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(Tentative) List of Topics

[ IA Algorithms J [ IB Complexity Theory j [II Advanced Algorithmsj
__— __—

I. Sorting Networks (Sorting, Counting, Load Balancing)

II. Matrix Multiplication

Ill. Linear Programming

= [V. Approximation Algorithms: Covering Problems

= V. Approximation Algorithms via Exact Algorithms

= VI. Approximation Algorithms: Travelling Salesman Problem

= VII. Approximation Algorithms: Randomisation and Rounding

= VIII. Approximation Algorithms: MAX-CUT Problem (if time permits)

= closely follow CLRS3 and use the same numberring
= however, slides will be self-contained (mostly)

LGORITHMS
[ -]
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Some Highlights
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Linear Programming and Simplex
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0,12,0
(0,12.0)
0,0,4.8) e
(0,0,4.8)
0,0; . ®(8,4,0)
( 0 (8.25,0,1.5) @ 28
27.75
e X
9,0,0
(9,9,0)
maximize 3x; + Xo + 2X3
subject to
X4 + Xo + 3X3 < 30
2X4 + 2Xo + 5x3 < 24
4x4 + X2 +  2x3 < 36
X1, X2, X3 > 0
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The Original Article (1954)

SOLUTION OF A LARGE-SCALE TRAVELING-SALESMAN
PROBLEM*

G. DANTZIG, R. FULKERSON, anxp S. JOHNSON
The Rand Corporation, Santa Monica, California
(Received August 9, 1954)

It is shown that a certain tour of 49 cities, one in each of the 48 states and

Washington, D. C., has the shortest road distance.

HE TRAVELING-SALESMAN PROBLEM might be described as

follows: Find the shortest route (tour) for a salesman starting from a
given city, visiting each of a specified group of cities, and then returning to
the original point of departure. More generally, given an n by n sym-
metric matrix D= (d;,), where d;, represents the ‘distance’ from I to J,
arrange the points in a cyclic order in such a way that the sum of the d;s
between consecutive points is minimal. Since there are only a finite
number of possibilities (at most 14 (n—1)!) to consider, the problem is
to devise a method of picking out the optimal arrangement which is
reasonably efficient for fairly large values of n. Although algorithms have
been devised for problems of similar nature, e.g., the optimal assignment
problem,””* little is known about the traveling-salesman problem. We
do not claim that this note alters the situation very much; what we shall do
is outline a way of approaching the problem that sometimes, at least, en-
ables one to find an optimal path and prove it so. In particular, it will be
shown that a certain arrangement of 49 cities, one in each of the 48 states
and Washington, D. C., is best, the d;; used representing road distances as
taken from an atlas.

=
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Travelling Salesman Problem: The 42 (49) Cities

© 00 =T DU AW

. Manchester, N. H.
. Montpelier, Vt.

. Detroit, Mich.

. Cleveland, Ohio

. Charleston, W. Va.
. Louisville, Ky.

. Indianapolis, Ind.

. Chicago, Ill.

. Milwaukee, Wis.

. Minneapolis, Minn.
. Pierre, S. D.

. Bismarck, N. D.

. Helena, Mont.

. Seattle, Wash.

. Portland, Ore.

. Boise, Idaho

. Salt Lake City, Utah

18.
19.
. Phoenix, Ariz.
21.
22,
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.

Carson City, Nev.
Los Angeles, Calif.

Santa Fe, N. M.
Denver, Colo.
Cheyenne, Wyo.
Omaha, Neb.

Des Moines, Iowa
Kansas City, Mo.
Topeka, Kans.

Oklahoma City, Okla.

Dallas, Tex.
Little Rock, Ark.
Memphis, Tenn.
Jackson, Miss.
New Orleans, La.

. Birmingham, Ala.
. Atlanta, Ga.

. Jacksonville, Fla.
. Columbia, 8. C.

. Raleigh, N. C.

. Richmond, Va.

. Washington, D. C.
. Boston, Mass.

. Portland, Me.

. Baltimore, Md.

. Wilmington, Del.

. Philadelphia, Penn.
. Newark, N. J.

. New York, N. Y.

. Hartford, Conn.
.‘Providence, R. I.

S
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Road Distances

21|137139 94 96 94 80 78 77 84 77 56 64 65 9o 87 8 36 68 0 30
2117122 77 8o 83 68 62 60 61 50 34 42 49 82 77 6o 30 62 70 49 21

43 77 7% 4! s

24| 85 89 44 48 53 41 34 28 29 22 23 35 69105102 74 56 88 99 81 54 32 29
25| 77 80 36 40 4b 34 27 19 20 14 20 30 77114111 84 b4 96107 87 6o 40 37
26| 87 89 44 46 46 30 28 29 32 27 36 47 78116112 84 66 98 95 75 47 36 39
27| 91 g3 48 50 48 34 32 33 36 30 34 45 77115110 83 63 97 91 72 44 32 36
28| 105106 62 63 64 47 46 49 3+ 48 36 59 85119115 88 6 98 79 9 31 36 42
29| 111113 69 71 66 S1 3 36 61 57 59 71 gb130126 98 75 98 BS b2 38 47 53
30| g1 92 50 51 46 3o 34 38 43 49 o 71103141136109 9O 1I§ 99 81 §3 6I 62
516 b0 93126108 88 6o 6 66

32| 89 T <5 §5 S0 34 39 44 49 63 76 87120155 150123100123 109 86 62 71 78
75 86 97126160 155 128 104 128 113 go 67 76 82

34| 73 81 44 43 35 23 30 39 44 62 78 89121159155 127 108 136 123 101 75 79 81
35| 67 69 42 41 31 25 32 31 46 64 83 90130164 160 133 114 146134 111 85 84 86
36| 74 76 61 60 42 44 ST 60 66 83102110147 185179 155133 159 146 122 98 105 107
37| 57 59 46 41 25 30 36 47 52 70 93 98136 172172 148 126 128 147124 121 97 99
38| 45 36 41 34 20 34 38 48 33 73 96 99137176 178 151 131 163 159 135 108 102 103
39| 33 37 35 26 18 34 36 46 51 70 03 97134171 176 151 129 161 163 139 118 102 101
40| 29 33 30 21 18 35 33 40 45 65 87 91117166171 144 125157156139 113 95 97
41 3 Tr 41 37 47 §7 55 58 63 83105 109 147 186 188 164 144 176 182 161 134 119 116
42| 5 12 55 31 53 by 61 br 66 84111 113150186192 166 147 180 188 167 130 124 119

84 88 101 108
90 94107114

2] 8 TABLE I

H B Roap Distances BETwEEN CITiEs 1N Apsustep Unirs

HE The figures in the table are mileages between the two specified numbered cities, less 11,
6| 61 62 21 20 17 divided by 17, and rounded to the nearest integer.

7| 58 6o 16 17 18 6

8] 39 15 20 26 17 10

9| b2 66 20 25 31 22 15

21
27
54
[

9

1306
4132 25
8332 6

1 2 3 4 5 6 7 8 91011 1213 14 15 16 17 18 19 20 21 22 23

26 27 28 29

37

38 39 40 41
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The (Unique) Optimal Tour (699 Units ~ 12,345 miles)

This tour has a length of 12,345 miles when
the adjusted units are expressed in miles

F1a. 16. The optimal tour of 49 cities.
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Introduction to Sorting Networks
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Overview: Sorting Networks

(Serial) Sorting Algorithms

= we already know several (comparison-based) sorting algorithms:
Insertion sort, Bubble sort, Merge sort, Quick sort, Heap sort

= execute one operation at a time
= can handle arbitrarily large inputs
= sequence of comparisons is not set in advance

Sorting Networks

= only perform comparisons

= can only handle inputs of a fixed size
= sequence of comparisons is set in advance
= Comparisons can be performed in parallel

Allows to sort n numbers
in sublinear time!

[Simple concept, but surprisingly deep and complex theory!]

Sl
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Comparison Networks

A sorting network is a comparison network which

Comparison Network works correctly (that is, it sorts every input)

= A comparison network consists solely of wires and comparators:

comparator is a device with, on given two inputs, x and y, returns two
operates in O(1) J outputs x” = min(x, y) and y’ = max(x, y)

= wire connect output of one comparator to the input of another
= special wires: ninput wires ay, ao, ..., an and n output wires by, by, ..., bn

AN
[ Convention: use the same name for both a wire and its value. ]

7 3

X —>| > x’ = min(x, y) x ———¢—= ¥ =min(x, y)
comparator 3 7
y—> >y =max(x,y) y————e——"—y =max(x,y)
(a) (b)

Figure 27.1 (a) A comparator with inputs x and y and outputs x” and y’. (b) The same comparator,
drawn as a single vertical line. Inputs x = 7, y = 3 and outputs x” = 3, y’ = 7 are shown.
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Example of a Comparison Network (Figure 27.2)

A horizontal line represents

a sequence of distinct wires
v
a |
A C
az
E
as
B D
a

by

by
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Example of a Comparison Network (Figure 27.2)

Interconnections between comparators

must be acyclic

74

ay ,
A C
a» T
E
. 1
D

as

by

by
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Example of a Comparison Network (Figure 27.2)

Interconnections between comparators

must be acyclic v/

74
a o
A C
az
E
as .
as -

by

by
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Example of a Comparison Network (Figure 27.2)

Interconnections between comparators
must be acyclic

(%4

aj ’ b1
4 c

a : , by

| e
as ! bs
6 D{
as . . . by

[

Tracing back a path must never cycle back on
itself and go through the same comparator twice.

J
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Example of a Comparison Network (Figure 27.2)

il
&

9 2

aj ’ b1
5 A [ C 6

ao . bo
2 5 £

as bs
6 D 9

aa by

N

[This network is in fact a sorting network (Exercise)J
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Example of a Comparison Network (Figure 27.2)

a . by
/{ c
a : by
as bs
B D
as ba

N
(This network would not be a sorting network (Why??)]

Sl
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Example of a Comparison Network (Figure 27.2)

9 5 2 2
aj ’ b1
5 A{ 9 C 6 5
ao . bo
2 2 5 £ 6
as bs
6 B 6 D 9 9
aa by
depth 0 1 1 2 2 3
. Maximum depth of an output
Depth of a wire: . Lo
st e e SR @ wire equals total running time

= |f a comparator has two inputs of depths dyx and d,, then outputs have
depth max{dx, dy} + 1

YEY
YE Y
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Zero-One Principle

Zero-One Principle: A sorting networks works correctly on arbitrary in-
puts if it works correctly on binary inputs.

— Lemma 27.1
If a comparison network transforms the input a = (a1, @, ..., an) into
the output b = (b1, bs,...,bn), then for any monotonically increasing
function f, the network transforms f(a) = (f(a1),f(a),...,f(an)) into
f(b) = (f(b1), f(bz), ..., f(bn)).

\.

f )
f»

r———— min(f(x), f(y)) = f(min(x, y))

s max(f(x), f(y)) = f(max(x, y))

Figure 27.4 The operation of the comparator in the proof of Lemma 27.1. The function f is
monotonically increasing.

i
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Zero-One Principle

Zero-One Principle: A sorting networks works correctly on arbitrary in-
puts if it works correctly on binary inputs.

— Lemma 27.1
If a comparison network transforms the input a = (a1, @, ..., an) into
the output b = (b1, bs,...,bn), then for any monotonically increasing
function f, the network transforms f(a) = (f(a1),f(a),...,f(an)) into
f(b) = (f(b1), f(bz), ..., f(bn)).

\.

Theorem 27.2 (Zero-One Principle)

If a comparison network with n inputs sorts all 2" possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

i
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Proof of the Zero-One Principle

Theorem 27.2 (Zero-One Principle)
If a comparison network with n inputs sorts all 2" possible sequences
of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers
correctly.

Proof:
= For the sake of contradiction, suppose the network does not correctly sort.

* Leta= (a1, a,...,an) bethe input with a; < g;, but the network places a;
before a; in the output

= Define a monotonically increasing function f as:

F(x) = {O if x < a,

1 ifx> a.

Since the network places a; before a;, by the previous lemma

= f(ag) is placed before f(a;)

= But f(g)) = 1 and f(a;) = 0, which contradicts the assumption that the
network sorts all sequences of 0’s and 1’s correctly O

el bl
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Some Basic (Recursive) Sorting Networks

1 ——

- -

3 ! —

g | n-wire Sorting Network
n—1 —

n ] ! -
n+1

( These are Sorting Networks, but with depth ©(n). ]

n-wire Sorting Network

!

l

l

!

n+1

??7?

?7?

Introduction to Sorting Networks
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Batcher’s Sorting Network
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Bitonic Sequences

Bitonic Sequence

A sequence is bitonic if it monotonically increases and then monoton-
ically decreases, or can be circularly shifted to become monotonically
increasing and then monotonically decreasing.

o

[ Sequences of one or two numbers are defined to be bitonic. J

Examples:

* (1,4,6,8,3,2) v

- (6,9,4,2,3,5) v

* (9,8,3,2,4,6) v

= (4 2,

= binary sequences: 0'1/0%, or, 1'0/1%, for i,j, k > 0.

I. Course Intro and Sorting Networks Batcher’s Sorting Network



Towards Bitonic Sorting Networks

Half-Cleaner

A half-cleaner is a comparison network of depth 1 in which input wire i is
compared with wire i + n/2fori=1,2,...,n/2.
N

LWe always assume that nis even.J

—— Lemma 27.3

If the input to a half-cleaner is a bitonic sequence of 0’s and 1’s, then the
output satisfies the following properties:

= both the top half and the bottom half are bitonic,
= every element in the top is not larger than any element in the bottom,
= at least one half is clean.

=~

0 —— 0 0 —s 0

0 0 | bitonic, 0 0 bitonic
| 0 clean : | itonic
1 0 o 1 0

bitonic bitonic

1 1 1 1

0 0 bitoni 1 1 | bitonic,
0 ) itonic ) . clean

0 — | 0 1

Sl
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Proof of Lemma 27.3

[W.I.o.g. assume that the input is of the form 0'1/0%, for some i, j, k > 0. J

divide compare combine
0 top top 0 bitonic,
|| H clean
bitonic { e " - wede | Q) R B
: ﬂ :
0 bottom bottom i bitonic
L L1]
(a)
0 . . 0
[ op ki [1] , bitonic
] il e i 1
itonic i j i !
n n 1 bitonic,
T bottom bottom clean
L ) L
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Proof of Lemma 27.3

[W.I.o.g. assume that the input is of the form 0'1/0%, for some i, j, k > 0. J

top top 0 bitonic,
0 [0] [0] clean

bitonic { e C T |1 RS [ T8 [ET | 18 T
0 9] o I e
[ bottom bottom | bitonic

0 0

L © L

[0]

1 top top 0 bitonic,
] [0] [0] clean

bitonic { e it — ——
0 o] 1 | o
bottom bottom | bitonic

0

d L

(d) N

This suggests a recursive approach, since it now
suffices to sort the top and bottom half separately.

Sl I. Course Intro and Sorting Networks Batcher’s Sorting Network 20.2



The Bitonic Sorter

— ] - 0 0 0 I 0
] | Brronic- — 0 0 0 0
— | SorTER[n/2] | — 1 0 0 I 0
— HALF- — — bitoni 1 0 0 ol .
_ | CLEANER[n] | L itonic ) 1 1 I o sorte
] — BrToNIiC- — 0 0 0 1
— I | SORTER[n/2] | 0 1 1 1
— - | 0 1 Ll )

(@)

G

Figure 27.9 The comparison network BITONIC-SORTER[n], shown here for n = 8. (a) The re-
cursive construction: HALF-CLEANER([n] followed by two copies of BITONIC-SORTER[# /2] that
operate in parallel. (b) The network after unrolling the recursion. Each half-cleaner is shaded. Sam-
ple zero-one values are shown on the wires.

Henceforth we will always
assume that n is a power of 2.
z
0 ifn=1,
D(n/2)+1 ifn=2k

Recursive Formula for depth D(n):

D(n) =

BITONIC-SORTER([n] has depth log n and sorts any zero-one bitonic sequence.

i
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Merging Networks

Merging Networks

= can merge two sorted input sequences into one sorted output
sequences

= will be based on a modification of BITONIC-SORTER([N]

Basic Idea:
= consider two given sequences X = 00000111, Y = 00001111

* concatenating X with Y* (the reversal of Y) = 0000011111110000
S

LThis sequence is bitonic! ]

fices to perform a bitonic sort on X concatenated with Y*.

[Hence in order to merge the sequences X and Y, it suf-
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Construction of a Merging Network (1/2)

= Given two sorted sequences (ai, @, . .., an/2) and (@n 241, @nj242, - - - , @n)
= We know it suffices to bitonically sort (a1, @z, . .., @n/2, @n, @n—1, - - -, @nj241)
= Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i

= First part of MERGER[n] compares inputs iand n—ifori=1,2,...,n/2
= Remaining part is identical to BITONIC-SORTER[n]

a 0, 0 by a £, 0 by
d a 0 0 by bitoni a 0 0 by bitoni
sorte a 1 0 by itonic a 1 0 by itonic

ay 1 IO by bitoni Ay 1 0 by

1tonic

as 0 L p, o L L,

0 1y a 0 0
sorted ° 0 0 © bitonic 7 0 1 ! bitonic

a; by ag bg

ag 1 by 0 o 1

N as O o bs
(a) (b)

[ Lemma 27.3 still applies, since the reversal of a bitonic sequence is bitonic. ]

Figure 27.10 Comparing the first stage of MERGER[n] with HALF-CLEANER[n], for n = 8.
(a) The first stage of MERGER|[#] transforms the two monotonic input sequences (aj, az, ..., a,,/z)
and (ap /241, dn/242, - - - » Gn) into two bitonic sequences (by, by, ..., by 2) and (by/241, byj242,
..., bp). (b) The equivalent operation for HALF-CLEANER[n]. The bitonic input sequence
(ar, azs ..., Guja—15 Anj2, Ans Ap—1, - - -5 An/2+25 Gn/2+1) is transformed into the two bitonic se-
quences (b1, b2, ..., by2) and (bp, by—1, ..., byja41)-

S
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Construction of a Merging Network (2/2)

»—— | Bitonic-
SORTER[n/2]

BiTonic-
SORTER[n/2]

(@)

sorted

sorted

—_—_— e O = = O O

0 0
0 0}
1 1
o Lo
1 1
1 1]
1 1
1 1I

(b

—_ - = - - o o O

sorted

Figure 27.11 A network that merges two sorted input sequences into one sorted output sequence.
The network MERGER[#n] can be viewed as BITONIC-SORTER[n] with the first half-cleaner altered to
compare inputs i and n —i+1fori = 1,2,...,n/2. Here,n = 8. (a) The network decomposed into
the first stage followed by two parallel copies of BITONIC-SORTER[7/2]. (b) The same network with
the recursion unrolled. Sample zero-one values are shown on the wires, and the stages are shaded.

Sl
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Construction of a Sorting Network

Main Components

BITONIC-
SORTER[n/2]

HALF-

1. BITONIC-SORTER[n] 1.

CLEANER[n]
= sorts any bitonic sequence
= depth log n

Bironic-
SORTER[1/2]

2. MERGER([n]

* merges two sorted input sequences Brronic.
" depth IOg n SORTER[/2]

BrroNic-
SORTER[1/2]

n
FTTTTTTT

Batcher’s Sorting Network

= SORTER[nN] is defined recursively:

= If n = 2K, use two copies of SORTER[n/2] to
sort two subsequences of length n/2 each.
Then merge them using MERGER[n].

= If n =1, network consists of a single wire.

SORTER[1/2]

MERGER[n]

SORTER[n/2]

AN

[can be seen as a parallel version of merge sort]

S
I. Course Intro and Sorting Networks Batcher’s Sorting Network



Unrolling the Recursion (Figure 27.12)

o [ [ MERGER[2] [ [
"] Sorter [n/2] [ MERGER[4] [ [
: : [ MERGER[2] : [
MERGER[7] MERGER[8]
: [ | MERGER[2] : |
SORTER[n/2] MERGER[4]
: : : MERGER[2] : :
I o o
0 L 1 0 o Recursion for D(n):
o R o
0 ——1 ! 1 0 0 ifn=1,
S B . * o PO=13pn/2) 41090 ifn— 2
0 Lol . 1o l ) (n/2) + log =c.
(0] 0 | 4 > |
. I I I | Solution: D(n) = &(log? ).

depth 1 2 2 3 4 4 4 4556

SORTER[n] has depth ©(log?® n) and sorts any input.
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A Glimpse at the AKS Network

Ajtai, Komlds, Szemerédi (1983)
| There exists a sorting network with depth O(log n). ]
N

[Quite elaborate construction, and involves huges constants.]

Perfect Halver

A perfect halver is a comparator network that, given any input, places the
n/2 smallerkeysin by, ..., b,2 and the n/2 larger keys in b, /241, . . ., bn.
N

[ Perfect halver of depth log, n exist ~ yields sorting networks of depth ©((log n)?). J

Approximate Halver

An (n,e€)-approximate halver, e < 1, is a comparator network that for

every k = 1,2,...,n/2 places at most ek of its k smallest keys in
bn/241, - .., bn and at most ek of it&k largest keys in by, ..., by2.

We will prove that such networks can be constructed in constant depth!

i
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Expander Graphs

~——— Expander Graphs N
A bipartite (n, d, u)-expander is a graph with:
= G has nvertices (n/2 on each side)
= the edge-set is union of d perfect matchings

= For every subset S C V being in one part,

IN(S)| > min{z. - [S],n/2 — [S]}

ANN

Specific definition tailored for sorting
network - many other variants exist!

Expander Graphs:

= probabilistic construction “easy”: take d (disjoint) random matchings

= explicit construction is a deep mathematical problem with ties to
number theory, group theory, combinatorics etc.

* many applications in networking, complexity theory and coding theory

el bl
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From Expanders to Approximate Halvers
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From Expanders to Approximate Halvers
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From Expanders to Approximate Halvers
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From Expanders to Approximate Halvers
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Existence of Approximate Halvers (not examinable)

Proof:

= X := keys with the k smallest inputs
Y := wires in lower half with k smallest outputs - -

= For every u € N(Y): 3 comparat. (u,v),ve Y

Let u;, v; be their keys after the comparator Ut

Let ug, v4 be their keys at the output

= Note that vy € X

Since u was arbitrary:
YT+ [IN(Y)| < k.

|
|
|
|
|
|
|
|
Further:ug < ui <vi<vg=uge X |
|
|
|
|

= Since G is a bipartite (n, d, )-expander: - -

Y1+ IN(Y)[ > [Y]+ min{u[Y],n/2 — Y]}

=min{(1 + )| Y|,n/2}.

Vi

Combining the two bounds above yields:

(1 +mlY| < k.

= Same argument = at most € - k,

e:=1/(n+ 1), of the k largest input keys are
placed in by, ..., by/o. O

= typical application of expander gaphs in parallel algorithms
= Much more work needed to construct the AKS sorting network
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AKS network vs. Batcher’s network

Donald E. Knuth (Stanford) Richard J. Lipton (Georgia Tech)

“Batcher’s method is much ‘The A.KS .sorting network is
better, unless n exceeds the galactic: it needs that n be

78 i
total memory capacity of all Lar ger t’;'/a” ti o;s;: ;O f{nally
computers on earth!” e smaller than baichers

network for n items.”

S
I. Course Intro and Sorting Networks Batcher’s Sorting Network 31



Siblings of Sorting Network

Sorting Networks

= sorts any input of size n

= special case of Comparison Networks

Switching (Shuffling) Networks

= creates a random permutation of n items

= gpecial case of Permutation Networks

Counting Networks

= balances any stream of tokens over n wires

= special case of Balancing Networks

el e

‘,.B'.

comparator
L - <
2| > |7
switch
7 ?
R e
N ... '/
&
b
2 7z i S N ?
Y D I
balancer
7 S
N~
I3
2 | | 4

I. Course Intro and Sorting Networks

Batcher’s Sorting Network



Outline

Counting Networks

el ke
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Counting Network

Distributed Counting

Processors collectively assign successive values from a given range.
ANN

Values could represent addresses in memories
or destinations on an interconnection network

Balancing Networks

= constructed in a similar manner like sorting networks
= instead of comparators, consists of balancers

= balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

O

O O

ol
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Counting Network

Distributed Counting

Processors collectively assign successive values from a given range.
ANN

Values could represent addresses in memories
or destinations on an interconnection network

Balancing Networks

= constructed in a similar manner like sorting networks
= instead of comparators, consists of balancers

= balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

© C

(Number of tokens differs by at most one]

S
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Bitonic Counting Network

~——— Counting Network (Formal Definition)

1. Let xy, X2, ..., X, be the number of tokens (ever received) on the
designated input wires
2. Let y1, 2, ..., yn be the number of tokens (ever received) on the

designated output wires
3. Inaquiescent state: 37, x; = Y1, i
4. A counting network is a balancing network with the step-property:

0<yi—y <tforanyi<j.

Bitonic Counting Network: Take Batcher’s Sorting Network and replace
each comparator by a balancer.

S
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Correctness of the Bitonic Counting Network

Facts

Let x1,...,x,and yi, ..., y, have the step property. Then:

1. We have Y72 x5y = [1 20, xi], and 072 xoi = | 3 350, X

2. |fZL1Xf72,v:1y/,then)q7y,for/71,...,

B Y xi=Y",yi+1,then3lj=1,2,...,nwithx; = y;+1and x; = y; for j # i.

——— Key Lemma

have the step property, then so does the output y1, ..., ya.

Consider a MERGER[n]. Then if the inputs Xy, ..., Xn/2 and X, 241, - .

., Xn

Proof (by induction on n being a power of 2)
= Case n = 2is clear, since MERGER(2] is a single balancer

Sl
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Correctness of the Bitonic Counting Network

Facts

Let x1,...,x,and yi, ..., y, have the step property. Then:

1. We have Y72 x5y = [1 20, xi], and 072 xoi = | 3 350, X

2. |f27:1xf7Z,v:u//,thenxify,-forlf1,...,

B Y xi=Y",yi+1,then3lj=1,2,...,nwithx; = y;+1and x; = y; for j # i.

X1 1

Xo I
X3 22

X4 I
X5 I

6 7 |
x7

xg 28

Proof (by induction on n being a power of 2)

= Case n = 2 is clear, since MERGER|2] is a single balancer
" n>2 letz,...,zand z,. .. ,z,’7/2 be the outputs of the MERGER[n/2] subnetworks

Sl
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Correctness of the Bitonic Counting Network

Facts

2

2. 1E3°0, xi =310, yi, then x; =
B Y xi=Y",yi+1,then3lj=1,2,...,nwithx; = y;+1and x; = y; for j # i.

Let x1,...,x,and yi, ..., y, have the step property. Then:
1. We have 72 xiq = [13°0,

%], and 7/ = 3 74 )

yifori=1,...,n

X1
X2
X3
X4
X5
X6
X7
X8

&
¢ 64 oo o4

Proof (by induction on n being a power of 2)
= Case n = 2is clear, since MERGER(2] is a single balancer

" n>2 letz,...,zand z,. ..

: 2y be the outputs of the MERGER[n/2] subnetworks

Sl
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Correctness of the Bitonic Counting Network

Facts

Let x1,...,Xxpand yi, ..., y» have the step property. Then:

1. We have Y72 x5y = [1 20, xi], and 072 xoi = | 3 350, X

2. |f27:1xf7Z,v:u//,thenxify,-forlf1,...,

B Y xi=Y",yi+1,then3lj=1,2,...,nwithx; = y;+1and x; = y; for j # i.

X1 1
Xo z1’ I
X3 22
X4 zé I
% l 2
6 7 |
X7 Z‘lt
xg 24 I

Proof (by induction on n being a power of 2)
= Case n = 2 is clear, since MERGER|2] is a single balancer
" n>2 letz,...,zand z,. .. ,z,’7/2 be the outputs of the MERGER[n/2] subnetworks
"H=2z,...,z;0and z,... ,z,/,/z have the step property
"letZ:=?zandZ =2z
2 2
T F1=Z= (3N + 13 X e ) and 2 = [§ 278 5) 4+ 1§ 270000 X1
= Case 1: If Z = Z’, then F2 implies the output of MERGER[n] is y; = Zi4 (i—1)/2) ¥

= Case2:If|Z—Z'| =1,F3implies z; = z/ fori =1, ..., n/2 except a unique j with z; # z.

Balancer between z; and z/»’ will ensure that the step property holds.

S
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Bitonic Counting Network in Action (Asynchronous Execution)

®X1 )

® »

®0® x—

»

)z

V£

Ya
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Bitonic Counting Network in Action (Asynchronous Execution)

B
i B

X X X NONO,
. r®®
Y
X A A @
X4 b v (@)
=z

Counting can be done as follows:

Add local counter to each output wire /, to
assign consecutive numbers i, i+ n,i+2-n,.. ..

I. Course Intro and Sorting Networks
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A Periodic Counting Network [Aspnes, Herlihy, Shavit, JACM 1994]

Consists of log n BLOCK[n] networks each of which has depth log n

38
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From Counting to Sorting [The converse is not true!]

Counting vs. Sorting )
| If a network is a counting network, then it is also a sorting network. ]
Proof.
= Let C be a counting network, and S be the corresponding sorting network
= Consider an input sequence ai, a,...,a, € {0,1}"to S

= Define an input xi1, X2,...,x, € {0,1}"to Cby x; = 1iff a; = 0.
= Cis a counting network = all ones will be routed to the lower wires
= S corresponds to C =- all zeros will be routed to the lower wires

= By the Zero-One Principle, S is a sorting network. O
o 1 111 1 0
1100 1]1 0 0
C 1 _1]1]o.0 0 1 S
0J]ojooO0]oO 1 1

S
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Outline

Load Balancing on Graphs
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Communication Models: Diffusion vs. Matching

11000% 11
SEREN:
_ i 2 3 ) —
M‘ooi%%o " 00
9001?% 00
l1ooo I 1 00

[eoNeoNoNoNoNo)

on—I—- O O O

o= O O O

(>NeoNeoNoNeNe)
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Smoothness of the Load Distribution

= x! € R" be a load vector at round t
= X denotes the average load

AN
[Want that x' converges for t — oo to (X, X, ..., X)! ]

Metrics

» Lo-norm: @ = /3T (xF - X)2
= makespan: max_, x!
= discrepancy: max?_; x! — min?_, x;.

For this example:
= ' =1/02+02+352+052+12+12+1.52 +0.52 = /17
= max]; x{ = 6.5

= max; x{ —minl_; x/ =5

Sl
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Diffusion Matrix

~N
How to pick « for a d-regular graph?
" a= 1; may lead to oscillation (if graph is bipartite)
"= dLH ensures convergence
D= 21—d ensures convergence (and all eigenvalues of M are non-negative)
J
Diffusion Matrix Y

Given an undirected, connected graph G = (V, E) and a diffusion pa-
rameter a > 0, the diffusion matrix M is defined as follows:

a if (i,)) € E,
Mj={1—adeg(i) ifi=]

0 - ~ otherwise.
# neighbors of i

Further let v(M) := maxy,+ |uil, where g =1 > po > -+ > pp > —1
are the eigenvalues of M.

[
| This can be also seen as a random walk on G!

/2
First-Order Diffusion: Load vector x! satisfies

xt=M. x.

i
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1D grid

2D grid 3D grid
*—o—0—0—0 000
|
~ 1 ~ 1 ~1_ 1
M) =1 - Y M)=1 -5  A(IM)=1- -5
Hypercube Random Graph Complete Graph

<8

7,

S\
W

A

" logn

(M) ~0
( ~v(M) € (0,1] measures connectivity of G )
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Diffusion of Load on a Ring

0.000

-

0.000 0.000

7 N

0.000 0.000

0.000 Step: 0

0.000 0.000

N 7

0.000 0.000

—_

0.000

e e
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Diffusion of Load on a Ring

-

0.000

7

0.000

0.000

0.000

0.000 Step: 1

0.000

N

0.000

\

0.000

0.000
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Diffusion of Load on a Ring

0.000 \:I
0.000 0.062
0.000 0.250
0.000 Step: 2 0.375
0.000 0.250
\ /
0.000 0.062

—_

0.000

e e
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Diffusion of Load on a Ring

—_—
oote \D
0.000 0.094
0.000 0.234
0.000 Step: 3 0312
0.000 0.234
0.000 0.094
\ /

0.016

e e
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Diffusion of Load on a Ring

=

- 0082 ]
0.069 / \ 0.098
0.058 0.109
0.054 Step: 25 0113
0.058 0.109

0.083
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Diffusion of Load on a Ring

=

= =
0.081 / \ 0.086
:/ \D
0.079 0.088
0.078 Step: 50 0.089
0.079 0.088

0.083

el bt

',,!;. I. Course Intro and Sorting Networks Load Balancing on Graphs 45.6



Convergence of the Quadratic Error (Upper Bound)

Lemma
Let v(M) := max,,»1 |uil, where py =1 > pa > --- > up > —1 are the
eigenvalues of M. Then for any iteration f,

o < y(M)* - 0.

Proof:
= Let &' = x! — X, where X is the column vector with all entries set to X
= Express e' through the orthogonal basis given by the eigenvectors of M:

n

t

e =a1-Vi+oax- Vot +apn Vo= aj - V.
i=2

/\
= For the first order diffusion scheme, [e’ is orthogonal to V1J

n n
et — Mel =M. <Z aiVi> = Za,ﬂivi.
i=2 i=2

= Taking norms and using that the v;’s are orthogonal,

n n
e e = IMe'llz = Y ofufllvlle < 7* Y of [vill =47 - lle'lle O
i=2 i=2

Sl
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Convergence of the Quadratic Error (Lower Bound)

Lemma

For any eigenvalue p;, 1 < i < n, there is an initial load vector x° so that

o = 2 O

Proof:
= Let X = X + v;, where v; is the eigenvector corresponding to y;
= Then

e = M~ = Mie® = MIV,' ZN;V:‘:
and

o' = [|ef]l2 = pf'||vill = pi'®°. B

i
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Summary and Outlook: Idealised versus Discrete Case

Idealised Case

Xt _ M'Xt_1

:Mt'XO

Linear System
= corresponds to Markov chain
= well-understood

that cannot be divided further.

Discrete Case :
Rounding Error

yt:M-yt_1 +A!

[ Here load consists of integers ]

t
:M['yo_"_ZMffS.AS

s=1

Non-Linear System
= rounding of a Markov chain
= harder to analyze

Given any load vector x°, the num-
ber of iterations untiI0 x! satisfies

t i log(¢” /<)
® < ¢is at most T (M) -

How close can it be made
to the idealised case?

S
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Matrix Multiplication

Remember: If A= (a;) and B = (b;) are square n x n matrices, then the
matrix product C = A - Bis defined by

n
C,].:Zaik.bkj vi,j=1,2,...,n.
k=1

\

SQUARE-MATRIX-MULTIPLY (4, B) | This definition suggests that n? - n = n®

arithmetic operations are necessary.

Cij = Cij + @ik - byj

1 n = A.rows

2 let C be anew n X n matrix
3 fori = 1ton

4 for j = 1ton

5 Cij =0

6 fork = 1ton

7

8

return C

SQUARE-MATRIX-MULTIPLY (A, B) takes time ©(n®).

0 II. Matrix Multiplication Introduction
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Serial Matrix Multiplication
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Divide & Conquer: First Approach

[Assumption: nis always an exact power of 2.]

Divide & Conquer:
Partition A, B, and C into four n/2 x n/2 matrices:

A Az Bi1 Bz Ci1 Ciz
A = B = C = .
<A21 Azz) ’ (Bm Bzz) ’ <Cz1 sz)
Hence the equation C = A - B becomes:
Ci1 Crp2 _ At Aiz ) By Bi2
Cxr Ca Ay Az Boy Bae
This corresponds to the four equations:

Cit = Avt - Bir o+ Avz - Bay Each equation specifies
Ci2 = At1- Bz + A1z Bz two multiplications of
Co1 = Aot - Bi1 + A - Boy ] N/2xn/2 matrices and the
Cos = Aot - Bia + Aso - Boo addition of their products.

il
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Divide & Conquer: First Approach (Pseudocode)

SQUARE-MATRIX-MULTIPLY-RECURSIVE (4, B)

é e A.rows . Line 5: Handle submatrices implicitly through
et C be anew n X n matrix . i X .
3 ifn == index calculations instead of creating them.
4 ¢ = an b
5 else partition 4, B, and C as in equations (4.9) Z
6 C,; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, By;)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE(A,, Bsy)
7 Ci, = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (415, By,)
8 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, By;)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE(A,,, Bsy)
9 C5; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3, Bi2)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5,, Bss)
10 return C

Let T(n) be the runtime of this procedure. Then:

o(1) ifn=1,

T =\s. T(n/2)+0(r) itn>1.

Solution: T(n) = ©(8%%2") = ©(n®) {No improvement over the naive algorithm!]

il
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Divide & Conquer: Second Approach

Idea: Make the recursion tree less bushy by performing only 7 recursive
multiplications of n/2 x n/2 matrices.

~——— Strassen’s Algorithm (1969) N
1. Partition each of the matrices into four n/2 x n/2 submatrices

2. Create 10 matrices S1, S, ..., Si0. Each is n/2 x n/2 and is the sum
or difference of two matrices created in the previous step.

3. Recursively compute 7 matrix products Py, Py, ..., P;, each n/2 x n/2

4. Compute n/2 x n/2 submatrices of C by adding and subtracting
various combinations of the P;.

\. N J

[Time for steps 1,2,4: ©(n?), hence T(n) =7 - T(n/2) + ©(n?) = T(n) = @(nlog7)_J

II. Matrix Multiplication Serial Matrix Multiplication 7



Solving the Recursion

T(n)=7-T(n/2)+c-n?

o
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Details of Strassen’s Algorithm

The 10 Submatrices and 7 Products

Py = Aq1- St = A1y - (B2 — Bzo)
P2 = Sy Bop = (A1 + At2) - Bao
P3 = S5+ Bi1 = (A21 + Azz) - By
Py = Az - Sy = Agz - (B21 — Bi1)
Ps = S5 - Sg = (A11 + Az2) - (Bi1 + B22)
Ps = 57 - Sg = (A2 — Az2) - (B2t + B2o)
P7 = Sy - S10 = (A1 — A21) - (B11 + Bi2)

, Claim
A11Bi1 + A12B21 A11Biz + A12Bor _ (Ps+Ps— P+ Ps Py + P>
A21Bi1 + A22Bo1 A21Bi2 + A2Byo P34 Py Ps+ Py —P3 — P

Proof:

Ps + Py — P2 + Ps = A11B11 + AurBaz + AeaBiT + AeeBaa + AeaBs1 — Aee BT
— ApB5z — AwB53 + A12B21 + AreBsz — AeaBai — AeBra
= A11B11 + Aq2Bzq O

o [
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Current State-of-the-Art

Open Problem: Is there an algorithm with quadratic complexity?

Asymptotic Complexities:
= O(n®), naive approach
= O(n?%%), Strassen (1969)
= O(n*7%), Pan (1978)
= O(n*%2%), Schénhage (1981)
= O(rn*°"), Romani (1982)
= O(n**%), Coppersmith and Winograd (1982)
= O(n?**7®), Strassen (1986)
= O(n*%7%), Coppersmith and Winograd (1989)
= O(n?%*), Stothers (2010)
= O(rP¥728542) '\ Williams (2011)
- O(237286%9) | ¢ Gall (2014)

o [
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Memory Models

Distributed Memory

= Each processor has its private memory
= Access to memory of another processor via messages

] ] R ] ]
@ (2) 3 (4) @ 6

N AN Y

Shared Memory
= Central location of memory
= Each processor has direct access

Shared Memory

T d b oe
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Dynamic Multithreading

= Programming shared-memory parallel computer difficult

= Use concurrency platform which coordinates all resources
AN
[ Scheduling jobs, communication protocols, load balancing etc. ]

Functionalities:
= spawn
= (optional) prefix to a procedure call statement
= procedure is executed in a separate thread
= sync
= wait until all spawned threads are done
= parallel

= (optinal) prefix to the standard loop for
= each iteration is called in its own thread

AN

Only logical parallelism, but not actual!
Need a scheduler to map threads to processors.

5, 1l. Matrix Multiplication Reminder: Multithreading



Computing Fibonacci Numbers Recursively (Fig. 27.1)

Very inefficient — exponential time!

0: FIB(n)

1 if n<=1 return n
2 else x=FIB(n-1)

3: y=FIB(n-2)

4: return x+y

e II. Matrix Multiplication Reminder: Multithreading




Computing Fibonacci Numbers in Parallel (Fig. 27.2)

o Without spawn and sync same pseudocode as before
e spawn does not imply parallel execution (depends on scheduler)

]

s
P-FIB(n)
if n<=1 return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)
sync
return x+y

o= W N KE O
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Computing Fibonacci Numbers in Parallel (Fig. 27.2)

Computation Dag G = (V, E)
e V set of threads (instructions/strands without parallel control)
e E set of dependencies

e
. P-FIB(n)
if n<=1 return n
else x=spawn P-FIB(n-1)
y=P-FIB (n-2)
sync

& W N P o

S
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Computing Fibonacci Numbers in Parallel (Fig. 27.2)

b

. P-FIB(n)

if n<=1 return n

else x=spawn P-FIB(n-1)
y=P-FIB (n-2)
sync

& W N P o
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Computing Fibonacci Numbers in Parallel (DAG Perspective)

16

Reminder: Multithreading

1. Matrix Multiplication
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Performance Measures

Work

Total time to execute everything on a single proces-
sor.

1. Matrix Multiplication Reminder: Multithreading
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Performance Measures

Work

Total time to execute everything on a single proces-
sor.

Span

Longest time to execute the threads along any path.

1. Matrix Multiplication Reminder: Multithreading
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Performance Measures

Work

Total time to execute everything on a single proces-
sor.

Span

Longest time to execute the threads along any path.

AN

If each thread takes unit time, span is
the length of the critical path.

#nodes =5

?/?\?
N

1. Matrix Multiplication Reminder: Multithreading
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Work Law and Span Law

= Ty = work, T = span
= P = number of (identical) processors

= Tp = running time on P processors
~

(Running time actually also depends on scheduler etc.!]
Work Law
Tp > %
o\

(Time on P processors can’'t be shorter than if all work all timej

R, 1. Matrix Multiplication Reminder: Multithreading
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Work Law and Span Law

= Ty = work, T = span
= P = number of (identical) processors

= Tp = running time on P processors
~

(Running time actually also depends on scheduler etc.!]

——— Work Law

T
TPZF1

TaN

~\

(Time on P processors can’'t be shorter than if all work all time)

——— Span Law

Tp > T

y,

[Time on P processors can't be shorter than time on oo

processors)

Too =5
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Work Law and Span Law

= Ty = work, T = span
= P = number of (identical) processors

= Tp = running time on P processors
~

(Running time actually also depends on scheduler etc.!]

— Work Law \

T
TP>F1

n
(Time on P processors can’'t be shorter than if all work all time)

——— Span Law ‘

Tp>T

y,

[Tlme on P processors can't be shorter than time on oo processors)

* Speed-Up: {Maxmum Speed-Up bounded by P! ]

* Parallelism: 7+ {Maximum Speed-Up for co processors! ]

S
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Multithreaded Matrix Multiplication
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Warmup: Matrix Vector Multiplication

Remember: Multiplying an n x n matrix A = (a;) and n-vector x = (x;) yields
an n-vector y = (y;) given by

n
y,':E aj X fori=1,2,...,n
J=1

MAT-VEC(4, x)

1 n = A.rows
2 let y be a new vector of length n
3 parallel fori = 1ton
4 vi =0 The parallel for-loops can be used since
5 parallelfori = 1ton . .
. different entries of y can be computed concurrently.
6 forj = 1ton
7 Yi = Yyi+taix;
8 return y

How can a compiler implement the parallel for-loop?

=l
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Implementing parallel for based on Divide-and-Conquer

MAT-VEC(A4, x)

MAT-VEC-MAIN-LOOP (A, x, y,n,i,i’)
ifi==i

1 n = A.rows
2 let y be a new vector of length 7
for j = 1ton 3 parallel fori = I ton
Yi = yi taijx; 4 yi=0
else mid = (i +1i')/2] 5 parallel fori = I ton
spawn MAT-VEC-MAIN-LOOP (A, x, y, n, i, mid) 6 for j = lton
MAT-VEC-MAIN-LOOP(A, x, y,n,mid + 1,i') 7 i = yi +a;x;
sync 8 return y

N Uk W~

5 Work is equal to running time of its serialization; overhead
Ti(n) = ©(n") i : .
of recursive spawning does not change asymptotics.

T (n) = ©(log n) + max iter(n) Span is the depth of recursive callings plus
1sizn the maximum span of any of the n iterations.

= 0(n).

Sl
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Naive Algorithm in Parallel

P-SQUARE-MATRIX-MULTIPLY (A4, B)

1 n = A.rows

2 let C be anew n X n matrix

3 parallelfori = 1ton

4 parallel for j = 1ton

5 Cij = 0

6 fork = 1ton

7 cij = cij + aik - by; With a more careful implementation,

8 return C Too(n) = O(log n) (CLRS, Exercise 27.2-3)

P-SQUARE-MATRIX-MULTIPLY (A, B) has work T;(n) = ©(n®) and span T..(n) = ©(n).

[The first two nested for-loops parallelise perfectly.J

S
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The Simple Divide&Conquer Approach in Parallel

P-MATRIX-MULTIPLY-RECURSIVE(C, A, B)

1 n = A.rows

2 ifn==

3 e = anby

4 elselet T be a new n x n matrix

5 partition A, B, C,and 7 into n/2 x n/2 submatrices

Anrs Ara, Aoy, Azas B, Bia, Bay, Baai Chi, Cra, Cap, Cags
and Ty, Tha. Ta1, Toas respectively

6 spawn P-MATRIX-MULTIPLY-RECURSIVE(Cyy, A1y, Byy)
7 spawn P-MATRIX-MULTIPLY-RECURSIVE(C,, A1y, Bj2)
8 spawn P-MATRIX-MULTIPLY-RECURSIVE(Cy;, A2y, Biy)
9 spawn P-MATRIX-MULTIPLY-RECURSIVE (Ca,, Az, B12)
10 spawn P-MATRIX-MULTIPLY-RECURSIVE (T}, A1z, Bay)
11 spawn P-MATRIX-MULTIPLY-RECURSIVE(7T1,, A12, Bas)
12 spawn P-MATRIX-MULTIPLY-RECURSIVE (7%, A2z, Bay)
13 P-MATRIX-MULTIPLY-RECURSIVE (755, A2, B2s)
14 sync
15 parallel fori = 1 ton
16 parallel for j = 1 ton
17 €y = ¢y [The same as before.]
(74

P-MATRIX-MULTIPLY-RECURSIVE has work T;(n) = ©(n®) and span T..(n) = ©(log? n).

—

[Tw(n) = T (n/2) + ©(log n)]
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Strassen’s Algorithm in Parallel

~——— Strassen’s Algorithm (parallelised)
1. Partition each of the matrices into four n/2 x n/2 submatrices

[This step takes ©(1) work and span by index Calculations.]

2. Create 10 matrices Sy, Sz, ..., Syo. Eachis n/2 x n/2 and is the sum
or difference of two matrices created in the previous step.

Can create all 10 matrices with ©(n?) work and ©(log n)
span using doubly nested parallel for loops.

3. Recursively compute 7 matrix products Py, P, ..., P7,each n/2 x n/2

[ Recursively spawn the computation of the seven products. ]

4. Compute n/2 x n/2 submatrices of C by adding and subtracting
various combinations of the P;.

Using doubly nested parallel for T1(n) = ©(n'°97)
this takes ©(n?) work and ©(log n) span. T (n) = ©(log? n)

\. J
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Matrix Multiplication and Matrix Inversion

Speedups for Matrix Inversion by an equivalence with Matrix Multiplication.

~——— Theorem 28.1 (Multiplication is no harder than Inversion)

If we can invert an n x n matrix in time /(n), where I(n) = Q(n?) and I(n)
satisfies the regularity condition /(3n) = O(/(n)), then we can multiply
two n x n matrices in time O(/(n)).

\.

Proof:
= Define a 3n x 3n matrix D by:

L A O L —A AB
D=|0 I, B = p'=(0o 1 -BJ|.
0 0 I 0 0 I

= Matrix D can be constructed in ©(n?) = O(/(n)) time,
= and we can invert D in O(/(3n)) = O(/(n)) time.
= We can compute AB in O(/(n)) time. O

II. Matrix Multiplication Multithreaded Matrix Multiplication 25




The Other Direction

Theorem 28.1 (Multiplication is no harder than Inversion)
If we can invert an n x n matrix in time /(n), where I(n) = Q(n?) and I(n)

satisfies the regularity condition /(3n) = O(/(n)), then we can multiply
two n x n matrices in time O(/(n)).

[Allows us to use Strassen’s Algorithm to invert a matrix!]

~NJ
Theorem 28.2 (Inversion is no harder than Multiplication)
Suppose we can multiply two n x n real matrices in time M(n) and M(n)
satisfies the two regularity conditions M(n + k) = O(M(n)) for any 0 <
k < nand M(n/2) < c¢- M(n) for some constant ¢ < 1/2. Then we can

compute the inverse of any real nonsingular nx n matrix in time O(M(n)).
/1

L

(Proof of this directon much harder (CLRS) — relies on properties of SPD matrices.}

Sl
E:E II. Matrix Multiplication Multithreaded Matrix Multiplication 26



lll. Linear Programming

Thomas Sauerwald

Easter 2016




Outline

Introduction

I1l. Linear Programming Introduction



Introduction

Linear Programming (informal definition)

= maximize or minimize an objective, given limited resources and
competing constraint

= constraints are specified as (in)equalities

~—— Example: Political Advertising

= Imagine you are a politician trying to win an election

= Your district has three different types of areas: Urban, suburban and
rural, each with, respectively, 100,000, 200,000 and 50,000
registered voters

= Aim: at least half of the registered voters in each of the three regions
should vote for you

= Possible Actions: Advertise on one of the primary issues which are (i)
building more roads, (ii) gun control, (iii) farm subsidies and (iv) a
gasoline tax dedicated to improve public transit.

11l Linear Programming Introduction



Political Advertising Continued

policy \urban suburban  rural

build roads -2 5

gun control 8 2
farm subsidies 0 0
gasoline tax 10 0

The effects of policies on voters. Each entry describes the number of thousands of
voters who could be won (lost) over by spending $1,000 on advertising support of a

policy on a particular issue.

g

= Possible Solution:
= $20,000 on advertising to building roads
= $0 on advertising to gun control
= $4,000 on advertising to farm subsidies
= $9,000 on advertising to a gasoline tax

= Total cost: $33,000

What is the best possible strategy?

S
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Towards a Linear Program

policy \ urban suburban rural
build roads -2 5 3
gun control 8 2 -5
farm subsidies 0 0 10
gasoline tax 10 0 -2

The effects of policies on voters. Each entry describes the number of thousands of
voters who could be won (lost) over by spending $1,000 on advertising support of a

policy on a particular issue.

= x; = number of thousands of dollars spent on advertising on building roads
= xo = number of thousands of dollars spent on advertising on gun control

= x3 = number of thousands of dollars spent on advertising on farm subsidies
= x4 = number of thousands of dollars spent on advertising on gasoline tax

Constraints:

= —2x1 +8x>+0x3 +10x4 > 50
= 5x1 +2x> +0x3 + 0x4 > 100

[Objective: Minimize x; + Xo + X3 + X4 J

= 3x1 —5x0 +10x3 — 2x4 > 25

S
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The Linear Program

Linear Program for the Advertising Problem

minimize Xy + Xo 4+ X3 + X4
subject to
—2X4 + 8x> + 0x3 + 10x4 > 50
5xq + 2Xx + O0xs + Oxs > 100
3Xq — 5xo + 10x3 — 2X4 > 25
X1, X2, X3, X4 > 0

/1

‘(The solution of this linear program yields the optimal advertising strategy. J

Formal Definition of Linear Program

= Given ay, a, ..., ap and a set of variables xy, X2, ..., Xn, a linear
function f is defined by

f(X1,X2,...,Xn) = @1 X1 + @Xo + - - + @nXn.

= Linear Equality: f(x1,X2,...,X2) = b { Linear Constraints ]
b

= Linear Inequality: f(x1,x2,...,x,,)§

= Linear-Progamming Problem: either minimize or maximize a linear
function subject to a set of linear constraints

11l Linear Programming Introduction



A Small(er) Example

X1 Xo

maximize
subject to

VIVIAIAI

R R

2X2

X1, X2

4X1
2X1
5X1

and x» satisfying
all constraints is a feasible solution

Any setting of x

[

74
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A Small(er) Example

maximize X1+ Xo
subject to
4X1 — X2 < 8
2X4 + Xo < 10
5X1 — 2X2 > -2
X1, X2 > 0

Graphical Procedure: Move the line
X1 + X2 = z as far up as possible.

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

bl e

;-.,ig,, I1l. Linear Programming Introduction
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Standard and Slack Forms

Standard Form

n
maximize > cx {Objective Function ]
=

subject to

n
dap<b  fori=1,2,....m
n+ m Constraints } =1

x>0 forj=1,2,...,n
N

LNon-Negativity Constraints J

Standard Form (Matrix-Vector-Notation)

maximize c'x {Inner product of two vectors ]
subject to

Ax<b {Matrix-vector product ]
x>0

o
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Converting Linear Programs into Standard Form

4 Y
Reasons for a LP not being in standard form:
1. The objective might be a minimization rather than maximization.
2. There might be variables without nonnegativity constraints.
3. There might be equality constraints.
4. There might be inequality constraints (with > instead of <).
\ J

Goal: Convert linear program into an equivalent program
which is in standard form

/)

/L
Equivalence: a correspondence (not necessarily a bijection)
between solutions so that their objective values are identical.

A

When switching from maximization to
minimization, sign of objective value changes.

11l Linear Programming Standard and Slack Forms 10



Converting into Standard Form (1/5)

Reasons for a LP not being in standard form:
1. The objective might be a minimization rather than maximization.

| minimize -2x1 + 3x|
subject to
Xj + X2 = 7
X1 — 2X2 < 4
X1 > 0

!
!
i Negate objective function
\/

| maximize 2x  — 3x |
subject to
X1+ X2 = 7
X1 — 2X2 < 4
X1 > 0

',,l;. I1l. Linear Programming Standard and Slack Forms



Converting into Standard Form (2/5)

Reasons for a LP not being in standard form:
2. There might be variables without nonnegativity constraints.

maximize 2x1 — 3x
subject to
X1 + X2 = 7
X1 — 2X2 < 4
i > 0

|
! Replace x> by two non-negative
\}( variables x; and x5’

maximize 2xy  — |3x5 + 3x§

subject to
xx + | X - x| = 7
Xy — 2% + 2xJ] < 4
X1, X3, X > 0]

el ke
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Converting into Standard Form (3/5)

Reasons for a LP not being in standard form:
3. There might be equality constraints.

maximize 2y — 3x5 + 3xy
subject to
X + X - X = 7
Xy — 2x5 + 2x)5 < 4
X17X57X2N > 0
|
I Replace each equality
\}’ by two inequalities.
maximize 2y — 3x3 + 3x7
subject to
o+ % - X < 7
/ "
X1+ X, — X, > 7
X — 2% + 2x3 < 4
X17Xé7X2H 2 0

el ke
11l Linear Programming Standard and Slack Forms



Converting into Standard Form (4/5)

Reasons for a LP not being in standard form:
4. There might be inequality constraints (with > instead of <).

maximize 2x; — 3x5 + 3x)
subject to
Xt + X - x < 7
xi + x5 - xf > 7]
Xy — 2x5 + 2x) < 4
X1, X5, X5 > 0
|

|
i Negate respective inequalities.

\4
maximize 2x;  — 3x5 + 3x)
subject to
x4+ x5 -  x) < 7
X - %+ @ < 7]
Xy — 2x5 + 2x3 < 4
X1, X5, X3 > 0

el ke
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Converting into Standard Form (5/5)

[Rename variable names (for consistency). ]

N
maximize 2xy — 33X + 3x3
subject to
XX 4+ x - x3 < 7
—X1 - X2+ x3 < -7
X1 — 2% + 2x3 < 4
X1,X2, X3 > 0

It is always possible to convert a linear program into standard form.

S
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Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints
except for the non-negativity constraints are equalities.

/)

/L
For the simplex algorithm, it is more con-
venient to work with equality constraints.

Introducing Slack Variables

= Let 27:1 ajXx; < b; be an inequality constraint
= Introduce a slack variable s by

[

n
s=bi— ) ax
s measures the slack between } ' ; v

the two sides of the inequality.
s> 0.

= Denote slack variable of the ith inequality by X,

x5
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Converting Standard Form into Slack Form (2/3)

maximize
subject to

maximize
subject to

2X1 — 33X + 3x3
D X2 - X3
=X = X2+ X3
Xq —  2X +  2Xx3
X1, X2, X3
|
|
|
|
A\
2X1
X4 = 7 — X1
X5 = -7 + Xq
X6 = 4 — X1

X1, X2, X3, X4, X5, Xg

vV + +

IV AN INIA

Introduce slack variables

3x2  +

Xo +

Xo —

2X2 —
0

3X3

X3
X3
2X3

IIl. Linear Programming
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Converting Standard Form into Slack Form (3/3)

maximize 2x; — 33X + 3x3
subject to
X4 = 7 - X1 — Xo + X3
Xxs = -7 + X1+ X2 - X3
Xe = 4 — X4 + 2X% — 2Xx3
X1, X2, X3, X4, X5, Xg > 0

|
I Use variable z to denote objective function
\l( and omit the nonnegativity constraints.

z = 2x1 — 33X + 3x3 \

X4 = 7 — Xq — Xo =+ X3

X5 = -7 + X1 + X - X

Xe = 4 — X4 + 2X — 2X3
/1

[This is called slack form.]

S
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Basic and Non-Basic Variables

z = 2xy — 3x + 3x3

Xa = 7 - X1 — X2 + X3

Xs = -7 4+ Xy + Xo - X3

Xe = 4 — X4 +  2X -  2X3
i N

[Basic Variables: B = {4,5,6} ] [Non-Basic Variables: N = {1,2,3} ]

Slack Form (Formal Definition)

Slack form is given by a tuple (N, B, A, b, ¢, v) so that
z=v+) cx
JEN
Xj=b - ajx fori€B,

jeN

and all variables are non-negative.  \
4[Variables/00efficients on the right hand side are indexed by B and N. ]

el bl
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Slack Form (Example)

V4 =

X1 =

X2 =

X4 =

Slack Form Notation

2

8

_ s X 2%
6 6 3
+ 2+ 2 - 2

B={1,2,4}, N={3,56}

ass
A= | axs
aas

b;
b= b
bs

v =28

ais
aos
ass

:

aie —1/6 —1/6 1/3
326) = (8/3 2/3 1/3>
22T 1/2 —1/2 0

8 Cs -1/6
(&) (2)- (28)
18 Cs -2/3

11l Linear Programming
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The Structure of Optimal Solutions

— Definition
A point x is a vertex if it cannot be represented as a strict convex combi-

nation of two other points in the feasible set.

-
LThe set of feasible solutions is a convex set.

~—— Theorem
If there exists an optimal solution, one of them occurs at a vertex.

\.

=~

Proof:

= Let x be an optimal solution which is not a vertex X2
= 3 vector d so that x — d and x + d are feasible

= Since A(x+d)=band Ax =b= Ad =0
= W.l.o.g. assume ¢’ d > 0 (otherwise replace d by —d)

= Consider x + Ad as a function of A > 0

= Case 1: There exists j with a; < 0 TP N
= Increase A from 0 to ) until a new entry of x + Ad L
becomes zero X — d 1
= x + X d feasible, since A(x + X'd) = Ax = band I
X+XNd>0 ‘

=cT(x+Nd)=cTx+c"Nd>cTx

i
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The Structure of Optimal Solutions

— Definition N
A point x is a vertex if it cannot be represented as a strict convex combi-

nation of two other points in the feasible set.

-
LThe set of feasible solutions is a convex set.

——— Theorem N
If there exists an optimal solution, one of them occurs at a vertex.

\ v

Proof:

= Let x be an optimal solution which is not a vertex
= 3 vector d so that x — d and x + d are feasible

= Since A(x+d)=band Ax =b= Ad =0
= W.l.o.g. assume ¢’ d > 0 (otherwise replace d by —d)
= Consider x + Ad as a function of A > 0

= Case 2: Forallj, d; >0

= x 4+ A\d is feasible for all A > 0: A(x + A\d) = b and
X+Xd>x>0
= If A\ — oo, then ¢T(x + Ad) — o
= This contradicts the assumption that there exists an
optimal solution. O

-k
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Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight

fromstotin G
[\

[p = (vw = sWw,..., = t)such that}

w(p) = S5, w(vk_1, vi) is minimized.

Shortest Paths as LP Recall: When BELLMAN-FORD terminates,
all these inequalities are satisfied.

maximize a;
subject to =
I d < dv + w(u,v) foreachedge(u,v)e€E,
this is a maxi- & = 0 ~
mization problem! Solution d satisfies dy = miny. (u,v)ce {HU +w(u,v) }]

S
' 11l Linear Programming Formulating Problems as Linear Programs 23



Maximum Flow

Maximum Flow Problem
= Given: directed graph G = (V, E) with edge capacities ¢ : E — R*,
pair of vertices s,t € V

= Goal: Find a maximum flow f : V x V — R from s to t which
satisfies the capacity constraints and flow conservation

(2) 7] =19
® ® ®

Maximum Flow as LP

maximize Sveviv = Xevfs
subject to
fw < c(u,v) foreachu,veV,
Sweviw = Y ,cyfw foreachue V\ {s,t},
v 2 0 foreachu,ve V.

11l Linear Programming Formulating Problems as Linear Programs
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Minimum-Cost Flow

[Extension of the Maximum Flow Problem]
Minimum-Cost-Flow Problem LA

= Given: directed graph G = (V, E) with capacities ¢ : E — R, pair of
vertices s, t € V, cost function a: E — R, flow demand of d units

= Goal: Findaflow f: V x V — R from s to t with |f| = d while
minimising the total cost 3 a(u, v)fy incurrred by the flow.

u,v)eEE

[Optimal Solution with total cost:

2 wvyee &, Vit = (2:2)+(5-2)+(3-1)+(7-1)+(1-3) = 27

Figure 29.3 (a) An example of a minimum-cost-flow problem. We denote the capacities by ¢ and
the costs by a. Vertex s is the source and vertex ¢ is the sink, and we wish to send 4 units of flow
from s to . (b) A solution to the minimum-cost flow problem in which 4 units of flow are sent from s
to ¢. For each edge, the flow and capacity are written as flow/capacity.
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Minimum-Cost Flow as a LP

Minimum Cost Flow as LP

minimize P wwyee U, V)fu
subject to

fuv

Zvevf"“ - Zvevfu'/
ZvevaV - ZvevaS

fuv

IA

\%

c(u,v)
0

d,

0

foreachu,v e V,
foreach u € V\ {s,t},

foreach u,v € V.

Real power of Linear Programming comes
from the ability to solve new problems!

11l Linear Programming Formulating Problems as Linear Programs
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Simplex Algorithm
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Simplex Algorithm: Introduction

Simplex Algorithm

= classical method for solving linear programs (Dantzig, 1947)
= usually fast in practice although worst-case runtime not polynomial
= iterative procedure somewhat similar to Gaussian elimination

Basic Idea:

= Each iteration corresponds to a “basic solution” of the slack form

= All non-basic variables are 0, and the basic variables are
determined from the equality constraints

= Each iteration converts one slack form into an equivalent one while
the objective value will not decrease < In that sense, it is a greedy algorithm.]

= Conversion (“pivoting”) is achieved by switching the roles of one
basic and one non-basic variable

Sr
i B
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Extended Example: Conversion into Slack Form

maximize 3x
subject to

il
&

X4
2X1
4x4

X4
X5
X6

4+ o+

Xo

X2
2X2

30
24
36

2X3

3X3
5X3
2X3

IV ININIA

30
24
36

0

Conversion into slack form

3X1

X1
2X1
4 x4

Jr

X2
X2
2X2
X2

2X3
3X3
5X3
2X3

III. Linear Programming

Simplex Algorithm
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Extended Example: Iteration 1
z = 31 + Xo 2X3
X3 = 30 — Xy - Xo 3Xx3
X5 = 24 — 2X3 — 2x 5x3
X = 36 — 4x3 - Xo 2X3
7

[Basic solution: (X1, Xz, ...,Xs) = (0,0, 0, 30,24, 36) ]
N

[This basic solution is feasible] [Objective value is 0.]

i B

N
/L

III. Linear Programming

Simplex Algorithm
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Extended Example: Iteration 1

[Increasing the value of x; would increase the objective value.]

v
z = 3X1 + X2 + 2x3
X4 = 30 — X1 — Xo — 3X3
Xs = 24 — 2x4 - 2xX — bxs
X6 = 36 — 4 x4 — X2 — 2X3
N
[The third constraint is the tightest and limits how much we can increase x; ]
A\
( . 1
Switch roles of x; and xs:
= Solving for x; yields:
Xg =9 — é = ﬁ — ﬁ
4 2 4
= Substitute this into x; in the other three equations
(& J

ked
o 5 III. Linear Programming Simplex Algorithm
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Extended Example: Iteration 2

[Increasing the value of x3 would increase the objective value.]

N
X5=6—%—4X3+%
N

[Basic solution: (X1, %2, ...,Xs) = (9,0,0,21,6,0) with objective value 27]

< B Il Linear Programming Simplex Algorithm 30.3



Extended Example: Iteration 2

X5=6—%—4X3+%

N

[The third constraint is the tightest and limits how much we can increase xs.

N

)

\

P
Switch roles of x; and xs:
= Solving for x; yields:

= Substitute this into x3 in the other three equations

-

~

J

ked
o 5 III. Linear Programming Simplex Algorithm
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Extended Example: Iteration 3

[Increasing the value of xo would increase the objective value.]

3 11
- 11 X2 _ X5 _ Xs
Z = 7 * 15 8 16
- 38 _ X X5 5%
o= 7 6 + 8 16
_ 3 _ 3 _ X5 X
B =3 8 4 T 8
- 8 3xe 5 _ X
X4 4 T 18 T 8 16
N
[Basic solution: (X1, %z, ..., %) = (£,0,3,2,0,0) with objective value 1 = 27.75]

o 5 III. Linear Programming Simplex Algorithm



Extended Example: Iteration 3

x = 3 - F -+ 3
= R R i

[

[\N

The second constraint is the tightest and limits how much we can increase x».

)

\
( 1
Switch roles of x, and xs:
= Solving for x; yields:
8X3 2X5 X6
Xo=4— — — — + —.
2 3 3 '3
= Substitute this into xz in the other three equations
& J

(5 III. Linear Programming Simplex Algorithm
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Extended Example: Iteration 4

[AII coefficients are negative, and hence this basic solution is oplimal!]

N
x4:187%+§
N

[Basic solution: (X1, Xz, ...,Xs) = (8,4,0,18,0,0) with objective value 28 ]

ked
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Extended Example: Visualization of SIMPLEX

X3
Xo
(0,12,0)
12
(0,0,4.8) @
9.6
(0,0; ‘ ®(8,4,0)
0 (8.25,0,1.5) @ 28
27.75
X1
(0.0.0)
27

(Exercise: How many basic solutions (including non-feasible ones) are there?]

B
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Extended Example: Alternative Runs (1/2)

Xa
X5

X

X2

X4

X

X1

X2

X4

30
24
36

18

3x4

X1
2Xq
4x4

+

X2
X2
2X2

X2

2X3
3x3
5x3

2X3

|
} Switch roles of x» and xs

A\

2X1
X1
X2

3x1

I
I
I
\4

+

X3
2
5x3
2
X3
2
X3
2

+

+

Switch roles of x; and xg

S
S 11l Linear Programming

Simplex Algorithm
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Extended Example:

Alternative Runs (2/2)

Switch roles of xy and x5 _
P

Xa
X5

Xs

X4

X3

Xe

X _
T T
- X

6
_ 3

8

3x2
+W+

= 30 —
24 —
= 36 —
= 48
B 5
- 8
5
- 24
5
_ 132
- 5
X5 11X
8 - 6
X _ %
8 16
X5 X6
F B
X5 Xo
R 16

3Xx4 + X2

X1 — X2
2X1 — 2Xo
4x4 — X2

!
v

2X3

3X3

5x3

2X3

Switch roles of x3 and xs

11X1 Xo
5 T 3
X X
5 t 3
2 | 2¢
5 5
B = x
5 5

T

z = 28 -

X4 = 8 +

X2 = 4 -

X4 = 18 —

+

X3

3
X3
6
8x3
3
X3
2

~~ §witch roles of x, and x3

. Linear Programming

Simplex Algorithm

33



The Pivot Step Formally

PIVOT(N, B, A,b,c,v,1,e)
1 // Compute the coefficients of the equation for new basic variable x,.
let A be a new m X n matrix

i)\e = bl/ale

dej = aij/are for enterring variable xe.
ao = 1/ag

// Compute the coefficients of the remaining constraints.
for eachi € B —{l}

2

3 .

4 forcachj € N — { Rewrite “tight” equation
p y . . .

6

7

8

~ A 1
9 bi = bi —aiebe Substituting xe into
10 for cach j € N = fe} other equations.
11 a; = aij — i) y,
12 Il = _ateael
13 // Compute the objective function.
14 9 =v+ch, . i N
15 foreach j € N — {e} Substituting xe into
16 ¢ = i Cell; objective function.
17 E] = —Leael J
18  // Compute new sets of basic and nonbasic variables. ~N
19 N =N—{e;Uil} Update non-basic
20 B = B—{l}U{e} and basic variables

J

21 return (N, B, A b.C, V)

S
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Effect of the Pivot Step

Lemma 29.1

Consider a call to PIvOT(N, B, A, b, c, v,l,e) in which ae # 0. Let the

values returned from the call be (N, B,A b,¢, V), and let X denote the
basic solution after the call. Then

1. X, =0foreachj € N.
2. Xe = b,/a,e.
3. X; = b — ajeb, for each i € §\ {e}.

Proof:

1. holds since the basic solution always sets all non-basic variables to zero.
2. When we set each non-basic variable to 0 in a constraint

Xi = Bi - 25/‘/)(/‘7
jeN
we have X; = b; for each i € B. Hence Xe = be = by/ .
3. After the substituting in the other constraints, we have

Xi = B,' = b,’ — a,eBe. O

11l Linear Programming Simplex Algorithm
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Formalizing the Simplex Algorithm: Questions

Questions:
= How do we determine whether a linear program is feasible?

= What do we do if the linear program is feasible, but the initial basic
solution is not feasible?

* How do we determine whether a linear program is unbounded?

* How do we choose the entering and leaving variables?
[\

\ N\

[ Example before was a particularly nice one! ]

i
E:E I1l. Linear Programming Simplex Algorithm
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The formal procedure SIMPLEX

SIMPLEX (A, b, ¢)

il
&

1

[cBEN Be WV, I SRS I S

Returns a slack form with a
(N.B.A.b,c,v) = INITIALIZE-SIMPLEX (4, b, ¢) feasible basic solution (if it exists)

choose an index e € N for which ¢, > 0

for each indexi € B
ifa;, >0
A; = bi/ai.
else A; = o0

choose an index / € B that minimizes A;

if A; ==00

return “unbounded”

else (N, B, A,b,c,v) = PIVOT(N, B, A,b,c,v,l,e)

ifi € B
X = b;
else x; =0
return (X, X5, ..., Xn)

&

(Main Loop:

= terminates if all coefficients in
objective function are negative

Line 4 picks enterring variable
Xe With negative coefficient

= Lines 6 — 9 pick the tightest
constraint, associated with x;

Line 11 returns “unbounded” if
there are no constraints

Line 12 calls PIvoT, switching
roles of x; and Xxe

J

ﬁ Return corresponding solution. ]

IIl. Linear Programming

Simplex Algorithm
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The formal procedure SIMPLEX

SIMPLEX (A, b, ¢)
1 (N,B,A,b,c,v) = INITIALIZE-SIMPLEX (A4, b, ¢)

2 let A be a new vector of length n

3 while some index j € N hasc; > 0

4 choose an index e € N for which ¢, > 0
5 for each indexi € B

6 ifa;, >0

7 A; = bi/ai.

8 else A; = o0

9 choose an index [ € B that minimizes A;
10 if A ==00

11 retnrn “nnbonnded”

Proof is based on the following three-part loop invariant:

1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,

2. for each i € B, we have b; > 0,
3. the basic solution associated with the (current) slack form is feasible.

Lemma 29.2 .’,/

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.

i
I1l. Linear Programming Simplex Algorithm
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Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

X4

X5

z
Xi

X5

X1+ X 4+ X3
8 — Xq — Xo
X2 — X3
i Pivot with x; entering and x4 leaving
A\
+ X3 — X4
— Xo — X4

X2 — X3

[

Cycling: If additionally slack at two iterations i Pivot with x; entering and xs leaving
are identical, SIMPLEX fails to terminate! A\

z = 8 + X - X — X
XX = 8 - X - X
X3 = X2 o =
1ll. Linear Programming Simplex Algorithm 38




Termination and Running Time

(It is theoretically possible, but very rare in practice.j
~NJ
Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies

1. Bland’s rule: Choose entering variable with smallest index
2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have

two solutions with the same objective value
S

Lemma 29.7

LRepIace each b; by bi = bi + €i, Where ¢; > €;41 are all smaII.J

Assuming INITIALIZE-SIMPLEX returns a slack form for which the ba-
sic solution is feasible, SIMPLEX either reports that the program is un-
bounded or returns a feasible solution in at most (") iterations.

Every set B of basic variables uniquely determines a slack

form, and there are at most (") unique slack forms.

S
E:E 11l Linear Programming Simplex Algorithm
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Finding an Initial Solution
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Finding an Initial Solution

maximize 2xy - Xo
subject to
2X1 — Xo < 2
X1 — 5% < -4
X1, X2 > 0
|
i Conversion into slack form
v
z = 2x7 - Xo
X3 = 2 —  2Xq =+ Xo
X4 = —4 — Xy —+ 5X2
N

[Basic solution (X1, X2, X3, X+) = (0,0, 2, —4) is not feasible!]

III. Linear Programming Finding an Initial Solution 41



Geometric lllustration

maximize 2x1 - Xo
subject to
2X1 — Xo < 2
X1 — bBxx < —4 | Questions:
X1, X2 > 0|« How to determine whether
Xo there is any feasible solution?
; = |f there is one, how to determine
7777777 L 7 an initial basic solution?

s
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Formulating an Auxiliary Linear Program

maximize o G
subject to
Siap < b fori=1,2,....m,
X > 0 forj=1,2,...,n
i{ Formulating an Auxiliary Linear Program
maximize —Xo
subject to

Yiiaixi—x < b fori=1,2,....m,
x > 0 forj=0,1,...,n
Lemma 29.11

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Ly is 0.

Proof.
= “=": Suppose L has a feasible solution X = (X1, X2, ...,Xn)

= Xo = 0 combined with X is a feasible solution to Laux with objective value 0.
= Since Xo > 0 and the objective is to maximize —Xxg, this is optimal for Laux

= “<": Suppose that the optimal objective value of Layx is 0
= Then Xy = 0, and the remaining solution values (X1, X2, ..., Xp) satisfy L. O
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INITIALIZE-SIMPLEX

Test solution with N = {1,2,...,n}, B={n+1,n+

INITIALIZE-SIMPLEX (4, b, ¢) 2
9o

..,n+ m}, X; = b; for i € B, X; = 0 otherwise.

let k be the index of the minimum b;

return ({1,2,..., ny n+1ln+2,...,
form L, by adding —x, to the left-hand side
and setting the objective function to —x,

E N N

let (N, B, A, b, c,v) be the resulting slack form for L,

Il =n+k

// L. has n + 1 nonbasic variables and m basic variables.

5
6
7
8 (N,B,A,b,c,v) = PIVOT(N, B, A,b,c,v,l,
9
0

// The basic solution is now feasible for L.

to Ly is found
11  if the optimal solution to L, sets X, to 0
12 if X is basic

13 perform one (degenerate) pivot to make it nonbasic

14 from the final slack form of L, remove

=

if by >0 // is the initial basic solution feasible?

n+m},A b, c,0)
of each constraint

¢ will be the leaving variable so

that x, has the most negative value.

0) *( Pivot step with x, leaving and x entering. J

iterate the while loop of lines 3—12 of SIMPLEX until an optimal solution

This pivot step does not change
the value of any variable.

Xo from the constraints and

restore the original objective function of L, but replace each basic

variable in this objective function by
associated constraint

15 return the modified final slack form

16 else return “infeasible”

the right-hand side of its

gel
I1l. Linear Programming
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Example of INITIALIZE-SIMPLEX (1/3)

maximize 2x;y  — Xo
subject to
2X1 — Xo < 2
X1 — 5X2 < -4
X1, X2 > 0

maximize - X
subject to
2X4 — X — X < 2
Xy — 5% - x < -4
X1, X2, Xo > 0
Basic solution ‘
(0,0,0,2, —4) not feasible! | Converting into slack form
N v
V4 = — Xo
X3 = 2 — 2X1 + X2 +  Xo
Xy = -4 — X1 4+ 5% 4+ X

S
E:E Ill. Linear Programming Finding an Initial Solution
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Example of INITIALIZE-SIMPLEX (2/3)

V4 = — X0
Xz = 2 - 2x1 + X2 + X
X3 = -4 - XX + 5 + X
|
i Pivot with xo entering and x4 leaving
v
z = -4 — xx 4+ 5 - x
Xo = 4 4+ X — 5% + Xa
X3 = 6 — X1 — 4x + X4
” |
[Basic solution (4,0,0,6,0) is feasible!] ' Pivot with x» entering and x, leaving
v
V4 — Xo
xs = 4 4 9 + X
s T B 5 5 5
N

[Optimal solution has xo = 0, hence the initial problem was feasible!]

el bl
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Example of INITIALIZE-SIMPLEX (3/3)

z = — X
x5 = 14 . 4 9% X
3 5 5 5 5

Set xo = 0 and express objective function

|

|

| . .
[2x1 oo - (A% ?)J . by non-basic variables

N, 4, m ox
Pt g
X =  + T + 7
1

[Basic solution (0, #, ¥, 0), which is feasible!]

Lemma 29.12
If a linear program L has no feasible solution, then INITIALIZE-SIMPLEX
returns “infeasible”. Otherwise, it returns a valid slack form for which the
basic solution is feasible.

B
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Fundamental Theorem of Linear Programming

Theorem 29.13 (Fundamental Theorem of Linear Programming)
Any linear program L, given in standard form, either
1. has an optimal solution with a finite objective value,
2. is infeasible, or
3. is unbounded.

N
\
If L is infeasible, SIMPLEX returns “infeasible”. If L is unbounded, SIMPLEX returns
“unbounded”. Otherwise, SIMPLEX returns an optimal solution with a finite objective value.

Proof requires the concept of dual-
ity, which is not covered in this course
(for details see CLRS3, Chapter 29.4)
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Workflow for Solving Linear Programs

[Linear Program (in any form)j

|

[ Standard Form j

[ Slack Form j

INITIALIZE-SIMPLEX terminates INITIALIZE-SIMPLEX calls SIMPLEX

-

LP unbounded LP bounded
SIMPLEX terminates SIMPLEX returns optimum

[ No Feasible Solution ] [ Feasible Basic Solution ]
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Linear Programming and Simplex: Summary and Outlook

Linear Programming

= extremely versatile tool for modelling problems of all kinds
= basis of Integer Programming, to be discussed in later lectures

~——— Simplex Algorithm X3
= |In practice: usually terminates in X2
polynomial time, i.e., O(m + n)

= In theory: even with anti-cycling may

[

need exponential time o
o~ .\):1
Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

Polynomial-Time Algorithms X3
= |nterior-Point Methods: traverses the X2
interior of the feasible set of solutions
(not just vertices!)

11l Linear Programming Finding an Initial Solution
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Motivation

Many fundamental problems are NP-complete, yet they are too impor-
tant to be abandoned.

~

AN

[Examples: HAMILTON, 3-SAT, VERTEX-COVER, KNAPSACK,. . ]

——— Strategies to cope with NP-complete problems

1. If inputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time. N

_[We will call these approximation algorithms. ]

o
IV. Covering Problems Introduction



Performance Ratios for Approximation Algorithms

Approximation Ratio

An algorithm for a problem has approximation ratio p(n), if for any input
of size n, the cost C of the returned solution and optimal cost C* satisfy:

» Minimization problem: £ > 1

« . B . - @
max (%’ %) < o(n). Maximization problem: = > 1

N
A\ ] L
v

[This covers both maximization and minimization problems. ]

[ For many problems: tradeoff between runtime and approximation ratio. ]

Approximation Schemes
An approximation scheme is an approximation algorithm, which given
any input and € > 0, is a (1 + €)-approximation algorithm.
= Itis a polynomial-time approximation scheme (PTAS) if for any fixed
€ > 0, the runtime is polynomial in n. [For example, O(n?/<).
= |tis a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/e and n. G:or example, O((1/¢)2 - ”3)-j

x5
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The Vertex-Cover Problem

[We are covering edges by picking vertices!]

Vertex Cover Problem
= Given: Undirected graph G = (V, E)

= Goal: Find a minimum-cardinality subset V' C V °
such that if (u, v) € E(G),thenu e V' orv e V.

N

(This is an NP-hard problem.] o

Applications:

= Every edge forms a task, and every vertex represents a person/machine
which can execute that task

= Perform all tasks with the minimal amount of resources
= Extensions: weighted vertices or hypergraphs (~~ Set-Covering Problem)
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An Approximation Algorithm based on Greedy

APPROX-VERTEX-COVER(G)

1 C=9

2 E =G.E

3 while E' # 0

4 let (u, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

5 [
IV. Covering Problems Vertex Cover 71



An Approximation Algorithm based on Greedy

APPROX-VERTEX-COVER(G)

1 C=9

2 E =G.E

3 while E' # 0

4 let (1, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

Edges removed from E’:
1. {b,c}
2. {ef}
3. {d,g}

’
v
’

® @&

N

[APPROX-VERTEX-COVER produces a set of size 6.]

Sl
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An Approximation Algorithm based on Greedy

APPROX-VERTEX-COVER(G)
C=9
E'=G.E
while £’ # 0
let (1, v) be an arbitrary edge of E’
C =CU{u,v}
remove from E’ every edge incident on either u or v
return C

W N =

~N N R

[The optimal solution has size 3.]

i
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Analysis of Greedy for Vertex Cover

APPROX-VERTEX-COVER (G)

1 C, =0 A "vertex-based" Greedy that adds one vertex at each iter-
2 E = G.E ation fails to achieve an approximation ratio of 2 (Exercise)!
3 while E' # 0 o
4 let (1, v) be an arbitrary edge of E’
5 C =CU{u,v}
6 remove from E’ every edge incident on either v or v
7 return C . !
We can bound the size of the returned solution
without knowing the (size of an) optimal solution!
Theorem 35.1 -
| APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm. ]
Proof:

= Running time is O(V + E) (using adjacency lists to represent E’)

= Let A C E denote the set of edges picked in line 4

= Every optimal cover C* must include at least one endpoint of edges in A,
and edges in A do not share a common endpoint: | |C*| > |A]|

= Every edge in A contributes 2 vertices to |C|: ’ |C| = 2|A| < 2|C"|. ‘ O

el bl
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Solving Special Cases

——— Strategies to cope with NP-complete problems

1. If inputs are small, an algorithm with exponential running time may
be satisfactory.

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

oo O0O0O0O0O0000

o
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Vertex Cover on Trees

There exists an optimal veriex cover which does not include any leaves.

A\
[Exchange-Argument: Replace any leaf in the cover by its parent.]

S
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Solving Vertex Cover on Trees

There exists an optimal vertex cover which does not include any leaves.

1
2
3:
4
5

VERTEX-COVER-TREES(G)
:C=0
: while 3 leaves in G
Add all parents to C
Remove all leaves and their parents from G
: return C
N

[Clear: Running time is O(V), and the returned solution is a vertex cover.]

\

Solution is also optimal. (Use inductively the ex-
istence of an optimal vertex cover without leaves)
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Execution on a Small Example

VERTEX-COVER-TREES(G)
:C=0
while Jleaves in G
Add all parents to C
Remove all leaves and their parents from G
return C

AN

S
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Execution on a Small Example

After iteration 1

N

N
’ N ’ N

v | ~
’, ’, N

% w 009
o

000 00

VERTEX-COVER-TREES(G)
:C=0
while Jleaves in G
Add all parents to C
Remove all leaves and their parents from G
return C

AN

S
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Execution on a Small Example

Q After iteration 2

o .
g% oo 9
O

000 00

VERTEX-COVER-TREES(G)
1: C=10
2: while 3 leaves in G
3: Add all parents to C
4: Remove all leaves and their parents from G
5: return C

(Problem can be also solved on bipartite graphs, using Max-Flows and Min-Cuts.]

ol
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Exact Algorithms

[Such algorithms are called exact algorithms.]

—— Strategies to cope with NP-complete problems —//

1. If inputs (or solutions) are small, an algorithm with exponential
running time may be satisfactory

2. Isolate important special cases which can be solved in
polynomial-time.

3. Develop algorithms which find near-optimal solutions in
polynomial-time.

Focus on instances of where the minimum vertex cover is small, that is,
less or equal than some given integer k.

SN\

N

[Simple Brute-Force Search would take = (}) = ©(n¥) time.]

s
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Towards a more efficient Search

Substructure Lemma

Consider a graph G = (V, E), edge {u,v} € E(G) and integer k > 1.
Let G, be the graph obtained by deleting v and its incident edges (G, is
defined similarly). Then G has a vertex cover of size k if and only if G,
or G, (or both) have a vertex cover of size k — 1.

[\
A\

[Reminiscent of Dynamic Programming.]

Proof:

<« Assume G, has a vertex cover C, of size k — 1.
Adding u yields a vertex cover of G which is of size k

= Assume G has a vertex cover C of size k, which contains, say u.
Removing u from C yields a vertex cover of G, which is of size k — 1. O
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A More Efficient Search Algorithm

VERTEX-COVER-SEARCH(G, k)

If E =0 return

If Kk =0and E # () return L

Pick an arbitrary edge (u,v) € E

Si = VERTEX-COVER-SEARCH(Gy, k — 1)
S»> = VERTEX-COVER-SEARCH(G,, k — 1)
if Sy # L return S; U {u}

if S; # L return S; U {v}

return L

NSO RN 2

[N
[Correctness follows by the Substructure Lemma and induction.]

[N

Running time:
= Depth k, branching factor 2 = total number of calls is O(2)
= O(E) work per recursive call
= Total runtime: O(2% - E).
~o

[exponential in k, but much better than ©(n*) (i.e., still polynomial for k = O(log n))]

s
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The Set-Covering Problem

[ J [ J
Set Cover Problem S
= Given: set X of size n and family of subsets 7 ° °
= Goal: Find a minimum-size subset C C F
Number of sets s.t. X= U S. d e
(and not elements) Sec
L 1 X [ ) [ ]
[Only solvable if (Jg.» S = X!] S
N

Remarks:
= generalisation of the vertex-cover problem and hence also NP-hard.
= models resource allocation problems

o ol o

Sl
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Greedy

Strategy: Pick the set S that covers the
largest number of uncovered elements.

1
2
3
4
5
6
7

S
GREEDY-SET-COVER (X, ¥) —
U=X
=90 S,
while U # 0 | | o
select an S € ¥ that maximizes |[S N U |
U=U-S§
€ =cuis} o i b
return € S
2
N
Greedy chooses Sy, Sy, Ss and S3
(or Ss), which is a cover of size 4.
IV. Covering Problems The Set-Covering Problem 18.1
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Greedy

Strategy: Pick the set S that covers the

largest number of uncovered elements. ° °® Py
Si
GREEDY-SET-COVER (X, ¥) ° e | e
1 U=X _\
2 €=40 S J
3 whileU # 0 | | o
4 select an S € ¥ that maximizes |[S N U |
5 U=U-S§
6 € =eu(s hd = -
7T return T S5
- N N

Can be easily implemented to run

[ in time polynomial in |X| and |F| 1 N
[Optimal coveris C = {Ss, Si, 35}]

How good is the approximation ratio?

e ke
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Approximation Ratio of Greedy

~—— Theorem 35.4
GREEDY-SET-COVER is a polynomial-time p(n)-algorithm, where

p(n) = H(max{|S|: |S| € F}) <In(n) + 1.

)

(H() = S, £ < In(k) + 1)

Idea: Disiribute cost of 1 for each added set over the newly covered elements.

Definition of cost

If an element x is covered for the first time by set S; in iteration /, then

1
Cx \= .
|S,\(S1 USQU"'US[_1)|

\
[Notice that in the mathematical analysis, S; is the set chosen in itera-]

tion i - not to be confused with the sets Si, Sy, ..., Ss in the example.

IV. Covering Problems The Set-Covering Problem 19



lllustration of Costs for Greedy picking S;, S;, Ss and S;

R
1 1 1
6 6 6

S
1 1 1
6 6 6
S
1 1 1
3 ®3 ®;
1 1
o1 ol o}
S3

___/ ___/

1 1 1 1 1 1 1 1 1 1 1
ststststststztztztptstl=4

. e
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Proof of Theorem 35.4 (1/2)

Definition of cost

If x is covered for the first time by a set S;, then ¢ :

_ 1
T s\(S1USU-US )|

Proof.

= Each step of the algorithm assigns one unit of cost, so

Cl=> o

xeX

= Each element x € X is in at least one set in the optimal cover C*, so

D> e o

Sec* xe$8 xeX

= Combining 1 and 2 gives

< > > < > H(IS) < [c*|- H(max{|S|: S € F}) O

SecC* xe$8 /’ Sec*

[Key Inequality: 37, g Cx < H(|S\).J

x5
IV. Covering Problems The Set-Covering Problem
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Proof of Theorem 35.4 (2/2)

Proof of the Key Inequality‘ > xes & < H(|S]) ‘

[Remaining uncovered elements in SJ [Sets chosen by the aIgorithmJ

~NJ =
= ForanySe Fandi=1,2,...,|C| =klet y;:=|S\(S1USU---US))|

= Uy =2> Uy > -+ > Ue; = 0and u;_y — u; counts the items in S covered first time

by S;.
=
K

1
2o 2 ) s O

xeS i=1
= Further, by definition of the GREEDY-SET-COVER:

U Si—1)l

ISIN(S1USU---US_1)| > [S\(S1USU---USi4)] =Uj_1.

= Combining the last inequalities gives:

<
|

i

k
ZCXSZU/ 1—Up) .U‘L:

x€S i=1 i—1

1

Uj—q

M~

Jj=uj+1

<
|

i

-

W
— =

J=ui+1

Il
.M*‘

(H(uj—1) = H(u)) = H(uo) — H(uk) =

H(IS)-

O

i
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Set-Covering Problem (Summary)

The same approach also gives an approximation ratio
of O(In(n)) if there exists a cost function ¢ : S — Z*

Theorem 35.4 /4

GREEDY-SET-COVER is a polynomial-time p(n)-algorithm, where

p(n) = H(max{|S|: |S| € F}) < In(n) + 1.

P

[ Can be applied to the Vertex Cover Problem for Graphs with ]

maximum degree 3 to obtain approximation ratio of 1 + § + 4 < 2.

= |s the bound on the approximation ratio in Theorem 35.4 tight?
= |s there a better algorithm?

~——— Lower Bound

Unless P=NP, there is no c-In(n) polynomial-time approximation algorithm
for some constant 0 < ¢ < 1.

\. J

=~

s
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Example where the solution of Greedy is bad

Instance
= Given any integer kK > 3
= There are n = 2" — 2 elements overall (so k ~ log, n)

= Sets S1, Sy, .. ., Sk are pairwise disjoint and each set contains
2,4,...,2% elements

= Sets Ty, T, are disjoint and each set contains half of the elements of
each set S1,Ss, ..., Sk

k =4,n=30:

...............7-1)

o||® Oe||®6 6 o o6 o6 o o o o o o Tg)
S4

AN J

i
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Example where the solution of Greedy is bad

Instance
= Given any integer kK > 3
= There are n = 2K*" — 2 elements overall (so k = log, n)

= Sets S1, Sy, .. ., Sk are pairwise disjoint and each set contains
2,4,...,2% elements

= Sets Ty, T, are disjoint and each set contains half of the elements of
eachset $1,S,,..., Sk

k=4,n=30:
o0 ofl]6 © o o6 © o o o o o o 7'1)
o0 o6 © © o6 © o © o o o o Tz)
\S_D\SZJ\ Ss U \_ S J

[Solution of Greedy consists of k sets. J

el bt
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Example where the solution of Greedy is bad

Instance
= Given any integer kK > 3
= There are n = 2" — 2 elements overall (so k ~ log, n)

= Sets S1, Sy, .. ., Sk are pairwise disjoint and each set contains
2,4,...,2% elements

= Sets Ty, T, are disjoint and each set contains half of the elements of
eachset $1,S,,..., Sk

k =4,n=30:

00000000000000‘7-1]

e o/|6 o o o6 6 6 o6 o o o o | )
S3 Sy

[ ]
\S_D\ AN J

[Optimum consists of 2 sets. J

ol
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The Subset-Sum Problem

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, X2, .. ., Xo} and positive integer ¢
» Goal: Find a subset S’ C S which maximizes 3=, , (¢ X < t.
N

LThis problem is NP—hardJ

t =13 tons
x1 =10 é A
[
X2:4
X3 =5 Xy + x5 =11
| _—>
X5:1

Sl
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The Subset-Sum Problem

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, X2, .. ., Xo} and positive integer ¢
» Goal: Find a subset S’ C S which maximizes 3=, , (¢ X < t.
N

LThis problem is NP—hardJ

t =13 tons
X1:10 é A
X2:4
| _—>
X3=>5 X3+ X4+ X5 =12

| _—>

X
I
o

| _—>

&
I
-

i
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An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

[ implementable in time O(|L;_+|) (like Merge-Sort) ]
EXACT-SUBSET-SUM(S, 1) ,

n =S| Returns the merged list (in sorted
Lo = (0) order and without duplicates)

1
2
3 fori =1ton o
4 L; = MERGE-LISTS(L;_y. L;_1 + x;) (S+x:={s+x:s€8}
5 remove from L; every element that is greater than ¢

6 return the largest element in L,

Example:

= S={1,4,5},t=10

- Lo = (0)

* L =(0,1)

= [, =(0,1,4,5)

» [3=(0,1,4,5,6,9,10)

V. Approximation via Exact Algorithms The Subset-Sum Problem 4.4



An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums < t

EXACT-SUBSET-SUM(S, 1)

1 n=|S|

2 Lo =(0)

3 fori =1ton

4 L; = MERGE-LISTS(L;_y, L;i—; + Xx;)

> remove from L, every .element th(can be shown by induction on nj
6 return the largest element in L,

= Correctness: L, contains all sums of {X1, X2, ..., Xn}
* Runtime: O(2' +2% ... +2") = O(2")

[There are 2' subsets of {X1,%,. .. ,x,}.] Better runtime if t
and/or |L;| are small.

S
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Towards a FPTAS

Idea: Don’t need to maintain two values in L which are close to each other.

——— Trimming a List
= Given a trimming parameter 0 < § < 1
= Trimming L yields minimal sublist L’ so that forevery y € L: 3z € L":

L S V4 S y
\ (. L = (10,11,12, 15, 20, 21,22, 23, 24, 29)
= 5=01
TRIM(L, §) L = |/ = (10,12, 15, 20, 23, 29)
1 let m be the length of L
2 L= (y)
3 last = y;
4 fori =2tom
5 if y; > last - (1 + 6) // y; > last because L is sorted
6 append y; onto the end of L’
7 last = y;
8 return L'

(TRIM works in time ©(m), if L is given in sorted order. ]

SR
yEY
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lllustration of the Trim Operation

TRIM(L, )
1 letm be the length of L
2 L= (y)
3 last = y,
4 fori =2tom
5 if y; > last - (1 + 6) // y;i > last because L is sorted
6 append y; onto the end of L’
7 last = y;
8 return L'
0=0.1 PP E—
‘ After the initialization (lines 1-3) ‘
last

L=(10,11,12,15,20,21,22, 23,24, 29)
]i

L' = (10)

V. Approximation via Exact Algorithms The Subset-Sum Problem
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lllustration of the Trim Operation

TRIM(L, )

let m be the length of L

L' = ()

last = y,

fori =2tom

if y; > last- (1 +6) // y; > last because L is sorted

append y; onto the end of L’
last = y;

return L’

1
2
3
4
5
6
7
8

6=0A1
\The returned list L’ \

last

L=(10,11,12,15,20,21,22, 23, 24, 29)
[i

L' =(10,12,15,20, 23, 29)

V. Approximation via Exact Algorithms The Subset-Sum Problem
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The FPTAS

APPROX-SUBSET-SUM(S, 1, €) EXACT-SUBSET-SUM(S, 1)
1 n=]|S| I n=|S|
2 Ly = (0) 2 Lo = (0)
3 fori =1ton 3 fori =1ton
4 L; = MERGE-LISTS (L;—y, Li—1 + X;) 4 L; = MERGE-LISTS(L;—1, Li—1 + Xx;)
| 5 L; = TRIM(L;,€/2n) 5 remove from L; every element that is greater than ¢
6 remove from L; every element that is greater than7 6 return the largest element in L,
7 let z* be the largest value in L,
8 return z*

S

Repeated application of TRIM
to make sure L;’s remain short.

= We must bound the inaccuracy introduced by repeated trimming
= We must show that the algorithm is polynomial time

A\
[Solution is a careful choice of 6!]

S
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Running through an Example

APPROX-SUBSET-SUM(S, 1, €)

1
2
3
4
5
6
7
8

= Input: S =

=

Sl
V. Approximation via Exact Algorithms

n =1S|
Lo = (0)
fori = lton

L; = MERGE-LISTS(L;—y, Li—1 + x;)
L; = TRIM(L;,€/2n)
remove from L; every element that is greater than ¢

let z* be the largest value in L,
return z*

(104,102,201,101), t = 308, ¢ = 0.4

Trimming parameter: § = ¢/(2 - n) = ¢/8 = 0.05

line 2:

line 4:
line 5:
line 6:
line 4:
line 5:
line 6:

line 4:
line 5:
line 6:
line 4:
line 5:
line 6:

L=

~ ~
S r
T A [

—
w
([l

IS
Il

Ly—
Ly =

(0)

(0,102, 104, 206)

(0,102, 206)

(0,102, 206)
(0,102,201, 206, 303, 407)
(0,102,201, 303, 407)

(0,102,201, 303)

(0,101,102, 201,203, 302, 303, 404)

(0,101,201, 302)

(0,101, 201 302 404> Returned solution z*
within the optimum 307 = 104 + 102 + 101

= 302, which is 2%

)

The Subset-Sum Problem

8



Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem. ]

Proof (Approximation Ratio):
= Returned solution z* is a valid solution v/
= Let y* denote an optimal solution

= For every possible sum y < tof xq,.. ., X;, there exists an element z € L] s.t.:
— <oy T L _ <oy
(1 +e€/(@n)) (1 +¢/(2m)"
! y* e\”
< —
(Can be shown by induction on ij z ~ (1 + 2n) ’

e/2)n n— oo

and now using the fact that (1 + Z2) 25 ee/2 yields

/2 (Taylor approximation of ej
/
<14e/24 (/2> <1+e

IN

v
z

i
E:E V. Approximation via Exact Algorithms The Subset-Sum Problem 9.1



Analysis of APPROX-SUBSET-SUM

Theorem 35.8
| APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem. ]

Proof (Running Time):

= Strategy: Derive a bound on |L;| (running time is linear in |L;])

= After trimming, two successive elements z and z’ satisfy z//z > 1 4+ ¢/(2n)
= Possible Values after trimming are 0, 1, and up to [l0gy_ (25 | additional values.

Hence,
Int

~In(1 1 ¢/(2n))
< 2n(1+¢/(2n)) Int +2

10g14c/(2m t+2

€

[Forx>f1,ln(1+x)2% 3n|nt+2'
= This bound on |L;| is polynomial in the size of the input and in 1/e. O
1

(Need log(t) bits to represent t and n bits to represent S]

i
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Concluding Remarks

The Subset-Sum Problem

= Given: Set of positive integers S = {x1, Xz, .. ., Xo } and positive integer ¢
* Goal: Find a subset S’ C S which maximizes 3=, , (o Xi < t.
—— Theorem 35.8
APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem. ]

[A more general problem than Subset-Sum]
Vd

= Given: ltems i =1,2,..., nwith weights w; and values v;, and integer t

= Goal: Find a subset S’ C S which

1. maximizes ). Vi
2. satisfies Diesg Wi <t

The Knapsack Problem

[Algorithm very similar to APPROX-SUBSET-SUM '_

——— Theorem -

There is a FPTAS for the Knapsack problem. ]

Sl
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Parallel Machine Scheduling

Machine Scheduling Problem

= Given: njobs Ji, s, . .., Jy with processing times p1, po, . .., pn, and
midentical machines My, Mz, ..., Mn,

= Goal: Schedule the jobs on the machines minimizing the makespan
Cmax = Mmaxi<j<n C;, where Cy is the completion time of job Jk.

D 1

T T T T T T

1
1
1
1
1
I
i
i
1
T

5 6 7 8 9 10 11 12 13 14 1

y
T

5
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Parallel Machine Scheduling

Machine Scheduling Problem

= Given: njobs Ji, s, . .., Jy with processing times p1, po, . .., pn, and
midentical machines My, Mz, ..., Mn,

= Goal: Schedule the jobs on the machines minimizing the makespan
Cmax = Mmaxi<j<n C;, where Cy is the completion time of job Jk.

For the analysis, it will be convenient to denote
by C; the completion time of a machine i.

v 4 Lo

M [
M; [ Jo ]
0

T y y y

T
T T T T T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T T
T

i
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NP-Completeness of Parallel Machine Scheduling

Lemma

Parallel Machine Scheduling is NP-complete even if there are only two
machines.

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.

T S

M ( b ”]

I T T ]
L T T T

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Equivalent to the following Online Algorithm [CLRS]:
Whenever a machine is idle, schedule any job that has not yet been scheduled.

[
LIST SCHEDULING(J1, o2, . . ., Jn, M)
1: while there exists an unassigned job

2: Schedule job on the machine with the least load
(N

[How good is this most basic Greedy Approach?]

5 V. Approximation via Exact Algorithms Parallel Machine Scheduling 13



List Scheduling Analysis (Observations)

Ex 35-5 a.&b.

a. The optimal makespan is at least as large as the greatest
processing time, that is,

Crax > Mmax pg.
max = 1§k§npk

b. The optimal makespan is at least as large as the average machine
load, that is,

Lo 1¢
Cmax Z Ezpk

k=1

Proof:
b. The total processing times of all n jobs equals 3"_, p«
= One machine must have a load of at least 1 - 3"/ _; p«

el bt
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List Scheduling Analysis (Final Step)

~——— Ex 35-5d. (Graham 1966)
For the schedule returned by the greedy algorithm it holds that

n

1
Ciax < Ezpk + max pg.

1<k<n
k=1 -

Hence list scheduling is a poly-time 2-approximation algorithm.

Proof:

= Let J; be the last job scheduled on machine M; with Crnax = C;

= When J; was scheduled to machine M, C; — p; < C forall1 <k <m

= Averaging over K yields: [Using Ex355a &b_j

1 m 1 n 1 1 ~N *
Cj*piSE;Ck:E;pk = Cjﬁmzpk+1?sl§xnpk§2-cmax

k=1

) DC O |
) X 4 )
) L) ) i

Cj — pi Crmax

V. Approximation via Exact Algorithms Parallel Machine Scheduling 15



Improving Greedy

(The problem of the List-Scheduling Approach were the large jobs]

—
[ Analysis can be shown to be almost tight. Is there a betier algorithm?

LEAST PROCESSING TIME(J1, Ja, . . ., Jp, m)
: Sort jobs decreasingly in their processing times
cfori=1tom
Ci=0
Si=10
: end for
:forj=1ton
i =argmin, .., Ck
Si=SuU{j} Ci=Ci+p
: end for
return S, ..., Sy

QU NA RN

-y

Runtime:
= O(nlog n) for sorting
= O(nlog m) for extracting (and re-inserting) the minimum (use priority queue).

V. Approximation via Exact Algorithms Parallel Machine Scheduling 16



Analysis of Improved Greedy

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m). ]
N

[This can be shown to be tight (see next inde).J

Proof (of approximation ratio 3/2).
= Observation 1: If there are at most m jobs, then the solution is optimal.
= Observation 2: If there are more than m jobs, then Chax > 2 - pm1-

= As in the analysis for list scheduling, we have

* 1 * 3
Cnax = G = (Cj —pi) + Pi < Crax + = Cmax = = Crax. O
NN 2 2

(This is for the case i > m + 1 (otherwise, an even stronger inequality holds))

X

O 7 4
] N
—

S S B
&
N4

Cj — Pi Crmax

el kel
E:E V. Approximation via Exact Algorithms Parallel Machine Scheduling 17



Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m). ]

Proof of an instance which shows tightness:

= m machines
* n=2m+ 1 jobs of length2m —1,2m — 2,..., m and one job of length m

m=5n=11: L demee

T Y

N e

GREREN EN e En __

SERRERERE

| 1 h ‘\ ‘\ N N} ! ‘Y_“Y AN “
Ms 1 ligiiall ol
M T ‘\7\\7\\ o :\ :\ :
: BRI I IR AL H IR
M SRERREREERE
M, SR I A R A
M1 [ L U S L L 'Y S A A

0123456 7 8 91011121314151617 1819 20
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Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m). ]

Proof of an instance which shows tightness:

= m machines
* n=2m+ 1 jobs of length2m —1,2m — 2,..., m and one job of length m

m=5n=11: LPT gives Cmax = 19

Crax = 19

)
)
8 ) 6 )
)

9 ) 5 ) 5 )
123 45 6 7 8 91011121314151617 181920
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Tightness of the Bound for LPT

Graham 1966
| The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

Proof of an instance which shows tightness:

= m machines
* n=2m+ 1 jobs of length2m —1,2m — 2,..., m and one job of length m

m=5n=11: LPT gives Cmax = 19
Optimum is Chax = 15

Cr;ax =15

9 ) 6 )
123456 7 8 91011121314151617 181920

V. Approximation via Exact Algorithms Parallel Machine Scheduling
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A PTAS for Parallel Machine Scheduling

Basic Idea: For (1 + €)-approximation, don’t have to work with exact py’s.

SUBROUTINE(J1,J2, ..., Jn,m, T)
1: Either: Return a solution with Cnax < (1 4+ €) - max{T, Crax}
2: Or: Return there is no solution with makespan < T

Key Lemma We will prove this on the next slides.

U
SUBROUTINE can be implemented in time n°('/<).

\

~——— Theorem (Hochbaum, Shmoys’87)
There exists a PTAS for Parallel Machine Scheduling which runs in time

=~

O(nom/ez) - log P), where P := >} _, px.

(polynomial in the size of the input Since 0 < Cihax < P and Cla is integral,

Proof (using Key Lemma): | binary search terminates after O(log P) steps.

J

PTAS(J1, 2, ..., Jdn, m) —
1: Do binary search to find smallest T s.t. Cmax < (1 +€) - max{T, Crax}
2: Return solution computed by SUBROUTINE(J1, oo, ..., Jn,m, T)

i
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Implementation of Subroutine

SUBROUTINE(J1, o, ..., Jp,m, T)
1: Either: Return a solution with Cnax < (1 4 €) - max{T, Crax}
2: Or: Return there is no solution with makespan < T

Observation
Divide jobs into two groups: Jsmai = {Ji: pi < ¢- T} and Jage = J \ Jsmail-
Given a solution for Jiage only with makespan (1 + ¢) - T, then greedily
placing Jsman yields a solution with makespan (1 + €) - max{ T, Cyax}-

Proof:
= Let M; be the machine with largest load
= |If there are no jobs from Jsmai, then makespan is at most (1 +¢) - T.
= Otherwise, let i € Jsman be the last job added to M;.

1 & 1 <&
Cj*piﬁmzpk = CjSPiJrEZ,Dk
A k=1 k=1

(the “well-known” formulaj <e- T+ Crax
<(1+e) -max{T, Crax} O

V. Approximation via Exact Algorithms Parallel Machine Scheduling
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Proof of Key Lemma

[ Use Dynamic Programming to schedule Jarge With makespan (1 +¢) - T.

ij2

= Let b be the smallest integer with 1/b < e. Define processing times pj = [~ - #
= Every plf = - b_7; fora=b,b+1,... ,b2 {Can assume there are no jobs with p; > T!]
2 T q
= LetC be all (Sp, Spit,- .., Sp2) With S s j. L < 7. JAssignments to one machine
(St S+ ) 2055 b2 = with makespan < T.

= Let f(np, Np11, ..., Nye) be the minimum number of machines required to schedule

all jobs with makespan < T: (" agsign some jobs to one machine, and then
£(0,0,...,0)=0 use as few machines as possible for the rest.

f = 1 in — f
(b Mot -5 Mp2) = 14 (sb,s,,+1n,1.l.r.],sb2)ec (Mo — Sby M1 — Sbyts -+ M2 — Sp2)-
15T = e=05 15T
1.25-T . b 1.25-T
1.7 b=2 1.7
0.75-T +|P1 0.75- T 1 |pj
05 - TH{ {1} — - 05T P
025-T Ps 025-T
0 0
Jlarge Jsmall Jlarge

sl
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Proof of Key Lemma

[ Use Dynamic Programming to schedule Jiarge With makespan (1 +¢) - T.

)

S
- 0

ib?
Let b be the smallest integer with 1/b < €. Define processing times p; = [p’T] .

Every p/ = o -

T
b2
b—Tzfora:b,b+1,...,b2

Let C be all (Sp, Sps 1., ) with 2 5/ - L < T.

Let f(np, Npy1, - -

., Ng2) be the minimum number of machines required to schedule

all jobs with makespan < T:

£0,0,..
f(”b? Npta,.--,

.,0)=0

ne)=1+ min f(Np — Sby Npai — Shats-- -5 N2 — Sp2).
b > Hb+ +15 s Hp b2
(Sp»Spt1seee» s2)€C

Number of table entries is at most n?”, hence filling all entries takes nO(*)

If f(np, Moy - -

., Ngz) < m (for the jobs with p’), then return yes, otherwise no.

As every machine is assigned at most b jobs (o] > %) and the makespanis < T,

Cnax < T+b- _max (pi*p,{)

’e‘]\arge

;
ST+b o <(+q:T. O

V. Approximation via Exact Algorithms Parallel Machine Scheduling
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Final Remarks

——— Graham 1966 ~
List scheduling has an approximation ratio of 2.

—— Graham 1966 \
The LPT algorithm has an approximation ratio of 4/3 — 1/(3m).

~——— Theorem (Hochbaum, Shmoys’87)
There exists a PTAS for Parallel Machine Scheduling which runs in time
O(n°1/<) . log P), where P := 321 px.

\. J

Can we find a FPTAS (for polynomially bounded processing times)? No!
—

Because for sufficiently small approximation ratio
1 + ¢, the computed solution has to be optimal, and
Parallel Machine Scheduling is strongly NP-hard.

S
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The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find
the cheapest route visiting all cities and returning to your starting point.

Formal Definition

= Given: A complete undirected graph G = (V, E) with
nonnegative integer cost c(u, v) for each edge (u,v) € E 4 !
= Goal: Find a hamiltonian cycle of G with minimum cost.
[\
Solution space consists of at most n! possible tours! 3
g 2444+1+1=8

[Actually the right number is (n — 1)!/2J

Special Instances - .
Even this version is
* Metric TSP: costs satisfy triangle inequality: <X NP hard (Ex. 35.2-2)

Yu,v,we V: c(u,w) < c(u,v) + c(v, w).

= Euclidean TSP: cities are points in the Euclidean space, costs are
equal to their (rounded) Euclidean distance

S
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History of the TSP problem (1954)

Dantzig, Fulkerson and Johnson found an optimal tour through 42 cities.

http://www.math.uwaterloo.ca/tsp/history/img/dantzig _big.html

) VI. Travelling Salesman Problem Introduction



The Dantzig-Fulkerson-Johnson Method

1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
2. Solve the linear program. If the solution is integral and forms a tour, stop.
Otherwise find a new constraint to add (cutting plane)

el ke
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The Dantzig-Fulkerson-Johnson Method

1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
2. Solve the linear program. If the solution is integral and forms a tour, stop.
Otherwise find a new constraint to add (cutting plane)

Additional constraint to cut
the solution space of the LP

4x1 +9x < 36
) ) : ) ) ) ) ) — X
0 1 2 3\4 5 6 7 8 9

[ More cuts are needed to find integral solution j

VI. Travelling Salesman Problem Introduction 5.2



Outline

General TSP
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Hardness of Approximation

Theorem 35.3
If P # NP, then for any constant p > 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio p for the general TSP.

Proof: [ Idea: Reduction from the hamiltonian-cycle problem. ]

= Let G = (V, E) be an instance of the hamiltonian-cycle problem
= Let G’A: (V, E") be a complete graph with costs for each (u, v) € E’:

[

Can create representations of G’ and 1 if (u,v) € E,
c in time polynomial in |V| and |E|! c(u, V) = L Large weight will render
plV|+1 otherwise. this edge useless!

Reduction

G=(V,E) > 1@ =(V,E)

p-4+1

S VI. Travelling Salesman Problem General TSP
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Hardness of Approximation

Theorem 35.3
If P # NP, then for any constant p > 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio p for the general TSP.

Proof: ( Idea: Reduction from the hamiltonian-cycle problem. ]

= Let G = (V, E) be an instance of the hamiltonian-cycle problem
= Let G’ = (V, E’) be a complete graph with costs for each (u, v) € E’:

oy = {1 if (u,v) € E,
"7 1 plVI+ 1 otherwise.

= If G has a hamiltonian cycle H, then (G’, ¢) contains a tour of cost | V|

O
Reduction
G=(V,E)
p-4+1

i
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Hardness of Approximation

Theorem 35.3
If P # NP, then for any constant p > 1, there is no polynomial-time ap-
proximation algorithm with approximation ratio p for the general TSP.

Proof: ( Idea: Reduction from the hamiltonian-cycle problem. ]

= Let G = (V, E) be an instance of the hamiltonian-cycle problem
Let G’ = (V, E’") be a complete graph with costs for each (u,v) € E’:

oy = {1 if (u,v) € E,
"7 1 plVI+ 1 otherwise.

= If G has a hamiltonian cycle H, then (G’, ¢) contains a tour of cost | V|
= |f G does not have a hamiltonian cycle, then any tour T must use some edge ¢ E,

= o(T) = (plVI+ 1)+ (VI=1)=(p+DIVI.

= Gap of p + 1 between tours which are using only edges in G and those which don’t
= p-Approximation of TSP in G’ computes hamiltonian cycle in G (if one exists) a

p-4+1

Oo—-0
Reduction 1
G=(V,E) > | 1 G =(V,E)
p-4+1 1
Oo—>0

s
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Proof of Theorem 35.3 from a higher perspective

General Method to prove inapproximability results! )

hamiltonian cycle

{AII instances with a

All instances
with cost < k

All instances
with cost > p - k

instances of Hamilton instances of TSP

VI. Travelling Salesman Problem General TSP 8
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Metric TSP (TSP Problem with the Triangle Inequality)

Idea: First compute an MST, and then create a tour based on the tree.

APPROX-TSP-TOUR(G, ¢)

1 selectavertex r € G.V to be a “root” vertex

2 compute a minimum spanning tree 7" for G from root r
using MST-PRIM(G, ¢, 1)

3 let H be alist of vertices, ordered according to when they are first visited
in a preorder tree walk of 7'

4 return the hamiltonian cycle H

O\

[Runtime is dominated by MST-PRim, which is e(vz).]

(F{emember: In the Metric-TSP problem, G is a complete graph.)

S
E:E VI. Travelling Salesman Problem Metric TSP



Run of APPROX-TSP-TOUR

1. Compute MST

Metric TSP

roblem

P

VI. Travelling Salesman
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Run of APPROX-TSP-TOUR

1.2

Metric TSP

Compute MST v/
2. Perform preorder walk on MST

VI. Travelling Salesman Problem

1.




Run of APPROX-TSP-TOUR

1. Compute MST v/
2. Perform preorder walk on MST v/
3. Return list of vertices according to the preorder tree walk

S
E:E VI. Travelling Salesman Problem Metric TSP
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Run of APPROX-TSP-TOUR

[Solution has cost ~ 19.704 - not optimal!]

1. Compute MST v/
2. Perform preorder walk on MST v
3. Return list of vertices according to the preorder tree walk v/

VI. Travelling Salesman Problem Metric TSP
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Run of APPROX-TSP-TOUR

1. Compute MST v/
2. Perform preorder walk on MST v
3. Return list of vertices according to the preorder tree walk v/

S
VI. Travelling Salesman Problem Metric TSP
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Run of APPROX-TSP-TOUR

[This is the optimal solution (cost ~ 14.715).]

1. Compute MST v/
2. Perform preorder walk on MST v
3. Return list of vertices according to the preorder tree walk v/

VI. Travelling Salesman Problem Metric TSP

1.6



Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Proof:

= Consider the optimal tour H* and remove an arbitrary edge

= yields a spanning tree T and therefore ¢(T) < c(H*) t[

exploiting that all edge
costs are non-negative!

J

el e B NG S AG SR
e e
| | | | | | | | | |
B2 O O e O
B O SO
O SETRCE SRR
| | | | | | | | | | | |
solution H of APPROX-TSP spanning tree T as a subset of H*

VI. Travelling Salesman Problem Metric TSP
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Proof of the Approximation Ratio

Theorem 35.2
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Proof:
= Consider the optimal tour H* and remove an arbitrary edge
= yields a spanning tree T and therefore ¢(T) < c(H*)
= Let W be the full walk of the minimum spanning tree Ty, (including repeated visits)
= Full walk traverses every edge exactly twice, so
c(W) = 2¢(Tmin) < 2¢(T) < 2¢(H")

BN S ae SE
e
| | | | |
SO0
,@,L,L JA R
L I I I I
SETRCE SRR
| | | | | |
h,b,a,d,e,f, eg,ed, a) optimal solution H*
Metric TSP 12.2




Proof of the Approximation Ratio

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Proof:
= Consider the optimal tour H* and remove an arbitrary edge
= yields a spanning tree T and therefore ¢(T) < c(H*)
= Let W be the full walk of the minimum spanning tree Ty, (including repeated visits)
= Full walk traverses every edge exactly twice, so

c(W) = 2¢(Tin) < 2¢(T) < 2¢(H*) [ exploiting triangle inequality! j

V
= Deleting duplicate vertices from W yields a tour H with smaller cost:
c(H) < ¢(W) < 2¢(H") O

e e
oo e 00
BCETR SRR BCATTARRER
S RRCIEEEREE SN RCIEEEEREE

| | | |
| | | |
Walk W = (a,b,c.p.h.p. 4.d.e.f.f.0.¢.4. a) optimal solution H*

sl
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Christofides Algorithm

Theorem 35.2
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the
traveling-salesman problem with the triangle inequality.

Can we get a better approximation ratio?

CHRISTOFIDES(G, ¢)
: select a vertex r € G.V to be a “root” vertex
: compute a minimum spanning tree T for G from root r
using MST-PRIM(G, ¢, r)
: compute a perfect matching M with minimum weight in the complete graph
over the odd-degree vertices in T
: let H be a list of vertices, ordered according to when they are first visited
in a Eulearian circuit of TU M
: return H

OND TR WN =

Theorem (Christofides’76)

There is a polynomial-time %-approximaﬁon algorithm for the travelling salesman
problem with the triangle inequality.

i
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Run of CHRISTOFIDES

1. Compute MST

Metric TSP

roblem

P
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Run of CHRISTOFIDES

|
| - o0
| Le=” o ,,'\
I Pt PR /’ I
,777F——4@'--”—-- ---L-—-'@»
-
| 4\" \__—‘ ammmT e
| [P Py 7Y g -
. v AT il = ’
| Lerla==" ]
kA
z=" “ | L Rl
N 2! ’ | ¢t
~ X ’ ’

1. Compute MST v/
2. Add a minimum-weight perfect matching M of the odd vertices in Tv'

S
VI. Travelling Salesman Problem Metric TSP
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Run of CHRISTOFIDES

1. Compute MST v/
2. Add a minimum-weight perfect matching M of the odd vertices in Tv'
3. Find an Eulerian Gircuit v___

(AII vertices in T U M have even degreeD

VI. Travelling Salesman Problem Metric TSP
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Run of CHRISTOFIDES

[Solution has cost &~ 15.54 - within 10% of the optimum!]

1. Compute MST v/

2. Add a minimum-weight perfect matching M of the odd vertices in Tv'
3. Find an Eulerian Circuit v/

4. Transform the Circuit into a Hamiltonian Cycle v/

Sl
VI. Travelling Salesman Problem Metric TSP
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Concluding Remarks

Theorem (Christofides’76)

There is a polynomial-time %—approximation algorithm for the travelling
salesman problem with the triangle inequality.

(Both received the Godel Award 201 0]
z

Theorem (Arora’96, Mitchell’96)

H

“Christos Papadimitriou told me that the traveling
salesman problem is not a problem. It's an addiction.”

Jon Bentley 1991

There is a PTAS for the Euclidean TSP Problem. ]

Sl
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Randomised Approximation
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Performance Ratios for Randomised Approximation Algorithms

Approximation Ratio

A randomised algorithm for a problem has approximation ratio p(n), if
for any input of size n, the expected cost C of the returned solution and

optimal cost C™ satisfy:

c cC
mw(g,c)_mm

N

\

[Call such an algorithm randomised p(n)-approximation algorithm. ]

extends in the natural way to randomised algorithms ]

7

Approximation Schemes 1
An approximation scheme is an approximation algorithm, which given
any input and e > 0, is a (1 + €)-approximation algorithm.
= It is a polynomial-time approximation scheme (PTAS) if for any fixed
€ > 0, the runtime is polynomial in n. (For example, O(n?/¢).
= ltis a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/ and n. G:or example, O((1/€)? - n®).

VII. Randomisation and Rounding Randomised Approximation
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MAX-3-CNF
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MAX-3-CNF Satisfiability

Assume that no literal (including its negation)
appears more than once in the same clause.

—— MAX-3-CNF Satisfiability
= Given: 3-CNF formula, e.g.: (x1 VX3 VXa) A (X2 VX3V X5) A+ -+

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

U

N
L Relaxation of the satisfiability problem. Want to com- J

pute how “close” the formula to being satisfiable is.

Example:

CaVXaVXa)A (X1 VXV XE)A (X VXV Xs)A (X1 V X2V X3)
N
[x1 =1,x%=0,x3 =1, x4 =0 and xs = 1 satisfies 3 (out of 4 clauses)]

Idea: What about assigning each variable independently at random?

Sl
VII. Randomisation and Rounding MAX-3-CNF 5




Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi,X2,...,Xx, and m

clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:
Y; = 1{clause i is satisfied}

= Since each literal (including its negation) appears at most once in clause /,

1 1 1 1
Pr [clause i is not satisfied ] = =

2 2 8
. - 17
= Pr[clause i is satisfied] = 1 — 3-8
= E[Y,-]:Pr[y,-:1]-1:§

= Let Y := 3", Y, be the number of satisfied clauses. Then,

E[Y] =E

m m m 7 7
SV =Y EMI=Ys=sm O
- - ‘g g

i=1 A i=1 i=1 AN

‘ [Linearity of Expectations) (maximum number of satisfiable clauses is m]
VII. Randomisation and Rounding MAX-3-CNF
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Interesting Implications

——— Theorem 35.6
Given an instance of MAX-3-CNF with n variables x4, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8 /7-approximation algorithm.

~\

\

Corollary

For any instance of MAX-3-CNF, there exists an assigment which satis-
fies at least % of all clauses.

1 - ;
[There is w € Q such that Y(w) > E| Y]{ Probabilistic Method: powerful tool to ]

show existence of a non-obvious property.

Corollary

Any instance of MAX-3-CNF with at most 7 clauses is satisfiable.

[

[Follows from the previous Corollary.]

VII. Randomisation and Rounding MAX-3-CNF 7



Expected Approximation Ratio

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, x2,..., X, and m
clauses, the randomised algorithm that sets each variable independently

at random is a polynomial-time randomised 8/7-approximation algorithm.
A

L

[One could prove that the probability to satisfy (7/8) - m clauses is at least 1/(8m)]

E{y]:%.E[Y|X1=1]+%'E[Y | X1 =0].

J

Y is defined as in =
the previous proof. [One of the two conditional expectations is greater than E | Y]!]

GREEDY-3-CNF(¢, n, m)
1: forj=1,2,...,n

2: Compute E[Y | X1 =vi...,X—1 = Vj_1, X =1]

3: Compute E[Y | xy =wv1,...,X—1 = Vj_1,Xx =0]

4: Let x; = v; so that the conditional expectation is maximized
5: return the assignment vy, vo, ..., vy

S
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Analysis of GREEDY-3-CNF(¢, n, m)
[This algorithm is deterministic.)

Theorem /2
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation. ]

Proof:
= Step 1: polynomial-time algorithm
= Initerationj=1,2,...,n, Y = Y(¢) averages over 2n=i+1 assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[YIxi=vi,....x_1=v_,x=1] => E[Yi|x1=vi,...,X_1 =V, 5=1]

i=1
computable in O(1)

= Step 2: satisfies at least 7/8 - m clauses

= Due to the greedy choice in each iterationj =1,2,...,n,
E[Y|xi=vi,... .51 =Vi_1,5=V]| >E[Y X =vi,...,%_1=V_1]
SE[Y|x1=vi,....X_2=V_2]
7

Sl
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Run of GREEDY-3-CNF (¢, n, m)

X1V VX)AXI VX VX)AN(X1 VX VX)) A (XTI VXV X)) A (X1 V X2V Xg) A
CaAVXe VXA VX VX)AXT VXV X3)A (X1 VX3V Xa)A(XeV X3V Xa)

ked
) VII. Randomisation and Rounding MAX-3-CNF 10.1



Run of GREEDY-3-CNF (¢, n, m)

TATATAGGVYX)ATACRVY X)) A (X VX3)A (VX)) ATA (X VX5V Xe)

ked
) VII. Randomisation and Rounding MAX-3-CNF 10.2



Run of GREEDY-3-CNF (¢, n, m)

ITATATAGYX)ANTATAG)ATATA (XS V Xs)

ked
) VII. Randomisation and Rounding MAX-3-CNF 10.3



Run of GREEDY-3-CNF (¢, n, m)

TATATATATATAOATATAL

ked
) VII. Randomisation and Rounding MAX-3-CNF 10.4



Run of GREEDY-3-CNF (¢, n, m)

TATATATATATAOATATAL

ked
) VII. Randomisation and Rounding MAX-3-CNF 10.5



Run of GREEDY-3-CNF (¢, n, m)

X1V VX)AXI VX VX)AN(X1 VX VX)) A (XTI VXV X)) A (X1 V X2V Xg) A
CaAVXe VXA VX VX)AXT VXV X3)A (X1 VX3V Xa)A(XeV X3V Xa)

[ Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable. j

ked
) VII. Randomisation and Rounding MAX-3-CNF 10.6



MAX-3-CNF: Concluding Remarks

Theorem 35.6

Given an instance of MAX-3-CNF with n variables x1, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem

GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.

Theorem (Hastad’97)

For any ¢ > 0, there is no polynomial time 8/7 — ¢ approximation algo-
rithm of MAX3-SAT unless P=NP.

\N

\
[Essentially there is nothing smarter than just guessing!]

el bk
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The Weighted Vertex-Cover Problem

Vertex Cover Problem

= Given: Undirected, vertex-weighted graph G = (V, E)

= Goal: Find a minimum-weight subset V' C V such that
if (u,v) € E(G),thenue V' orve V.
N

[This is (still) an NP-hard problem.]

Applications:

w

B/

(©
3

e

= Every edge forms a task, and every vertex represents a person/machine

which can execute that task
= Weight of a vertex could be salary of a person
= Perform all tasks with the minimal amount of resources

ol
E:',.! VII. Randomisation and Rounding Weighted Vertex Cover
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The Greedy Approach from (Unweighted) Vertex Cover

APPROX-VERTEX-COVER(G)
C=9
E'=G.E
while £’ # 0
let (1, v) be an arbitrary edge of E’
C =CU{u,v}
remove from E’ every edge incident on either u or v
return C

W N =

~N N R

100

® © O ©
1 1 1 1
!
[Computed solution has weight 101]

S
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The Greedy Approach from (Unweighted) Vertex Cover

APPROX-VERTEX-COVER(G)
C=9
E'=G.E
while £’ # 0
let (1, v) be an arbitrary edge of E’
C =CU{u,v}
remove from E’ every edge incident on either u or v
return C

W N =

~N N R

100

® © O ©
1 1 1 1
!
[Optimal solution has weight 4]

S
VII. Randomisation and Rounding Weighted Vertex Cover 14.2



Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.

——— 0-1 Integer Program

minimize > w(v)x(v)
veVv
subject to x(u)+x(v) > 1 for each (u,v) € E
€

x(v) {0,1} foreachv e V

optimum is a lower bound on the optimal
weight of a minimum weight-cover.

Linear Program

—
minimize > w(v)x(v)
veV
subject to x(u)y+x(v) > 1 for each (u,v) € E
x(v) € [0,1] foreachv e V
A2

Rounding Rule: if x(v) > 1/2 then round up, otherwise round down.]'

Sl
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The Algorithm

APPROX-MIN-WEIGHT-VC (G, w)
1 C=49

2 compute X, an optimal solution to the linear program
3 foreachv eV

4 ifx(v) >1/2

5 C =CU{}

6 return C

Theorem 35.7

APPROX-MIN-WEIGHT-VC is a polynomial-time 2-approximation algo-
rithm for the minimum-weight vertex-cover problem.

A

L
[is polynomial-time because we can solve the linear program in polynomial time]

i
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Example of APPROX-MIN-WEIGHT-VC

(Y(a) = X(b) = X(e) = 3, X(d) = 1,X(c) = oJ (x(a) = x(b) = x(e) = 1, x(d) = 1, x(c) = oJ
|4 =
3 3 3

b b b

4 4 4
(@) @ @)
Rounding
—_ e

(&) @
2 2

2

O—O@ O0—0@  0—=~0

3 1 3 1 3 1
fractional solution of LP rounded solution of LP optimal solution
with weight = 5.5 with weight = 10 with weight = 6

) VII. Randomisation and Rounding Weighted Vertex Cover 17



Approximation Ratio

Proof (Approximation Ratio is 2):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

zZ* <w(C)
= Step 1: The computed set C covers all vertices:

= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(u) and x(v) is at least 1/2 = C covers edge (u, v)

= Step 2: The computed set C satisfies w(C) < 2z*:
, _ 1 1
C>z"= > === .
w(C") >z E w(v)x(v) > E w(v) 2 2W(C) O

veVv veV:Xx(v)>1/2

Weighted Vertex Cover 18
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The Weighted Set-Covering Problem

[ ) [ ] [ ]
Set Cover Problem Si ]
= Given: set X and a family of subsets F, d L e)
and a cost function ¢ : F — R* s
= Goal: Find a minimum-cost subset C C F [ e 7l e
Sum over the costs |  S:t X = U S.
of all sets in C sec i bt *
I Ss Ss

S1 S S5 84 S5 Ss
Remarks: c:2 3 3 5 1 2
= generalisation of the weighted vertex-cover problem

= models resource allocation problems

el ke
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Setting up an Integer Program

——— 0-1 Integer Program

minimize > e(S)y(S)
SeF
subject to Soys) = 1 for each x € X
SeF: xeS
y(S) e {0.1} foreach S € F
Linear Program
minimize > e(S)y(S)
SeF
subject to Soys) = for each x € X
SeF: xe$8
y(S) € [0,1] foreach S e F

e e

',,ﬂ', VII. Randomisation and Rounding Weighted Set Cover



Back to the Example

S

[ J [ J [ J
Si

o (0 o

° e | o

[ J [ J [ J

Ss

S S S S S S

c: 2 3 3 5 1 2
y(): 12 1/2 1/2 1/2 1 1/2 Cost equals 8.5

/\

[The strategy employed for Vertex-Cover would take all 6 sets!]
N\

[Even worse: If all y’s were below 1/2, we would not even return a valid cover!]

VII. Randomisation and Rounding

Weighted Set Cover 22



Randomised Rounding

S1 82 83 S4 85 86
c: 2 3 3 5 1 2
y(): 12 1/2 1/2 1/2 1 1/2

Idea: Interpret the y-values as probabilities for picking the respective set.

Randomised Rounding

= Let C C F be a random set with each set S being included
independently with probability y(S).

= More precisely, if y denotes the optimal solution of the LP, then we

compute an integral solution y by:

7(S) = 1 with prf)bablllty y(S) forall Se F.
0 otherwise.

= Therefore, E[y(S)] = y(S).

Sl
?:E VII. Randomisation and Rounding Weighted Set Cover
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Randomised Rounding

S Sz Ss Si S5 S
C: 2 3 3 5 1 2
y(): t/2 1/2 1/2 1/2 1 1)2

Idea: Interpret the y-values as probabilities for picking the respective set.

Lemma

= The expected cost satisfies

E[c(C)]=)_ c(S)-¥(S)

SeF
= The probability that an element x € X is covered satisfies

Pr{erS]21—1E.

Sec

e e

',,a % VII. Randomisation and Rounding Weighted Set Cover
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Proof of Lemma

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[¢(C) ] = > g~ ¢(S) - ¥(S).
= The probability that x is covered satisfies Pr[x € UgecS] > 1 — le

Proof:
= Step 1: The expected cost of the random set C

Elc(C)] =E [ch)] ~E {Z 1SeC'C(3)]

sec SeFr
=Y Pr(Secl-c(8) =Y y(S)-cS)
SeF Ser
= Step 2: The probability for an element to be (not) covered

Prix¢usecS1 =[] Pris¢cl= [ (1-x(8)

SeF: xe8 SeF: xeS

—y(s
< JI e® y solves the LP!
(1 + x < e* for any xﬁ Se7: xes

= e~ Xscr: xes V(S < e ! O

Sl
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The Final Step

Lemma

Let C C F be a random subset with each set S being included indepen-
dently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g €(S) - ¥(S).
» The probability that x is covered satisfies Pr[x € UsecS] > 1 — 1.

Z;

[Problem: Need to make sure that every element is covered!]

Idea: Amplify this probability by taking the union of Q(log n) random sets C.

WEIGHTED SET COVER-LP(X, F,c)

1: compute y, an optimal solution to the linear program
2C=0

3: repeat 2In ntimes

4: foreach S e F

5: let C = C U {S} with probability y(S) -
6: return C

clearly runs in polynomial—time!]

VII. Randomisation and Rounding Weighted Set Cover 25



Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
* The expected approximation ratio is 2In(n).

Proof:

= Step 1: The probability that C is a cover

= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — 13 so that

1 2Inn 1
Prx & UsecS] < (g) =

n2
= This implies for the event that all elements are covered:
PriX =UsecS]=1-Pr| | {x & UsccS}
xeX
(Priaus) < Pria)+priB] Lo 1 S prixgusees) 2 1-n =11
xeX n

= Step 2: The expected approximation ratio
= By previous lemma, the expected cost of one iteration is 3 gc = ¢(S) - ¥(S).
= Linearity = E[¢(C)] < 2In(n) - > gc 7 ¢(S) - ¥(S) < 2In(n) - c(C*)
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Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
* The expected approximation ratio is 2In(n).

\
[By Markov’s inequality, Pr [ c(C) < 4In(n) - ¢(C*)] > 1/2. ]
vy

Hence with probability at least 1 — 1 — 1 > 1, probability could be further
solution is within a factor of 4 In(n) of the optimum. increased by repeating

Typical Approach for Designing Approximation Algorithms based on LPs
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Max-Cut

(Weighted MAX-CUT: Every edge e € E has a non-negative weight w(e)j

— MAX-CUT Problem
= Given: Undirected graph G = (V, E)

= Goal: Find a subset S C V such that |E(S, V' \ S)|
is maximized.

N

\

Weighted MAX-CUT: Maximize the weights of edges crossing
the cut, i.e., maximize w(S) := 3> ¢, \yer(s,v\s) W({U, v})

S={a,b,g}
w(S) =18

Applications:
= cluster analysis
= VLSI design
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Random Sampling

Ex 35.4-3

Suppose that for each vertex v, we randomly and independently place
v in S with probability 1/2 and in V \ S with probability 1/2. Then this
algorithm is a randomize\d 2-approximation algorithm.

[We could employ the same derandomisation used for MAX-3-CNF.
Proof: We express the expected weight of the random cut (S, V'\ S) as:
E[w(S,V\ 9)]

—E [ > w({u, v})]

{u,v}€E(S,V\S)

= Z Pr[{fue Snve(V\S)}u{ue(V\S)nve S} w({u,v})

{u,v}€E
1 1
= > (§43) maww
{u,v}e€E
-1 > W({u,v})zlw*. O
2 {u,v}e€E 2
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Local Search

Local Search: Switch side of a vertex if it increases the cut.

N RN

LOCAL SEARCH(G, w)

: Let S be an arbitrary subset of V

do

flag="0

if Ju € Swith w(S\ {u}, (V\ S)u{u}) > w(S, V\ S) then
§=5\{u}
flag =1

end if

if 3u e V\ Swith w(SuU {u}, (V\ S)\ {u}) > w(S, V\ S) then
S=Su{u}
flag =1

end if

: while flag = 1
: return S
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Illustration of Local Search

Cut=0
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Illustration of Local Search

Step 1: Move ainto S
Cut=5
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Illustration of Local Search

Step 2: Move g into S
Cut=8
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Illustration of Local Search

Step 3: Move dinto S
Cut=10
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Illustration of Local Search

Step 4: Move binto S
Cut = 11
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Illustration of Local Search

(local search terminates)
Step 5: Move ainto V' \ S
Cut=12
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Illustration of Local Search

A better solution could be found:

Cut=13

»‘-. 5
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Analysis of Local Search (1/2)

Theorem
The cut returned by LOCAL-SEARCH satisfies W > (1/2) W™.

Proof:
= At the time of termination, for every vertex u € S:
> ow({uvh > > w({u, v}, (1)
veV\S,v~u vES,vru

= Similarly, for any vertex u € V' \ S:

> owuvh) > > w({u,v)). ()

veS,vu veV\S,v~u

= Adding up equation 1 for all vertices in S and equation 2 for all vertices in V' \ S,

wis)>2- Y w({uv}) and w(S)>2- 3 w({u, v}).
veS,ueS,u~v veV\S,ue V\S,u~v
= Adding up these two inequalities, and diving by 2 yields
w(S)> > w({u v+ > w({u,v}). O

f\veS,ueS,u~v veV\S,ue V\S,u~v

Every edge appears on one of the two sides.]

S
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Analysis of Local Search (2/2)

Theorem

The cut returned by LOCAL-SEARCH satisfies W > (1/2) W*.

What is the running time of LOCAL-SEARCH?

/I \

= Unweighted Graphs: Cut increases by at least one in each iteration
= at most n? iterations

= Weighted Graphs: could take exponential time in n (not obvious...)

Sl
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A Solution based on Semidefinite Programming
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Max-Cut Problem

High-Level-Approach:
1. Describe the Max-Cut Problem as a quadratic optimisation problem

2. Solve a corresponding semidefinite program that is a relaxation of
the original problem

3. Recover an approximation for the original problem from the
approximation for the semidefinite program

Label vertices by 1,2,...,n and express
Quadratic program weight function etc. as a n x n-matrix.

V4

maximize - Z wij- (1= yiy))
(,1 )EE
subject to yie {—1,+1}, i=1,...,n

/)

VN\S={ieV:y=-1}

[This models the MAX-CUT problem;{ S={ieViyi=+1} ]

sl
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Relaxation

Quadratic program

maximize = Z wij - (1 - yiy))
(,/ )EE
subject to yie {—1,+1}, i=1,...,n

[Any solution of the original program can be recovered by setting v; = (¥;,0,0, ..., O)!J

(%
Vector Programming Relaxation
maximize ~ Z wij- (1= viv))
(l,/)EE
subject to vi-vi=1 i=1,...,n.
Vi € ]Rn

i
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Positive Definite Matrices

Definition

A matrix A € R™"is positive semidefinite iff for all y € R",

y -Ay>o.

Remark

1. Ais symmetric and positive definite iff there exists a n x n matrix B
with BT . B = A.

2. If Ais symmetric and positive definite, then the matrix B above can
be computed in polynomial tin@.

[using Cholesky-decompositionj

Examples:
18 2 4 —1 4 A1 .
A:(2 6):(1 2)-(_1 2), so Ais SPD.

1 2 . 1 2 1 .
A:(2 1) since (1 —1)~(2 1)~(_1):—2, Ais not SPD.
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Reformulating the Quadratic Program as a Semidefinite Program

Vector Programming Relaxation

maximize - Z wij- (1 —viv)
(l,f )EE
subject to vi-vi=1 i=1,...,n
Vi € R"
ANN

Reformulation:
= Introduce n? variables a;; = v; - v;, which give rise to a matrix A

= |f V is the matrix given by the vectors (v1, Vs, ..., vp), then A= V. Vis
symmetric and positive definite

Solve this (which can be done in polynomial time),
Semidefinite Program

and recover V using Cholesky Decomposition.
maximize - Z wij-(1—aj)
(i,)eE
subject to = (a;;) is symmetric and positive definite,
anda,-,,-: 1forali=1,...,n

VIIl. MAX-CUT Problem
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Rounding the Vector Program

Vector Programming Relaxation

- 1
maximize > Z wi;- (1 —viv)
(i,j))eE
subject to vi-vi=1 i=1,...,n
Vi € R"

Rounding by a random hyperplane :

1. Pick a random vector r = (ry, 12, . . ., In) by drawing each
component from A/(0, 1)

2. Putie Vifv,-r>0andie V\ S otherwise

Lemma 1

The probability that two vectors v;, v; € R” are separated by the (random)

hyperplane given by r equals w { Follows by projecting on the
plane given by v; and v;.

x5
- 0

)

VIIl. MAX-CUT Problem A Solution based on Semidefinite Programming
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lllustration of the Hyperplane

VIIIl. MAX-CUT Problem A Solution based on Semidefinlw%gramming



A second (technical) Lemma

Lemma 2
Forany x € [-1,1],

1 1
- > 0. =1 =x).
arccos(x) > 0.878 - —(1 — x)

1
- arccos(x)

f(x) 1(1-x)
14 ; o 4
-3
N 1.
. — arrcos(x)
0.5 > 1
\\\\ 0.878 | Tl
\\\
N
0 — x 0 X
_ -1 —-0.5 0 0.5 1 -1 —0.5 0 0.5 1
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Putting Everything Together

Theorem (Goemans, Willamson’96)

The algorithm has an approximation ratio of ;= 878 ~ 1.139.

Proof: Define an indicator variable

X — 1 if (i,) € E are on different sides of the hyperplane
"/ 710 otherwise.

Hence for the (random) weight of the computed cut,

E[w(S ]E{ > Xz/]

{i,j}eE
= > E[Xy]
{ijteE

> wj-Pr[{i,j} € Eisin the cut]
{ij}€E

1
By Lemma 1 Z Wi - ;arccos( Vi)

{ij}€E

20.878-% > owi-(1-vi-v)=0878-2* >0878-W*. O

{iJj}€E
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MAX-CUT: Concluding Remarks

Theorem (Goemans, Willamson’96)
There is a randomised polynomial-time 1.139-approximation algorithm
for MAX-CUT. N

can be derandomized Similar approach can be applied to MAX-3-CNF
(with some effort) and yields an approximation ratio of 1.345

Theorem (Hastad’97)

Unless P=NP, there is no p-approximation algorithm for MAX-CUT with
p < % = 1.0625.

Theorem (Khot, Kindler, Mossel, O’'Donnell’'04)

Assuming the so-called Unique Games Conjecture holds, unless P=NP
there is no p-approximation algorithm for MAX-CUT with

2(1-x)
p< max ——— "' <1139
—1<x<1 L arccos(x)
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Other Approximation Algorithms for MAX-CUT

Theorem (Mathieu, Schudy’08)

For any ¢ > 0, there is a randomised algorithm with running time
0(r2)2°01/¥) so that the expected value of the output deviates from the

maximum cut value by at most O(e - ). {This is an additive approximation!]
N\

1 X

~

(Algorithm (1):
1. Take a sample S of x = O(1/€?) vertices chosen uniformly at random

2. For each of the 2* possible cuts, go through vertices in V' \ Sin
random order and place them on the side of the cut which maximizes
the crossing edges

3. Output the best cut found

Theorem (Trevisan’08)

There is a randomised 1.833-approximation algorithm for MAX-CUT
which runs in O(n? - polylog(n)) time.
N

(Exploits relation between the smallest eigenvalue and the structure of the graph.]

el bl
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Summary
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Spectrum of Approximations

MAX-CLIQUE

SET-COVER

VERTEX-COVER,
MAX-3-CNF, MAX-CUT
METRIC-TSP

CHEDULING,
EUCLIDEAN-
TSP

KNAPSACK
SUBSET-SUM

FPTAS PTAS APX log-APX poly-APX
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The End

Thank you very much and
Best Wishes for the Exam!

"n b
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