lll. Linear Programming

Thomas Sauerwald

Easter 2016

UNIVERSITY OF
CAMBRIDGE

Outline

Introduction

Ill. Linear Programming Introduction

Introduction

Linear Programming (informal definition)

= maximize or minimize an objective, given limited resources and
competing constraint

= constraints are specified as (in)equalities

Ill. Linear Programming Introduction

Introduction

Linear Programming (informal definition)

= maximize or minimize an objective, given limited resources and
competing constraint

= constraints are specified as (in)equalities

~—— Example: Political Advertising

Ill. Linear Programming Introduction

Introduction

Linear Programming (informal definition)

= maximize or minimize an objective, given limited resources and
competing constraint

= constraints are specified as (in)equalities

~—— Example: Political Advertising

= Imagine you are a politician trying to win an election

Ill. Linear Programming Introduction

Introduction

Linear Programming (informal definition)

= maximize or minimize an objective, given limited resources and
competing constraint

= constraints are specified as (in)equalities

~—— Example: Political Advertising

= Imagine you are a politician trying to win an election

= Your district has three different types of areas: Urban, suburban and
rural, each with, respectively, 100,000, 200,000 and 50,000
registered voters

il
Ill. Linear Programming Introduction

Introduction

Linear Programming (informal definition)

= maximize or minimize an objective, given limited resources and
competing constraint

= constraints are specified as (in)equalities

~—— Example: Political Advertising

= Imagine you are a politician trying to win an election

= Your district has three different types of areas: Urban, suburban and
rural, each with, respectively, 100,000, 200,000 and 50,000
registered voters

= Aim: at least half of the registered voters in each of the three regions
should vote for you

il
IIl. Linear Programming Introduction

Introduction

Linear Programming (informal definition)

= maximize or minimize an objective, given limited resources and
competing constraint

= constraints are specified as (in)equalities

~—— Example: Political Advertising

= Imagine you are a politician trying to win an election

= Your district has three different types of areas: Urban, suburban and
rural, each with, respectively, 100,000, 200,000 and 50,000
registered voters

= Aim: at least half of the registered voters in each of the three regions
should vote for you

= Possible Actions: Advertise on one of the primary issues which are (i)
building more roads, (ii) gun control, (iii) farm subsidies and (iv) a
gasoline tax dedicated to improve public transit.

il
Ill. Linear Programming Introduction

Political Advertising Continued

policy \ urban suburban rural
build roads -2 5 3
gun control 8 2 -5
farm subsidies 0 0 10
gasoline tax 10 0 -2

The effects of policies on voters. Each entry describes the number of thousands of
voters who could be won (lost) over by spending $1,000 on advertising support of a
policy on a particular issue.

%’E IIl. Linear Programming Introduction

Political Advertising Continued

policy \ urban suburban rural
build roads -2 5 3

gun control 8 2 -5
farm subsidies 0 0 10
gasoline tax 10 0 -2

The effects of policies on voters. Each entry describes the number of thousands of
voters who could be won (lost) over by spending $1,000 on advertising support of a
policy on a particular issue.

/1

= Possible Solution:
= $20,000 on advertising to building roads
= $0 on advertising to gun control
= $4,000 on advertising to farm subsidies
= $9,000 on advertising to a gasoline tax

=
X Ill. Linear Programming Introduction

Political Advertising Continued

policy \ urban suburban rural
build roads -2 5 3

gun control 8 2 -5
farm subsidies 0 0 10
gasoline tax 10 0 -2

The effects of policies on voters. Each entry describes the number of thousands of
voters who could be won (lost) over by spending $1,000 on advertising support of a
policy on a particular issue.

/1

= Possible Solution:
= $20,000 on advertising to building roads
= $0 on advertising to gun control
= $4,000 on advertising to farm subsidies
= $9,000 on advertising to a gasoline tax

= Total cost: $33,000

=
X Ill. Linear Programming Introduction

Political Advertising Continued

policy \urban suburban rural

build roads -2 5

gun control 8 2
farm subsidies 0 0
gasoline tax 10 0

The effects of policies on voters. Each entry describes the number of thousands of
voters who could be won (lost) over by spending $1,000 on advertising support of a

policy on a particular issue.

/1

= Possible Solution:
= $20,000 on advertising to building roads
= $0 on advertising to gun control
= $4,000 on advertising to farm subsidies
= $9,000 on advertising to a gasoline tax

= Total cost: $33,000

What is the best possible strategy?

%’E IIl. Linear Programming Introduction

Towards a Linear Program

policy \ urban suburban rural
build roads -2 5 3

gun control 8 2 -5
farm subsidies 0 0 10
gasoline tax 10 0 -2

The effects of policies on voters. Each entry describes the number of thousands of
voters who could be won (lost) over by spending $1,000 on advertising support of a
policy on a particular issue.

%’E IIl. Linear Programming Introduction

Towards a Linear Program

policy | urban suburban
build roads -2 5
gun control 8 2
farm subsidies 0 0
gasoline tax 10 0

The effects of policies on voters. Each entry describes the number of thousands of
voters who could be won (lost) over by spending $1,000 on advertising support of a

policy on a particular issue.

= x; = number of thousands of dollars spent on advertising on building roads
= xo = number of thousands of dollars spent on advertising on gun control

= x3 = number of thousands of dollars spent on advertising on farm subsidies
= x4 = number of thousands of dollars spent on advertising on gasoline tax

i IIl. Linear Programming

Introduction

Towards a Linear Program

policy \ urban suburban rural
build roads -2 5 3
gun control 8 2 -5
farm subsidies 0 0 10
gasoline tax 10 0 -2

The effects of policies on voters. Each entry describes the number of thousands of
voters who could be won (lost) over by spending $1,000 on advertising support of a
policy on a particular issue.

= x; = number of thousands of dollars spent on advertising on building roads
= xo = number of thousands of dollars spent on advertising on gun control

= x3 = number of thousands of dollars spent on advertising on farm subsidies
= x4 = number of thousands of dollars spent on advertising on gasoline tax

Constraints:

=
X Ill. Linear Programming Introduction

Towards a Linear Program

policy | urban

suburban

build roads
gun control
farm subsidies
gasoline tax

The effects of policies on voters. Each entry describes the number of thousands of
voters who could be won (lost) over by spending $1,000 on advertising support of a

policy on a particular issue.

= x; = number of thousands of dollars spent on advertising on building roads
= xo = number of thousands of dollars spent on advertising on gun control

= x3 = number of thousands of dollars spent on advertising on farm subsidies
= x4 = number of thousands of dollars spent on advertising on gasoline tax

Constraints:
= —2X1 +8x> +0x3 + 10x4 > 50

5

2
0
0

bl
S, IIl. Linear Programming

Introduction

Towards a Linear Program

policy \ urban suburban rural
build roads -2 5 3

gun control 8 2 -5
farm subsidies 0 0 10
gasoline tax 10 0 -2

The effects of policies on voters. Each entry describes the number of thousands of
voters who could be won (lost) over by spending $1,000 on advertising support of a

policy on a particular issue.

= x; = number of thousands of dollars spent on advertising on building roads
= xo = number of thousands of dollars spent on advertising on gun control

= x3 = number of thousands of dollars spent on advertising on farm subsidies
= x4 = number of thousands of dollars spent on advertising on gasoline tax

Constraints:
= —2X1 +8x> +0x3 + 10x4 > 50
= 5x1 + 2x> + 0x3 + 0xs > 100

=
X Ill. Linear Programming Introduction

Towards a Linear Program

policy \ urban suburban rural
build roads -2 5 3

gun control 8 2 -5
farm subsidies 0 0 10
gasoline tax 10 0 -2

The effects of policies on voters. Each entry describes the number of thousands of
voters who could be won (lost) over by spending $1,000 on advertising support of a

policy on a particular issue.

= x; = number of thousands of dollars spent on advertising on building roads
= xo = number of thousands of dollars spent on advertising on gun control

= x3 = number of thousands of dollars spent on advertising on farm subsidies
= x4 = number of thousands of dollars spent on advertising on gasoline tax

Constraints:
= —2X1 +8x> +0x3 + 10x4 > 50
= 5x1 + 2x> + 0x3 + 0xs > 100
= 3xy —5x0 + 10x3 — 2x4 > 25

=
X Ill. Linear Programming Introduction

Towards a Linear Program

policy \ urban suburban rural
build roads -2 5 3

gun control 8 2 -5
farm subsidies 0 0 10
gasoline tax 10 0 -2

The effects of policies on voters. Each entry describes the number of thousands of
voters who could be won (lost) over by spending $1,000 on advertising support of a

policy on a particular issue.

= x; = number of thousands of dollars spent on advertising on building roads
= xo = number of thousands of dollars spent on advertising on gun control

= x3 = number of thousands of dollars spent on advertising on farm subsidies
= x4 = number of thousands of dollars spent on advertising on gasoline tax

Constraints:

= —2X1 +8x> +0x3 + 10x4 > 50
= 5x1 + 2x> + 0x3 + 0xs > 100

[Objective: Minimize x1 + Xo + X3 + X4 j

= 3x; —5x0 +10x3 — 2x4 > 25

=
X Ill. Linear Programming Introduction

The Linear Program

Linear Program for the Advertising Problem

minimize Xi + Xo + X3 + X4
subject to
-2x1 + 8x + Ox3 + 10x4 > 50
5 + 2x + Ox3 + Oxs > 100
3X4 — bx + 10x3 — 2Xy > 25
X1, X2, X3, Xa > 0

Ill. Linear Programming Introduction

The Linear Program

Linear Program for the Advertising Problem

minimize Xy + Xo + X3 + X4
subject to
—2X4 + 8x + Ox3 + 10x4 > 50
5X1 + 2X2 + OX3 + 0X4 Z 100
3X4 — 5x0 + 10x3 — 2Xy > 25
X1, Xo, X3, X4 > 0

1
{The solution of this linear program yields the optimal advertising strategy. J

n i
Ill. Linear Programming Introduction

The Linear Program

Linear Program for the Advertising Problem

minimize Xi + Xo + X3 + X4
subject to
-2x1 + 8x + Ox3 + 10x4 > 50
5Xxq + 2Xo + OX3 + 0x4 > 100
3X4 — 5x0 + 10x3 — 2Xy > 25
X1, X2, X3, Xa > 0

1
'[The solution of this linear program yields the optimal advertising strategy. J

Formal Definition of Linear Program

Il Linear Programming Introduction

The Linear Program

Linear Program for the Advertising Problem

minimize Xi + Xo + X3 + X4
subject to
-2x1 + 8x + Ox3 + 10x4 > 50
5Xxq + 2Xo + OX3 + 0x4 > 100
3X4 — 5x0 + 10x3 — 2Xy > 25
X1, X2, X3, Xa > 0

g

'[The solution of this linear program yields the optimal advertising strategy.

)

Formal Definition of Linear Program

= Given ay, a, ..., ap and a set of variables x1, X2, ..., X», a linear
function f is defined by

f(X17X2,...,Xn) = aiXy + axe + -+ anXxn.

Il Linear Programming Introduction

The Linear Program

Linear Program for the Advertising Problem

minimize Xi + Xo + X3 + X4
subject to
-2x1 + 8x + Ox3 + 10x4 > 50
5Xxq + 2Xo + OX3 + 0x4 > 100
3X4 — 5x0 + 10x3 — 2Xy > 25
X1, X2, X3, Xa > 0

1
'[The solution of this linear program yields the optimal advertising strategy. J

Formal Definition of Linear Program

= Given ay, a, ..., ap and a set of variables x1, X2, ..., X», a linear
function f is defined by

f(X17X2,...,Xn) = aiXy + axe + -+ anXxn.

= Linear Equality: f(x1,X2,...,X,) = b

Il Linear Programming Introduction

The Linear Program

Linear Program for the Advertising Problem

minimize Xi + Xo + X3 + X4
subject to
-2x1 + 8x + Ox3 + 10x4 > 50
5Xxq + 2Xo + OX3 + 0x4 > 100
3X4 — 5x0 + 10x3 — 2Xy > 25
X1, X2, X3, Xa > 0

g

'[The solution of this linear program yields the optimal advertising strategy.

)

Formal Definition of Linear Program

= Given ay, a, ..., ap and a set of variables x1, X2, ..., X», a linear
function f is defined by

f(X17X2,...,Xn) = aiXy + axe + -+ anXxn.

= Linear Equality: f(x1,X2,...,X,) = b
= Linear Inequality: f(x1,x2,...,x,7)§b

Il Linear Programming Introduction

The Linear Program

Linear Program for the Advertising Problem

minimize Xi + Xo + X3 + X4
subject to
-2x1 + 8x + Ox3 + 10x4 > 50
5Xxq + 2Xo + OX3 + 0x4 > 100
3X4 5x0 + 10x3 2Xy > 25
X1, X2, X3, Xa > 0

1
'[The solution of this linear program yields the optimal advertising strategy. J

Formal Definition of Linear Program

= Given ay, a, ..., ap and a set of variables x1, X2, ..., X», a linear
function f is defined by

f(X17X2,...,Xn) = aiXy + axe + -+ anXxn.

= Linear Equality: f(x1,X2,...,X,) = b

Linear Constraints
= Linear Inequality: f(x1, Xz, . . . ,xn)ib {]

Il Linear Programming Introduction

The Linear Program

Linear Program for the Advertising Problem

minimize Xi + Xo + X3 + X4
subject to
-2x1 + 8x + Ox3 + 10x4 > 50
5Xxq + 2Xo + OX3 + 0x4 > 100
3X4 — 5x0 + 10x3 — 2Xy > 25
X1, X2, X3, Xa > 0

1
'[The solution of this linear program yields the optimal advertising strategy. J

Formal Definition of Linear Program

= Given ay, a, ..., ap and a set of variables x1, X2, ..., X», a linear
function f is defined by

f(X17X2,...,Xn) = aiXy + axe + -+ anXxn.

= Linear Equality: f(x1, Xz, ..., Xn)

. . = {Llnear Constraints]
= Linear Inequality: f(x1, X2, ..., Xn)

= Linear-Progamming Problem: elther minimize or maximize a linear
function subject to a set of linear constraints

Il Linear Programming Introduction

A Small(er) Example

maximize Xy +
subject to
4X1 —
2x1 +
5x4 —
X1, X2

X2

X2
X2
2Xo

IV IV IAIA

i
B Ill. Linear Programming

Introduction

A Small(er) Example

maximize Xy + Xo
subject to
4X1 — X2 < 8
2X4 + X2 < 10
5x4 — 2Xo > -2
X1, X2 > 0
N

Any setting of x; and x, satisfying
all constraints is a feasible solution

=
X Ill. Linear Programming Introduction

A Small(er) Example

I I I I I I I I I I
i e e B e e il e il B S |
I I I I I I I I I I
A A DA |
I I I I I I I I I I
I I I I I I I I I I
e e e e e e e |
I I I I I I I I I I
B e | [|
I I I I I I I I I I
L .
I I I I I I I I I I
I I I I I I I I I I
el e e e e e e e Bl S i |
I I I I I I I I I I
Il Il Il Il Il Il Il Il Il Il
0O AN O
— |
S
VIVIAIAI gm
= =
= =
> 35
L QR %o
N =@
(4]
w0
e
+ I+ N X %
©
S Jge
X X X XX Cw®
< AN W0 X.Q|u
=
O .=
g 5
= e = =
E 3 o 2
£ g2
c > O
€ 3 c =
<

[

i
»

Introduction

IIl. Linear Programming

A Small(er) Example

Xq Xo

maximize
subject to

VIVIAIAI

X

X2
2Xo

4x4
2X1
5x4

X1, X2

]

Any setting of x; and x, satisfying
all constraints is a feasible solution

[

i
»

Introduction

IIl. Linear Programming

A Small(er) Example

Xq Xo

maximize
subject to

X2
2Xo

4x4
2X1
5x4

VIVIAIAI

X1, X2

]

and x satisfying

all constraints is a feasible solution

Any setting of xq

[

Introduction

IIl. Linear Programming

A Small(er) Example

Xq Xo

maximize
subject to

X2
2Xo

4x4
2X1
5x4

VIVIAIAI

X1, X2

]

and x satisfying

all constraints is a feasible solution

Any setting of xq

[

Introduction

IIl. Linear Programming

A Small(er) Example

Xq Xo

maximize
subject to

VIVIAIAI

X

X2
2Xo

X1, X2

4x4
2X1
5x4

]

and x satisfying

all constraints is a feasible solution

Any setting of xq

[

Introduction

IIl. Linear Programming

A Small(er) Example

Xq Xo

maximize
subject to

VIVIAIAI

X

X2
2Xo

X1, X2

4x4
2X1
5x4

]

and x satisfying

all constraints is a feasible solution

Any setting of xq

[

Introduction

IIl. Linear Programming

A Small(er) Example

Xq Xo

maximize
subject to

VIVIAIAI

X

X2
2Xo

X1, X2

4x4
2X1
5x4

and x satisfying
all constraints is a feasible solution

Any setting of xq

[

Introduction

IIl. Linear Programming

A Small(er) Example

Xq Xo

maximize
subject to

<
809__0
VIVIAIAI
<R R
I\
I+ o
X X X X
<t N WO

]

X1 + Xo = z as far up as possible.

Graphical Procedure: Move the line

[

el - el
2

Introduction

IIl. Linear Programming

A Small(er) Example

X1 X2

maximize
subject to

VIVIAIAI

<

X2
2Xo

X1, X2

4X1
2X1
5X1

J

X1 + X2 = z as far up as possible.

Graphical Procedure: Move the line

[

Introduction

Il Linear Programming

A Small(er) Example

X1 X2

maximize
subject to

VIVIAIAI

<

X2
2Xo

X1, X2

4X1
2X1
5X1

J

X1 + X2 = z as far up as possible.

Graphical Procedure: Move the line

[

Introduction

Il Linear Programming

A Small(er) Example

maximize Xy + Xo
subject to
4X1 — X2 < 8
2X4 + Xo < 10
5% — 2x% > -2 x>0
X1, X2 > 0

Graphical Procedure: Move the line
X1 + X2 = z as far up as possible.

Il Linear Programming Introduction 7

A Small(er) Example

X1 X2

maximize
subject to

VIVIAIAI

<

X2
2Xo

X1, X2

4X1
2X1
5X1

J

X1 + X2 = z as far up as possible.

Graphical Procedure: Move the line

[

Introduction

Il Linear Programming

A Small(er) Example

X1 X2

maximize
subject to

VIVIAIAI

<

X2
2Xo

X1, X2

4X1
2X1
5X1

XQEO

J

X1 + X2 = z as far up as possible.

Graphical Procedure: Move the line

[

Introduction

Il Linear Programming

A Small(er) Example

X1 X2

maximize
subject to

VIVIAIAI

<

X2
2Xo

X1, X2

4X1
2X1
5X1

J

X1 + X2 = z as far up as possible.

Graphical Procedure: Move the line

[

Introduction

Il Linear Programming

A Small(er) Example

X1 X2

maximize
subject to

VIVIAIAI

<

X2
2Xo

X1, X2

4X1
2X1
5X1

J

X1 + X2 = z as far up as possible.

Graphical Procedure: Move the line

[

Introduction

Il Linear Programming

A Small(er) Example

Introduction

0o N o
- |
)
o .
VI VIAIAI =}
o3
< KLY = 8
Al [ORNeY
3 o
S ©
+ 1+, =3
X o S
- =
XX X X X SN 2
< N D v €
O © §
N g
o <
= — 3
= O %2 5
£E3 r=ia =
23 gt
E o va.m

[

A Small(er) Example

X1 X2

maximize
subject to

VIVIAIAI

<

X2
2Xo

X1, X2

4X1
2X1
5X1

)

X1 + X2 = z as far up as possible.

Graphical Procedure: Move the line

[

Introduction

Il Linear Programming

A Small(er) Example

X1 X2

maximize
subject to

VIVIAIAI

<

X2
2Xo

X1, X2

4X1
2X1
5X1

J

X1 + X2 = z as far up as possible.

Graphical Procedure: Move the line

[

Introduction

Il Linear Programming

A Small(er) Example

X1 X2

maximize
subject to

VIVIAIAI

<

X2
2Xo

X1, X2

4X1
2X1
5X1

J

X1 + X2 = z as far up as possible.

Graphical Procedure: Move the line

[

Introduction

Il Linear Programming

A Small(er) Example

X1 X2

maximize
subject to

VIVIAIAI

<

X2
2Xo

X1, X2

4X1
2X1
5X1

J

X1 + X2 = z as far up as possible.

Graphical Procedure: Move the line

[

Introduction

Il Linear Programming

A Small(er) Example

maximize Xy + Xo
subject to
4X1 — X2 < 8
2X4 + Xo < 10
5x4 — 2Xo > -2
X1, X2 > 0

Graphical Procedure: Move the line
X1 + Xo = z as far up as possible.

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

Sl IIl. Linear Programming Introduction 7

A Small(er) Example

maximize Xy + Xo
subject to
4x4 — X2 < 8
2X4 + Xo < 10
5X1 — 2Xo > -2
X1, X2 Z 0

Graphical Procedure: Move the line
X1 + X2 = z as far up as possible.

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

> More Examples

Il Linear Programming Introduction 7

Outline

Standard and Slack Forms

i

.-,.E:,_ IIl. Linear Programming Standard and Slack Forms

Standard and Slack Forms

Standard Form

n
maximize > ¢x
J=1
subject to
n
dap<b fori=1,2,....m
J=1

X >0 forj=1,2,....,n

el b

\-,‘E o IIl. Linear Programming Standard and Slack Forms

Standard and Slack Forms

Standard Form

n
maximize Z CiX; {Objective Function]
j=1
subject to
n
dap<b fori=1,2,....m
j=1

X >0 forj=1,2,....,n

i

.-,.E;, IIl. Linear Programming Standard and Slack Forms

Standard and Slack Forms

Standard Form

n
maximize Z CiXj {Objective Function]
j=1

subject to

n
dap<b fori=1,2,....m
n+ m Constraints } =

X >0 forj=1,2,....,n

S

.-,.E:,_ IIl. Linear Programming Standard and Slack Forms

Standard and Slack Forms

Standard Form

n
maximize Z CiXj {Objective Function]
j=1

subject to

n
dap<b fori=1,2,....m
n+ m Constraints } =1

x>0 forj=1,2,....,n
N

LNon-Negativity Constraints J

i
IIl. Linear Programming Standard and Slack Forms

Standard and Slack Forms

Standard Form

n
maximize Z CiXj {Objective Function]
j=1

subject to

n
dap<b fori=1,2,....m
n+ m Constraints } =

x>0 forj=1,2,....,n
N

LNon-Negativity Constraints J

Standard Form (Matrix-Vector-Notation)

maximize c'x {Inner product of two vectors]
subject to

Ax<b { Matrix-vector product j
x>0

i
IIl. Linear Programming Standard and Slack Forms

Converting Linear Programs into Standard Form

-
Reasons for a LP not being in standard form:
1. The objective might be a minimization rather than maximization.
2. There might be variables without nonnegativity constraints.
3. There might be equality constraints.
4. There might be inequality constraints (with > instead of <).

i

‘-,‘E',‘ IIl. Linear Programming Standard and Slack Forms

Converting Linear Programs into Standard Form

é N
Reasons for a LP not being in standard form:
1. The objective might be a minimization rather than maximization.
2. There might be variables without nonnegativity constraints.
3. There might be equality constraints.
4. There might be inequality constraints (with > instead of <).
\ J

Goal: Convert linear program into an equivalent program
which is in standard form

Ill. Linear Programming Standard and Slack Forms

Converting Linear Programs into Standard Form

Reasons for a LP not being in standard form:

1. The objective might be a minimization rather than maximization.
2. There might be variables without nonnegativity constraints.

3. There might be equality constraints.

4. There might be inequality constraints (with > instead of <).

Goal: Convert linear program into an equivalent program
which is in standard form

/)

/L
Equivalence: a correspondence (not necessarily a bijection)
between solutions so that their objective values are identical.

i
IIl. Linear Programming Standard and Slack Forms

Converting Linear Programs into Standard Form

é N
Reasons for a LP not being in standard form:
1. The objective might be a minimization rather than maximization.
2. There might be variables without nonnegativity constraints.
3. There might be equality constraints.
4. There might be inequality constraints (with > instead of <).
\ 7

Goal: Convert linear program into an equivalent program
which is in standard form

/)

between solutions so that their objective values are identical.

/L
[Equivalence: a correspondence (not necessarily a bijection) }
7

When switching from maximization to
minimization, sign of objective value changes.

E:';.! IIl. Linear Programming Standard and Slack Forms 10

Converting into Standard Form (1/5)

Reasons for a LP not being in standard form:
1. The objective might be a minimization rather than maximization.

«,‘E o IIl. Linear Programming Standard and Slack Forms

Converting into Standard Form (1/5)

i

i
"-.E -,

Reasons for a LP not being in standard form:
1. The objective might be a minimization rather than maximization.

| minimize -2x1 + 3x|
subject to
X4 + X2 = 7
X1 — 2X2 < 4
X1 > 0
Ill. Linear Programming Standard and Slack Forms 11

Converting into Standard Form (1/5)

Reasons for a LP not being in standard form:

1. The objective might be a minimization rather than maximization.

| minimize ~ —2x; + 3x]
subject to

X4 + X2 = 7

X1 — 2X2 < 4

X4 > 0
|
|
i Negate objective function
v

Ill. Linear Programming Standard and Slack Forms 11

Converting into Standard Form (1/5)

Reasons for a LP not being in standard form:

1. The objective might be a minimization rather than maximization.

| minimize ~ —2x; + 3x]
subject to
X4 + X2 = 7
X1 — 2X2 < 4
X1 > 0
|
|
i Negate objective function
v
| maximize 2x — 3x |
subject to
X1 -+ X2 = 7
XxxT — 2% < 4
X1 2 0

i

-'-.E;- Ill. Linear Programming

Standard and Slack Forms

Converting into Standard Form (2/5)

Reasons for a LP not being in standard form:
2. There might be variables without nonnegativity constraints.

«,‘E o IIl. Linear Programming Standard and Slack Forms

Converting into Standard Form (2/5)

Reasons for a LP not being in standard form:
2. There might be variables without nonnegativity constraints.

maximize 2x1 — 3x

subject to
X1 + X = 7
X1 — 2X2 < 4
X1 > 0 ‘

i

\-..E %5 IIl. Linear Programming Standard and Slack Forms 12

Converting into Standard Form (2/5)

Reasons for a LP not being in standard form:
2. There might be variables without nonnegativity constraints.

maximize 2x; — 3%
subject to
X1 + X = 7
X1 — 2X2 < 4
i > 0

|
! Replace x> by two non-negative
\}’ variables x; and x5’

Ill. Linear Programming Standard and Slack Forms 12

Converting into Standard Form (2/5)

Reasons for a LP not being in standard form:
2. There might be variables without nonnegativity constraints.

maximize 2x; — 3%
subject to
X1 + X = 7
X1 — 2X2 < 4
i > 0

|
! Replace x> by two non-negative
\}’ variables x; and x5’

maximize 2x; — |3x3 + 3x§

subject to

Xy 4+ | x - xy
X — 2 + 2x)
X1, Xé? X2/

IVIIA I
o~ N

s

.-,.E;, IIl. Linear Programming Standard and Slack Forms

Converting into Standard Form (3/5)

Reasons for a LP not being in standard form:
3. There might be equality constraints.

""ﬂ o IIl. Linear Programming Standard and Slack Forms

Converting into Standard Form (3/5)

Reasons for a LP not being in standard form:

3. There might be equality constraints.

maximize 2x; — 3x5
subject to
x + X
Xy — 2X
! 1
X1, Xo, Xo

i

IV AIAL
[<IENEN]

\-,‘E o IIl. Linear Programming Standard and Slack Forms

Converting into Standard Form (3/5)

Reasons for a LP not being in standard form:
3. There might be equality constraints.

maximize 2x; — 3x3 + 3x§
subject to
x + x5 - X = 7]
X1 — 2x5 + 2x5 < 4
X1, Xy, X5 > 0

i Replace each equality
\}’ by two inequalities.

Ill. Linear Programming Standard and Slack Forms 13

Converting into Standard Form (3/5)

Reasons for a LP not being in standard form:

3. There might be equality constraints.

maximize
subject to

maximize
subject to

S

2y — 3x5 + 3x)
x + x5 - Xy =7
X1 — 2x5 + 2x5 < 4
X1, Xé? XEN Z 0
|
! Replace each equality
\}’ by two inequalities.
2y — 3x3 + 3x)
x + x5 - x5 < 7
XX+ % - x> 7
Xy — 2% + 2x5 < 4
X1, X5, X5 > 0

-;.E;- Ill. Linear Programming

Standard and Slack Forms

Converting into Standard Form (4/5)

Reasons for a LP not being in standard form:
4. There might be inequality constraints (with > instead of <).

«,‘E o IIl. Linear Programming Standard and Slack Forms

Converting into Standard Form (4/5)

Reasons for a LP not being in standard form:
4. There might be inequality constraints (with > instead of <).

maximize 2xy — 3x3 + 3x3
subject to
Xt + X - x < 7
Cx + X - x> 7]
X — 2x + 2x5 < 4
X1, X5, X3 > 0

Il Linear Programming Standard and Slack Forms 14

Converting into Standard Form (4/5)

Reasons for a LP not being in standard form:
4. There might be inequality constraints (with > instead of <).

maximize 2x; — 3x5 + 3x
subject to
Xt + X - x < 7
Cx + X - x> 7]
Xy — 2x5 + 2x5 < 4
> 0

v
X1, Xo, Xo
|

|
i Negate respective inequalities.
|

Y

i

.-,.I,. IIl. Linear Programming Standard and Slack Forms 14

Converting into Standard Form (4/5)

Reasons for a LP not being in standard form:
4. There might be inequality constraints (with > instead of <).

maximize 2x; — 3x5 + 3x
subject to
Xt + X - x < 7
Cx + X - x> 7]
Xy — 2x5 + 2x5 < 4
X1, X5, X5 > 0
|
|
i Negate respective inequalities.
v
maximize 2x; — 3x5 + 3x
subject to
x + x5 - x) < 7
- - x5 + x < 7]
Xy — 2% + 2x5 < 4
X1, Xa, X5 > 0

s

.-,.E;. IIl. Linear Programming Standard and Slack Forms 14

Converting into Standard Form (5/5)

maximize 2x1 —
subject to
X1+
X1 —
X1, X2, X3

3X2

X2
X2
2X2

- -

3X3

X3
X3
2X3

IV IANINIA

IIl. Linear Programming

Standard and Slack Forms

Converting into Standard Form (5/5)

[Rename variable names (for consistency).]

N
maximize 2xy — 33X + 3x3
subject to
X1+ Xo — X3 <
-Xi - X2 + X3 <
X1 — 2% + 2x3 <
X1, X2, X3 >

IIl. Linear Programming

Standard and Slack Forms

Converting into Standard Form (5/5)

(Rename variable names (for consistency).]

N
maximize 2xy — 33X + 3x3
subject to
XX 4+ X - x3 < 7
-x1 - X + x3 < =7
X1 — 2% + 2x3 < 4
X1, X2, X3 > 0

It is always possible to convert a linear program into standard form.

i
IIl. Linear Programming Standard and Slack Forms

Converting Standard Form into Slack Form (1/3)

i

Goal: Convert standard form into slack form, where all constraints
except for the non-negativity constraints are equalities.

Ill. Linear Programming Standard and Slack Forms

Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints
except for the non-negativity constraints are equalities.

/)

/L
For the simplex algorithm, it is more con-
venient to work with equality constraints.

i
IIl. Linear Programming Standard and Slack Forms

Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints
except for the non-negativity constraints are equalities.

/)

/L

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Introducing Slack Variables

i

.-,.E;, IIl. Linear Programming Standard and Slack Forms

Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints
except for the non-negativity constraints are equalities.

/)

/L

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Introducing Slack Variables

= Let 2721 ajx; < b; be an inequality constraint

S

.-,.E;, IIl. Linear Programming Standard and Slack Forms

Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints
except for the non-negativity constraints are equalities.

/)

/L

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Introducing Slack Variables

= Let 2721 ajx; < b; be an inequality constraint
= Introduce a slack variable s by

S

.-,.E;, IIl. Linear Programming Standard and Slack Forms

Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints
except for the non-negativity constraints are equalities.

/)

/L

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Introducing Slack Variables

= Let 2721 ajx; < b; be an inequality constraint
= Introduce a slack variable s by

n
s=b—>_ a
=

S

.-,.E;, IIl. Linear Programming Standard and Slack Forms

Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints
except for the non-negativity constraints are equalities.

/)

/L
For the simplex algorithm, it is more con-
venient to work with equality constraints.

Introducing Slack Variables

= Let 2721 ajx; < b; be an inequality constraint
= Introduce a slack variable s by

n
s=b—>_ a
=

s>0.

S

.-,.E:,_ IIl. Linear Programming Standard and Slack Forms

Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints
except for the non-negativity constraints are equalities.

/)

/L
For the simplex algorithm, it is more con-
venient to work with equality constraints.

Introducing Slack Variables

= Let 2721 ajx; < b; be an inequality constraint
= Introduce a slack variable s by

[

n
s=bi—) ajX
s measures the slack between } ' ; v

the two sides of the inequality. >0

i
IIl. Linear Programming Standard and Slack Forms

Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints
except for the non-negativity constraints are equalities.

/)

/L
For the simplex algorithm, it is more con-
venient to work with equality constraints.

Introducing Slack Variables

= Let 2721 ajx; < b; be an inequality constraint
= Introduce a slack variable s by

[

n
s=bi—) ajX
s measures the slack between } ' ; v

the two sides of the inequality.
s> 0.

= Denote slack variable of the ith inequality by X,

i
IIl. Linear Programming Standard and Slack Forms

Converting Standard Form into Slack Form (2/3)

maximize
subject to

2X1 — 3 + 3x3

X1+ X2 - X3

-X1 = X2+ X3

Xy — 22X + 2x3
X1, X2, X3

IV ININIA

IIl. Linear Programming

Standard and Slack Forms

Converting Standard Form into Slack Form (2/3)

maximize 2x1 — 3x + 3x3
subject to
Xy + X2 - X3 < 7
-x - X + x < -7
X1 — 2% + 2x3 < 4
X1, X2, X3 > 0

|
|
| Introduce slack variables
|
v

i
E:';.' IIl. Linear Programming Standard and Slack Forms

Converting Standard Form into Slack Form (2/3)

maximize 2x1 — 3x + 3x3
subject to
Xy + X2 - X3 < 7
-x - X + x < -7
X1 — 2% + 2x3 < 4
X1, X2, X3 > 0

|
|
| Introduce slack variables
|
v

subject to

S
E:';.' IIl. Linear Programming Standard and Slack Forms

Converting Standard Form into Slack Form (2/3)

maximize 2xy — 3x2 + 3x3
subject to
X1+ Xo - X3 <
-x - X + x < -7
Xy — 2% + 2x3 <
X1, X2, X3 >
|
|
| Introduce slack variables
v
subject to
Xy 7 — X1 — X2

X5

IIl. Linear Programming

Standard and Slack Forms

Converting Standard Form into Slack Form (2/3)

maximize
subject to

subject to

2X1 — 3 + 3x3
X1+ Xo - X3 <
-X1 - X2+ x3 < =7
Xy — 2% + 2x3 <
X1, X2, X3 >
|
|
i Introduce slack variables
v
X4 = 7 - X1 - X +
Xs = —7 4+ X3 + X -
X6 = 4 — X4 + 2X2 -

X3
X3
2X3

IIl. Linear Programming

Standard and Slack Forms

Converting Standard Form into Slack Form (2/3)

maximize 2xy — 33X + 3x3
subject to
Xy + X - x3 < 7
—-Xi - X + x3 < =7
Xy — 22X + 2x3 < 4
X1, X2, X3 > 0

|
|
i Introduce slack variables
|
v

subject to
X4 = 7 — X1 - X2 + X3
Xxs = -7 + X1+ X2 = X3
Xs = 4 — X1 + 2x — 2X3
X1, X2, X3, X4, X5, Xs > 0
Ill. Linear Programming Standard and Slack Forms 17

Converting Standard Form into Slack Form (2/3)

maximize
subject to

maximize
subject to

2

Xa
X5
X6

X1 — 3x2 + 3x3
X1+ X2 - X3
X1 = X2+ X3
X1 — 2X2 + 2X3
X1, X2, X3
I
I
l
\Z
2X1
= 7 — X1
= -7 + X1
= 4 — X1

X1, X2, X3, X4, X5, Xe

vV + +

IV ININIA

Introduce slack variables

32 +
X2+
Xo —

2X2 —

0

3X3

X3
X3
2X3

IIl. Linear Programming

Standard and Slack Forms

Converting Standard Form into Slack Form (3/3)

maximize
subject to
X4
X5
Xe

7
-7
4

X1, X2, X3, X4, X5, Xg

2X1

X
Xi
X

vV + +

3X2

X2
X2
2X2

3X3

X3
X3
2X3

IIl. Linear Programming

Standard and Slack Forms

Converting Standard Form into Slack Form (3/3)

maximize 2x; — 3x + 3x3
subject to
X4 = 7 — X1 — Xo + X3
Xs = -7 + X1+ X2 — X3
X6 = 4 — Xy + 2X — 2X3
X1, X2, X3, X4, X5, Xs > 0

|
! Use variable z to denote objective function
\}’ and omit the nonnegativity constraints.

Sl
E:';.' Ill. Linear Programming Standard and Slack Forms 18

Converting Standard Form into Slack Form (3/3)

maximize 2x; — 3x + 3x3
subject to
X4 = 7 — X1 — Xo + X3
Xs = -7 + X1+ X2 — X3
X6 = 4 — Xy + 2X — 2X3
X1, X2, X3, X4, X5, Xs > 0

|
! Use variable z to denote objective function
\}’ and omit the nonnegativity constraints.

z = 2xy — 33X + 3x3 \
X4 = 7 - Xy — X2 =+ X3
Xs = -7 + X1 + X2 - X3
Xs = 4 — Xy + 2x — 2X3

5
IIl. Linear Programming Standard and Slack Forms 18

Converting Standard Form into Slack Form (3/3)

maximize 2x; — 3x + 3x3
subject to
X4 = 7 — X1 — Xo + X3
Xs = -7 + X1+ X2 — X3
X6 = 4 — Xy + 2X — 2X3
X1, X2, X3, X4, X5, Xs > 0

|
! Use variable z to denote objective function
\}’ and omit the nonnegativity constraints.

z = 2xy — 33X + 3x3 \

X4 = 7 - Xq — X2 + X3

Xxs = -7 + Xy + X2 - X3

X6 = 4 — X1 + 2% — 2x3
/1

[This is called slack form.j

Sl
EEE Ill. Linear Programming Standard and Slack Forms 18

Basic and Non-Basic Variables

V4 =

X4 = 7 —
Xs = -7 +
X6 = 4 —

2x1 — 33X
X1 — X2
X1+ X2
X1 4+ 2x

3X3
X3
X3
2X3

i
Il Linear Programming

Standard and Slack Forms

Basic and Non-Basic Variables

V4 =

X4 = 7 —

Xxs = -7 +

X6 = 4 —
A

[Basic Variables: B = {4,5,6}]

2x1 — 33X
X1 — X2
X1+ X2
X1 4+ 2x

3X3
X3
X3
2X3

i
R IIl. Linear Programming

Standard and Slack Forms

Basic and Non-Basic Variables

z = 2xy — 3x + 3x3

X4 = 7 - X1 — X2 + X3

X5 = —7 4+ X1 + X - X3

X6 = 4 — X1 + 2X - 2X3
/1 N

[Basic Variables: B = {4,5,6}] [Non-Basic Variables: N = {1,2,3}]

SRS IIl. Linear Programming Standard and Slack Forms 19

Basic and Non-Basic Variables

z = 2xy — 3x + 3x3
X4 = 7 - X4 — Xo + X3
Xxs = -7 + X1+ X2 — X3
X6 = 4 — X1 + 2X - 2X3

[Basic Variables: B = {4,5,6}] [Non-Basic Variables: N = {1,2,3}]

Slack Form (Formal Definition)

Slack form is given by a tuple (N, B, A, b, ¢, v) so that
z=v+Y oy
JEN
Xi=b =Y ajx forieB,
jEN

and all variables are non-negative.

i
IIl. Linear Programming Standard and Slack Forms

Basic and Non-Basic Variables

z = 2xy — 3x + 3x3

X4 = 7 - X1 — X2 + X3

X5 = -7 4+ Xy + Xo - X3

X6 = 4 — X1 + 2X - 2X3
i N

[Basic Variables: B = {4,5,6}] [Non-Basic Variables: N = {1,2,3}]

Slack Form (Formal Definition)

Slack form is given by a tuple (N, B, A, b, ¢, v) so that
z=v+Y oy
JEN
Xi=b =Y ajx forieB,
jEN

and all variables are non-negative. \
4[Variables/Coefficients on the right hand side are indexed by B and N.]

S
EEE Ill. Linear Programming Standard and Slack Forms 19

Slack Form (Example)

V4 =

X1 =

Xo =

X4 =

28

X _ X
6 6
X Xs
58 T 6
8 2%
3 3
X Xs
> T2

Sl
< B Ill. Linear Programming

Standard and Slack Forms

20

Slack Form (Example)

x4:18—§+§

Slack Form Notation

i

\-,‘E % IIl. Linear Programming Standard and Slack Forms

20

Slack Form (Example)

x4:18—§+§

Slack Form Notation

= B={1,2,4}, N={3,5,6}

i

‘-,‘E',‘ IIl. Linear Programming Standard and Slack Forms

20

Slack Form (Example)

Z =

X1 =

Xo =

X4 =

Slack Form Notation

28

_ Xk X 2%
6 6 3

ass
A= | axm
aas

ais
ass
aas

= B={1,2,4}, N={3,5,6}

aie
aoe
=213

-1/6 —1/6 1/3
) = (8/3 2/3 —1/3)
12 -1/2 0

Sl

-;.E;- 1ll. Linear Programming

Standard and Slack Forms

20

Slack Form (Example)

x4_18—%+%

Slack Form Notation
= B={1,2,4}, N={3,5,6}

a3 a5 as -1/6 -1/6 1/3
A= |axs as as| = 8/3 2/3 -1/3
as3 Aa45 Qs 1/2 —1 /2 0

00

Ill. Linear Programming Standard and Slack Forms 20

Slack Form (Example)

x4_18—%+%

Slack Form Notation

- B={1,2,4}, N = {3,5,6}

a3 as ae -1/6 —-1/6 1/3
A= dxz dos dop | = 8/3 2/3 —1/3
as3 Aa45 Qs 1/2 —1 /2 0

b1 8 C3 —1/6
NCNORCRE
bs 18 G —2/3

Standard and Slack Forms

Slack Form (Example)

Z =

X1 =

Xo B

X4 =

Slack Form Notation

18 - 2 + 2

v =28

B={1,2,4}, N = {3,5,6}

a5 aie —1/6 —1/6 1/3
dxs dog | = 8/3 2/3 —1/3
ass Aae 1/2 —1/2 0

)-(E) = () ()

IIl. Linear Programming

Standard and Slack Forms

20

The Structure of Optimal Solutions

Definition
A point x is a vertex if it cannot be represented as a strict convex combi-
nation of two other points in the feasible set.

5
IIl. Linear Programming Standard and Slack Forms

21

The Structure of Optimal Solutions

A point x is a vertex if it cannot be represented as a strict convex combi-

Definition
nation of two other points in the feasible set.]

AN

-
LThe set of feasible solutions is a convex set.]

S
EEE Ill. Linear Programming Standard and Slack Forms 21

The Structure of Optimal Solutions

——— Definition

A point x is a vertex if it cannot be represented as a strict convex combi-

nation of two other points in the feasible set.

—— Theorem

-
LThe set of feasible solutions is a convex set

If there exists an optimal solution, one of them occurs at a vertex.

5

Sl
o 5

IIl. Linear Programming Standard and Slack Forms

The Structure of Optimal Solutions

——— Definition

A point x is a vertex if it cannot be represented as a strict convex combi-

nation of two other points in the feasible set.

-
LThe set of feasible solutions is a convex set.

—— Theorem

If there exists an optimal solution, one of them occurs at a vertex.

\.

5

Proof:
= Let x be an optimal solution which is not a vertex

Sl
EEE Ill. Linear Programming Standard and Slack Forms

The Structure of Optimal Solutions

——— Definition

A point x is a vertex if it cannot be represented as a strict convex combi-

nation of two other points in the feasible set.

-
LThe set of feasible solutions is a convex set.

—— Theorem

If there exists an optimal solution, one of them occurs at a vertex.

\.

5

Proof:
= Let x be an optimal solution which is not a vertex

Sl
EEE Ill. Linear Programming Standard and Slack Forms

The Structure of Optimal Solutions

——— Definition

A point x is a vertex if it cannot be represented as a strict convex combi-
nation of two other points in the feasible set.

AN

-
LThe set of feasible solutions is a convex set.]

—— Theorem
If there exists an optimal solution, one of them occurs at a vertex.

5

\.

Proof:

= Let x be an optimal solution which is not a vertex
=- J vector d so that x — d and x + d are feasible

Sl
EEE Ill. Linear Programming Standard and Slack Forms 21

The Structure of Optimal Solutions

——— Definition

A point x is a vertex if it cannot be represented as a strict convex combi-
nation of two other points in the feasible set.

AN

-
LThe set of feasible solutions is a convex set.]

—— Theorem
If there exists an optimal solution, one of them occurs at a vertex.

5

\.

Proof:

= Let x be an optimal solution which is not a vertex
=- J vector d so that x — d and x + d are feasible

sl
EEE Ill. Linear Programming Standard and Slack Forms 21

The Structure of Optimal Solutions

——— Definition

A point x is a vertex if it cannot be represented as a strict convex combi-
nation of two other points in the feasible set.

AN

-
LThe set of feasible solutions is a convex set.]

—— Theorem
If there exists an optimal solution, one of them occurs at a vertex.

5

\.

Proof:

= Let x be an optimal solution which is not a vertex
=- J vector d so that x — d and x + d are feasible

* Since A(x +d)=band Ax=b=Ad =0

sl
EEE Ill. Linear Programming Standard and Slack Forms 21

The Structure of Optimal Solutions

——— Definition

A point x is a vertex if it cannot be represented as a strict convex combi-

nation of two other points in the feasible set.

-
LThe set of feasible solutions is a convex set.

—— Theorem

If there exists an optimal solution, one of them occurs at a vertex.

\.

5

Proof:

= Let x be an optimal solution which is not a vertex
=- J vector d so that x — d and x + d are feasible

* Since A(x +d)=band Ax=b=Ad =0
= W.l.o.g. assume ¢’ d > 0 (otherwise replace d by —d)

sl
EEE Ill. Linear Programming Standard and Slack Forms

The Structure of Optimal Solutions

——— Definition

A point x is a vertex if it cannot be represented as a strict convex combi-

nation of two other points in the feasible set.

-
LThe set of feasible solutions is a convex set.

—— Theorem

If there exists an optimal solution, one of them occurs at a vertex.

\.

5

Proof:

= Let x be an optimal solution which is not a vertex
=- J vector d so that x — d and x + d are feasible

* Since A(x +d)=band Ax=b=Ad =0
= W.l.o.g. assume ¢’ d > 0 (otherwise replace d by —d)
= Consider x + Ad as a functionof A > 0

sl
EEE Ill. Linear Programming Standard and Slack Forms

The Structure of Optimal Solutions

— Definition N\
A point x is a vertex if it cannot be represented as a strict convex combi-

nation of two other points in the feasible set.

-
LThe set of feasible solutions is a convex set.

——— Theorem N
If there exists an optimal solution, one of them occurs at a vertex.
Proof:

= Let x be an optimal solution which is not a vertex
=- J vector d so that x — d and x + d are feasible

* Since A(x +d)=band Ax=b=Ad =0
= W.l.o.g. assume ¢’ d > 0 (otherwise replace d by —d)
= Consider x + Ad as a functionof A > 0

= Case 1: There exists j with d; < 0

i
EEE Ill. Linear Programming Standard and Slack Forms

The Structure of Optimal Solutions

— Definition N\
A point x is a vertex if it cannot be represented as a strict convex combi-

nation of two other points in the feasible set.

-
LThe set of feasible solutions is a convex set.

——— Theorem N
If there exists an optimal solution, one of them occurs at a vertex.
Proof:

= Let x be an optimal solution which is not a vertex
=- J vector d so that x — d and x + d are feasible

* Since A(x +d)=band Ax=b=Ad =0
= W.l.o.g. assume ¢’ d > 0 (otherwise replace d by —d)
= Consider x + Ad as a functionof A > 0

= Case 1: There exists j with d; < 0

= Increase X from 0 to \’ until a2 new entry of x + Ad
becomes zero

S
EEE Ill. Linear Programming Standard and Slack Forms

The Structure of Optimal Solutions

— Definition N\
A point x is a vertex if it cannot be represented as a strict convex combi-

nation of two other points in the feasible set.

-
LThe set of feasible solutions is a convex set.

——— Theorem N
If there exists an optimal solution, one of them occurs at a vertex.
Proof:

= Let x be an optimal solution which is not a vertex
=- J vector d so that x — d and x + d are feasible

* Since A(x +d)=band Ax=b=Ad =0
= W.l.o.g. assume ¢’ d > 0 (otherwise replace d by —d)
= Consider x + Ad as a functionof A > 0

= Case 1: There exists j with d; < 0

= Increase X from 0 to \’ until a2 new entry of x + Ad
becomes zero

= X + \d feasible, since A(x + \'d) = Ax = band
X+MNd>0

Sl
EEE Ill. Linear Programming Standard and Slack Forms

The Structure of Optimal Solutions

— Definition N\
A point x is a vertex if it cannot be represented as a strict convex combi-
nation of two other points in the feasible set.

-
LThe set of feasible solutions is a convex set.

——— Theorem N
If there exists an optimal solution, one of them occurs at a vertex.
Proof:

= Let x be an optimal solution which is not a vertex
=- J vector d so that x — d and x + d are feasible

* Since A(x +d)=band Ax=b=Ad =0
= W.l.o.g. assume ¢’ d > 0 (otherwise replace d by —d)
= Consider x + Ad as a functionof A > 0

= Case 1: There exists j with d; < 0

= Increase X from 0 to \’ until a2 new entry of x + Ad
becomes zero

= X + \d feasible, since A(x + \'d) = Ax = band
X+MNd>0

s cT(x+XNd)=cTx+c"Nd>cTx

S
EE? Ill. Linear Programming Standard and Slack Forms

The Structure of Optimal Solutions

— Definition N\
A point x is a vertex if it cannot be represented as a strict convex combi-

nation of two other points in the feasible set.

-
LThe set of feasible solutions is a convex set.

——— Theorem N
If there exists an optimal solution, one of them occurs at a vertex.
Proof:

= Let x be an optimal solution which is not a vertex
=- J vector d so that x — d and x + d are feasible

* Since A(x +d)=band Ax=b=Ad =0
= W.l.o.g. assume ¢’ d > 0 (otherwise replace d by —d)
= Consider x + Ad as a functionof A > 0

= Case 2: Forallj,d; >0

i
EEE Ill. Linear Programming Standard and Slack Forms

The Structure of Optimal Solutions

— Definition N\
A point x is a vertex if it cannot be represented as a strict convex combi-

nation of two other points in the feasible set.

-
LThe set of feasible solutions is a convex set.

——— Theorem N
If there exists an optimal solution, one of them occurs at a vertex.
Proof:

= Let x be an optimal solution which is not a vertex
=- J vector d so that x — d and x + d are feasible

* Since A(x +d)=band Ax=b=Ad =0
= W.l.o.g. assume ¢’ d > 0 (otherwise replace d by —d)
= Consider x + Ad as a functionof A > 0

= Case 2: Forallj,d; >0

= x + A\d is feasible for all A > 0: A(x + Ad) = b and
X+AXd>x>0

i
EEE Ill. Linear Programming Standard and Slack Forms

The Structure of Optimal Solutions

— Definition N\
A point x is a vertex if it cannot be represented as a strict convex combi-

nation of two other points in the feasible set.

-
LThe set of feasible solutions is a convex set.

——— Theorem N
If there exists an optimal solution, one of them occurs at a vertex.
Proof:

= Let x be an optimal solution which is not a vertex
=- J vector d so that x — d and x + d are feasible

* Since A(x +d)=band Ax=b=Ad =0
= W.l.o.g. assume ¢’ d > 0 (otherwise replace d by —d)
= Consider x + Ad as a functionof A > 0

= Case 2: Forallj,d; >0

= x + A\d is feasible for all A > 0: A(x + Ad) = b and
X+Xd>x>0
= If A — oo, then cT(x + Ad) — oo

i
EEE Ill. Linear Programming Standard and Slack Forms

The Structure of Optimal Solutions

— Definition N\
A point x is a vertex if it cannot be represented as a strict convex combi-

nation of two other points in the feasible set.

-
LThe set of feasible solutions is a convex set.

——— Theorem N
If there exists an optimal solution, one of them occurs at a vertex.
Proof:

= Let x be an optimal solution which is not a vertex
=- J vector d so that x — d and x + d are feasible

* Since A(x +d)=band Ax=b=Ad =0
= W.l.o.g. assume ¢’ d > 0 (otherwise replace d by —d)
= Consider x + Ad as a functionof A > 0

= Case 2: Forallj,d; >0

= x + A\d is feasible for all A > 0: A(x + Ad) = b and
X+AXd>x>0
= If A — oo, then cT(x + Ad) — oo
= This contradicts the assumption that there exists an
optimal solution.

s
IIl. Linear Programming Standard and Slack Forms

The Structure of Optimal Solutions

— Definition N\
A point x is a vertex if it cannot be represented as a strict convex combi-

nation of two other points in the feasible set.

-
LThe set of feasible solutions is a convex set.

——— Theorem N
If there exists an optimal solution, one of them occurs at a vertex.
Proof:

= Let x be an optimal solution which is not a vertex
=- J vector d so that x — d and x + d are feasible

* Since A(x +d)=band Ax=b=Ad =0
= W.l.o.g. assume ¢’ d > 0 (otherwise replace d by —d)
= Consider x + Ad as a functionof A > 0

= Case 2: Forallj,d; >0

= x + A\d is feasible for all A > 0: A(x + Ad) = b and
X+AXd>x>0
= If A — oo, then cT(x + Ad) — oo
= This contradicts the assumption that there exists an
optimal solution. O

s
IIl. Linear Programming Standard and Slack Forms

Outline

Formulating Problems as Linear Programs

Ill. Linear Programming Formulating Problems as Linear Programs

22

Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

Il Linear Programming Formulating Problems as Linear Programs 23

Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight

fromsto tin G

Formulating Problems as Linear Programs 23

Il Linear Programming

Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight

fromstotin G

p=(w=sWw,...,V = t)such that
w(p) = K, w(vk_1, vi) is minimized.

i
g Ill. Linear Programming Formulating Problems as Linear Programs 23

Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight

fromstotin G

p=(w=sWw,...,V = t)such that
w(p) = K, w(vk_1, vi) is minimized.

i
g Ill. Linear Programming Formulating Problems as Linear Programs 23

Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight

fromsto tin G

p=(w=sWw,...,V = t)such that
w(p) = K, w(vk_1, vi) is minimized.

Shortest Paths as LP

subject to

Formulating Problems as Linear Programs 23

Il Linear Programming

Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight

fromsto tin G

p=(w=sWw,...,V = t)such that
w(p) = K, w(vk_1, vi) is minimized.

Shortest Paths as LP

subject to
d, + w(u,v) foreachedge (u,v)e€E,

0.

ady
ds

1IN

Formulating Problems as Linear Programs 23

Il Linear Programming

Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight

fromsto tin G

p=(w=sWw,...,V = t)such that
w(p) = K, w(vk_1, vi) is minimized.

Shortest Paths as LP

maximize d

subject to
d < dv + w(uv) foreachedge (u,v)cecE,
d = 0.

Formulating Problems as Linear Programs 23

Il Linear Programming

Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight

fromsto tin G

[p = (w = S, Vi,...,¥ = t) such that}

w(p) = K, w(vk_1, vi) is minimized.

Shortest Paths as LP

maximize o
subject to
d, + w(u,v) foreachedge (u,v)e€E,

0.

dv

7 d
[this is a maxi- 1 s

A

mization problem!)

Formulating Problems as Linear Programs 23

Il Linear Programming

Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight
fromstotin G

[p = (w = S, Vi,...,¥ = t) such that}

w(p) = K, w(vk_1, vi) is minimized.

maximize a all these inequalities are satisfied.

subject to =
dv d, + w(u,v) foreachedge (u,v)e€E,

% d 0
this is a maxi- 1 s '
mization problem!)

il
Il Linear Programming Formulating Problems as Linear Programs 23

Shortest Paths as LP _‘ Recall: When BELLMAN-FORD terminates,

A

Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight
fromstotin G

[p = (w = S, Vi,...,¥ = t) such that}

w(p) = K, w(vk_1, vi) is minimized.

Shortest Paths as LP Recall: When BELLMAN-FORD terminates,
all these inequalities are satisfied.

[

maximize o:
subject to =
Y d < dv + w(uv) foreachedge (u,v)cecE,
this is a maxi- b = 0 ~
mization problem! Solution d satisfies dy = miny. (u,v)ee {Bu + w(u, v)}J

IIl. Linear Programming Formulating Problems as Linear Programs 23

Maximum Flow

Maximum Flow Problem

= Given: directed graph G = (V, E) with edge capacities ¢ : E — R™,
pair of vertices s,t € V

s
.‘,_n.-,

Il Linear Programming Formulating Problems as Linear Programs

24

Maximum Flow

Maximum Flow Problem

= Given: directed graph G = (V, E) with edge capacities ¢ : E — R™,
pair of vertices s,t € V

0/10

Il Linear Programming Formulating Problems as Linear Programs

24

Maximum Flow

Maximum Flow Problem
= Given: directed graph G = (V, E) with edge capacities ¢ : E — R™,
pair of vertices s,t € V

= Goal: Find a maximum flow f : V x V — R from s to t which
satisfies the capacity constraints and flow conservation

0/10

Il Linear Programming Formulating Problems as Linear Programs

24

Maximum Flow

Maximum Flow Problem
= Given: directed graph G = (V, E) with edge capacities ¢ : E — R™,
pair of vertices s,t € V

= Goal: Find a maximum flow f : V x V — R from s to t which
satisfies the capacity constraints and flow conservation

@ If| =19
O, ® ® ®

Il Linear Programming Formulating Problems as Linear Programs

24

Maximum Flow

Maximum Flow Problem

= Given: directed graph G = (V, E) with edge capacities ¢ : E — R™,
pair of vertices s,t € V

= Goal: Find a maximum flow f: V x V — R from s to t which
satisfies the capacity constraints and flow conservation

@ If| =19
O, ® ® ®

Maximum Flow as LP

maximize Svevfov = Devhs
subject to
for < c(u,v) foreachu,veV,
Dweviw = Y ,cyfw foreachue V\{s,t},
fon > 0 foreachu,veV.

Il Linear Programming Formulating Problems as Linear Programs

24

Minimum-Cost Flow

[Extension of the Maximum Flow Problem]

Minimum-Cost-Flow Problem LA

Ill. Linear Programming

Formulating Problems as Linear Programs

25

Minimum-Cost Flow

[Extension of the Maximum Flow Problem]

Minimum-Cost-Flow Problem LA

= Given: directed graph G = (V, E) with capacities ¢ : E — R, pair of
vertices s, t € V, cost function a: E — R, flow demand of d units

Ill. Linear Programming Formulating Problems as Linear Programs

25

Minimum-Cost Flow

[Extension of the Maximum Flow Problem]
Minimum-Cost-Flow Problem LA

= Given: directed graph G = (V, E) with capacities ¢ : E — R, pair of
vertices s, t € V, cost function a: E — R, flow demand of d units

= Goal: Findaflow f: V x V — R from s to t with |f| = d while

minimising the total cost 3°,)¢ a(u, v)fu incurrred by the flow.

Ill. Linear Programming Formulating Problems as Linear Programs

25

Minimum-Cost Flow

[Extension of the Maximum Flow Problem]
Minimum-Cost-Flow Problem LA

= Given: directed graph G = (V, E) with capacities ¢ : E — R, pair of
vertices s, t € V, cost function a: E — R, flow demand of d units

= Goal: Findaflow f: V x V — R from s to t with |f| = d while
minimising the total cost 3°,)¢ a(u, v)fu incurrred by the flow.

Figure 29.3 (a) An example of a minimum-cost-flow problem. We denote the capacities by ¢ and
the costs by a. Vertex s is the source and vertex ¢ is the sink, and we wish to send 4 units of flow
from s to 7. (b) A solution to the minimum-cost flow problem in which 4 units of flow are sent from s
to t. For each edge, the flow and capacity are written as flow/capacity.

Sl Ill. Linear Programming Formulating Problems as Linear Programs 25

Minimum-Cost Flow

[Extension of the Maximum Flow Problem]
Minimum-Cost-Flow Problem LA

= Given: directed graph G = (V, E) with capacities ¢ : E — R, pair of
vertices s, t € V, cost function a: E — R, flow demand of d units

= Goal: Findaflow f: V x V — R from s to t with |f| = d while
minimising the total cost 3°,)¢ a(u, v)fu incurrred by the flow.

[Optimal Solution with total cost:

2wnee AU V)fuy = (2:2)+(5-2)+(3-1) +(7-1)+(1-3) = 27

Figure 29.3 (a) An example of a minimum-cost-flow problem. We denote the capacities by ¢ and
the costs by a. Vertex s is the source and vertex ¢ is the sink, and we wish to send 4 units of flow
from s to 7. (b) A solution to the minimum-cost flow problem in which 4 units of flow are sent from s
to t. For each edge, the flow and capacity are written as flow/capacity.

SRy Ill. Linear Programming Formulating Problems as Linear Programs 25

Minimum-Cost Flow as a LP

Minimum Cost Flow as LP

minimize D wwyee U, V)fu
subject to
fw < c(u,v) foreachu,veV,
Sveviu =2 eyfw = 0 foreachu e V\ {s,t},
Evevfsv - Evevas = d,
fw > 0 for each u,v € V.

Ill. Linear Programming Formulating Problems as Linear Programs 26

Minimum-Cost Flow as a LP

Minimum Cost Flow as LP

minimize D wwyee U, V)fu
subject to
fw < c(u,v) foreachu,veV,
Sveviu =2 eyfw = 0 foreachu e V\ {s,t},
Zvevfsv - Evevas = d,
fw > 0 foreach u,v € V.

Real power of Linear Programming comes
from the ability to solve new problems!

Ill. Linear Programming Formulating Problems as Linear Programs

26

Outline

Simplex Algorithm

Ill. Linear Programming

Simplex Algorithm

27

Simplex Algorithm: Introduction

Simplex Algorithm

= classical method for solving linear programs (Dantzig, 1947)
= usually fast in practice although worst-case runtime not polynomial
= iterative procedure somewhat similar to Gaussian elimination

i
IIl. Linear Programming Simplex Algorithm

28

Simplex Algorithm: Introduction

Simplex Algorithm

= classical method for solving linear programs (Dantzig, 1947)
= usually fast in practice although worst-case runtime not polynomial
= iterative procedure somewhat similar to Gaussian elimination

Basic Idea:
= Each iteration corresponds to a “basic solution” of the slack form

= All non-basic variables are 0, and the basic variables are
determined from the equality constraints

= Each iteration converts one slack form into an equivalent one while
the objective value will not decrease

= Conversion (“pivoting”) is achieved by switching the roles of one
basic and one non-basic variable

i
EEE IIl. Linear Programming Simplex Algorithm

28

Simplex Algorithm: Introduction

Simplex Algorithm

= classical method for solving linear programs (Dantzig, 1947)
= usually fast in practice although worst-case runtime not polynomial
= iterative procedure somewhat similar to Gaussian elimination

Basic Idea:
= Each iteration corresponds to a “basic solution” of the slack form

= All non-basic variables are 0, and the basic variables are
determined from the equality constraints

= Each iteration converts one slack form into an equivalent one while
the objective value will not decrease < In that sense, itis a greedy algorithm. |

= Conversion (“pivoting”) is achieved by switching the roles of one
basic and one non-basic variable

Sl
o 5

IIl. Linear Programmin Simplex Algorithm 28
g g P 9

Extended Example: Conversion into Slack Form

maximize 3x; + X + 2Xx3

subject to
X4 + x + 3x < 30
2X4 + 2Xx + 5x3 < 24
4x; + X + 2x3 < 36
X1, X2, X3 > 0

i
IIl. Linear Programming Simplex Algorithm

Extended Example: Conversion into Slack Form

maximize 3x
subject to

Sl
o 5

X1
2X1
4x4

+++

X2 +
X2+
2% +
X2+
X17X27X3
|
|
l
v

2X3

3x3 < 30

5x3 < 24

2X3 < 36
> 0

Conversion into slack form

IIl. Linear Programming

Simplex Algorithm

29

Extended Example: Conversion into Slack Form

maximize 3x
subject to

Sl
o 5

X1
2X1
4x4

X4
X5
Xe

30
24
36

2X3

3X3
5X3
2X3

IV IAIAIA

30
24
36

0

Conversion into slack form

3X1

X
2X1
4X1

+

X2
X2
2X2
X2

2X3
3X3
5X3
2X3

IIl. Linear Programming

Simplex Algorithm

29

Extended Example:

lteration 1

X4

X5

X6

3x; +
X1 —
2X: 1 —

4X1 —

X2
X2
2X2

X2

2X3
3X3
5X3

2X3

S
< B Ill. Linear Programming

Simplex Algorithm

30

Extended Example:

lteration 1

z = 3x; + Xo

Xxs = 30 -— Xy = X2

Xxs = 24 — 2x9 — 2X

X6 = 36 — 4x4 - Xo
7

[Basic solution: (x1,X2,...,Xs) = (0,0,0, 30,24, 36) J

o 5

2X3
3X3
5X3

2X3

IIl. Linear Programming

Simplex Algorithm

30

Extended Example: Iteration

1

z =
xs = 30
xXs = 24
Xs = 36

3x; +
X1 —
2X1 —

4X1 —

X2
X2
2X2

X2

[Basic solution: (x1,X2,...,Xs) = (0,0,0, 30,24, 36) J

/1
7|
[This basic solution is feasible]

2X3
3X3
5X3

2X3

o 5, IIl. Linear Programming

Simplex Algorithm

30

Extended Example: Iteration 1
z = 3 4+ X 2X3
X2 = 30 -— X1 - Xo 3x3
Xxs = 24 — 2x1 — 2X 5x3
X6 = 36 — 4x4 - Xo 2X3
7

[Basic solution: (x1,X2,...,Xs) = (0,0,0, 30,24, 36)]
N

N
/1

[This basic solution is feasible] [Objective value is O.]

o 5, IIl. Linear Programming

Simplex Algorithm

30

Extended Example: Iteration 1

[Increasing the value of x; would increase the objective value.]

v
z = 3x; + X2 + 2X3
X4 = 30 — X1 — X2 — 3X3
Xs = 24 — 2x1 — 2Xx2 — 5x3
X6 = 36 — 4x4 — X2 — 2X3

A
[Basic solution: (x1,X2,...,Xs) = (0,0,0, 30,24, 36)]
N

/1
vd)
[This basic solution is feasible] [Objective value is O.]

o 5, IIl. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 1

[Increasing the value of x; would increase the objective value.]

v
z = 3x; + X2 + 2X3
X2 = 30 -— Xy - X2 — 3X3
Xs = 24 — 2x1 — 2Xx2 — 5x3
X6 = 36 — 4x4 - Xo — 2X3

N
[The third constraint is the tightest and limits how much we can increase x;]

o 5, IIl. Linear Programming Simplex Algorithm

Extended Example: Iteration 1

[Increasing the value of x; would increase the objective value.]

v
z = 3x; + X2 + 2X3
X4 = 30 — X1 — X2 — 3X3
Xs = 24 — 2x1 — 2Xx2 — 5x3
X6 = 36 — 4x4 — X2 — 2X3
N
[The third constraint is the tightest and limits how much we can increase x;]
A\
(A
Switch roles of x; and xs:
(& J

o 5, IIl. Linear Programming Simplex Algorithm

30

Extended Example: Iteration 1

[Increasing the value of x; would increase the objective value.]

v
z = 3x; + X2 + 2X3
X4 = 30 — X1 — X2 — 3X3
Xs = 24 — 2x1 — 2Xx2 — 5x3
X6 = 36 — 4x4 — X2 — 2X3
N
[The third constraint is the tightest and limits how much we can increase x;]
A\
(A
Switch roles of x; and xs:
= Solving for x; yields:
o9 X X X
4 2 4
(& J

o 5, IIl. Linear Programming Simplex Algorithm

Extended Example: Iteration 1

[Increasing the value of x; would increase the objective value.]

v
z = 3x; + X2 + 2X3
X4 = 30 — X1 — X2 — 3X3
Xs = 24 — 2x1 — 2Xx2 — 5x3
X6 = 36 — 4x4 — X2 — 2X3
N
[The third constraint is the tightest and limits how much we can increase x;]
A\
(A
Switch roles of x; and xs:
= Solving for x; yields:
o9t X%
4 2 4
= Substitute this into x; in the other three equations
(& J

o 5, IIl. Linear Programming Simplex Algorithm

30

Extended Example: Iteration 2

z 27+%+%7%
xS—G—%—4xS+%

Ill. Linear Programming Simplex Algorithm

Extended Example: Iteration 2

_ X X _ 3%
z = 27 + 2 + > Z
= _ X2 _ X3 _ Xs
o= 9 2 2)
_ _ 3 _ 5 Xo
X = 2) > T3
X5 = 6 - % - 4x3 + %
N

[Basic solution: (X1, X2,...,X) = (9,0,0,21,6,0) with objective value 27}

o 5, IIl. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 2

[Increasing the value of x3 would increase the objective value.]

N
z = 271 + 2 + %,%
XSZG—%_4XS+%

N
[Basic solution: (X1, X2,...,Xs) = (9,0, 0, 21,6, 0) with objective value 27]

o 5, IIl. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 2

[Increasing the value of x3 would increase the objective value.]

N
z = 271 + 2 + %,%
XSZG—%_4XS+%
N

[The third constraint is the tightest and limits how much we can increase X3‘]

o 5, IIl. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 2

[Increasing the value of x3 would increase the objective value.]

S 3
_ X2 X3 _ SXs
z = 27 + 2 + > Z
_ _ X _ X3 _ Xe
o= 9 4 2 4
_ _ 3 _ 5 Xe
X = 21 4 2 T 7
X5 = 6 - % - 4x3 + %
N
[The third constraint is the tightest and limits how much we can increase x3.]
A\
(N\
Switch roles of x; and xs:
(. J

o 5, IIl. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 2

[Increasing the value of x3 would increase the objective value.]

S 3
— X2 X3 _ SXs
z = 27 + 2 + > Z
_ _ X _ X3 _ Xe
o= 9 2 2)
_ _ 3 _ 5 Xe
X = 2 4 2 T 7
X5 = 6 - % - 4x3 + %
N
[The third constraint is the tightest and limits how much we can increase x3.]
A\
(N\
Switch roles of x; and xs:
= Solving for x3 yields:
3 3X2 X5 X6
3=—m — — — — — —
2 8 4 8
(. J

o 5, IIl. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 2

[Increasing the value of x3 would increase the objective value.]

S 3
— X2 X3 _ SXs
z = 27 + 2 + > Z
_ _ X _ X3 _ Xe
o= 9 2 2)
_ _ 3 _ 5 Xe
X = 2 4 2 T 7
X5 = 6 - % - 4x3 + %
N
[The third constraint is the tightest and limits how much we can increase x3.]
A\
(N\
Switch roles of x; and xs:
= Solving for x3 yields:
3 3X2 X5 X6
X3=—— — — — —
2 8 4 8
= Substitute this into x3 in the other three equations
(. J

o 5, IIl. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 3

X4

X3

Xa

—_
—_
—_

B o RS L|

o
i HNE

IIl. Linear Programming

Simplex Algorithm

30

Extended Example: Iteration 3

N

[Basic solution: (X1, Xz, ..., %) = (£,0,%,%,0,0) with objective value ! = 27.75]

o 5, IIl. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 3

[Increasing the value of x» would increase the objective value.]

N
z %4»;(_%7)%571:]1_6)(6
X1 %ff—é+’é5751_)€(56
N

[Basic solution: (X1, Xz, ..., %) = (£,0,%,%,0,0) with objective value ! = 27.75]

o 5, IIl. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 3

[Increasing the value of x» would increase the objective value.]

N

[The second constraint is the tightest and limits how much we can increase Xg.]

Y

IIl. Linear Programming

Simplex Algorithm

30

Extended Example: Iteration 3

[Increasing the value of x» would increase the objective value.]

3 11
111 X X5 Xe
zZ = x * 718 8 16
_ 38 _ x X5 5Xs
o=y 6 ' 8 16
Xa = 3 _ 3 X5 X6
3 2 8 4 8
_ 89 3x2 5x5 X
X = T T 35 T 3 16

[

The second constraint is the tightest and limits how much we can increase xo.

N

)

Y

\

-

P
Switch roles of x> and x3:

~

IIl. Linear Programming

Simplex Algorithm

30

Extended Example: Iteration 3

[Increasing the value of x» would increase the objective value.]

N

[The second constraint is the tightest and limits how much we can increase Xg.j

\
P
Switch roles of x> and x3:

~

= Solving for x; yields:

- J

o 5, IIl. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 3

[Increasing the value of x» would increase the objective value.]

N

[

N

The second constraint is the tightest and limits how much we can increase xo.

)

\

P
Switch roles of x> and x3:
= Solving for x; yields:

= Substitute this into xz in the other three equations

-

~

J

IIl. Linear Programming Simplex Algorithm

30

Extended Example: Iteration 4

X1

X2

X4

28 %
8 + T +
18 — %jt

IIl. Linear Programming

Simplex Algorithm

30

Extended Example: Iteration 4

2:287%7%72:);6
x1:8+%+%—%
w = 18 - 2 4+ X

N

[Basic solution: (X1, Xz, ...,Xs) = (8,4,0,18,0,0) with objective value 28]

o 5, IIl. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 4

[AII coefficients are negative, and hence this basic solution is optimal!]

N
2:287%7%7%
x4:18—%+%

N

[Basic solution: (X1, Xz, ...,Xs) = (8,4,0,18,0,0) with objective value 28]

o 5, IIl. Linear Programming Simplex Algorithm

Extended Example: Visualization of SIMPLEX

X3
X2

(0,12,0)

(0,0,4.8) @
(0,0; ® (8,4,0)
(8.25,0,1.5) @
Xi
(9,0,0)

Ill. Linear Programming Simplex Algorithm

el
|

Extended Example: Visualization of SIMPLEX

X3
X2
(0,12,0)
12
(0,0,4.8) @
9.6
e (8,4,0)
(8.25,0,1.5) @ 28
27.75
X1
(9,0,0)
27

Exercise: How many basic solutions (including non-feasible ones) are there?]

£

5 IIl. Linear Programming Simplex Algorithm 31

Extended Example: Visualization of SIMPLEX

X3
X2
(0,12,0)
12
(0,0,4.8) @
9.6
e (8,4,0)
(8.25,0,1.5) @ 28
27.75
X1
(9,0,0)
27

Exercise: How many basic solutions (including non-feasible ones) are there?]

S

S IIl. Linear Programming Simplex Algorithm 31

Extended Example: Visualization of SIMPLEX

X3
X2
(0,12,0)
12
(0,0,4.8) @
9.6
(0,0; ‘ e (8,4,0)
0 (8.25,0,1.5) @ 28
27.75
Xi
(0.0.0)
27

Exercise: How many basic solutions (including non-feasible ones) are there?]

S

o 5, IIl. Linear Programming Simplex Algorithm 31

Extended Example:

Alternative Runs (1/2)

Sl
SR

X4
X5

Xe

= 30
= 24
= 36

3+ X2

Xq — Xo
2Xq — 2Xo
4X1 — X2

2X3
3x3
5x3

2X3

IIl. Linear Programming

Simplex Algorithm

32

Extended Example: Alternative Runs (1/2)

z = 3x + X2 + 2x3
X4 = 30 — X4 — Xo — 3x3
X5 = 24 — 2Xq — 2Xo — 5x3
X = 36 — 4x — Xo — 2X3

|
} Switch roles of x> and xs
\4

i
IIl. Linear Programming Simplex Algorithm 32

Extended Example:

Alternative Runs (1/2)

X4
X5

Xe

X2

X4

X

= 30
= 24
= 36

3x

X1
2Xq
4x4

|
} Switch roles of

A\

2X1
X1
X2

3x1

+

X2
X2
2Xo

X2

+ 2x3
— 3x3
— 5x3

— 2X3

Xo and X5

S5
5 B Ill. Linear Programming

Simplex Algorithm

32

Extended Example: Alternative Runs (1/2)

z = 3x + X2 + 2x3
X4 = 30 — X4 — Xo — 3x3
X5 = 24 — 2Xq — 2Xo — 5x3
X = 36 — 4x — Xo — 2X3

|
} Switch roles of x> and xs

z = 12 + :x1 — % — %
X = 12 - Xq — 5—;3 — %
Xy = 18 - X2 = % + %
X = 24 - % + 2 + 2
i Switch roles of x; and xg
A\

i
IIl. Linear Programming Simplex Algorithm

Extended Example: Alternative Runs (1/2)

Sl
o 5

Xa
X5

Xe

X2

X4

X

X1

X2

X4

30
24
36

18

3x

X1
2Xq
4x4

+

X2
X2
2Xo

X2

2X3
3x3
5x3

2X3

|
} Switch roles of x> and xs

A\

2X1
X1
X2

3x1

+

X3
2
5x3
2
X3
2
X3
2

+

+

|
| Switch roles of x; and xg

IIl. Linear Programming

Simplex Algorithm

32

Extended Example:

Alternative Runs (2/2)

Sl
SR

X4
X5

X

= 30
= 24
= 36

3X4 + X2

X1 — X2
2X1 — 2Xo
4x4 — X2

2X3
3x3
5x3
2X3

IIl. Linear Programming

Simplex Algorithm

33

Extended Example: Alternative Runs (2/2)

z = 3xq + Xo + 2X3
X4 = 30 - X1 - X2 — 3x3
X5 = 24 — 2xq — 2Xo — 5x3
X = 36 — 4x4 — Xo — 2X3

|
1 Switch roles of x3 and x5
\4

i
E:';.! IIl. Linear Programming Simplex Algorithm 33

Extended Example:

Alternative Runs (2/2)

X4
X5

X

Xa

X3

Xe

= 3x1 + X2
= 30 - Xy - X2
= 24 — 2xq — 2Xo
= 36 — 4x — X2
l
|
\4
_ 48 11x4
= 3 + 5
- I8 X
= 5 + 5 +
- 24 _ 2a
5 5
- 132 16x
5 5

+ 2X3
- 3x3
— 5x3
— 2X3

Switch roles of x3 and xs

X 2
5 5
Xo 3X5
5 T 5
2 X%
5 5
X 2x3
5 T 5

IIl. Linear Programming

Simplex Algorithm

33

Extended Example: Alternative Runs (2/2)

z = 3xq + Xo
X4 = 30 - X1 — X2
X5 = 24 — 2X1 — 2Xo
X5 = 36 — 4x — Xo

!
v

+ 2X3
- 3x3
— 5x3
— 2X3

Switch roles of x3 and xs

_ 48 11x4 Xo _ 2Xs
Z = % t 5 *t 75 5
X3 = 24 _ 24 2 _ X5
s 5 5 5 5
T S [A 2
¥ = 5 5 5 T 5
Switch roles of x; and x5 _ -~~~
P
Ill. Linear Programming Simplex Algorithm 33

Extended Example:

Alternative Runs (2/2)

Xy =
X5 =

X6 =

Xy =

X3 =

X6 =

Switch roles of x; and xg

-
11 X %
T v 76 3
8 . X X
4 T B
3 x
2 8 2
s T T8 T

30
24

11xs

fe2]

5xg
16
X

|

Xe
16

3X4 + X2

X1 — X2
2X1 — 2Xo
4x4 — X2

!
v

11x4
T +
X1
5 +
2X4
I
16X1
=t _

+ 2X3
- 3x3
— 5x3
— 2X3

Switch roles of x3 and xs

X 2
5 5
Xo 3X5
5 T 5
2 X%
5 5
X 2x3
5 T 5

. Linear Programming

Simplex Algorithm

33

Extended Example:

Alternative Runs (2/2)

X4 =
X5 =

Xe =

X4 =

X3 =

X6 =

Switch roles of x; and xg

-
11 X2 X
T v 76 3
3 _ Xo X5
4 T B
3 _ 3x2 _ X5
2 8 2
69 3 5x5
s T T8 T

30
24

11xs

fe2]

5xg
16
Xe

o)

X
16

3X4 + X+

X1 — X2 —
2X1 — 2Xo —
4x4 — X2 —

!
v

1 1X1
= +
X1
5 +
2X4
5
16X1
5 —

"~~~ _ Switch roles of x; and x

X2
5
X2
5
2Xo
5
X2

5

N

2X3
3x3
5x3
2X3

Switch roles of x3 and xs

+

. Linear Programming

Simplex Algorithm

Extended Example:

Alternative Runs (2/2)

z = 3xq + Xo + 2X3
X4 = 30 — X1 X2 — 3x3
X5 = 24 — 2xq — 2Xo — 5x3
X = 36 — 4x X2 = 2x3
|
1 Switch roles of x3 and x5
\4
= 48 X X _ 2%
z = % * 3 5 5
78 X1 X2 3x5
X, = jra=) - =y e}
4 5 " 5 5 T3
A 24 _ 2x 2 _ X5
= 5 5 5 5
132 164 Xo 2X3
Xe = —_== - _— = =
s 5 5 5 T 5
Switch roles of x4 and Xo_ _--~ - T~ Switch roles of x, and x3
47 T
11 X2 X _ 11X _ X3 X5 2xp
T T 76 3 76 z = 28 - 2 - 2 =
3 _ X2 X Sxg - X3 X5 X6
4 T B 16 . o= 8 + F + 3 3
3 3% X5 X _ 83 2% Xe
2 -~ @8 ~ 7 *) e = 4 - 3 3 3
69 3 S _ X = 18 - 2)
S T6 x 2z T2
Ill. Linear Programming Simplex Algorithm 33

The Pivot Step Formally

PIvOT(N, B, A,b,c,v,l,e)
1 // Compute the coefficients of the equation for new basic variable x,.
2 let A be anew m x n matrix
3 be = bl/ale
4 foreach j € N — {e}
5 Zie/’ = ajj / Ale
6 do =1/

7 // Compute the coefficients of the remaining constraints.

8 foreachi € B—{l}

9 by = b; —aicb.

10 for each j € N —{e}
11 Zi,-j = a,-,- —a,-e('iej
12 Aj1 = —0jelel

13 // Compute the objective function.

14 vV=v+ CEZ;E

15 foreach j € N — {e}

16 Cj = ¢j — Cellej

17 61 = —Ceael

18 // Compute new sets of basic and nonbasic variables.
19 N=N-{e}u{l}

20 B=B—{l}U{e}

21 return (IVE/TZ;Zﬁ)

Ill. Linear Programming Simplex Algorithm

The Pivot Step Formally

PIvOT(N, B, A,b,c,v,l,e)
1 // Compute the coefficients of the equation for new basic variable x,.
let A be a new m x n matrix

be = bijaye o .
for each j € N — {e} Rewrite “tight” equation

Ao = 1/ay,

// Compute the coefficients of the remaining constraints.
for eachi € B —{/}
9 b,’ = b,‘ - aiebe

2
3
4
5 dej = aij/ase for enterring variable Xe.
6
7
8

10 for each j € N — {e}
11 Zi,-/- = a,-/- —a,-eiiej
12 Aj1 = —0jelel

13 // Compute the objective function.

14 vV=v+ CEZ;E

15 foreach j € N — {e}

16 Cj = ¢j — Cellej

17 El = —Ceael

18 // Compute new sets of basic and nonbasic variables.
19 N=N-{e}u{l}

20 B=B—{l}U{e}

21 return (/\AIE/TI;Zﬁ)

i
IIl. Linear Programming Simplex Algorithm

The Pivot Step Formally

PIvOT(N, B, A,b,c,v,l,e)

Sl
Sl

// Compute the coefficients of the equation for new basic variable x,.
let A be a new m X n matrix

be = bi/a. o .
for each j € N — {e} Rewrite “tight” equation

dej = aij/are for enterring variable Xe.
ael = l/ale

// Compute the coefficients of the remaining constraints.
for eachi € B —{/}
bi = b —aiebe Substituting xe into

for cach j € N — e} other equations.
atj - alj aieaej

ll = _azeael

// Compute the objective function.
v =v+ CEZ;E
fOI‘edChj eN —{e,

Lj = c, —c ue,
6'\l = _Ceael
// Compute new sets of basic and nonbasic variables.
N =N—{e}u{l}
B=B—{l}U{e}
return (/\7, B, A, }?, c,7)

Ill. Linear Programming Simplex Algorithm

34

The Pivot Step Formally

PIvOT(N, B, A,b,c,v,l,e)

1 // Compute the coefficients of the equation for new basic variable x,.

2 let A be anew m x n matrix

3 be = bl/ale . . .

4 foreach j € N — {e} Rewrite “tight” equation
5 dej = aij/ase for enterring variable Xe.
6 do =1/

7 // Compute the coefficients of the remaining constraints.

8 foreachi € B—{l} ~N

9 bi = bi —ajcbe Substituting xe into

10 for cach j € N — e} other equations.

11 Ll,/ = Ll,/ Ajelej J
12 ll = _azeael

13 // Compute the objective function.

14 YV =v+che . .)
15 for each j € N — {e} Substituting xe into

16 & = ¢ — Celley objective function.

17 El = —ceael J

18 // Compute new sets of basic and nonbasic variables.
19 N=N-{e}u{l}

20 B=B—{l}U{e}

21 return (/\7, B, A, E c,7)

i
IIl. Linear Programming Simplex Algorithm

The Pivot Step Formally

PIvOT(N, B, A,b,c,v,l,e)

1 // Compute the coefficients of the equation for new basic variable x,.

2 let A be anew m x n matrix

3 b, = bl/ale . . .

4 foreach j € N — {e} Rewrite “tight” equation
5 Aoy = aij/as. for enterring variable Xe.
6 do =1/

7 // Compute the coefficients of the remaining constraints.

8 foreachi € B—{l} N

9 bi = bi —ajcbe Substituting xe into

10 for cach j € N — {e} other equations.

11 Ll,/ = Ll,/ Ajelej J
12 ll = _azeael

13 // Compute the objective function.

14 YV =v+che . . h
15 foreach j € N — {e} Substituting xe into

16 & = ¢ — Celley objective function.

17 E] = —Cellel J
18 // Compute new sets of basic and nonbasic variables. ~N

19 N=N-{guil} Update non-basic
20 B=B-{ljUle} and basic variables
21 return (N,B,A,b,C,7) J/

i
EEE IIl. Linear Programming Simplex Algorithm

The Pivot Step Formally

PIvOT(N, B, A,b,c,v,l,e)

1 // Compute the coefficients of the equation for new basic variable x,.
let A be a new m X n matrix

ge = bl/ale

aej = arj/ae for enterring variable xe.
ae = 1/as,

// Compute the coefficients of the remaining constraints.
for eachi € B —{/}

2

3

4 forcach j € N — { Rewrite “tight” equation
M " . , .

6

7

8

PN A
9 bi = bi —ajcbe Substituting xe into
10 for each j € N —{e} other equations.
11 a; = aij — Ajellej y,
12 Il = _azeael
13 // Compute the objective function.
14 YV =v+che . . h
15 foreach j € N — {e} Substituting xe into
16 & = ¢ — Celley objective function.
17 E] = —Cellel J
18 // Compute new sets of basic and nonbasic variables. ~N
19 N=N-{guil} Update non-basic
20 B=B-{ljUle} and basic variables
21 return (N,B,A,b,C,7) J/

i
EEE IIl. Linear Programming Simplex Algorithm

Effect of the Pivot Step

Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, I, e) in which ae # 0. Let the
values returned from the call be (N, B, A, b, ¢, V), and let X denote the
basic solution after the call. Then

s

.-,.E;, Ill. Linear Programming Simplex Algorithm

35

Effect of the Pivot Step

Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, I, e) in which ae # 0. Let the
values returned from the call be (N, B, A, b, ¢, V), and let X denote the
basic solution after the call. Then

1. X, =0foreachj € N.
2. Xe = b//a/e.
3. X; = by — ajeb, for each i € B\ {e}.

Ill. Linear Programming Simplex Algorithm

35

Effect of the Pivot Step

Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, I, e) in which ae # 0. Let the
values returned from the call be (N, B, A, b, ¢, V), and let X denote the
basic solution after the call. Then

1. X, =0foreachj € N.
2. Xe = b//a/e.
3. X; = by — ajeb, for each i € B\ {e}.

Proof:

Ill. Linear Programming Simplex Algorithm

35

Effect of the Pivot Step

Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, I, e) in which ae # 0. Let the
values returned from the call be (N, B, A, b, ¢, V), and let X denote the
basic solution after the call. Then

1. X, =0foreachj € N.
2. Xe = b//a/e.
3. X; = by — ajeb, for each i € B\ {e}.

Proof:
1. holds since the basic solution always sets all non-basic variables to zero.

i
IIl. Linear Programming Simplex Algorithm

35

Effect of the Pivot Step

Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, I, e) in which ae # 0. Let the
values returned from the call be (N, B, A, b, ¢, V), and let X denote the
basic solution after the call. Then

1. X, =0foreachj € N.
2. Xe = b//a/e.
3. X; = by — ajeb, for each i € B\ {e}.

Proof:
1. holds since the basic solution always sets all non-basic variables to zero.
2. When we set each non-basic variable to 0 in a constraint

X =bi—> ax,

jeN

i
IIl. Linear Programming Simplex Algorithm 35

Effect of the Pivot Step

Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, I, e) in which ae # 0. Let the

values returned from the call be (N, B,A b,¢, V), and let X denote the
basic solution after the call. Then

1. X, =0foreachj € N.
2. Xe = b//a/e.

3. X; = by — ajeb, for each i € B\ {e}.

Proof:

1. holds since the basic solution always sets all non-basic variables to zero.
2. When we set each non-basic variable to 0 in a constraint

Xi = bi — Zé,,x,,
jeN
we have x; = b; foreach i € B.

i
IIl. Linear Programming Simplex Algorithm

35

Effect of the Pivot Step

Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, I, e) in which ae # 0. Let the

values returned from the call be (N, B,A b,¢, V), and let X denote the
basic solution after the call. Then

1. X, =0foreachj € N.
2. Xe = b//a/e.

3. X; = by — ajeb, for each i € B\ {e}.

Proof:

1. holds since the basic solution always sets all non-basic variables to zero.
2. When we set each non-basic variable to 0 in a constraint

Xi = bi — E ajjX;,
jeN

we have x; = b; for each i € B. Hence Xe = bs = b/ aje.

i
IIl. Linear Programming Simplex Algorithm

35

Effect of the Pivot Step

Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, I, e) in which ae # 0. Let the

values returned from the call be (N, B,A b,¢, V), and let X denote the
basic solution after the call. Then

1. X; = O for eachj € N.
2. Xe = b//a/e.

3. X; = by — ajeb, for each i € B\ {e}.

Proof:

1. holds since the basic solution always sets all non-basic variables to zero.
2. When we set each non-basic variable to 0 in a constraint
Xi = bi — Zé,,x,,
jeN
we have X, = b; for each i € B. Hence Xe = b, = b/ ase.

3. After the substituting in the other constraints, we have

i
IIl. Linear Programming Simplex Algorithm

35

Effect of the Pivot Step

Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, I, e) in which ae # 0. Let the

values returned from the call be (N, B,A b,¢, V), and let X denote the
basic solution after the call. Then

1. X;=0foreachj e N.
2. Xe = b//a/e.

3. X; = by — ajeb, for each i € B\ {e}.

Proof:

1. holds since the basic solution always sets all non-basic variables to zero.
2. When we set each non-basic variable to 0 in a constraint

Xi = bi — E ajjX;,
jeN

we have x; = b; for each i € B. Hence Xe = bs = b/ aje.

3. After the substituting in the other constraints, we have

Xi = B,' = b,‘ — a,—eBe.

i
IIl. Linear Programming Simplex Algorithm

35

Effect of the Pivot Step

Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, I, e) in which ae # 0. Let the

values returned from the call be (N, B,A b,¢, V), and let X denote the
basic solution after the call. Then

1. X;=0foreachj e N.
2. Xe = b//a/e.

3. X; = by — ajeb, for each i € B\ {e}.

Proof:

1. holds since the basic solution always sets all non-basic variables to zero.
2. When we set each non-basic variable to 0 in a constraint

Xi = bi — E ajjX;,
jeN

we have x; = b; for each i € B. Hence Xe = bs = b/ aje.

3. After the substituting in the other constraints, we have

Xi = B,' = b,‘ — a,—eBe. O

i
IIl. Linear Programming Simplex Algorithm

35

Formalizing the Simplex Algorithm: Questions

Questions:
= How do we determine whether a linear program is feasible?

= What do we do if the linear program is feasible, but the initial basic
solution is not feasible?

= How do we determine whether a linear program is unbounded?
= How do we choose the entering and leaving variables?

i
IIl. Linear Programming Simplex Algorithm

36

Formalizing the Simplex Algorithm: Questions

Questions:
= How do we determine whether a linear program is feasible?

= What do we do if the linear program is feasible, but the initial basic
solution is not feasible?

= How do we determine whether a linear program is unbounded?

= How do we choose the entering and leaving variables?
N\

[Example before was a particularly nice one!]

S IIl. Linear Programming Simplex Algorithm

36

The formal procedure SIMPLEX

SIMPLEX (A, b, ¢)

(N,B,A,b,c,v) = INITIALIZE-SIMPLEX (4, b, ¢)
let A be a new vector of length n
while some index j € N hasc; >0
choose an index e € N for which ¢, > 0
for each index i € B
ifa;, >0
A; = bi/ai.
else A; = o0
choose an index / € B that minimizes A;
if A; ==o00
return “unbounded”
else (N, B, A,b,c,v) = PIVOT(N, B, A,b,c,v,l,e)
fori = 1ton

ifi € B
X,‘ = b,‘
else x;, =0
return (X, X5,...,X,)

Ill. Linear Programming Simplex Algorithm

37

The formal procedure SIMPLEX

SIMPLEX (A, b, ¢)

(N, B, A,b,c,v) = INITIALIZE-SIMPLEX (4, b, ¢) {feasible basic solution (if it exists)

let A be a new vector of length n

Returns a slack form with a

]

while some index j € N hasc; >0
choose an index e € N for which ¢, > 0
for each index i € B
ifa;, >0
A; = bi/ai.
else A; = o0
choose an index / € B that minimizes A;
if A; ==o00
return “unbounded”
else (N, B, A,b,c,v) = PIVOT(N, B, A,b,c,v,l,e)
fori = 1ton
ifi € B
X,‘ = b,‘
else x;, =0
return (X, X5,...,X,)

Ill. Linear Programming Simplex Algorithm

37

The formal procedure SIMPLEX

SIMPLEX (A, b, ¢)

(N, B, A,b,c,v) = INITIALIZE-SIMPLEX (4, b, ¢) {feasible basic solution (if it exists)

, while some index j € N has ;>0

Returns a slack form with a

choose an index e € N for which ¢, > 0

for each index i € B

ifa;, >0

A; = bi/ai.

else A; = o0
choose an index / € B that minimizes A;

if A;==00

return “unbounded”
else (N, B, A,b,c,v) = PIVOT(N, B, A,b,c,v,l,e)

ifi e B
X,':b,‘
else x;, =0

return (X, X5, ...

+Xn)

]

IIl. Linear Programming

Simplex Algorithm

37

The formal procedure SIMPLEX

SIMPLEX (A, b, ¢)

i
Sl

(N, B, A,b,c,v) = INITIALIZE-SIMPLEX (4, b, ¢) {feasible basic solution (if it exists)

, while some index j € N has ;>0

Returns a slack form with a

]

choose an index e € N for which ¢, > 0
for each index i € B

ifa;, >0

A; = bi/ai.
else A; = c©
choose an index / € B that minimizes A;

if A;==00

return “unbounded”
else (N, B, A,b,c,v) = PIVOT(N, B, A,b,c,v,l,e)

ifi e B
X,‘ = b,‘
else x;, =0

return (X, X5, ...

+Xn)

(Main Loop:

IIl. Linear Programming

Simplex Algorithm

37

The formal procedure SIMPLEX

SIMPLEX (A, b, ¢)
(N.B.,A.b,c,v) = INITIALIZE-SIMPLEX (4, b, ¢) feasible basic solution (if it exists)

Sl
o 5

, while some index j € N has ;>0

Returns a slack form with a]

choose an index e € N for which ¢, > 0
for each index i € B

ifa;, >0

A; = bi/ai.
else A; = c©
choose an index / € B that minimizes A;

if A;==00

return “unbounded”
else (N, B, A,b,c,v) = PIVOT(N, B, A,b,c,v,l,e)

ifi e B
X,‘ = b,‘
else x;, =0

return (X, X,, ...

+Xn)

/N

(I\/Iain Loop:

= terminates if all coefficients in
objective function are negative

Line 4 picks enterring variable
Xe With negative coefficient

= Lines 6 — 9 pick the tightest
constraint, associated with x;

Line 11 returns “unbounded” if
there are no constraints

Line 12 calls PIvoT, switching
roles of x; and xe

J

IIl. Linear Programming

Simplex Algorithm

37

The formal procedure SIMPLEX

SIMPLEX (A, b, ¢)

Sl
o 5

, while some index j € N has ;>0

Returns a slack form with a
(N, B, A,b,c,v) = INITIALIZE-SIMPLEX (A4, b, ¢) feasible basic solution (if it exists)

choose an index e € N for which ¢, > 0

for each index i € B
ifa;, >0
A; = bi/ai.
else A; = o0

choose an index / € B that minimizes A;

if A; ==o00
return “unbounded”

else (N, B, A,b,c,v) = PIVOT(N, B, A,b,c,v,l,e)

ifi e B
X,‘ = b,‘
else x;, =0

.

(I\/Iain Loop:

= terminates if all coefficients in
objective function are negative

Line 4 picks enterring variable
Xe With negative coefficient

= Lines 6 — 9 pick the tightest
constraint, associated with x;

Line 11 returns “unbounded” if
there are no constraints

Line 12 calls PIvoT, switching
roles of x; and xe

J

return (¥, %o, ..., %) ﬁ Return corresponding solution.]

IIl. Linear Programming

Simplex Algorithm

37

The formal procedure SIMPLEX

SIMPLEX (4, b, ¢) Returns a slack form with a
1 (N.B,A.b,c,v) = INITIALIZE-SIMPLEX (4. b.¢) & feasible basic solution (if it exists)

3, while some index j € N has ¢; > 0

1

41 choose an index e € N for which ¢, > 0 :
5 : for each index i € B :
6 : ifa;, >0 1
7 A; = bi/ai. :
8 : else A; = o0 1
9, choose an index / € B that minimizes A; :
10 : if A; ==o00 1
11, return “unbounded” X
12! else (N, B, A,b,c,v) = PIVOT(N, B, A,b,c,v,l,e) 1
13 fori =1ton ~~~~ "~~~ """ """ TTTTT
14 ifi € B
15 X,‘ = b,‘
16 else x;, =0
17 return (X, X5, ...,X,)

Lemma 29.2

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.

]

i
IIl. Linear Programming Simplex Algorithm

37

The formal procedure SIMPLEX

1 (N.B,A.b,c.v) = INITIALIZE-SIMPLEX (4. b,) feasible basic solution (if it exists)

SIMPLEX(A. b, ¢) { Returns a slack form with a]

2

3 while some index j € N has c; >0 '
41 choose an index e € N for which ¢, > 0 |
5 : for each index i € B :
6 : ifa;, >0 1
7 A; = bi/ai. :
8 : else A; = o0 1
' I
! 1
! 1

=]

choose an index / € B that minimizes A;
if Aj ==oc0
retnrn “nnbonnded”

Proof is based on the following three-part loop invariant:

Lemma 29.2 (’//

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.

S
Ill. Linear Programming Simplex Algorithm 37

The formal procedure SIMPLEX

SIMPLEX (4, b, ¢) Returns a slack form with a
1 (N.B,A.b,c,v) = INITIALIZE-SIMPLEX (4, b, ¢) & feasible basic solution (if it exists)

2

3 while some index j € N has c; >0 '
41 choose an index e € N for which ¢, > 0 |
5 : for each index i € B :
6 : ifa;, >0 1
7 A; = bi/ai. :
8 : else A; = o0 1
9, choose an index / € B that minimizes A; :
: if A; ==o00 :

11 retnrn “nnbonnded”

J

Proof is based on the following three-part loop invariant:

1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,

2. foreach i € B, we have b; > 0,
3. the basic solution associated with the (current) slack form is feasible.

Lemma 29.2 1/

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.

S
EEE IIl. Linear Programming Simplex Algorithm

37

The formal procedure SIMPLEX

SIMPLEX (4, b, ¢) Returns a slack form with a
1 (N.B,A.b,c,v) = INITIALIZE-SIMPLEX (4, b, ¢) & feasible basic solution (if it exists)

2

3 while some index j € N has c; >0 '
41 choose an index e € N for which ¢, > 0 |
5 : for each index i € B :
6 : ifa;, >0 1
7 A; = bi/ai. :
8 : else A; = o0 1
9, choose an index / € B that minimizes A; :
: if A; ==o00 :

11 retnrn “nnbonnded”

J

Proof is based on the following three-part loop invariant:

1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,

2. foreach i € B, we have b; > 0,
3. the basic solution associated with the (current) slack form is feasible.

Lemma 29.2 1/

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.

S
EEE IIl. Linear Programming Simplex Algorithm

37

The formal procedure SIMPLEX

SIMPLEX(A. b, ¢) { Returns a slack form with a]

1 (N.B,A.b,c,v) = INITIALIZE-SIMPLEX (4, b, ¢) feasible basic solution (if it exists)
let A be a new vector of length n
while some index j € N hasc; >0
choose an index e € N for which ¢, > 0
for each index i € B
ifa;, >0
A; = bi/ai.
else A; = o0
9 choose an index / € B that minimizes A;
10 if A; ==o00

11 retnrn “nnbonnded”

0 ~J N N AW

Proof is based on the following three-part loop invariant:

1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,
2. foreach i € B, we have b; > 0,

3. the basic solution associated with the (current) slack form is feasible.

Lemma 29.2 1/

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.

S
EEE Ill. Linear Programming Simplex Algorithm 37

Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

el b

i
"-.E =

Ill. Linear Programming Simplex Algorithm 38

Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

z = Xt + X + X3
Xx = 8 — X1 - X
X5 = X2 — X3

Ill. Linear Programming Simplex Algorithm 38

Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

i

Xa

X5

X1+ X + X3
Xq — Xo
Xo — X3

i Pivot with x4 entering and x4 leaving
\4

Ill. Linear Programming

Simplex Algorithm 38

Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

i

z = X1+ X + X3
Xs, = 8 — X3 - X
X5 = X2 — X3

i Pivot with x4 entering and x4 leaving
\4

z = 8 + X3 — X4
XY = 8 - X - X4
X5 = X2 — X3
Ill. Linear Programming Simplex Algorithm 38

Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

i

X4

X5

X4

X5

X1+ X + X3
X1 — Xo
X2 — X3
i Pivot with x4 entering and x4 leaving
A\
+ X3 — X4
Xo — X4
X2 — X3

!
I Pivot with x3 entering and xs leaving
A

Ill. Linear Programming

Simplex Algorithm 38

Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

X4

X5

X4

X5

X4

X3

IIl. Linear Programming

X1+ X + X3
X1 — Xo
X2 — X3
i Pivot with x4 entering and x4 leaving
A\
+ X3 — X4
Xo — X4
X2 — X3
i Pivot with x3 entering and xs leaving
A\
Xo — X4 — X5
Xo — X4
X2 - X5
Simplex Algorithm 38

Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

X4

X5

V4
X4

X5

X1+ X + X3
8 — x5 - X
X2 — X3
i Pivot with x4 entering and x4 leaving
A\
+ X3 — X4
— Xo — X4

X2 — X3

[

|
Cycling: If additionally slack at two iterations I Pivot with x3 entering and xs leaving
are identical, SIMPLEX fails to terminate! v

i
Sl

z = 8 4+ X - X2 - X
Xq = 8 — Xo — X4
X3 = Xo — X5
IIl. Linear Programming Simplex Algorithm 38

Termination and Running Time

i

i
"-.E -,

Cycling: SIMPLEX may fail to terminate.

Il Linear Programming Simplex Algorithm

39

Termination and Running Time

s
Sl

(It is theoretically possible, but very rare in practice.]
NJ
Cycling: SIMPLEX may fail to terminate.

Il Linear Programming Simplex Algorithm

39

Termination and Running Time

(It is theoretically possible, but very rare in practice.]
NJ
Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies

i

Il Linear Programming Simplex Algorithm

39

Termination and Running Time

(It is theoretically possible, but very rare in practice.]
NJ
Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies

1. Bland’s rule: Choose entering variable with smallest index

i

&

Il Linear Programming Simplex Algorithm

39

Termination and Running Time

(It is theoretically possible, but very rare in practice.]
NJ
Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies

1. Bland’s rule: Choose entering variable with smallest index
2. Random rule: Choose entering variable uniformly at random

i

.-,.E:,_ Il Linear Programming Simplex Algorithm

39

Termination and Running Time

(It is theoretically possible, but very rare in practice.]
NJ
Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies

1. Bland’s rule: Choose entering variable with smallest index
2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have
two solutions with the same objective value

i
IIl. Linear Programming Simplex Algorithm

39

Termination and Running Time

(It is theoretically possible, but very rare in practice.]
NJ
Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies

1. Bland’s rule: Choose entering variable with smallest index
2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have

two solutions with the same objective value
S

LRepIace each b; by b; = b; + €;, where ¢; > €1 are all smaII.J

i
Il Linear Programming Simplex Algorithm

39

Termination and Running Time

(It is theoretically possible, but very rare in practice.]
NJ
Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies

1. Bland’s rule: Choose entering variable with smallest index
2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have

two solutions with the same objective value
S

LRepIace each b; by b; = b; + €;, where ¢; > ¢;,1 are all smaII.J

Lemma 29.7

Assuming INITIALIZE-SIMPLEX returns a slack form for which the ba-
sic solution is feasible, SIMPLEX either reports that the program is un-

bounded or returns a feasible solution in at most (") iterations.

i
IIl. Linear Programming Simplex Algorithm

39

Termination and Running Time

(It is theoretically possible, but very rare in practice.]

NJ
Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies

1. Bland’s rule: Choose entering variable with smallest index
2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have

two solutions with the same objective value
S

LRepIace each b; by b = bi + €, where ¢; > ¢;,1 are all smaII.J

Lemma 29.7

Assuming INITIALIZE-SIMPLEX returns a slack form for which the ba-
sic solution is feasible, SIMPLEX either reports that the program is un-
bounded or returns a feasible solution in at most (") iterations.

n+m
m

form, and there are at most (

Every set B of basic variables uniquely determines a slack

) unique slack forms.

i
EEE IIl. Linear Programming Simplex Algorithm

39

Outline

Finding an Initial Solution

i
e r

Ill. Linear Programming

Finding an Initial Solution

40

Finding an Initial Solution

maximize 2xy - Xo
subject to
2X1 — Xo
X1 — 5xo
X1, X2

IV AN IA

S5
5l Ill. Linear Programming

Finding an Initial Solution

41

Finding an Initial Solution

maximize 2xy - Xo
subject to
2X1 — Xo < 2
X1 — 5xo < —4
X1, X2 > 0

!

! . .

1 Conversion into slack form
|

A4

sn i
E:';.' Ill. Linear Programming Finding an Initial Solution 41

Finding an Initial Solution

maximize 2xy - Xo
subject to
2X1 — Xo < 2
X4 - 5% < -4
X1, X2 > 0
|
i Conversion into slack form
v
z = 22Xy — Xo
X3 = 2 — 2x + Xo
X4 = -4 - Xy + 5%
N

[Basic solution (x4, X2, X3, X4) = (0, 0,2, —4) is not feasible!]

€5 IIl. Linear Programming Finding an Initial Solution 41

Geometric lllustration

2X1 Xo

maximize
subject to

42

Finding an Initial Solution

IIl. Linear Programming

Geometric lllustration

2X1 Xo

maximize
subject to

42

Finding an Initial Solution

IIl. Linear Programming

Geometric lllustration

maximize 2X1
subject to

2X1

X4

— Xo

— 5X2

VAN IA

2

—4 | Questions:

0 = How to determine whether
there is any feasible solution?

= |f there is one, how to determine

/ Ly an initial basic solution?

5 IIl. Linear Programming

Finding an Initial Solution 42

Formulating an Auxiliary Linear Program

- n
maximize > i1 X
subject to
n
>ojo1 @i
Xj

IV IA

b fori=1,2,...
0 forj=1,2,...

i
IIl. Linear Programming Finding an Initial Solution

43

Formulating an Auxiliary Linear Program

maximize Y7, ¢x

subject to

b fori=1,2,...,m,
0 forj=1,2,...,n

n
>ojo1 @i
Xj

IV IA

i{ Formulating an Auxiliary Linear Program

i
IIl. Linear Programming Finding an Initial Solution

43

Formulating an Auxiliary Linear Program

maximize Y7, ¢x

subject to
Siiap < b fori=1,2,...,m,
X > 0 forj=1,2,...,n
i{ Formulating an Auxiliary Linear Program
maximize —Xo
subject to

b fori=1,2,...,m,
0 forj=0,1,...,n

n
2t @jX = Xo
Xj

IV IA

i
IIl. Linear Programming Finding an Initial Solution

Formulating an Auxiliary Linear Program

maximize Y7, ¢x

subject to
Siiap < b fori=1,2,...,m,
X > 0 forj=1,2,...,n
i{ Formulating an Auxiliary Linear Program
maximize —Xo
subject to
STiapx—x < b fori=1,2...m,
X > 0 forj=0,1,...,n
Lemma 29.11

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Ly is 0.

i
IIl. Linear Programming Finding an Initial Solution

43

Formulating an Auxiliary Linear Program

maximize Y7, ¢x

subject to
Siiap < b fori=1,2,...,m,
X > 0 forj=1,2,...,n
i{ Formulating an Auxiliary Linear Program
maximize —Xo
subject to
STiapx—x < b fori=1,2...m,
X > 0 forj=0,1,...,n
Lemma 29.11

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Ly is 0.

Proof.

i
IIl. Linear Programming Finding an Initial Solution

43

Formulating an Auxiliary Linear Program

maximize Y7, ¢x

subject to
Siiap < b fori=1,2,...,m,
X > 0 forj=1,2,...,n
i{ Formulating an Auxiliary Linear Program
maximize —Xo
subject to
STiapx—x < b fori=1,2...m,
X > 0 forj=0,1,...,n
Lemma 29.11

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Ly is 0.

Proof.
= “=": Suppose L has a feasible solution X = (X1, X2,...,Xn)

i
IIl. Linear Programming Finding an Initial Solution

43

Formulating an Auxiliary Linear Program

maximize Y7, ¢x

subject to
Siiap < b fori=1,2,...,m,
X > 0 forj=1,2,...,n
i{ Formulating an Auxiliary Linear Program
maximize —Xo
subject to
Yiiaixi—x < b fori=1,2,....m,
X > 0 forj=0,1,...,n
Lemma 29.11

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Ly is 0.

Proof.
= “=": Suppose L has a feasible solution X = (X1, X2,...,Xn)
= Xo = 0 combined with X is a feasible solution to Laux with objective value 0.

i
IIl. Linear Programming Finding an Initial Solution 43

Formulating an Auxiliary Linear Program

maximize Y7, ¢x

subject to
Siiap < b fori=1,2,...,m,
X > 0 forj=1,2,...,n
i{ Formulating an Auxiliary Linear Program
maximize —Xo
subject to
Yiiaixi—x < b fori=1,2,....m,
X > 0 forj=0,1,...,n
Lemma 29.11

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Ly is 0.

Proof.
= “=": Suppose L has a feasible solution X = (X1, X2,...,Xn)

= Xo = 0 combined with X is a feasible solution to Laux with objective value 0.
= Since Xp > 0 and the objective is to maximize —xg, this is optimal for Laux

i
IIl. Linear Programming Finding an Initial Solution

43

Formulating an Auxiliary Linear Program

maximize Y7, ¢x

subject to
Siiap < b fori=1,2,...,m,
X > 0 forj=1,2,...,n
i{ Formulating an Auxiliary Linear Program
maximize —Xo
subject to
Yiiaixi—x < b fori=1,2,....m,
X > 0 forj=0,1,...,n
Lemma 29.11

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Ly is 0.

Proof.
= “=": Suppose L has a feasible solution X = (X1, X2,...,Xn)

= Xo = 0 combined with X is a feasible solution to Laux with objective value 0.
= Since Xp > 0 and the objective is to maximize —xg, this is optimal for Laux

= “<": Suppose that the optimal objective value of Laux is 0

i
IIl. Linear Programming Finding an Initial Solution

43

Formulating an Auxiliary Linear Program

maximize Y7, ¢x

subject to
Siiap < b fori=1,2,...,m,
X > 0 forj=1,2,...,n
i{ Formulating an Auxiliary Linear Program
maximize —Xo
subject to
Yiiaixi—x < b fori=1,2,....m,
X > 0 forj=0,1,...,n
Lemma 29.11

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Ly is 0.

Proof.
= “=": Suppose L has a feasible solution X = (X1, X2,...,Xn)

= Xo = 0 combined with X is a feasible solution to Laux with objective value 0.
= Since Xp > 0 and the objective is to maximize —xg, this is optimal for Laux

= “<": Suppose that the optimal objective value of Laux is 0
= Then Xy = 0, and the remaining solution values (X1, X2, . .., Xp) satisfy L.

SR Ill. Linear Programming Finding an Initial Solution

43

Formulating an Auxiliary Linear Program

maximize Y7, ¢x

subject to
Siiap < b fori=1,2,...,m,
X > 0 forj=1,2,...,n
i{ Formulating an Auxiliary Linear Program
maximize —Xo
subject to
Yiiaixi—x < b fori=1,2,....m,
X > 0 forj=0,1,...,n
Lemma 29.11

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Ly is 0.

Proof.
= “=": Suppose L has a feasible solution X = (X1, X2,...,Xn)

= Xo = 0 combined with X is a feasible solution to Laux with objective value 0.
= Since Xp > 0 and the objective is to maximize —xg, this is optimal for Laux

= “<": Suppose that the optimal objective value of Laux is 0
= Then Xy = 0, and the remaining solution values (X1, X2, ..., Xp) satisfy L. O

SR Ill. Linear Programming Finding an Initial Solution

43

INITIALIZE-SIMPLEX

INITIALIZE-SIMPLEX (A4, b, ¢)

1
2
3
4

let k be the index of the minimum b;
ifb, >0 // is the initial basic solution feasible?
return ({1,2,....n} , {n+1,n+2,..., n+m}y, A b, c,0)
form L, by adding —x to the left-hand side of each constraint
and setting the objective function to —x,
let (N, B, A, b, c,v) be the resulting slack form for L,
l=n+k
// L, has n + 1 nonbasic variables and m basic variables.
(N,B,A,b,c,v) = PIVOT(N, B, A,b,c,v,1,0)
// The basic solution is now feasible for L .
iterate the while loop of lines 3—12 of SIMPLEX until an optimal solution
to Ly is found
if the optimal solution to L,,, sets X, to 0
if X, is basic
perform one (degenerate) pivot to make it nonbasic
from the final slack form of L, remove x, from the constraints and
restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint
return the modified final slack form
else return “infeasible”

Ill. Linear Programming Finding an Initial Solution

44

INITIALIZE-SIMPLEX

Test solution with N = {1,2,...,n}, B={n+1,n+

INITIALIZE-SIMPLEX (4, b, ¢) 2,...,n+m}, X = b for i € B, X; = 0 otherwise.
1 let k be the index of the minimum b; =
2 ifb >0 // is the initial basic solution feasible?
3 return ({1,2,....n},{n+1,n+2,..., n+m},A b, c,0)
4 form L, by adding —x, to the left-hand side of each constraint

and setting the objective function to —x,

5 let(N, B, A,b,c,v) be the resulting slack form for L,

6 I =n+k

7 /] L, hasn + 1 nonbasic variables and m basic variables.

8 (N,B.A.b,c,v) = PIVOT(N, B, A,b,c,v,1,0)

9 // The basic solution is now feasible for L .

0 iterate the while loop of lines 3—12 of SIMPLEX until an optimal solution
to Ly is found

11 if the optimal solution to L, sets Xy to O

12 if X is basic
13 perform one (degenerate) pivot to make it nonbasic
14 from the final slack form of L, remove x, from the constraints and

restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint

15 return the modified final slack form

16 else return “infeasible”

Ill. Linear Programming Finding an Initial Solution

INITIALIZE-SIMPLEX

Test solution with N = {1,2,...,n}, B={n+1,n+

INITIALIZE-SIMPLEX (4, b, ¢) 2,...,n+m}, X = b for i € B, X; = 0 otherwise.
1 let k be the index of the minimum b; =
2 ifb >0 // is the initial basic solution feasible?
3 return ({1,2,....n},{n+1,n+2,..., n+m},A b, c,0)
4 form L, by adding —x, to the left-hand side of each constraint

and setting the objective function to —x, m o v abl
let (N, B, A, b, c,v) be the resulting slack form for L, £ will be the eaving variable so
l=n+k that x, has the most negative value.

5

6

7 /] L, hasn + 1 nonbasic variables and m basic variables.

8 (N,B.A.b,c,v) = PIVOT(N, B, A,b,c,v,1,0)

9 // The basic solution is now feasible for L .

0 iterate the while loop of lines 3—12 of SIMPLEX until an optimal solution
to Ly is found

11 if the optimal solution to L, sets Xy to O

12 if X is basic
13 perform one (degenerate) pivot to make it nonbasic
14 from the final slack form of L, remove x, from the constraints and

restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint

15 return the modified final slack form

16 else return “infeasible”

Ill. Linear Programming Finding an Initial Solution

44

INITIALIZE-SIMPLEX

INITIALIZE-SIMPLEX (4, b, ¢) 2,...,n+m}, X = b for i € B, X; = 0 otherwise.
1 let k be the index of the minimum b; =
2 ifb >0 // is the initial basic solution feasible?
3 return ({1,2,....n},{n+1,n+2,..., n+m},A b, c,0)
4 form L, by adding —x, to the left-hand side of each constraint
and setting the objective function to —x, - n -
5 let(N, B, A,b,c,v) be the resulting slack form for L, £ will be the leaving variable so
6 Il =n+k that x, has the most negative value.
7 /] L, hasn + 1 nonbasic variables and m basic variables.
8 (N,B.Ab.c.v) =PIVOT(N, B, A,b.c.v.1.0) ‘(Pivot step with x, leaving and xp entering.]
9 // The basic solution is now feasible for L .
10 iterate the while loop of lines 3—12 of SIMPLEX until an optimal solution
to Ly is found
11 if the optimal solution to L, sets Xy to O
12 if X is basic
13 perform one (degenerate) pivot to make it nonbasic
14 from the final slack form of L., remove x, from the constraints and
restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint
15 return the modified final slack form
16 else return “infeasible”

Test solution with N = {1,2,...,n}, B={n+1,n+

IIl. Linear Programming

Finding an Initial Solution

44

INITIALIZE-SIMPLEX

INITIALIZE-SIMPLEX (4, b, ¢) 2,...,n+m}, X = b for i € B, X; = 0 otherwise.
1 let k be the index of the minimum b; =
2 ifb >0 // is the initial basic solution feasible?
3 return ({1,2,....n},{n+1,n+2,..., n+m},A b, c,0)
4 form L, by adding —x, to the left-hand side of each constraint
and setting the objective function to —x, - n -
5 let(N, B, A,b,c,v) be the resulting slack form for L, £ will be the leaving variable so
6 Il =n+k that x, has the most negative value.
7 /] L, hasn + 1 nonbasic variables and m basic variables.
8 (N,B.Ab.c.v) =PIVOT(N, B, A,b.c.v.1.0) ‘(Pivot step with x, leaving and xp entering.]
9 // The basic solution is now feasible for L .
10 iterate the while loop of lines 3—12 of SIMPLEX until an optimal solution
to Ly is found
11 if the optimal solution to L,,, sets Xo to O This pivot step does not change
12 if o is basic)) . the value of any variable.
13 perform one (degenerate) pivot to make it nonbasic
14 from the final slack form of L., remove x, from the constraints and
restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint
15 return the modified final slack form
16 else return “infeasible”

Test solution with N = {1,2,...,n}, B={n+1,n+

IIl. Linear Programming

Finding an Initial Solution

44

Example of INITIALIZE-SIMPLEX (1/3)

maximize 2x; — Xo
subject to
2X1 — Xo < 2
X1 — 5X2 < —4
X1, X2 > 0

i
IIl. Linear Programming Finding an Initial Solution 45

Example of INITIALIZE-SIMPLEX (1/3)

maximize 2x; — Xo
subject to
2X1 — Xo
X1 — 5X2
X1, X2

IV IAIA

IIl. Linear Programming

Finding an Initial Solution

Example of INITIALIZE-SIMPLEX (1/3)

maximize
subject to

maximize
subject to

2X1

2X1
Xq

2X1
Xi

_ Xo
— X2 < 2
— 5x2 < —4
X1, X2 > 0
I
I
l
|
Y
- X2 — X
— 5X2 — X0
X1, X2, Xo

IV IAIA

IIl. Linear Programming

Finding an Initial Solution

45

Example of INITIALIZE-SIMPLEX (1/3)

maximize
subject to

maximize
subject to

2X1

2X1
X1

— Xo
— Xo < 2
— 5X2 < —4
X1, X2 > 0
|
| . o .
! Formulating the auxiliary linear program
v
— Xo
— X2 — Xo < 2
— 5X2 — X0 < -4
X1, X2, Xo 2 0

IIl. Linear Programming

Finding an Initial Solution

45

Example of INITIALIZE-SIMPLEX (1/3)

maximize
subject to

maximize
subject to

Z =
X3 =
X4 =

2X1 — Xo
2X1 — Xo < 2
X1 — 5X2 < —4
X1, X2 2 0

2xy — X2 — Xo < 2
X1 — 5X2 — X0 < -4
X1, X2, Xo 2 o
|
| . .
' Converting into slack form
\%
2 — 2 4+ X 4+ X
-4 - x1 + X + X

IIl. Linear Programming

Finding an Initial Solution

45

Example of INITIALIZE-SIMPLEX (1/3)

maximize 2x; — Xo
subject to
2X1 — Xo < 2
X1 — 5X2 < —4
X1, X2 > 0

maximize - X
subject to
2x1 — X — X < 2
Xy — 5% - X < -4
X1, X2, Xo 2 0
Basic solution ‘
(0,0,0,2, —4) not feasible! | Converting into slack form
N v
z = - X
X3 = 2 - 2Xx + X2 + Xo
Xx = -4 — X + 5% + X

R IIl. Linear Programming Finding an Initial Solution

45

Example of INITIALIZE-SIMPLEX (2/3)

Z =
X3 = 2 2xy + Xo
X4 = —4 — X1 + 5X2

+
+

Xo
Xo
Xo

i
IIl. Linear Programming Finding an Initial Solution

46

Example of INITIALIZE-SIMPLEX (2/3)

z
X3
X4

_ Xo
- 2Xx4 + X2 + Xo
- xx + 5% + X

|
i Pivot with xo entering and x4 leaving
|

IIl. Linear Programming

Finding an Initial Solution

46

Example of INITIALIZE-SIMPLEX (2/3)

z = — Xo
X3 = 2 — 24 4+ X 4+ X
X2 = -4 - X1+ 5% 4+ X

|
i Pivot with xo entering and x4 leaving
|

A\
z = -4 — x5 4+ 5 - x
Xo = 4 + x4 — bx + Xa
X3 = 6 — X1 — 4X2 + X4

sl
E:';.' Ill. Linear Programming Finding an Initial Solution

Example of INITIALIZE-SIMPLEX (2/3)

A

z
X3
X4

z
Xo
X3

4
6

[Basic solution (4,0,0,6,0) is feasible!]

— Xo

- 21 4+ X + X

— XX + 5 + X

|

1 Pivot with xo entering and x4 leaving
v

- X1 + 5% - X

+ X - 5% + X

- x1 = 4 + X

Sl
o 5

IIl. Linear Programming

Finding an Initial Solution

46

Example of INITIALIZE-SIMPLEX (2/3)

A

z

z
Xo
X3

= 2 — 2Xx -+ X2
= —4 — X1 + 5X2

Xo
Xo
Xo

|
i Pivot with xo entering and x4 leaving
|

A\
= —4 — X1 + 5xo
= 4 -+ X1 — 5x>
= 6 — X1 — 4X2

[Basic solution (4,0,0,6,0) is feasible!] i Pivot with X, entering and x, leaving

z
X2

X3

v

.
_ 4 _ X X1
= 5 5 T 3
Y S S
= 5 5 5

X4
5
X4

Sl IIl. Linear Programming

Finding an Initial Solution

46

Example of INITIALIZE-SIMPLEX (2/3)

z = — Xo
X3 = 2 — 2X1 -+ X2 + Xo
X2 = -4 - X1+ 5% 4+ X
|
I Pivot with xo entering and x4 leaving
v
z = 4 — X3 4+ b - x4
Xo = 4 -+ X1 — 5x> -+ X4
X3 = 6 — X1 — 4X2 + X4
” |
[Basic solution (4,0,0,6,0) is feasible!] | Pivot with X, entering and x, leaving
v
V4 — X0
s = 5 5 5 5
N

[Optimal solution has xo = 0, hence the initial problem was feasible!j

Sl
o 5

IIl. Linear Programming

Finding an Initial Solution

46

Example of INITIALIZE-SIMPLEX (3/3)

V4
X2

X3

ST

Xo
2+
4Xo

5

o

oo

IIl. Linear Programming

Finding an Initial Solution

47

Example of INITIALIZE-SIMPLEX (3/3)

z = — X
_ 14 4 M Xa
X375+5 5+5

Set xo = 0 and express objective function
by non-basic variables

S5
IIl. Linear Programming Finding an Initial Solution 47

Example of INITIALIZE-SIMPLEX (3/3)

V4 = — Xo
— 4 _ Xo Xt X4
X = 3 5 - 5 T 3
3 = 14 . 4 % 00X
3 5 5 5 5

Set xo = 0 and express objective function
by non-basic variables

X4

)
(44444

[2X1—2X2=2X1—(%—%0+%+5
N, 4, m ox
3 X 2
X = + T + T

SRS IIl. Linear Programming Finding an Initial Solution 47

Example of INITIALIZE-SIMPLEX (3/3)

V4 = — Xo
4 Xo Xi X4
X = 5 - v t T t 7
w = 14 . A 9% X
S 5 5 5

Set xo = 0 and express objective function

|
|
| . .
[2x1 o= ox - (A ?)] . by non-basic variables
N, 4, o ox
3 X 2
_ 4 X Xa
e 1451 ' 9)? ' X.
— a4 24 24
¥ = 5 5
e

[Basic solution (0, 2, ¥, 0), which is feasible!]

o, IIl. Linear Programming Finding an Initial Solution 47

Example of INITIALIZE-SIMPLEX (3/3)

z = — Xo
4 Xo Xi X4
Y S
- 14 A0 0 9 24
X = 5 T 3 5 T 35

Set xo = 0 and express objective function

|
|
| . .
[2x1 o= ox - (A ?)] . by non-basic variables
N, 4, o ox
3 X 2
_ 4 X Xa
e 1451 ' 9)? ' X.
— a4 24 24
¥ = 5 5
e

[Basic solution (0, 2, ¥, 0), which is feasible!]

Lemma 29.12
If a linear program L has no feasible solution, then INITIALIZE-SIMPLEX
returns “infeasible”. Otherwise, it returns a valid slack form for which the
basic solution is feasible.

o, IIl. Linear Programming Finding an Initial Solution 47

Fundamental Theorem of Linear Programming

Theorem 29.13 (Fundamental Theorem of Linear Programming)
Any linear program L, given in standard form, either
1. has an optimal solution with a finite objective value,
2. is infeasible, or

3. is unbounded.

N
\

If L is infeasible, SIMPLEX returns ‘“infeasible”. If L is unbounded, SIMPLEX returns
“unbounded”. Otherwise, SIMPLEX returns an optimal solution with a finite objective value.

R IIl. Linear Programming Finding an Initial Solution 48

Fundamental Theorem of Linear Programming

Theorem 29.13 (Fundamental Theorem of Linear Programming)
Any linear program L, given in standard form, either
1. has an optimal solution with a finite objective value,
2. is infeasible, or
3. is unbounded.

2\
If L is infeasible, SIMPLEX returns ‘“infeasible”. If L is unbounded, SIMPLEX returns
“unbounded”. Otherwise, SIMPLEX returns an optimal solution with a finite objective value.

Proof requires the concept of duality, which is not covered
in this course (for details see CLRS3, Chapter 29.4)

a1 IIl. Linear Programming Finding an Initial Solution 48

Workflow for Solving Linear Programs

[Linear Program (in any form)]

|

(Standard Form]

(Slack Form]

INITIALIZE-SIMPLEX terminates INITIALIZE-SIMPLEX calls SIMPLEX

-

LP unbounded LP bounded
SIMPLEX terminates SIMPLEX returns optimum

[No Feasible Solution] [Feasible Basic Solution]

s IIl. Linear Programming Finding an Initial Solution 49

Linear Programming and Simplex: Summary and Outlook

Linear Programming

el b

«,‘E o IIl. Linear Programming Finding an Initial Solution

50

Linear Programming and Simplex: Summary and Outlook

Linear Programming

= extremely versatile tool for modelling problems of all kinds

i

,.E, IIl. Linear Programming Finding an Initial Solution

50

Linear Programming and Simplex: Summary and Outlook

Linear Programming

= extremely versatile tool for modelling problems of all kinds
= basis of Integer Programming, to be discussed in later lectures

i

‘-,.E;, IIl. Linear Programming Finding an Initial Solution

50

Linear Programming and Simplex: Summary and Outlook

Linear Programming

= extremely versatile tool for modelling problems of all kinds
= basis of Integer Programming, to be discussed in later lectures

~——— Simplex Algorithm X3

= |In practice: usually terminates in X2
polynomial time, i.e., O(m + n)

. b

.-,.E:,. IIl. Linear Programming Finding an Initial Solution 50

Linear Programming and Simplex: Summary and Outlook

Linear Programming

= extremely versatile tool for modelling problems of all kinds
= basis of Integer Programming, to be discussed in later lectures

~——— Simplex Algorithm

X3
= |In practice: usually terminates in X2
polynomial time, i.e., O(m + n)

= In theory: even with anti-cycling may
need exponential time :

Sl

.-,.E:,. IIl. Linear Programming Finding an Initial Solution 50

Linear Programming and Simplex: Summary and Outlook

Linear Programming

= extremely versatile tool for modelling problems of all kinds
= basis of Integer Programming, to be discussed in later lectures

~——— Simplex Algorithm X3
= |In practice: usually terminates in X2
polynomial time, i.e., O(m + n)

= In theory: even with anti-cycling may

[

need exponential time o
o~ .\))(1
Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

i
IIl. Linear Programming Finding an Initial Solution

50

Linear Programming and Simplex: Summary and Outlook

Linear Programming

= extremely versatile tool for modelling problems of all kinds
= basis of Integer Programming, to be discussed in later lectures

~——— Simplex Algorithm X3
= |In practice: usually terminates in X2
polynomial time, i.e., O(m + n)

= In theory: even with anti-cycling may

[

need exponential time o
o~ .\))(1
Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

Polynomial-Time Algorithms

i
IIl. Linear Programming Finding an Initial Solution 50

Linear Programming and Simplex: Summary and Outlook

Linear Programming

= extremely versatile tool for modelling problems of all kinds
= basis of Integer Programming, to be discussed in later lectures

~——— Simplex Algorithm X3
= |In practice: usually terminates in X2
polynomial time, i.e., O(m + n)
= In theory: even with anti-cycling may
need exponential time o
o

[

—,
Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

Polynomial-Time Algorithms X3
= |nterior-Point Methods: traverses the X2
interior of the feasible set of solutions
(not just vertices!)

X

i
IIl. Linear Programming Finding an Initial Solution 50

Linear Programming and Simplex: Summary and Outlook

Linear Programming

= extremely versatile tool for modelling problems of all kinds
= basis of Integer Programming, to be discussed in later lectures

~——— Simplex Algorithm X3

= |In practice: usually terminates in X2
polynomial time, i.e., O(m + n)

= In theory: even with anti-cycling may

[

need exponential time o
o~ .\))(1
Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

Polynomial-Time Algorithms X3
= |nterior-Point Methods: traverses the X2
interior of the feasible set of solutions
(not just vertices!)

i
IIl. Linear Programming Finding an Initial Solution

50

	Introduction
	Standard and Slack Forms
	Formulating Problems as Linear Programs
	Simplex Algorithm
	Finding an Initial Solution

