal (or binary) digits

doubles every iteration

• Problems if we start with |f ′(x0)| being small

• (even possibility of looping)

• Behaves badly near multiple roots.

Numerical Methods 100 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Summing a Taylor series

Various problems can be solved by summing a Taylor series, e.g.

sin(x) = x− x3

3!
+

x5

5!
− x7

7!
+ · · ·

Mathematically, this is as nice as you can get—it unconditionally converges

everywhere. However, computationally things are trickier.

Numerical Methods 101 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Summing a Taylor series (2)

Trickinesses:

• How many terms? [stopping early gives truncation error]

• Large cancelling intermediate terms can cause loss of precision [hence

rounding error]

e.g. the biggest term in sin(15) [radians] is over -334864 giving (in single

precision float) a result with only 1 sig.fig.

Thin at one end, getting ever so much fatter in the middle, and then thin at the other end!

[See demos/SinSeries.]

Numerical Methods 102 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Summing a Taylor series (3)

Solution:

• Do range reduction—use identities to reduce the argument to the range

[0, π/2] or even [0, π/4]. However: this might need a lot of work to make

sin(1040) or sin(2100) work (since we need π to a large accuracy).

• Now we can choose a fixed number of iterations and unroll the loop

(conditional branches can be slow in pipelined architectures), because we’re

now just evaluating a polynomial.

Numerical Methods 103 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Summing a Taylor series (4)

If we sum a series up to terms in xn, i.e. we compute

i=n
∑

i=0

aix
i

then the first missing term will by in xn+1 (or xn+2 for sin(x)).

This will be the dominant error term (i.e. most of the truncation error),at least

for small x.

However, xn+1 is unpleasant – it is very very small near the origin but its

maximum near the ends of the input range can be thousands of times bigger.

Numerical Methods 104 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Commonly-used Quadrature Techniques (secondary school revision?)

Commonly we need a numerical approach to integrating a function between

definite limits. In numerical analysis, methods for doing this are called

Quadrature techniques.

Generally we fit some

spline to the data and

find the area under the

spline.

1. Mid-point Rule - puts a horizontal line at each ordinate to make rectangular

strips,

2. Trapezium Rule - uses an appropriate gradiant straight line through each

ordinate,

3. Simpson’s Rule - fits a quadratic at each ordinate,

4. and clearly higher-order techniques are a logical extension...

Numerical Methods 105 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Lagrange Interpolation

Information transform theory tells us we can fit an nth degree polynomial

though the n = k + 1 distinct points: (x0, y0), . . . , (xj , yj), . . . , (xk, yk).

Lagrange does this with the (obvious) linear combination

L(x) =
k
∑

j=0

yjℓj(x)

ℓj(x) =
m 6=j
∏

0≤m≤k

x− xm
xj − xm

=
(x− x0)

(xj − x0)
· · · (x− xj−1)

(xj − xj−1)

(x− xj+1)

(xj − xj+1)
· · · (x− xk)

(xj − xk)
,

The li are an orthogonal basis set: one being unity and the remainder zero at

each datum.

Problem: Errors can be large at the edges. Fourier works well with a periodic

sequence (that has no edges!).

[See demos/poly.]

Numerical Methods 106 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Splines and Knots

Splining: Fitting a function to a region of data such that it smoothly joins up

with the next region.

Simpson’s quadrature rule returns the area under a quadratic spline of the data.

If we start a new polynomial every k points we will generally have a

discontinuity in the first derivative upwards.

Fitting cubics through four

points with one point shared

gives a continuous function

with a sharp corner!

If we overlap our splines we get smoother joins (Bezier Graphics next year).

Polynomial Basis Splines (B-Splines): May be lectured if time permits but non-examinable this year. This material is just an aside to

demonstrate using a Chebyshev basis can be better than a naive approach.

Numerical Methods 107 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Poor Interpolation

The function f(x) = 1/(1 + x2) is notoriously poor under simplistic (linearly

spaced (cardinal) Lagrange) interpolation.

If we fit an 11th-order poly-

nominal through the 11

points ±5,±4...0 we see

large errors.

Dashed is the function.

Solid is our polynomial inter-

polation.

Numerical Methods 108 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Better Interpolation

Using Chebyshev knot spacing (linear cosine) we get a much better fit.

From ”Numerical Methods for Special Functions” by Amparo Gil, Javier Segura, and Nico Temme.

Numerical Methods 109 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Summing a Taylor series (5)

Using Chebyshev Polynomials we achieve Power Series Economy.

The total error in a Taylor expansion is re-distributed from the edges of the

input range to throughout the input range.

Chebyshev orthogonal basis func-

tions:

T0(x) = 1

T1(x) = x

T2(x) = 2x2
− 1

T3(x) = 4x3
− 3x

T4(x) = 8x4
− 8x2 + 1

Td(x) = 2xTd−1(x)− Td−2(x)

Conversely, any monominal can be

expressed:

1 = T0

x = T1

x2 = (T0 + T2)/2

x3 = (3T1 + T3)/4

x4 = O(T4)...

∀n : −1 ≤ x ≤ +1 =⇒ −1 ≤ Tn(x) ≤ +1

[See demos/chebyshev]

Numerical Methods 110 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Summing a Taylor series (5b)

If we write our function as a linear sum of Chebyshev polynomials it turns out

we can simply delete the last few terms for the same accuracy as delivered by

Taylor.

f(x) ≈
∑

i

aiTi(x)

(For those good at maths, but not examinable in this course: because the

Chebyshev polynomials are an orthogonal basis set we can find their coefficients

using the normal inner-product method as used, say, in Fourier transforms.)

We then simply collate on powers of x to get regular polynomial coefficients

from the Chebyshev expanion.

The new coefficients are actually just small adjustments of Taylor’s values.

Computation then proceeds identically.

The Chebyshev basis will be provided if needed for examinations.

Numerical Methods 111 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Summing a Taylor series (6)

Run the Matlab/Octave file demos/poly.m from the course web-site to explore

how careless factorisation of polynomials can cause noise.

y0(x) = (x− 1)7

y1(x) = x7 − 7x6 + 21x5 − 35x4 + 35x3 − 21x2 + 7x− 1

Exercise: compare the

roughness in the plot to

your own estimate of the

absolute error.

Numerical Methods 112 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Real Example: Compute Taylor Series for Sine

fun sine x =

let sq = - x * x

let sine1 n sofar diff =

let diff = (diff * sq / (n * (n+1))

let x = diff + ans

in if diff < margin then return x else sine1 (n+2) x diff

in sine1 2 x x

sin(x) = x− x3

6
+

x5

120
− ...

But we cannot practically compute Chebyshev coefficients as we go. These must be

precomputed and stored in a table.

Numerical Methods 113 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

How accurate do you want to be ? 1974 Sinclair Scientific Calculator

http://www.hackersdelight.org/

Total ROM used: a mere 320 words.

http://righto.com/sinclair

This page talks about how the 1974 Sinclair Scientific calculator was written,

including recreating the source code in its entirety (and how logs, trig, and so

on were coded and why). Lots of gems, e.g., the use of 0 and 5 to represent

positive and negative sign (since 0+0=0 and 5+5=0). My favourite gem of all:

‘Scientific calculators usually provide constants such as e and but there was no

space in the ROM for these constants. The Sinclair Scientific used the brilliant

solution of printing the constants on the calculator’s case - the user could enter

the constant manually if needed.’

Numerical Methods 114 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

CORDIC (Volder’s Algorithm)

CORDIC - COordinate Rotation DIgital Computer.

CORDIC became widely used in calculators and PCs of the 70’s when the

multiplications needed for Taylor’s expansion were too slow.

We can find sine and cosine of Θ by rotating the unit vector (1, 0).





cosΘ

sinΘ



 =





cosα0 − sinα0

sinα0 cosα0









cosα1 − sinα1

sinα1 cosα1



 . . .





cosαn − sinαn

sinαn cosαn









1

0





Θ =
∑

i

αi

Basis: successively subdivide the rotation into a composition of easy-to-multiply

rotations until we reach desired precision.

[See demos/cordic]

Numerical Methods 115 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

CORDIC (Volder’s Algorithm) (2)

cosα ≡ 1√
1 + tan2 α

sinα ≡ tanα√
1 + tan2 α

Ri =
1

√

1 + tan2 αi





1 − tanαi

tanαi 1





Use a precomputed table containing decreasing values of αi such that each

rotation matrix contains only negative powers of two.

The array multiplications are then easy since all the multiplying can be done

with bit shifts.





1 −0.5

0.5 1









1

0



 =





1

0.5





.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

(1, 0.5)

26.565

.5

The subdivisions are: tan 26.565◦ ≈ 0.5, tan 14.036◦ ≈ 0.25, ...

Numerical Methods 116 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

CORDIC (Volder’s Algorithm) (3)

Handle the scalar coefficients using a proper multiply with lookup value from a

second, precomputed table. scales[n] =
∏n

i=0
1√

1+tan2 αi

.

Or if using a fixed number

of iterations, start off with

a prescaled constant instead

of 1.0.

void cordic(int theta)

{ // http://www.dcs.gla.ac.uk/~jhw/cordic/

int x=607252935 /*prescaled constant*/, y=0; // w.r.t denominator of 10^9

for (int k=0; k<32; ++k)

{

int d = theta >= 0 ? 0 : -1;

int tx = x - (((y>>k) ^ d) - d);

int ty = y + (((x>>k) ^ d) - d);

theta = theta - ((cordic_ctab[k] ^ d) - d);

x = tx; y = ty;

}

print("Ans=(%i,%i)/10^9", x, y);

}

32 iterations will (almost?) ensure 10 significant figures.

Exercises: Given that tan−1(x) ≈ x − x3/3 explain why we need at least 30 and potentially 40 for this accuracy. Is it a good job

that arctan 0.5 > 22.5 or does this not matter? How would you use CORDIC for angles greater than 45 degrees?

Numerical Methods 117 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

How accurate do you want to be?

If you want to implement (say) sin(x)

double sin(double x)

with the same rules as the IEEE basic operations (the result must be the

nearest IEEE representable number to the mathematical result when treating

the argument as precise) then this can require a truly Herculean effort. (You’ll

certainly need to do much of its internal computation in higher precision than

its result.)

On the other hand, if you just want a function which has known error properties

(e.g. correct apart from the last 2 sig.figs.) and you may not mind oddities

(e.g. your implementation of sine not being monotonic in the first quadrant)

then the techniques here suffice.

Numerical Methods 118 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

How accurate do you want to be? (2)

Sometimes, e.g. writing a video game, profiling may show that the time taken

in some floating point routine like sqrt may be slowing down the number of

frames per second below what you would like, Then, and only then, you could

consider alternatives, e.g. rewriting your code to avoid using sqrt or replacing

calls to the system provided (perhaps accurate and slow) routine with calls to a

faster but less accurate one.

Numerical Methods 119 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

How accurate do you want to be? (3)

Chris Lomont (http://www.lomont.org/Math/Papers/2003/InvSqrt.pdf)

writes [fun, not examinable]:

“Computing reciprocal square roots is necessary in many applications,

such as vector normalization in video games. Often, some loss of

precision is acceptable for a large increase in speed.”

He wanted to get the frame rate up in a video game and considers:

Numerical Methods 120 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

How accurate do you want to be? (4)

float InvSqrt(float x){

float xhalf = 0.5f*x;

int i = *(int*)&x; // get bits for floating value

i = 0x5f3759df - (i>>1); // hack giving initial guess y0

x = *(float*)&i; // convert bits back to float

x = x*(1.5f-xhalf*x*x); // Newton step, repeat for more accuracy

return x;}

His testing in Visual C++.NET showed the code above to be roughly 4 times

faster than the naive (float)(1.0/sqrt(x)), and the maximum relative error

over all floating point numbers was 0.00175228. [Invisible in game graphics, but

clearly numerically nothing to write home about.]

Moral: sometimes floating-point knowledge can rescue speed problems.

Numerical Methods 121 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Why do I use float so much . . .

. . . and is it recommended? [No!]

I use single precision because the maths uses smaller numbers (223 instead of

252) and so I can use double precision for comparison—I can also use smaller

programs/numbers to exhibit the flaws inherent in floating point. But for most

practical problems I would recommend you use double almost exclusively.

Why: smaller errors, often no or little speed penalty.

What’s the exception: floating point arrays where the size matters and where

(i) the accuracy lost in the storing/reloading process is manageable and

analysable and (ii) the reduced exponent range is not a problem.

Numerical Methods 122 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Notes for C users

• float is very much a second class type like char and short.

• Constants 1.1 are type double unless you ask 1.1f.

• floats are implicitly converted to doubles at various points (e.g. for

‘vararg’ functions like printf).

• The ISO/ANSI C standard says that a computation involving only floats

may be done at type double, so f and g in

float f(float x, float y) { return (x+y)+1.0f; }

float g(float x, float y) { float t = (x+y); return t+1.0f; }

may give different results.

So: use double rather than float whenever possible for language as well as

numerical reasons. (Large arrays are really the only thing worth discussing.)

Numerical Methods 123 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

How do errors add up in practice?

During a computation rounding errors will accumulate, and in the worst case

will often approach the error bounds we have calculated.

However, remember that IEEE rounding was carefully arranged to be

statistically unbiased—so for many programs (and inputs) the errors from each

operation behave more like independent random errors of mean zero and

standard deviation σ.

So, often one finds a k-operations program produces errors of around

macheps.
√
k rather than macheps.k/2 (because independent random variables’

variances sum).

BEWARE: just because the errors tend to cancel for some inputs does not mean

that they will do so for all! Trust bounds rather than experiment.

A summary slide. We have seen the random walks earlier now.

Numerical Methods 124 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Part 6

Some nastier issues

Numerical Methods 125 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Ill-conditionedness

Consider solving

x+ 3y = 17

2x− y = 6
i.e.





1 3

2 −1









x

y



 =





17

6





Multiply first equation (or matrix row) by 2 and subtract giving

0x+ 7y = 34− 6

Hence y = 4 and (so) x = 5. Geometrically, this just means finding where the

two lines given by x+ 3y = 17 and 2x− y = 6 intersect. In this case things are

all nice because the first line has slope -3, and the second line slope 1/2 and so

they are nearly at right angles to each other.

Numerical Methods 126 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Ill-conditionedness (2)

Remember, in general, that if





a b

c d









x

y



 =





p

q





Then





x

y



 =





a b

c d





−1



p

q



 =
1

ad− bc





d −b

−c a









p

q





Oh, and look, there’s a numerically-suspect calculation of ad− bc !

So there are problems if ad− bc is small (not absolutely small, consider

a = b = d = 10−10, c = −10−10, but relatively small e.g. w.r.t.

a2 + b2 + c2 + d2). The lines then are nearly parallel.

Numerical Methods 127 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Ill-conditionedness (3)

Consider the harmless-looking





1.7711 1.0946

0.6765 0.4181









x

y



 =





p

q





Solving we get





x

y



 =





41810000 −109460000

−67650000 177110000









p

q





Big numbers from nowhere! Small absolute errors in p or q will be greatly

amplified in x and y.

Consider this geometrically: we are projecting 2-D to nearly 1-D: so getting

back will be tricky.

Numerical Methods 128 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Ill-conditionedness (4)

The previous slide was craftily constructed from Fibonacci numbers.

f1 = f2 = 1, fn = fn−1 + fn−2 for n > 2

which means that taking a = fn, b = fn−1, c = fn−2, d = fn−3 gives

ad− bc = 1 (and this ‘1’ only looks (absolute error) harmless, but it is nasty in

relative terms). So,





17711 10946

6765 4181





−1

=





4181 −10946

−6765 17711





As we go further down the Fibonacci sequence the ratio of gradients gets ever

closer.

[Of course, filling a matrix with successive values from an iteration probably has no use apart

from generating pathological examples. Any iteration that oscillates alternately around its root

will serve.]

Numerical Methods 129 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Ill-conditionedness (5)

So, what’s the message? [Definition of ‘ill-conditioned’]

This is not just a numerical problem (which it would be if we knew that the

inputs were infinitely accurate). The problem is that the solution (x, y) is

excessively dependent on small variations (these may arise from measurement

error, or rounding or truncation error from previous calculations) on the values

of the inputs (a,b,c,d,p and q). Such systems are called ill-conditioned. This

appears most simply in such matrices but is a problem for many real-life

situations (e.g. weather forecasting, global warming models).

A sound approach is to form, or to calculate a bound for, (partial) derivatives of

the outputs w.r.t. the inputs
∂x

∂a
, . . . ,

∂x

∂q
,
∂y

∂a
, . . . ,

∂y

∂q
near the point in

question. [But this may not be easy!]

Numerical Methods 130 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Ill-conditionedness (6)

E.g.

∂

∂a







1

ad− bc





d −b

−c a











=
−d

(ad− bc)2





d −b

−c a− (ad− bc)/d





Note that uncertainties in the coefficients of the inverse are divided by

(ad− bc)2 (which is itself at additional risk from loss of significance).

The problem gets drastically worse as the size of the matrix increases (see next

slide).

Numerical Methods 131 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Ill-conditionedness (7)

E.g. Matlab given a singular matrix finds (rounding error) a spurious inverse

(but at least it’s professional enough to note this):

A = [[16 3 2 13]

[5 10 11 8]

[9 6 7 12]

[4 15 14 1]];

>> inv(A)

Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 9.796086e-18.

ans = 1.0e+15 *

0.1251 0.3753 -0.3753 -0.1251

-0.3753 -1.1259 1.1259 0.3753

0.3753 1.1259 -1.1259 -0.3753

-0.1251 -0.3753 0.3753 0.1251

Note the 1015 !!

Numerical Methods 132 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Ill-conditionedness (8)

There’s more theory around, but one definition is useful: the (relative) condition

number : the (log10) ratio of relative error in the output to that of the input.

When there are multiple inputs and outputs we normally quote the worst condition

number from any input to any output.

A problem with a high condition number is said to be ill-conditioned.

Example: Multiplication by a precisely-represented, large constant gives a large first

derivative but the relative error is unchanged. Although the relative error could be

potentially large, it is unchanged in this operation, and hence the operation is

well-conditioned.

Using the log form of the condition number gives the

number of significant digits lost in the algorithm or pro-

cess:

f(with condition number 5)(1.23456789) = p.qrs

NB: There are various definitions of condition number. I have presented one that is useful for Computer Scientists.

Numerical Methods 133 Easter 2014–15 (Rev0)

Condition Number: Simple Example(s)

1. A large function - f(x) = 1022 – well behaved, Cond=− inf

2. A large derivative - f(x) = 1022x – well behaved, Cond=0.0

3. A spiking function - f(x) = 1
0.001+0.999(x−1000.0) – Has a nasty pole?

4. A cancelling function - f(x) = x− 1000.0 – looks well behaved but ...

f(x(1 + η)) = x(1 + η)− 1000.0

Cond = log10

(∣

∣

∣

∣

η′

η

∣

∣

∣

∣

)

= log10

(

f(x(1 + η))− f(x)

η.f(x)

)

= log10

(

x.η

η(x− 1000.0)

)

Consider x=1000.01, then Cond=log10(10
5) = 5.

f(1000.01) = 0.01

f(1000.011) = 0.011 A 1 ppm domain perturbation became 10% in range.

Note: This material worked through on the overhead in lectures...

133-1

Who has heard of L’Hôpital’s Rule ?

Where a function is poorly behaved we can often get a
better expression from it by either simple rearrangment (like
the quadratic formula earlier) or using L’Hôpital’s Rule or
variants of it.

If
lim
x→c

f(x) = lim
x→c

g(x) = 0 or ±∞,

and

lim
x→c

f ′(x)

g′(x)
exists, and g′(x) 6= 0 for all x in I with x 6= c,

then

lim
x→c

f(x)

g(x)
= lim

x→c

f ′(x)

g′(x)

An overlap of programming and mathematics: you need
to know a mathematical ‘trick’ to apply and then insert a
condition in your program to selectively apply it.

E.g. consider plotting sin(x)/x. Not examinable this year.

UNIVERSITY OF

CAMBRIDGE

Backwards Stability

Some algorithms are backwards stable meaning an inverse algorithm exists

that can accurately regenerate the input from the output. Backwards stability

generally implies well-conditionedness.

A general sanity principle for all maths routines/libraries/packages:

Substitute the answers back in the original problem and see to what

extent they are a real solution.

Numerical Methods 134 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Monte Carlo Technique to detect Ill-conditionedness

If formal methods are inappropriate for determining conditionedness of a

problem, then one can always resort to Monte Carlo (probabilistic) techniques.

1. Take the original problem and solve.

2. Then take many variants of the problem, each perturbing the value of one

or more parameters or input variables by a few ulps or a fraction of a

percent. Solve all these.

If these all give similar solutions then the original problem is likely to be

well-conditioned. If not, then, you have at least been warned of the instability.

Numerical Methods 135 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Adaptive Methods

Sometimes a problem is well-behaved in some regions but behaves badly in

another.

Then the best way might be to discretise the problem into small blocks which

has finer discretisation in problematic areas (for accuracy) but larger in the rest

(for speed).

Or just use a dynamically varying ∆T as discussed later (FDTD).

Sometimes an iterative solution to a differential equation (e.g. to ∇2φ = 0) is

fastest solved by solving for a coarse discretisation (mesh) or large step size and

then refining.

Simulated Annealing (non-examinable) is a standard technique where large jumps

and random decisions are used initially but as the temperature control

parameter is reduced the procedure becomes more conservative.

All of these are called “Adaptive Methods”.

Numerical Methods 136 Easter 2014–15 (Rev0)

Simulated Annealing - Typical Pseudocode

temp := 200

ans := first_guess // This is typically a long vector.

cost := cost_metric ans // We seek lowest-cost answer.

while (temp > 1)

{

ans’ := perturb_ans temp ans // Magnitude of purt is proportional to temp

cost’ := cost_metric ans’

accept := (cost’ < cost) || rand(100..200) < temp;

if (accept) (ans, cost, temp) := (ans’, cost’, temp * 0.99)

}

return ans;

Random perturbations at a scale proportional to the tem-
perature are explored.

Backwards steps are occasionally accepted while above
100 degrees to escape local minima.

Below 100 we only accept positive progress (quenching).
Non-examinable

UNIVERSITY OF

CAMBRIDGE

Chaotic Systems

Chaotic Systems [http://en.wikipedia.org/wiki/Chaos theory] are just a

nastier form of ill-conditionedness for which the computed function is highly

discontinuous. Typically there are arbitrarily small input regions for which a

wide range of output values occur. E.g.

• Mandelbrot set, here we count the number of iterations, k ∈ [0..∞], of

z0 = 0, zn+1 = z2n + c needed to make |zk| ≥ 2 for each point c in the

complex plane.

• Verhulst’s Logistic map xn+1 = rxn(1− xn) with r = 4

[See http://en.wikipedia.org/wiki/Logistic map for why this is

relevant to a population of rabbits and foxes, and for r big enough (4.0

suffices) we get chaotic behaviour. See later.]

Numerical Methods 137 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Mandelbrot set

Numerical Methods 138 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Part 7

Solving Systems of Simultaneous Equations

Numerical Methods 139 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Solving Linear Simultaneous Equations

A system of linear simultaneous equations can be written in matrix form.

We wish to find x in Ax = b.

This can be found directly by finding the inverse

A
−1

Ax = A
−1

b

but finding the inverse of large matrices can fail or be unstable.

But note: having found the inverse we can rapidly solve multiple right-hand

sides (b becomes a matrix not a vector).

Gaussian Elimination Method: we can freely add a multiple of any row to any

other, so

1. do this to give an upper-triangular form,

2. then back substitute.

This is just a matrix phrasing of the school technique.

Numerical Methods 140 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Example:









1 2 3

4 5 6

7 8 8

















X0

X1

X2









=









1

1

0









Add -4 times first row to the second:








1 2 3

0 −3 −6

7 8 8

















X0

X1

X2









=









1

−3

0









Add -7 times first row to the third:








1 2 3

0 −3 −6

0 −6 −13

















X0

X1

X2









=









1

−3

−7









Take twice the second row from the

third:








1 2 3

0 −3 −6

0 0 −1

















X0

X1

X2









=









1

−3

−1









We now have upper triangular form giving straightaway X2 = 1.

Back substitute in second row −3X1 − 6 = −3 ❀ X1 = −1.

Back substitute in first row X0 + 2×−1 + 3 = 1 ❀ X0 = 0.

Complexity is: O(n3)

Numerical Methods 141 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Gaussian Elimination Minor Problems

The very first step is to multiply the second line by -A0,1/A0,0.

What if the pivot element A0,0 is zero or very small?

A small pivot adds a lot of large numbers to the remaining rows: original data

can be lost in underflow.

Note: Rows can be freely interchanged without altering the equations.

Hence: we are free to choose which remaining row to use for each outer loop

step, so always choose the row with the largest leading value.

Selecting the best next row is partial row pivoting.

Various other quick processes can also be used before we start: scaling rows so all have

similar magnitudes, or permuting columns. Column permutation requires we keep track

of the new Xi variable ordering.

Permuting both rows and columns can lead to better solutions where all potential

pivots otherwise found are small, but the search complexity is undesirable.

Numerical Methods 142 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

L/U and other Decomposition Methods

Note: Gaussian Elimination works for complex numbers and other fields as do

all these methods.

If we have a number of right-hand-sides to solve is a good approach

to first find the inverse matrix?

IE: To find x in Ax = b we could use x = A−1b.

In general, a better approach is to first triangle decompose A = LU , then

1. find y from Ly = b using forwards substitution with the triangular form L,

2. then find x from Ux = y using backwards substitution.

Complexity of a forwards or backwards substitution is quadratic.

[See demos/lu-decomposition.]

Numerical Methods 143 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

L/U Decomposity (L/D/U is similar)

Find L and U such that A = LU or find L,D and U such that A = LDU .

L/U details:




a11 a12 a13

a21 a22 a23

a31 a32 a33



 =





l11 0 0

l21 l22 0

l31 l32 l33









u11 u12 u13

0 u22 u23

0 0 u33



 .

Dolittle algorithm:

Do a normal Gaussian elimination on A to get U (ignoring any r.h.s to hand), but keeping track of the

steps you would make on a r.h.s in an extra matrix. The extra matrix turns out to be L.

Write Gaussian step i on the r.h.s as a matrix

multiply with Gi. This has close to identity form:

Then L =
∏1..N

i
Gi

The details are simlple if you try an example.

You’ll see you can simply form L in place starting

from I.

Gi =

























1 0

. . .

1

−ar,c/ai,i
. . .

.

..
. . .

0 −aN,c/ai,i 1

























.

Complexity: (an exercise).

Numerical Methods 144 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Cholesky Transform for Symmetric +ve-definite Matrices

Decomposable, symmetric matrices commonly arise in real problems.

LL
T =







L11 0 0

L21 L22 0

L31 L32 L33













L11 L21 L31

0 L22 L32

0 0 L33







=







L2
11 (symmetric)

L21L11 L2
21 + L2

22

L31L11 L31L21 + L32L22 L2
31 + L2

32 + L2
33







= A

For any array size, the following Crout

formulae directly give L:

Lj,j =

√

√

√

√Aj,j −

j−1
∑

k=1

L2
j,k

Li,j =
1

Lj,j

(

Ai,j −

j−1
∑

k=1

Li,kLj,k

)

, for i > j.

Can now solve Ax = b using:

1. find y from Ly = b using forwards substitution with the triangular form L,

2. then find x from LTx = y using backwards substitution with LT .

Complexity: O(n3). Stability: sqrt can fail: use L/D/U...

[See demos/cholesky-decomposition.]

Numerical Methods 145 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

What if my matrix is not Symmetric (not Hermitian)?

We can apply this technique even for non-symmetric matrices.

We first find the inverse of (BB
T) which is always symmetric.

Then we correct the result using this identity:

B
−1 ≡ B

T (BB
T)

−1

Exercise: What happens if Gaussian Elimination is attempted for non-square matrices? (A spoiler on later slide.)

What is a Hermitian Matrix ?

This slides for this section discuss square symmetric matrices but they also hold

for complex Hermitian matrices.

A Hermitian Matrix is its own conjugate transpose: A = AT .

Hermitians are non-examinable.

Numerical Methods 146 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

When to use which technique?

• Input is triangular ? - use in that form.

• Input rows OR cols can be permuted to be triangular ? - Use the

permutatiion.

• Input rows AND cols can be permuted to be triangular ? - Expensive

search unless sparse.

• Array is symmetric and +ve definite ? - Use Cholesky.

• None of above, but array at least is square ?

– one r.h.s. - use Gaussian Elimination (GE),

– multiple r.h.s. - use L/U decomposition.

• Array is tall (overspecified) ? - make a regression fit.

• Array is fat (underspecified) ? - optimise w.r.t. some metric function.

Numerical Methods 147 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Part 8

Alternative Technologies to Floating Point

(which avoid doing all this analysis, but which

might have other problems)

Numerical Methods 148 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Alternatives to IEEE arithmetic

What if, for one reason or another:

• we cannot find a way to compute a good approximation to the exact

answer of a problem, or

• we know an algorithm, but are unsure as to how errors propagate so that

the answer may well be useless.

Alternatives:

• print(random()) [well at least it’s faster than spending a long time

producing the wrong answer, and it’s intellectually honest.]

• interval arithmetic

• arbitrary precision arithmetic

• exact real arithmetic

Numerical Methods 149 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Interval arithmetic

The idea here is to represent a mathematical real number value with two IEEE

floating point numbers. One gives a representable number guaranteed to be

lower or equal to the mathematical value, and the other greater or equal.

Each constant or operation must possess or preserve this property (e.g.

(aL, aU)− (bL, bU) = (aL − bU , aU − bL) and you might need to mess with

IEEE rounding modes to make this work; similarly 1.0 will be represented as

(1.0,1.0) but 0.1 will have distinct lower and upper limits.

This can be a neat solution. Upsides:

• naturally copes with uncertainty in input values

• IEEE arithmetic rounding modes (to +ve/-ve infinity) do much of the work.

Numerical Methods 150 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Interval arithmetic (2)

Downsides:

• Will be slower (but correctness is more important than speed)

• Some algorithms converge in practice (like Newton-Raphson) while the

computed bounds after doing the algorithm can be spuriously far apart.

• Need a bit more work that you would expect if the range of the

denominator in a division includes 0, since the output range then includes

infinity (but it still can be seen as a single range).

• Conditions (like x < y) can be both true and false.

Numerical Methods 151 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Arbitrary Precision Floating Point

Some packages allow you to set the precision on a run-by-run basis. E.g. use 50

sig.fig. today.

For any fixed precision the same problems arise as with IEEE 32- and 64-bit

arithmetic, but at a different point, so it can be worth doing this for comparison.

Some packages even allow allow adaptive precision. Cf. lazy evaluation: if I need

e1 − e2 to 50 sig.fig. then calculate e1 and e2 to 50 sig.fig. If these reinforce

then all is OK, but if they cancel then calculate e1 and e2 to more accuracy and

repeat. There’s a problem here with zero though. Consider calculating

1√
2
− sin(tan−1(1))

?

(This problem of when an algebraic expression really is exactly zero is formally

uncomputable—CST Part Ib has lectures on computability.)

Numerical Methods 152 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Exact Real Arithmetic

There are a number of possible Exact Real Arithmetic packages, such as

CRCalc, XR, IC Reals and iRRAM.

Consider using digit streams (lazy lists of digts) for infinite precision real

arithmetic ? Oh dear, it is impossible to print the first digit (0 or 1) of the sum

0.333333 · · ·+ 0.666666 · · · ...

Exact real arithmetic is beyond the scope of this course, but a great deal of

work has been done on it.

This slide is a bit vestigial – I’d originally planned on mentioning to Part Ib the (research-level) ideas of using (infinite sequences of linear

maps; continued fraction expansions; infinite compositions of linear fractional transformations) but this is inappropriate to Part Ia

Numerical Methods 153 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Exact Real Arithmetic (2)

Results of Verhulst’s Logistic map with r = 4 (this is a chaotic function) by

Martin Plume (Edinburgh):

Iteration Single Precision Double Precision Correct Result

1 0.881836 0.881836 0.881836

5 0.384327 0.384327 0.384327

10 0.313034 0.313037 0.313037

15 0.022702 0.022736 0.022736

20 0.983813 0.982892 0.982892

25 0.652837 0.757549 0.757549

30 0.934927 0.481445 0.481445

40 0.057696 0.024008 0.024009

50 0.042174 0.629402 0.625028

60 0.934518 0.757154 0.315445

Correct digits are underlined (note how quickly they disappear).

Numerical Methods 154 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Pi to a trillion decimal places

In 2007 Yasumasa Kanada (Tokyo) exploited

π = 48 tan−1

(

1

49

)

+ 128 tan−1

(

1

57

)

− 20 tan−1

(

1

239

)

+ 48 tan−1

(

1

110443

)

with

tan−1(x) =
x

1
− x3

3
+

x5

5
− x7

7
+ · · ·

and an 80,000 line program to break the world record for π digit calculation

(1.2 trillion decimal places of accuracy).

September 2010 - N Sze used Yahoo’s Hadoop cloud computing technology to

find two-quadrillionth digit - the 2,000,000,000,000,000th digit.

Numerical Methods 155 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Part 9

FDTD and Monte Carlo Simulation

FDTD=finite-difference, time-domain simulation.

Monte Carlo=Roll the dice, spin the wheel...

Numerical Methods 156 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Simulation Jargon

Event-driven: A lot of computer-based simulation uses discrete events and a

time-sorted pending event queue: these are used for systems where activity is

locally concentrated and unevenly spaced, such as digital logic and queues.

Topic is covered in later courses.

Numeric, finite difference: Iterates over fixed or adaptive time domain steps

and inter-element differences are exchanged with neighbours at each step.

Monte Carlo: Either of the above simulators is run with many different

random-seeded starting points and ensemble metrics are computed.

Ergodic: For systems where the time average is the ensemble average (i.e.

those that do not get stuck in a rut): we can use one starting seed and average

in the time domain (amortises start up transient).

Numerical Methods 157 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Monte Carlo Example: Find Pi By Dart Throwing

double x = new_random(0.0, 1.0);

double y = new_random(0.0, 1.0);

if (x*x + y*y < 1.0) hit ++;

darts ++;

Do we expect the following convergence as darts ❀ inf

hits

darts
❀

Π

4

Exercise: What if we had used new_random(-1.0, 1.0) instead ?

Exercise: What is the order of convergence for this dart throwing?

Aside: An interesting iteration to find Pi: http://home.comcast.net/~davejanelle/mandel.html

[See demos/dart-throwing.]

Numerical Methods 158 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Finite-Difference Time-Domain Simulations (1)

Two physical manifestations of the the same 1-D example:

deltaL

RR R

C

R

Perfectly conducting ground plane.

R

C C C

THERMAL ELECTRICAL

deltaL

The continuum of reality has been partitioned into finite-sized, elemental lumps.

Per element Heat Conduction in a Rod R/C Delay Line

ρA = dR/dx thermal resistance (J/s/◦C/m) electrical resistance (Ω/m)

ǫD = dC/dx thermal capacity (◦C/J/m) electrical capacity (F/m)

Element state Temperature (◦C) Voltage (V)

Coupling Heat flow (J/s) Charge flow (Q/s=I)

In both systems, flow rate between state elements is directly proportional to

their difference in state.

[See demos/RC-heatflow-1d.]

Numerical Methods 159 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Finite-Difference Time-Domain Simulations (2)

More complex systems have a greater

number of state variables per element

and the elements interact in multiple

dimensions.

For example, for this piston we might

have temperature of each element and

strain (deformation) in three dimen-

sions.

The state vector contains the vari-

ables whose values need to be saved

from one time step to the next.

Exercise: Relate the 1-D heat or R/C electrical system to a third system: a water flow

system where each element is a bucket with a given depth of water in it and the

buckets are interconnected by narrow pipes between their bottoms.

Numerical Methods 160 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Finite-Difference Time-Domain Simulations (3)

1. Red Ball Game: See www.coolmath-games.com/0-red-ball-4

2. Gravity Tunnel Through The Earth

http://hyperphysics.phy-astr.gsu.edu/hbase/mechanics/earthole.html

[See demos/gravity-tunnel.]

3. Soyuz Rocket Simulation [See demos/soyuz-rocket.]

What ∆T step (and element size where relevant) do we need for a given

accuracy?

Some of the above examples will be briefly lectured and included in the project-only

copy of these notes.

Numerical Methods 161 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Finite Differences Further Example - Instrument Physical Modelling

Physical modelling synthesis: Uses a FDTD simulation of the moving parts to create

the sound waveform in real time.

Roland V Piano (2009): Creating a digitally

modelled piano is a fantastically difficult thing to

do, but that hasn’t deterred Roland... Introducing

the V-Piano the worlds first hardware modelling

piano!

Example : A Violin Physical Model

1. Bow: need linear velocity and static and dynamic friction coefficients.

2. String: 2-D or 3-D sim?. Use linear elemental length 1cm? Need string’s mass per

unit length & elastic modulus.

3. Body: A 3-D resonant air chamber: 1cm cubes? Need topology and air’s density

and elastic modulus.

[See demos/violin-string.]

Numerical Methods 162 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Finite-Difference Time-Domain Simulations (4)

SHM: quadrature oscillator: generates sine and cosine waveforms.

dt dt

-k

y(t)x(t)

Controlling equations:

x =

∫

−ky dt

y =

∫

x dt

For each time step:

x := x− ky∆t

y := y + x∆t

[See demos/TwoPoleOscillators.]

Alternative implementation, using differentiators: is it numerically stable ?

d

-1/k

y(t)

x(t)
dt

d
dty(t) y(t)

x(t)

Controlling equations:

ẋ = −ky

ẏ = x

For each time step:

ẋ := (x− xlast)/∆t

ẏ := (y − ylast)/∆t

x := ẏ y := −ẋ/k

... we cannot get further without some control theory (not lectured here!) ...

Numerical Methods 163 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Iterating the Finite Differences

If we assume the current (heat flow) in each coupling element is constant

during a time step

v[n] v[n+1]v[n-1] v[n+2]

i[n] i[n+1] i[n+2]i[n-1]

deltaL

ground

C

R

For each time step:

i[x] := (v[x+ 1]− v[x])/R

v[x] := v[x] + ∆T (i[x+ 1]− i[x])/C

But i[x] need not be stored (it is not a state variable) giving instead:

v[x] := v[x] + ∆T (v[x+ 1]− 2v[x] + v[x− 1])/RC

Modelling error source: in reality the current will decrease as the voltages

(temperatures) of each element change (get closer?) during a time step.

Exercise/discussion point: Do they always get closer? Is this a systematic/predictable error and hence correctable?

Numerical Methods 164 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Forwards and Backwards Differences

The forward difference method uses the values at the end of the timestep as

though constant in the timestep.

End values can (sometimes) be found from simultaneous equations.

C R

Ground

V
i We’ll use a very simple example

with one state variable: a capac-

itor discharging or heat dissipation

from a blob.

Dynamic equations:

dV/dt = −i/C

i = V/R

Dyns rewritten:

dV/dt = −αV

α = 1/CR

Forward iteration:

V (n+ 1) := V (n)− τV (n)

τ = ∆T/CR

Numerical Methods 165 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Forwards and Backwards Differences (2)

Numerical example, one time step, where α = 0.01, V (0) = 1.000000:

V

t

o 1 2 3 4

1.0

True result given by

V̂ (t+1) = V̂ (t)×e−tα = 0.990050

Forward stencil answer is 1− τ = 0.990000 ≈ second order Taylor(ex) = 1
2x

2.

Using starting loss rate throughout timestep leads to an overcooling error of 50

ppm.

Halving ∆T , α = 0.005, gives 0.990025 after two steps - half the error.

But is this a systematic error that will constructively reinforce?

Numerical Methods 166 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Stability of Interacting Elements.

FDTD errors will tend to cancel out if either:

1. they alternate in polarity, or

2. they are part of a negative-feedback loop.

Most systems that are simulated with FDTD have interactions between element

pairs in both directions that are part of a stabilising, negative-feedback

arrangement. Take an exponential discharge: using the loss rate at the start of

a step for the whole step means it ends up with less remaining than it should

have, but then the rate of discharge will be correspondingly less in the following

time step, cancelling the problem to a large extent.

[See demos/forward-stencil-error-cancellation.]

Numerical Methods 167 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Forwards and Backwards Differences (3)

We can potentially use the ending loss rate in whole time step:

C R

Ground

V
i The expressions for the ending val-

ues are found solving simultaneous

equations. Here we have only one

var so it is easy!

Reverse iteration:

V (n+ 1) := V (n)− τV (n+ 1)

= V (n)/(1 + τ)

Numeric result:

V (n+ 1) := 0.950099

So this under-decays...

Overall, combining equal amounts of the forward and backward stencils is a

good approach: the Crank-Nicolson method.

Numerical Methods 168 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Gear’s Backwards Differentiation Forward Method

Numerical integration of stiff ordinary differential equations Author: C W Gear

V (t+ 1) = V (t) +
1

3
(V (t)− V (t− 1)) +

2

3
∆T

dV

dt
(t)

If we expect continuity in the derivatives we can get better forward predictions.

These time-domain patterns are known as stencils.

Non-examinable. Briefly lectured only.

Numerical Methods 169 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Part 10

Fluid Network (Circuit) Simulation

Numerical Methods 170 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Water Analogy of Circuits: The Moniac Economic Computer

http://en.wikipedia.org/wiki/MONIAC Computer

MONIAC (Monetary National

Income Analogue Computer)

1949 Bill Phillips of the LSE.

There’s one here in Cambridge

at the Department of Eco-

nomics.

It models the national economic

processes of the United King-

dom.

Exercise: Please see exercise sheet.

Numerical Methods 171 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Water Flow Network

Can we write a FDTD simulation for a water circuit with non-linear components?

Bucket 1
Floor Area A1

Fill depth
D1

Bucket 2
Floor Area A2

Fill depth
D2

Drain

Water supply

F0 litres/second

F0

F1

F2

F2

F3

F3

Drain

F4

F4

F3

L1 L3

L2

L4

System equations (linear terms only):
 Pressure at bottom of bucket = depth * rho
 Quantity in bucket = depth * area
 Flow rate in pipe = PressureDifference/Resistance
 Resistance of horizontal pipe = sigma * length
 Resistance of vertical pipe = sigma’ * length

Any analytical solution of the integeral equiations would have to assume pipes have

linear flow properties: rate is proportional to potential/pressure difference (like Ohm’s

Law).

The vertical pipe is particularly non-linear in reality, having no effective resistance for low flow rates and the same resistance as a similar

horizontal pipe for high flow rates. We’ll learn how to model non-linear components...

[See demos/water-network1.]

Numerical Methods 172 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Circuit Simulation: Finding the Steady State (DC) Operating Point

Nodal Analysis: solve the set of flow equations to find nodal potentials.

Ground i1 i4 i6

R1
10 R3/20

R4
15

R6
40

EMF1
33V

n1
n2

n5

n3

R2
60

i3

Ground i1 i4 i6

R3/20

R4
15

R6
40

n1

n2
n3

R2
60

i3

R1
10

i2

IO
3.3 A

i6

Battery

Current
generator
Norton
dual

n4

R5/50

i5

i5

n4

R5/50
i5

Electrical circuits generally have

some voltage sources in them.

But our basic approach handles

current sources only.

We will solve for the lower figure

which is the Norton Dual (non-

examinable) of the upper.

Numerical Methods 173 Easter 2014–15 (Rev0)

Norton and Thévinin Equivalents (or Duals).
A constant flow generator with a shunt resistance/conductance

has exactly the same behaviour as an appropriate constant
potential generator in series with the same resistance/conductance.

Resistor RPotential
Generator

EMF
V volts

A

B

Resistor
R

Flow
Generator

I amps

A

B

Provided V = IR, both have the same current at and
potential between their terminals when connected to:

1. infinite resistance (open circuit),

2. infinite conductance (short circuit),

3. and under all other load conditions.

UNIVERSITY OF

CAMBRIDGE

Circuit Simulation: Finding the Steady State Operating Point (2)

Ohms law gives voltages from currents: I = V/R or I = GV.

The potential between two nodes

is the current between them mul-

tiplied by the resistance between

them. The interconnections be-

tween nodes are often sparse:

rather than storing lots of nasty in-

finities we store conductance (G)

values.

i1 = n1/60

i2 = n1/10

i3 = (n1 − n2)/20

i4 = n2/15

i5 = (n2 − n3)/50

i6 = n3/40

Numerical Methods 174 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Circuit Simulation: Finding the Steady State Operating Point (3)

Kirchoff’s current law gives us an equation for each node: zero sum of

currents.

−3.3 + i2 + i1 + i3 = 0

−i3 + i4 + i5 = 0

−i5 + i6 = 0

Then solve G V = I Using Guassian Elimination (NB: A Symmetric +ve-def Matrix).









1/10 + 1/60 + 1/20 −1/20 0

−1/20 1/20 + 1/15+1/50 −1/50

0 −1/50 1/50 + 1/40

















n1

n2

n3









=









3.3

0

0









Underlined is the template of the 50 ohm resisitor between nodes n2 and n3.

Numerical Methods 175 Easter 2014–15 (Rev0)

Component Templates/Patterns.

Conducting Channels: A conductance between a pair of nodes (x, y) appears four times in
the conductance matrix. Twice positively on the leading diagonal at (x, x) and (y, y) and twice
negatively at (x, y) and (y, x).
A conductance between a node x and any reference plane appears just on the leading diagonal
at (x, x).
Adding positive values to the leading diagonal and negative values symmetrically elsewhere results

in a +ve definite symmetric matrix. Hence Cholesky’s method can be used.

Constant Flow Generators: A constant current generator appears on the right hand side in
one or two positions

Constant Potential Generators: In the basic approach, using only Kirchoff’s flow law, the con-
stant potential generators must be converted to current generators using a circuit modification.
Modified nodal form (non-examinable) supports them directly. There the system is extended
with voltage equations.

UNIVERSITY OF

CAMBRIDGE

Circuit Simulation: Non-linear components.

Many components, including valves, diodes, vertical pipes, have strongly

non-linear behaviour.

Input pressure

Output
pressure

Nominal
output
limit

The

resistance increases drastically above

the target output pressure. A Pressure Regulator Valve

Note: electrical circuits will not be asked for in Tripos exams. This diode example, for instance, can be as well understood using a water

flow analogy and a wier with non-linear height/flow behaviour.

Numerical Methods 176 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Circuit Simulation: Non-linear components (2).

In electrical circuits, the semiconductor diode is the archetypal non-linear

component.

The operating point of this battery/resistor/diode circuit is given by the

non-linear simultaneous equation pair:

Id = IS
(

eVd/(nVT) − 1
)

(Shockley ideal diode equation)

Vd = Vbattery − IdR (Composed battery and resistor equations)

The diode’s resistance changes ac-

cording to its voltage! But a well-

behaved derivative is readily available.

Resistor R

Battery
V volts

Diode

Current
I

Voltage
Vd

Current I

V/R

Operating point

A non-linear component’s tangent does not pass through the origin. An offset

must be added.

Numerical Methods 177 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Circuit Simulation: Non-linear components (3)

Linearise the circuit: nominally replace the nonlinear components with linearised

model at the operating point. In the electronic example, the non-linear diode changes

to a linear current generator and conductance pair.

Gd and Id are both functions of Vd.

Gd = dI/dV =
IS
nVT

eVd/(nVT)

Id = VdGd

Resistor R

Battery
V volts

G_d =
1/R_d

Current I

I_d

Linear model
 of diode

When we solve the circuit equations for a starting (Gd, Id) pair we get a new Vd. We must

iterate.

Owing to the differentiatable, analytic form of the semiconductor equations, Newton-Raphson

iteration can be used.

Typical stopping condition: when relative voltage changes less than 10−4.

Electrical details not examinable but generic linearisation technique is. [See demos/DiodeExample.]

Numerical Methods 178 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Circuit Simulation: Time-varying components

Charge leaves a capacitor at a rate proportional to the leakage conductance.

Water flows down a pipe at a rate proportional to entry pressure.

Both systems discharge at a rate proportional to the amount remaining.

dVc/dt = −I/C

I = VcG

Resistor
R ohms

G siemens
Capacitor
C farads
V_c volts

Current I
coulombs/s

Area A m^2

Discharge
f m^3/s

d

Bucket: Depth d metres

Pipe length l

dd/dt = −f/A

f = ρdg/kl

At any timepoint, the capacitor/bucket has a fill level and a flow rate: and hence a ‘conductance’ ratio

between them.

Perform time-domain simulation with a suitable ∆T .

(Unlike the nasty diode, a linear time-varying component like a capacitor or water tank has a direct

analytical linear replacment so we do not need to iterate within the timestep etc..)

Non-examinable: Electrical inductors are the same as capacitors, but with current and voltage interchanged. There is no ready equivalent for inductors in the water

or heat analogies.

Numerical Methods 179 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Circuit Simulation: Time-varying components (2)

Now we need to linearise the time-varying components using a snapshot: replace

the bucket (capacitor) with a resistor and constant flow (current) generator.

Resistor
R ohms

G siemens

I

I_c

G_c
(1/R_c)

Capacitor/bucket
 replacement

Resistor
R ohms

G siemens

I

External
circuit

remains
unchanged.

C

Transformation

dV

dI
=

d(∆V)

dI
=

d(I∆T/C)

dI
=

∆T

C

Gc =
dI

dV
=

C

∆T
Ic = VcGc

We need one FDTD state variable.
The voltage (bucket fill depth):

V (t+∆T)
c = V (t)

c − I∆T

C

[See demos/TankExample.]

Numerical Methods 180 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Circuit Simulation: Adaptive Timestep

Overall we have a pair of nested loops:

1. Iterate in the current timestep until convergence.

2. Extrapolate forwards in the time domain using preferred stencil (linear forward differences) (a

source of simulation error).

So, we need careful (adaptive) choice with ∆T :

1. too large: errors accumulate undesirably,

2. too small: slow simulation.

A larger timestep will mean more iterations within a timestep since it starts with the values from the

previous timestep.

Smoother plots arise if we spread out this work in the time domain (trade convergence iterations for

timesteps).

Iteration count adaptive timestep method:

if Nit > 2Nmax { ∆T∗ = 0.5; revert_timestep(); }
else if Nit > Nmax { ∆T∗ = 0.9; };
else if Nit < Nmin { ∆T∗ = 1.1; }

Numerical Methods 181 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Part 11

Extra Topics
Additional Slides and Topics

Most of these slides, most-likely, will not be lectured.

Numerical Methods 182 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Confidence Limits in Random Simulation

What is the expected accuracy when averaging N points collected from

simulation?

Variance of N i.i.d. RVs is Nσ2.

Standard deviation of measured statistic is
√
Nσ2/N = σ/

√
N

So averaging is a well-behaved, if somewhat slow, convergence.

What about order statistics like the 99th percentile?

The nthth percentile of an observation variable is the value that cuts off

the first n percent of the data values when it is sorted in ascending order.

Only 1 percent of data fall in the 99th-tile so convergence even slow.

Solution: use batching aka sectioning or even Jackknifing.

Non-examinable. Exercise for the keen: See exercise sheet

Numerical Methods 183 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Weber Fechner Law

“The sensation is proportional to the logarithm of the stimulus.”

Ernst Heinrich Weber (1795 — 1878) experimented on his servants and found

the just-noticeable difference between two stimuli is proportional to the

magnitude of the stimuli.

This is the basis for using logarithmic units in everyday measure: e.g. Camera

F-stops and measuring sound in decibels.

Numerical Methods 184 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Bels and Decibles

An order of magnitude (×10) increase in power is one bel.

A tenth of a bel is a more useful unit - the decibel or dB.

One decibel is approximately the limit of sensorary resolution (certainly for

hearing).

The voltage from a microphone will increase relatively by
√
101/10 for a 1 dB

increase in ambient noise power.

Human ear (safe!) dynamic range: 20× 10−6 .. 20× 106 Pascals. A range of

120 dB (hard to match in any man-made analogue system).

HiFi/rock concert levels approaching 105 Pa (one atmosphere) require negative

air pressure!

Numerical Methods 185 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Using Decibels for Composed System Transfer Function Product

Volume
(gain)
control

Pre-
Amplifier

Power
Amplifier

Transducer
Gain

Microphone LoudspeakerLong cable run

Volume
(gain)
control

Pre-
Amplifier

Cable
Driver

Transducer
Gain

msens
V/Pa

spsens
Pa/V

-g1 dB -g3 dBa1 dB -a2 dB

-g2 dB

-a3 dB a4 dB

The overall gain of a chain of transducers, amplifiers and attenuators in a

system is the product:

output

input
= msens×

∏

gi ×
∏

aj × spsens

System gain is generally computed by summming component gain in decibels.

Amplifiers have positive gain in decibles. Attenuators have negative gain in

decibels.

Numerical Methods 186 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Requantising with Loss of Precision

y = floor(x)

Integer quantisation function

y = floor(x) = ⌊x⌋ y = x− ⌊x⌋

Math: Round to nearest

integer:

fquantise0(x) = ⌊x+0.5⌋

Fixed: Round to multiple of

105

fq1E5(x) = (x/105) ∗ 105

Does not even need the

floor operator!

Floating: Discard 5 decimal

digits when x ≈ 1.0

fq5(x) = (x+ 105)− 105

Second two quantisers do not require a special operator such as floor!

Numerical Methods 187 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Digital Audio Quantisation Noise

CD-quality stereo sound uses the following parameters:

• Number of channels per frame: 2

• Sample rate: 44100 sps

• Sample precision: 16 bits linear, two’s complement.

Any audio details smaller than 2−65536 of full scale are discarded. The discarded details

are nominally replaced with an added noise that exactly cancels those details.

Best possible StoN ratio is 20 log10(2
−65536) = −96 dB

NiCAM digital audio: 32 samples

of 14 bit reduced to 10 and a 3-bit

exponent added.

32 D14 Sample Block 3 bits

32

14

32

10
NiCAM

compression

32 D10 Sample Block

Near instantaneous compression and expansion: constant relative quantisation

error. Subjectively lossless? Exercise: What is the StoN for NiCAM?

Numerical Methods 188 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Non-uniform quanitsation: A-law Telephony Codec

G.711 A-law Telephony: 64 kbps 4kHz bandwidth digital audio

is used for all European landline calls:

• Number of channels per frame: 1

• Sample rate: 8000 sps

• Sample precision: 12+ bits mapped down to 8 using the A-law table.

A-law defined as a piecewise approximation to

y = Ax/(1 + lnA) for 0 ≤ x ≤ 1/A

y = 1 + ln(Ax)/(1 + lnA) for 1/A ≤ x ≤ 1

A = 87.6.

Again: roughly constant signal to quantisation ratio despite speech-varying signal level.

Exercise: What is the complexity of implementing A-law? Details non-examinable.

Numerical Methods 189 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Gradient Decent and Matrix form of Newton Raphson Iteration

If we have a multivariate function where we know the derivative we can do

simple gradient decent by repeatedly stepping backwards along the derivative

vector.

Earlier I glossed over how to do iterations with matrices.

If we know the partial derivative of each output variable yT for each input

variable xT we can use Newton’s iteration to find x such that Ax = y = 0.

A matrix of partial derivatives of a matrix with respect to a column vector is

known as the Jacobian of that matrix.

We need to invert the Jacobian owing to Newton needing to divide by the

derivative ...

This slide is non-examinable and may be lectured if time permits.

Numerical Methods 190 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Optimisation using Orthogonal Perturbations

This slide is non-examinable.

When we do not have the system derivatives we can estimate them using small
perturbations of the inputs and then do a larger Newton step.

An orthogonal set of small perturbations is needed of proportional to the the number of input variables:

1. Use small unit steps?

2. Use the Walsh Functions.

Walsh Functions: an orthogonal basis set

of binary functions.

Numerical Methods 191 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

Optimisation Software Packages

There are many optimisation packages available.

They can be used as controlling wrappers around your own system model or

simulation.

http://en.wikipedia.org/wiki/List_of_optimization_software

• MATLAB can solve linear, quadratic, and nonlinear problems with

Optimization Toolbox

• OpenOffice has a plugin for its spreadsheet that performs non-linear

regression.

Other packages can do useful jobs like single-value decomposition (SVD).

This slide is non-examinable.

Numerical Methods 192 Easter 2014–15 (Rev0)

UNIVERSITY OF

CAMBRIDGE

The End.

Please do the online exercises and study the tiny example programs in the

demos folder.

Thankyou and goodbye for now ...

c©DJG April 2012-2015.

Numerical Methods 193 Easter 2014–15 (Rev0)

