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Introduction

Linear Programming (informal definition)

= maximize or minimize an objective, given limited resources and
competing constraint

= constraints are specified as (in)equalities

~—— Example: Political Advertising

= Imagine you are a politician trying to win an election

= Your district has three different types of areas: Urban, suburban and
rural, each with, respectively, 100,000, 200,000 and 50,000
registered voters

= Aim: at least half of the registered voters in each of the three regions
should vote for you

= Possible Actions: Advertise on one of the primary issues which are (i)
building more roads, (ii) gun control, (iii) farm subsidies and (iv) a
gasoline tax dedicated to improve public transit.
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Political Advertising Continued

policy \ urban suburban rural
build roads -2 5 3
gun control 8 2 -5
farm subsidies 0 0 10
gasoline tax 10 0 -2

The effects of policies on voters. Each entry describes the number of thousands of
voters who could be won (lost) over by spending $1,000 on advertising support of a
policy on a particular issue.
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Political Advertising Continued

policy \urban suburban rural

build roads -2 5

gun control 8 2
farm subsidies 0 0
gasoline tax 10 0

The effects of policies on voters. Each entry describes the number of thousands of
voters who could be won (lost) over by spending $1,000 on advertising support of a

policy on a particular issue.

/1

= Possible Solution:
= $20,000 on advertising to building roads
= $0 on advertising to gun control
= $4,000 on advertising to farm subsidies
= $9,000 on advertising to a gasoline tax

= Total cost: $33,000

What is the best possible strategy?
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Towards a Linear Program

policy \ urban suburban rural
build roads -2 5 3

gun control 8 2 -5
farm subsidies 0 0 10
gasoline tax 10 0 -2

The effects of policies on voters. Each entry describes the number of thousands of
voters who could be won (lost) over by spending $1,000 on advertising support of a
policy on a particular issue.
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Towards a Linear Program

policy | urban

suburban

build roads
gun control
farm subsidies
gasoline tax

The effects of policies on voters. Each entry describes the number of thousands of
voters who could be won (lost) over by spending $1,000 on advertising support of a

policy on a particular issue.

= x; = number of thousands of dollars spent on advertising on building roads
= xo = number of thousands of dollars spent on advertising on gun control

= x3 = number of thousands of dollars spent on advertising on farm subsidies
= x4 = number of thousands of dollars spent on advertising on gasoline tax

Constraints:
= —2X1 +8x> +0x3 + 10x4 > 50

5

2
0
0

bl
S, IIl. Linear Programming

Introduction



Towards a Linear Program
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Towards a Linear Program

policy \ urban suburban rural
build roads -2 5 3

gun control 8 2 -5
farm subsidies 0 0 10
gasoline tax 10 0 -2

The effects of policies on voters. Each entry describes the number of thousands of
voters who could be won (lost) over by spending $1,000 on advertising support of a

policy on a particular issue.

= x; = number of thousands of dollars spent on advertising on building roads
= xo = number of thousands of dollars spent on advertising on gun control

= x3 = number of thousands of dollars spent on advertising on farm subsidies
= x4 = number of thousands of dollars spent on advertising on gasoline tax

Constraints:

= —2X1 +8x> +0x3 + 10x4 > 50
= 5x1 + 2x> + 0x3 + 0xs > 100

[Objective: Minimize x1 + Xo + X3 + X4 j

= 3x; —5x0 +10x3 — 2x4 > 25

=
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The Linear Program

Linear Program for the Advertising Problem

minimize Xi  + Xo + X3 + X4
subject to
-2x1 + 8x + Ox3 + 10x4 > 50
5 + 2x + Ox3 + Oxs > 100
3X4 — bx + 10x3 — 2Xy > 25
X1, X2, X3, Xa > 0
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The Linear Program

Linear Program for the Advertising Problem

minimize Xy + Xo + X3 + X4
subject to
—2X4 + 8x + Ox3 + 10x4 > 50
5X1 + 2X2 + OX3 + 0X4 Z 100
3X4 — 5x0 + 10x3 — 2Xy > 25
X1, Xo, X3, X4 > 0

1
{The solution of this linear program yields the optimal advertising strategy. J
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)

Formal Definition of Linear Program

= Given ay, a, ..., ap and a set of variables x1, X2, ..., X», a linear
function f is defined by

f(X17X2,...,Xn) = aiXy + axe + -+ anXxn.
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Formal Definition of Linear Program

= Given ay, a, ..., ap and a set of variables x1, X2, ..., X», a linear
function f is defined by

f(X17X2,...,Xn) = aiXy + axe + -+ anXxn.
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The Linear Program

Linear Program for the Advertising Problem

minimize Xi  + Xo + X3 + X4
subject to
-2x1 + 8x + Ox3 + 10x4 > 50
5Xxq + 2Xo + OX3 + 0x4 > 100
3X4 5x0 + 10x3 2Xy > 25
X1, X2, X3, Xa > 0

1
'[The solution of this linear program yields the optimal advertising strategy. J

Formal Definition of Linear Program

= Given ay, a, ..., ap and a set of variables x1, X2, ..., X», a linear
function f is defined by

f(X17X2,...,Xn) = aiXy + axe + -+ anXxn.

= Linear Equality: f(x1,X2,...,X,) = b

Linear Constraints
= Linear Inequality: f(x1, Xz, . . . ,xn)ib { ]
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The Linear Program

Linear Program for the Advertising Problem

minimize Xi  + Xo + X3 + X4
subject to
-2x1 + 8x + Ox3 + 10x4 > 50
5Xxq + 2Xo + OX3 + 0x4 > 100
3X4 — 5x0 + 10x3 — 2Xy > 25
X1, X2, X3, Xa > 0

1
'[The solution of this linear program yields the optimal advertising strategy. J

Formal Definition of Linear Program

= Given ay, a, ..., ap and a set of variables x1, X2, ..., X», a linear
function f is defined by

f(X17X2,...,Xn) = aiXy + axe + -+ anXxn.

= Linear Equality: f(x1, Xz, ..., Xn)

. . = {Llnear Constraints ]
= Linear Inequality: f(x1, X2, ..., Xn)

= Linear-Progamming Problem: elther minimize or maximize a linear
function subject to a set of linear constraints
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A Small(er) Example

maximize Xy +
subject to
4X1 —
2x1  +
5x4 —
X1, X2

X2

X2
X2
2Xo
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A Small(er) Example

maximize Xy + Xo
subject to
4X1 — X2 < 8
2X4 + X2 < 10
5x4 — 2Xo > -2
X1, X2 > 0
N

Any setting of x; and x, satisfying
all constraints is a feasible solution

=
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A Small(er) Example
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A Small(er) Example

Xq Xo

maximize
subject to
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X1 + Xo = z as far up as possible.
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A Small(er) Example

maximize Xy + Xo
subject to
4X1 — X2 < 8
2X4 + Xo < 10
5% — 2x% > -2 x>0
X1, X2 > 0

Graphical Procedure: Move the line
X1 + X2 = z as far up as possible.

Il Linear Programming Introduction 7



A Small(er) Example

X1 X2

maximize
subject to

VIVIAIAI

<

X2
2Xo

X1, X2

4X1
2X1
5X1

J

X1 + X2 = z as far up as possible.

Graphical Procedure: Move the line

[

Introduction

Il Linear Programming




A Small(er) Example

X1 X2

maximize
subject to

VIVIAIAI

<

X2
2Xo

X1, X2

4X1
2X1
5X1

XQEO

J

X1 + X2 = z as far up as possible.

Graphical Procedure: Move the line

[

Introduction

Il Linear Programming




A Small(er) Example

X1 X2

maximize
subject to

VIVIAIAI

<

X2
2Xo

X1, X2

4X1
2X1
5X1

J

X1 + X2 = z as far up as possible.

Graphical Procedure: Move the line

[

Introduction

Il Linear Programming




A Small(er) Example

X1 X2

maximize
subject to

VIVIAIAI

<

X2
2Xo

X1, X2

4X1
2X1
5X1

J

X1 + X2 = z as far up as possible.

Graphical Procedure: Move the line

[

Introduction

Il Linear Programming




A Small(er) Example

Introduction

0o N o
- |
)
o .
VI VIAIAI =}
o3
< KLY = 8
Al [ORNeY
3 o
S ©
+ 1+, =3
X o S
- =
XX X X X SN 2
< N D v €
O © §
N g
o <
= — 3
= O %2 5
£E3 r=ia =
23 gt
E o va.m

[



A Small(er) Example

X1 X2

maximize
subject to

VIVIAIAI

<

X2
2Xo

X1, X2

4X1
2X1
5X1

)

X1 + X2 = z as far up as possible.

Graphical Procedure: Move the line

[

Introduction

Il Linear Programming




A Small(er) Example

X1 X2

maximize
subject to

VIVIAIAI

<

X2
2Xo

X1, X2

4X1
2X1
5X1

J

X1 + X2 = z as far up as possible.

Graphical Procedure: Move the line

[

Introduction

Il Linear Programming




A Small(er) Example

X1 X2

maximize
subject to

VIVIAIAI

<

X2
2Xo

X1, X2

4X1
2X1
5X1

J

X1 + X2 = z as far up as possible.

Graphical Procedure: Move the line

[

Introduction

Il Linear Programming




A Small(er) Example

X1 X2

maximize
subject to

VIVIAIAI

<

X2
2Xo

X1, X2

4X1
2X1
5X1

J

X1 + X2 = z as far up as possible.

Graphical Procedure: Move the line

[

Introduction

Il Linear Programming




A Small(er) Example

maximize Xy + Xo
subject to
4X1 — X2 < 8
2X4 + Xo < 10
5x4 — 2Xo > -2
X1, X2 > 0

Graphical Procedure: Move the line
X1 + Xo = z as far up as possible.

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.
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A Small(er) Example

maximize Xy + Xo
subject to
4x4 — X2 < 8
2X4 + Xo < 10
5X1 — 2Xo > -2
X1, X2 Z 0

Graphical Procedure: Move the line
X1 + X2 = z as far up as possible.

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

> More Examples
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Standard and Slack Forms

Standard Form

n
maximize > ¢x
J=1
subject to
n
dap<b  fori=1,2,....m
J=1

X >0 forj=1,2,....,n

el b
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Standard and Slack Forms

Standard Form

n
maximize Z CiX; {Objective Function ]
j=1
subject to
n
dap<b  fori=1,2,....m
j=1

X >0 forj=1,2,....,n
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Standard and Slack Forms

Standard Form

n
maximize Z CiXj {Objective Function ]
j=1

subject to

n
dap<b  fori=1,2,....m
n+ m Constraints } =

X >0 forj=1,2,....,n

S
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Standard and Slack Forms

Standard Form

n
maximize Z CiXj {Objective Function ]
j=1

subject to

n
dap<b  fori=1,2,....m
n+ m Constraints } =1

x>0 forj=1,2,....,n
N

LNon-Negativity Constraints J
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Standard and Slack Forms

Standard Form

n
maximize Z CiXj {Objective Function ]
j=1

subject to

n
dap<b  fori=1,2,....m
n+ m Constraints } =

x>0 forj=1,2,....,n
N

LNon-Negativity Constraints J

Standard Form (Matrix-Vector-Notation)

maximize c'x {Inner product of two vectors ]
subject to

Ax<b { Matrix-vector product j
x>0

i
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Converting Linear Programs into Standard Form

-
Reasons for a LP not being in standard form:
1. The objective might be a minimization rather than maximization.
2. There might be variables without nonnegativity constraints.
3. There might be equality constraints.
4. There might be inequality constraints (with > instead of <).

i
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Converting Linear Programs into Standard Form

é N
Reasons for a LP not being in standard form:
1. The objective might be a minimization rather than maximization.
2. There might be variables without nonnegativity constraints.
3. There might be equality constraints.
4. There might be inequality constraints (with > instead of <).
\ J

Goal: Convert linear program into an equivalent program
which is in standard form
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Converting Linear Programs into Standard Form

Reasons for a LP not being in standard form:

1. The objective might be a minimization rather than maximization.
2. There might be variables without nonnegativity constraints.

3. There might be equality constraints.

4. There might be inequality constraints (with > instead of <).

Goal: Convert linear program into an equivalent program
which is in standard form

/)

/L
Equivalence: a correspondence (not necessarily a bijection)
between solutions so that their objective values are identical.

i
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Converting Linear Programs into Standard Form

é N
Reasons for a LP not being in standard form:
1. The objective might be a minimization rather than maximization.
2. There might be variables without nonnegativity constraints.
3. There might be equality constraints.
4. There might be inequality constraints (with > instead of <).
\ 7

Goal: Convert linear program into an equivalent program
which is in standard form

/)

between solutions so that their objective values are identical.

/L
[ Equivalence: a correspondence (not necessarily a bijection) }
7

When switching from maximization to
minimization, sign of objective value changes.

E:';.! IIl. Linear Programming Standard and Slack Forms 10



Converting into Standard Form (1/5)

Reasons for a LP not being in standard form:
1. The objective might be a minimization rather than maximization.
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Converting into Standard Form (1/5)

i

i
"-.E -,

Reasons for a LP not being in standard form:
1. The objective might be a minimization rather than maximization.

| minimize -2x1 + 3x|
subject to
X4 + X2 = 7
X1 — 2X2 < 4
X1 > 0
Ill. Linear Programming Standard and Slack Forms 11



Converting into Standard Form (1/5)

Reasons for a LP not being in standard form:

1. The objective might be a minimization rather than maximization.

| minimize ~ —2x;  + 3x]
subject to

X4 + X2 = 7

X1 — 2X2 < 4

X4 > 0
|
|
i Negate objective function
v
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Converting into Standard Form (1/5)

Reasons for a LP not being in standard form:

1. The objective might be a minimization rather than maximization.

| minimize ~ —2x;  + 3x]
subject to
X4 + X2 = 7
X1 — 2X2 < 4
X1 > 0
|
|
i Negate objective function
v
| maximize 2x — 3x |
subject to
X1 -+ X2 = 7
XxxT — 2% < 4
X1 2 0

i

-'-.E;- Ill. Linear Programming
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Converting into Standard Form (2/5)

Reasons for a LP not being in standard form:
2. There might be variables without nonnegativity constraints.
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Converting into Standard Form (2/5)

Reasons for a LP not being in standard form:
2. There might be variables without nonnegativity constraints.

maximize 2x1 — 3x

subject to
X1 + X = 7
X1 — 2X2 < 4
X1 > 0 ‘

i
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Converting into Standard Form (2/5)

Reasons for a LP not being in standard form:
2. There might be variables without nonnegativity constraints.

maximize 2x; — 3%
subject to
X1 + X = 7
X1 — 2X2 < 4
i > 0

|
! Replace x> by two non-negative
\}’ variables x; and x5’

Ill. Linear Programming Standard and Slack Forms 12



Converting into Standard Form (2/5)

Reasons for a LP not being in standard form:
2. There might be variables without nonnegativity constraints.

maximize 2x; — 3%
subject to
X1 + X = 7
X1 — 2X2 < 4
i > 0

|
! Replace x> by two non-negative
\}’ variables x; and x5’

maximize 2x; — |3x3 + 3x§

subject to

Xy 4+ | x - xy
X — 2 + 2x)
X1, Xé? X2/

IVIIA I
o~ N

s
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Converting into Standard Form (3/5)

Reasons for a LP not being in standard form:
3. There might be equality constraints.
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Converting into Standard Form (3/5)

Reasons for a LP not being in standard form:

3. There might be equality constraints.

maximize 2x; — 3x5
subject to
x + X
Xy —  2X
! 1
X1, Xo, Xo

i

IV AIAL
[<IENEN]
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Converting into Standard Form (3/5)

Reasons for a LP not being in standard form:
3. There might be equality constraints.

maximize 2x; — 3x3 + 3x§
subject to
x + x5 - X = 7]
X1 — 2x5 + 2x5 < 4
X1, Xy, X5 > 0

i Replace each equality
\}’ by two inequalities.

Ill. Linear Programming Standard and Slack Forms 13



Converting into Standard Form (3/5)

Reasons for a LP not being in standard form:

3. There might be equality constraints.

maximize
subject to

maximize
subject to

S

2y — 3x5 + 3x)
x + x5 - Xy =7
X1 — 2x5 + 2x5 < 4
X1, Xé? XEN Z 0
|
! Replace each equality
\}’ by two inequalities.
2y — 3x3 + 3x)
x + x5 - x5 < 7
XX+ % - x> 7
Xy — 2% + 2x5 < 4
X1, X5, X5 > 0

-;.E;- Ill. Linear Programming

Standard and Slack Forms



Converting into Standard Form (4/5)

Reasons for a LP not being in standard form:
4. There might be inequality constraints (with > instead of <).
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Converting into Standard Form (4/5)

Reasons for a LP not being in standard form:
4. There might be inequality constraints (with > instead of <).

maximize 2xy — 3x3 + 3x3
subject to
Xt + X - x < 7
Cx + X - x> 7]
X — 2x + 2x5 < 4
X1, X5, X3 > 0

Il Linear Programming Standard and Slack Forms 14



Converting into Standard Form (4/5)

Reasons for a LP not being in standard form:
4. There might be inequality constraints (with > instead of <).

maximize 2x; — 3x5 + 3x
subject to
Xt + X - x < 7
Cx + X - x> 7]
Xy — 2x5 + 2x5 < 4
> 0

v
X1, Xo, Xo
|

|
i Negate respective inequalities.
|

Y

i
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Converting into Standard Form (4/5)

Reasons for a LP not being in standard form:
4. There might be inequality constraints (with > instead of <).

maximize 2x; — 3x5 + 3x
subject to
Xt + X - x < 7
Cx + X - x> 7]
Xy — 2x5 + 2x5 < 4
X1, X5, X5 > 0
|
|
i Negate respective inequalities.
v
maximize 2x; — 3x5 + 3x
subject to
x + x5 - x) < 7
- - x5 + x < 7]
Xy — 2% + 2x5 < 4
X1, Xa, X5 > 0

s

.-,.E;. IIl. Linear Programming Standard and Slack Forms 14



Converting into Standard Form (5/5)

maximize 2x1 —
subject to
X1+
X1 —
X1, X2, X3

3X2

X2
X2
2X2

- -

3X3

X3
X3
2X3

IV IANINIA

IIl. Linear Programming
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Converting into Standard Form (5/5)

[Rename variable names (for consistency). ]

N
maximize 2xy — 33X + 3x3
subject to
X1+ Xo — X3 <
-Xi - X2 + X3 <
X1 — 2% + 2x3 <
X1, X2, X3 >

IIl. Linear Programming

Standard and Slack Forms



Converting into Standard Form (5/5)

(Rename variable names (for consistency). ]

N
maximize 2xy — 33X + 3x3
subject to
XX 4+ X - x3 < 7
-x1 - X + x3 < =7
X1 — 2% + 2x3 < 4
X1, X2, X3 > 0

It is always possible to convert a linear program into standard form.

i
IIl. Linear Programming Standard and Slack Forms



Converting Standard Form into Slack Form (1/3)

i

Goal: Convert standard form into slack form, where all constraints
except for the non-negativity constraints are equalities.
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Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints
except for the non-negativity constraints are equalities.

/)

/L
For the simplex algorithm, it is more con-
venient to work with equality constraints.

i
IIl. Linear Programming Standard and Slack Forms



Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints
except for the non-negativity constraints are equalities.

/)

/L

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Introducing Slack Variables

i
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Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints
except for the non-negativity constraints are equalities.

/)

/L

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Introducing Slack Variables

= Let 2721 ajx; < b; be an inequality constraint

S
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Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints
except for the non-negativity constraints are equalities.

/)

/L

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Introducing Slack Variables

= Let 2721 ajx; < b; be an inequality constraint
= Introduce a slack variable s by

S
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Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints
except for the non-negativity constraints are equalities.

/)

/L

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Introducing Slack Variables

= Let 2721 ajx; < b; be an inequality constraint
= Introduce a slack variable s by

n
s=b—>_ a
=

S
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Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints
except for the non-negativity constraints are equalities.

/)

/L
For the simplex algorithm, it is more con-
venient to work with equality constraints.

Introducing Slack Variables

= Let 2721 ajx; < b; be an inequality constraint
= Introduce a slack variable s by

n
s=b—>_ a
=

s>0.

S
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Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints
except for the non-negativity constraints are equalities.

/)

/L
For the simplex algorithm, it is more con-
venient to work with equality constraints.

Introducing Slack Variables

= Let 2721 ajx; < b; be an inequality constraint
= Introduce a slack variable s by

[

n
s=bi— ) ajX
s measures the slack between } ' ; v

the two sides of the inequality. >0

i
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Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints
except for the non-negativity constraints are equalities.

/)

/L
For the simplex algorithm, it is more con-
venient to work with equality constraints.

Introducing Slack Variables

= Let 2721 ajx; < b; be an inequality constraint
= Introduce a slack variable s by

[

n
s=bi— ) ajX
s measures the slack between } ' ; v

the two sides of the inequality.
s> 0.

= Denote slack variable of the ith inequality by X,

i
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Converting Standard Form into Slack Form (2/3)

maximize
subject to

2X1 — 3 + 3x3

X1+ X2 - X3

-X1 = X2+ X3

Xy — 22X +  2x3
X1, X2, X3

IV ININIA

IIl. Linear Programming
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Converting Standard Form into Slack Form (2/3)

maximize 2x1 — 3x + 3x3
subject to
Xy + X2 - X3 < 7
-x - X + x < -7
X1 — 2% + 2x3 < 4
X1, X2, X3 > 0

|
|
| Introduce slack variables
|
v

i
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Converting Standard Form into Slack Form (2/3)

maximize 2x1 — 3x + 3x3
subject to
Xy + X2 - X3 < 7
-x - X + x < -7
X1 — 2% + 2x3 < 4
X1, X2, X3 > 0

|
|
| Introduce slack variables
|
v

subject to

S
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Converting Standard Form into Slack Form (2/3)

maximize 2xy — 3x2 + 3x3
subject to
X1+ Xo - X3 <
-x - X + x < -7
Xy — 2% + 2x3 <
X1, X2, X3 >
|
|
| Introduce slack variables
v
subject to
Xy 7 — X1 — X2

X5

IIl. Linear Programming
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Converting Standard Form into Slack Form (2/3)

maximize
subject to

subject to

2X1 — 3 + 3x3
X1+ Xo - X3 <
-X1 - X2+ x3 < =7
Xy — 2% + 2x3 <
X1, X2, X3 >
|
|
i Introduce slack variables
v
X4 = 7 - X1 - X +
Xs = —7 4+ X3 + X -
X6 = 4 — X4 + 2X2 -

X3
X3
2X3

IIl. Linear Programming
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Converting Standard Form into Slack Form (2/3)

maximize 2xy — 33X + 3x3
subject to
Xy + X - x3 < 7
—-Xi - X + x3 < =7
Xy — 22X +  2x3 < 4
X1, X2, X3 > 0

|
|
i Introduce slack variables
|
v

subject to
X4 = 7 — X1 - X2 + X3
Xxs = -7 + X1+ X2 = X3
Xs = 4 — X1 +  2x —  2X3
X1, X2, X3, X4, X5, Xs > 0
Ill. Linear Programming Standard and Slack Forms 17



Converting Standard Form into Slack Form (2/3)

maximize
subject to

maximize
subject to

2

Xa
X5
X6

X1 — 3x2 + 3x3
X1+ X2 - X3
X1 = X2+ X3
X1 — 2X2 + 2X3
X1, X2, X3
I
I
l
\Z
2X1
= 7 — X1
= -7 + X1
= 4 — X1

X1, X2, X3, X4, X5, Xe

vV + +

IV ININIA

Introduce slack variables

32  +
X2+
Xo —

2X2 —

0

3X3

X3
X3
2X3

IIl. Linear Programming
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Converting Standard Form into Slack Form (3/3)

maximize
subject to
X4
X5
Xe

7
-7
4

X1, X2, X3, X4, X5, Xg

2X1

X
Xi
X

vV + +

3X2

X2
X2
2X2

3X3

X3
X3
2X3

IIl. Linear Programming

Standard and Slack Forms



Converting Standard Form into Slack Form (3/3)

maximize 2x; — 3x + 3x3
subject to
X4 = 7 — X1 — Xo + X3
Xs = -7 + X1+ X2 — X3
X6 = 4 — Xy + 2X — 2X3
X1, X2, X3, X4, X5, Xs > 0

|
! Use variable z to denote objective function
\}’ and omit the nonnegativity constraints.

Sl
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Converting Standard Form into Slack Form (3/3)

maximize 2x; — 3x + 3x3
subject to
X4 = 7 — X1 — Xo + X3
Xs = -7 + X1+ X2 — X3
X6 = 4 — Xy + 2X — 2X3
X1, X2, X3, X4, X5, Xs > 0

|
! Use variable z to denote objective function
\}’ and omit the nonnegativity constraints.

z = 2xy — 33X + 3x3 \
X4 = 7 - Xy — X2 =+ X3
Xs = -7 + X1 + X2 - X3
Xs = 4 — Xy +  2x —  2X3

5
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Converting Standard Form into Slack Form (3/3)

maximize 2x; — 3x + 3x3
subject to
X4 = 7 — X1 — Xo + X3
Xs = -7 + X1+ X2 — X3
X6 = 4 — Xy + 2X — 2X3
X1, X2, X3, X4, X5, Xs > 0

|
! Use variable z to denote objective function
\}’ and omit the nonnegativity constraints.

z = 2xy — 33X + 3x3 \

X4 = 7 - Xq — X2 + X3

Xxs = -7 + Xy + X2 - X3

X6 = 4 — X1 + 2% — 2x3
/1

[This is called slack form.j

Sl
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Basic and Non-Basic Variables

V4 =

X4 = 7 —
Xs = -7 +
X6 = 4 —

2x1 — 33X
X1 — X2
X1+ X2
X1 4+ 2x

3X3
X3
X3
2X3

i
Il Linear Programming

Standard and Slack Forms



Basic and Non-Basic Variables

V4 =

X4 = 7 —

Xxs = -7 +

X6 = 4 —
A

[Basic Variables: B = {4,5,6} ]

2x1 — 33X
X1 — X2
X1+ X2
X1 4+ 2x

3X3
X3
X3
2X3

i
R IIl. Linear Programming
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Basic and Non-Basic Variables

z = 2xy — 3x + 3x3

X4 = 7 - X1 — X2 + X3

X5 = —7 4+ X1 + X - X3

X6 = 4 — X1 +  2X -  2X3
/1 N

[Basic Variables: B = {4,5,6} ] [Non-Basic Variables: N = {1,2,3} ]

SRS IIl. Linear Programming Standard and Slack Forms 19



Basic and Non-Basic Variables

z = 2xy — 3x + 3x3
X4 = 7 - X4 — Xo + X3
Xxs = -7 + X1+ X2 — X3
X6 = 4 — X1 +  2X -  2X3

[Basic Variables: B = {4,5,6} ] [Non-Basic Variables: N = {1,2,3} ]

Slack Form (Formal Definition)

Slack form is given by a tuple (N, B, A, b, ¢, v) so that
z=v+Y oy
JEN
Xi=b =Y ajx forieB,
jEN

and all variables are non-negative.

i
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Basic and Non-Basic Variables

z = 2xy — 3x + 3x3

X4 = 7 - X1 — X2 + X3

X5 = -7 4+ Xy + Xo - X3

X6 = 4 — X1 +  2X -  2X3
i N

[Basic Variables: B = {4,5,6} ] [Non-Basic Variables: N = {1,2,3} ]

Slack Form (Formal Definition)

Slack form is given by a tuple (N, B, A, b, ¢, v) so that
z=v+Y oy
JEN
Xi=b =Y ajx forieB,
jEN

and all variables are non-negative.  \
4[Variables/Coefficients on the right hand side are indexed by B and N. ]

S
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Slack Form (Example)

V4 =

X1 =

Xo =

X4 =

28

X _ X
6 6
X Xs
58 T 6
8 2%
3 3
X Xs
> T2

Sl
< B Ill. Linear Programming

Standard and Slack Forms
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Slack Form (Example)

x4:18—§+§

Slack Form Notation

i
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Slack Form (Example)

x4:18—§+§

Slack Form Notation

= B={1,2,4}, N={3,5,6}

i

‘-,‘E',‘ IIl. Linear Programming Standard and Slack Forms

20



Slack Form (Example)

Z =

X1 =

Xo =

X4 =

Slack Form Notation

28

_ Xk X 2%
6 6 3

ass
A= | axm
aas

ais
ass
aas

= B={1,2,4}, N={3,5,6}

aie
aoe
=213

-1/6 —1/6 1/3
) = (8/3 2/3 —1/3)
12 -1/2 0

Sl

-;.E;- 1ll. Linear Programming

Standard and Slack Forms
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Slack Form (Example)

x4_18—%+%

Slack Form Notation
= B={1,2,4}, N={3,5,6}

a3 a5 as -1/6 -1/6 1/3
A= |axs as as| = 8/3 2/3 -1/3
as3 Aa45 Qs 1/2 —1 /2 0

00

Ill. Linear Programming Standard and Slack Forms 20



Slack Form (Example)

x4_18—%+%

Slack Form Notation

- B={1,2,4}, N = {3,5,6}

a3 as  ae -1/6 —-1/6 1/3
A= dxz dos dop | = 8/3 2/3 —1/3
as3 Aa45 Qs 1/2 —1 /2 0

b1 8 C3 —1/6
NCNORCRE
bs 18 G —2/3

Standard and Slack Forms



Slack Form (Example)

Z =

X1 =

Xo B

X4 =

Slack Form Notation

18 - 2 + 2

v =28

B={1,2,4}, N = {3,5,6}

a5 aie —1/6 —1/6 1/3
dxs dog | = 8/3 2/3 —1/3
ass Aae 1/2 —1/2 0

)-(E) = () ()

IIl. Linear Programming

Standard and Slack Forms

20



The Structure of Optimal Solutions

Definition
A point x is a vertex if it cannot be represented as a strict convex combi-
nation of two other points in the feasible set.

5
IIl. Linear Programming Standard and Slack Forms
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The Structure of Optimal Solutions

A point x is a vertex if it cannot be represented as a strict convex combi-

Definition
nation of two other points in the feasible set. ]

AN

-
LThe set of feasible solutions is a convex set. ]
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The Structure of Optimal Solutions

——— Definition

A point x is a vertex if it cannot be represented as a strict convex combi-

nation of two other points in the feasible set.

—— Theorem

-
LThe set of feasible solutions is a convex set

If there exists an optimal solution, one of them occurs at a vertex.

5

Sl
o 5
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The Structure of Optimal Solutions

——— Definition

A point x is a vertex if it cannot be represented as a strict convex combi-

nation of two other points in the feasible set.

-
LThe set of feasible solutions is a convex set.

—— Theorem

If there exists an optimal solution, one of them occurs at a vertex.

\.

5

Proof:
= Let x be an optimal solution which is not a vertex
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The Structure of Optimal Solutions

——— Definition

A point x is a vertex if it cannot be represented as a strict convex combi-

nation of two other points in the feasible set.

-
LThe set of feasible solutions is a convex set.

—— Theorem

If there exists an optimal solution, one of them occurs at a vertex.

\.

5

Proof:
= Let x be an optimal solution which is not a vertex
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The Structure of Optimal Solutions

——— Definition

A point x is a vertex if it cannot be represented as a strict convex combi-
nation of two other points in the feasible set.

AN

-
LThe set of feasible solutions is a convex set. ]

—— Theorem
If there exists an optimal solution, one of them occurs at a vertex.

5

\.

Proof:

= Let x be an optimal solution which is not a vertex
=- J vector d so that x — d and x + d are feasible
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The Structure of Optimal Solutions

——— Definition

A point x is a vertex if it cannot be represented as a strict convex combi-
nation of two other points in the feasible set.

AN

-
LThe set of feasible solutions is a convex set. ]

—— Theorem
If there exists an optimal solution, one of them occurs at a vertex.

5

\.

Proof:

= Let x be an optimal solution which is not a vertex
=- J vector d so that x — d and x + d are feasible
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The Structure of Optimal Solutions

——— Definition

A point x is a vertex if it cannot be represented as a strict convex combi-
nation of two other points in the feasible set.

AN

-
LThe set of feasible solutions is a convex set. ]

—— Theorem
If there exists an optimal solution, one of them occurs at a vertex.

5

\.

Proof:

= Let x be an optimal solution which is not a vertex
=- J vector d so that x — d and x + d are feasible

* Since A(x +d)=band Ax=b=Ad =0
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The Structure of Optimal Solutions

——— Definition

A point x is a vertex if it cannot be represented as a strict convex combi-

nation of two other points in the feasible set.

-
LThe set of feasible solutions is a convex set.

—— Theorem

If there exists an optimal solution, one of them occurs at a vertex.

\.

5

Proof:

= Let x be an optimal solution which is not a vertex
=- J vector d so that x — d and x + d are feasible

* Since A(x +d)=band Ax=b=Ad =0
= W.l.o.g. assume ¢’ d > 0 (otherwise replace d by —d)
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The Structure of Optimal Solutions

——— Definition

A point x is a vertex if it cannot be represented as a strict convex combi-

nation of two other points in the feasible set.

-
LThe set of feasible solutions is a convex set.

—— Theorem

If there exists an optimal solution, one of them occurs at a vertex.

\.

5

Proof:

= Let x be an optimal solution which is not a vertex
=- J vector d so that x — d and x + d are feasible

* Since A(x +d)=band Ax=b=Ad =0
= W.l.o.g. assume ¢’ d > 0 (otherwise replace d by —d)
= Consider x + Ad as a functionof A > 0
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The Structure of Optimal Solutions

— Definition N\
A point x is a vertex if it cannot be represented as a strict convex combi-

nation of two other points in the feasible set.

-
LThe set of feasible solutions is a convex set.

——— Theorem N
If there exists an optimal solution, one of them occurs at a vertex.
Proof:

= Let x be an optimal solution which is not a vertex
=- J vector d so that x — d and x + d are feasible

* Since A(x +d)=band Ax=b=Ad =0
= W.l.o.g. assume ¢’ d > 0 (otherwise replace d by —d)
= Consider x + Ad as a functionof A > 0

= Case 1: There exists j with d; < 0

i
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The Structure of Optimal Solutions

— Definition N\
A point x is a vertex if it cannot be represented as a strict convex combi-

nation of two other points in the feasible set.

-
LThe set of feasible solutions is a convex set.

——— Theorem N
If there exists an optimal solution, one of them occurs at a vertex.
Proof:

= Let x be an optimal solution which is not a vertex
=- J vector d so that x — d and x + d are feasible

* Since A(x +d)=band Ax=b=Ad =0
= W.l.o.g. assume ¢’ d > 0 (otherwise replace d by —d)
= Consider x + Ad as a functionof A > 0

= Case 1: There exists j with d; < 0

= Increase X from 0 to \’ until a2 new entry of x + Ad
becomes zero
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The Structure of Optimal Solutions

— Definition N\
A point x is a vertex if it cannot be represented as a strict convex combi-

nation of two other points in the feasible set.

-
LThe set of feasible solutions is a convex set.

——— Theorem N
If there exists an optimal solution, one of them occurs at a vertex.
Proof:

= Let x be an optimal solution which is not a vertex
=- J vector d so that x — d and x + d are feasible

* Since A(x +d)=band Ax=b=Ad =0
= W.l.o.g. assume ¢’ d > 0 (otherwise replace d by —d)
= Consider x + Ad as a functionof A > 0

= Case 1: There exists j with d; < 0

= Increase X from 0 to \’ until a2 new entry of x + Ad
becomes zero

= X + \d feasible, since A(x + \'d) = Ax = band
X+MNd>0
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EEE Ill. Linear Programming Standard and Slack Forms



The Structure of Optimal Solutions

— Definition N\
A point x is a vertex if it cannot be represented as a strict convex combi-
nation of two other points in the feasible set.

-
LThe set of feasible solutions is a convex set.

——— Theorem N
If there exists an optimal solution, one of them occurs at a vertex.
Proof:

= Let x be an optimal solution which is not a vertex
=- J vector d so that x — d and x + d are feasible

* Since A(x +d)=band Ax=b=Ad =0
= W.l.o.g. assume ¢’ d > 0 (otherwise replace d by —d)
= Consider x + Ad as a functionof A > 0

= Case 1: There exists j with d; < 0

= Increase X from 0 to \’ until a2 new entry of x + Ad
becomes zero

= X + \d feasible, since A(x + \'d) = Ax = band
X+MNd>0

s cT(x+XNd)=cTx+c"Nd>cTx
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The Structure of Optimal Solutions

— Definition N\
A point x is a vertex if it cannot be represented as a strict convex combi-

nation of two other points in the feasible set.

-
LThe set of feasible solutions is a convex set.

——— Theorem N
If there exists an optimal solution, one of them occurs at a vertex.
Proof:

= Let x be an optimal solution which is not a vertex
=- J vector d so that x — d and x + d are feasible

* Since A(x +d)=band Ax=b=Ad =0
= W.l.o.g. assume ¢’ d > 0 (otherwise replace d by —d)
= Consider x + Ad as a functionof A > 0

= Case 2: Forallj,d; >0
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The Structure of Optimal Solutions

— Definition N\
A point x is a vertex if it cannot be represented as a strict convex combi-

nation of two other points in the feasible set.

-
LThe set of feasible solutions is a convex set.

——— Theorem N
If there exists an optimal solution, one of them occurs at a vertex.
Proof:

= Let x be an optimal solution which is not a vertex
=- J vector d so that x — d and x + d are feasible

* Since A(x +d)=band Ax=b=Ad =0
= W.l.o.g. assume ¢’ d > 0 (otherwise replace d by —d)
= Consider x + Ad as a functionof A > 0

= Case 2: Forallj,d; >0

= x + A\d is feasible for all A > 0: A(x + Ad) = b and
X+AXd>x>0
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The Structure of Optimal Solutions

— Definition N\
A point x is a vertex if it cannot be represented as a strict convex combi-

nation of two other points in the feasible set.

-
LThe set of feasible solutions is a convex set.

——— Theorem N
If there exists an optimal solution, one of them occurs at a vertex.
Proof:

= Let x be an optimal solution which is not a vertex
=- J vector d so that x — d and x + d are feasible

* Since A(x +d)=band Ax=b=Ad =0
= W.l.o.g. assume ¢’ d > 0 (otherwise replace d by —d)
= Consider x + Ad as a functionof A > 0

= Case 2: Forallj,d; >0

= x + A\d is feasible for all A > 0: A(x + Ad) = b and
X+Xd>x>0
= If A — oo, then cT(x + Ad) — oo

i
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The Structure of Optimal Solutions

— Definition N\
A point x is a vertex if it cannot be represented as a strict convex combi-

nation of two other points in the feasible set.

-
LThe set of feasible solutions is a convex set.

——— Theorem N
If there exists an optimal solution, one of them occurs at a vertex.
Proof:

= Let x be an optimal solution which is not a vertex
=- J vector d so that x — d and x + d are feasible

* Since A(x +d)=band Ax=b=Ad =0
= W.l.o.g. assume ¢’ d > 0 (otherwise replace d by —d)
= Consider x + Ad as a functionof A > 0

= Case 2: Forallj,d; >0

= x + A\d is feasible for all A > 0: A(x + Ad) = b and
X+AXd>x>0
= If A — oo, then cT(x + Ad) — oo
= This contradicts the assumption that there exists an
optimal solution.
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The Structure of Optimal Solutions

— Definition N\
A point x is a vertex if it cannot be represented as a strict convex combi-

nation of two other points in the feasible set.

-
LThe set of feasible solutions is a convex set.

——— Theorem N
If there exists an optimal solution, one of them occurs at a vertex.
Proof:

= Let x be an optimal solution which is not a vertex
=- J vector d so that x — d and x + d are feasible

* Since A(x +d)=band Ax=b=Ad =0
= W.l.o.g. assume ¢’ d > 0 (otherwise replace d by —d)
= Consider x + Ad as a functionof A > 0

= Case 2: Forallj,d; >0

= x + A\d is feasible for all A > 0: A(x + Ad) = b and
X+AXd>x>0
= If A — oo, then cT(x + Ad) — oo
= This contradicts the assumption that there exists an
optimal solution. O
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Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V
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Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight

fromsto tin G
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Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight

fromstotin G

p=(w=sWw,...,V = t)such that
w(p) = K, w(vk_1, vi) is minimized.
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Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight

fromstotin G

p=(w=sWw,...,V = t)such that
w(p) = K, w(vk_1, vi) is minimized.
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Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight

fromsto tin G

p=(w=sWw,...,V = t)such that
w(p) = K, w(vk_1, vi) is minimized.

Shortest Paths as LP

subject to
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Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight

fromsto tin G

p=(w=sWw,...,V = t)such that
w(p) = K, w(vk_1, vi) is minimized.

Shortest Paths as LP

subject to
d, + w(u,v) foreachedge (u,v)e€E,

0.

ady
ds

1IN

Formulating Problems as Linear Programs 23

Il Linear Programming



Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight

fromsto tin G

p=(w=sWw,...,V = t)such that
w(p) = K, w(vk_1, vi) is minimized.

Shortest Paths as LP

maximize d

subject to
d < dv + w(uv) foreachedge (u,v)cecE,
d = 0.
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Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight

fromsto tin G

[p = (w = S, Vi,...,¥ = t) such that}

w(p) = K, w(vk_1, vi) is minimized.

Shortest Paths as LP

maximize o
subject to
d, + w(u,v) foreachedge (u,v)e€E,

0.

dv

7 d
[this is a maxi- 1 s

A

mization problem! )
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Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight
fromstotin G

[p = (w = S, Vi,...,¥ = t) such that}

w(p) = K, w(vk_1, vi) is minimized.

maximize a all these inequalities are satisfied.

subject to =
dv d, + w(u,v) foreachedge (u,v)e€E,

% d 0
this is a maxi- 1 s '
mization problem! )
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Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight
fromstotin G

[p = (w = S, Vi,...,¥ = t) such that}

w(p) = K, w(vk_1, vi) is minimized.

Shortest Paths as LP Recall: When BELLMAN-FORD terminates,
all these inequalities are satisfied.

[

maximize o:
subject to =
Y d < dv + w(uv) foreachedge (u,v)cecE,
this is a maxi- b = 0 ~
mization problem! Solution d satisfies dy = miny. (u,v)ee {Bu + w(u, v)}J
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Maximum Flow

Maximum Flow Problem

= Given: directed graph G = (V, E) with edge capacities ¢ : E — R™,
pair of vertices s,t € V

s
.‘,_n.-,
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Maximum Flow

Maximum Flow Problem

= Given: directed graph G = (V, E) with edge capacities ¢ : E — R™,
pair of vertices s,t € V
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Maximum Flow

Maximum Flow Problem
= Given: directed graph G = (V, E) with edge capacities ¢ : E — R™,
pair of vertices s,t € V

= Goal: Find a maximum flow f : V x V — R from s to t which
satisfies the capacity constraints and flow conservation

0/10
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Maximum Flow

Maximum Flow Problem
= Given: directed graph G = (V, E) with edge capacities ¢ : E — R™,
pair of vertices s,t € V

= Goal: Find a maximum flow f : V x V — R from s to t which
satisfies the capacity constraints and flow conservation

@ If| =19
O, ® ® ®
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Maximum Flow

Maximum Flow Problem

= Given: directed graph G = (V, E) with edge capacities ¢ : E — R™,
pair of vertices s,t € V

= Goal: Find a maximum flow f: V x V — R from s to t which
satisfies the capacity constraints and flow conservation

@ If| =19
O, ® ® ®

Maximum Flow as LP

maximize Svevfov = Devhs
subject to
for < c(u,v) foreachu,veV,
Dweviw = Y ,cyfw foreachue V\{s,t},
fon > 0 foreachu,veV.
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Minimum-Cost Flow

[Extension of the Maximum Flow Problem]

Minimum-Cost-Flow Problem LA

Ill. Linear Programming
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Minimum-Cost Flow

[Extension of the Maximum Flow Problem]

Minimum-Cost-Flow Problem LA

= Given: directed graph G = (V, E) with capacities ¢ : E — R, pair of
vertices s, t € V, cost function a: E — R, flow demand of d units
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Minimum-Cost Flow

[Extension of the Maximum Flow Problem]
Minimum-Cost-Flow Problem LA

= Given: directed graph G = (V, E) with capacities ¢ : E — R, pair of
vertices s, t € V, cost function a: E — R, flow demand of d units

= Goal: Findaflow f: V x V — R from s to t with |f| = d while

minimising the total cost 3°, )¢ a(u, v)fu incurrred by the flow.
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Minimum-Cost Flow

[Extension of the Maximum Flow Problem]
Minimum-Cost-Flow Problem LA

= Given: directed graph G = (V, E) with capacities ¢ : E — R, pair of
vertices s, t € V, cost function a: E — R, flow demand of d units

= Goal: Findaflow f: V x V — R from s to t with |f| = d while
minimising the total cost 3°, )¢ a(u, v)fu incurrred by the flow.

Figure 29.3 (a) An example of a minimum-cost-flow problem. We denote the capacities by ¢ and
the costs by a. Vertex s is the source and vertex ¢ is the sink, and we wish to send 4 units of flow
from s to 7. (b) A solution to the minimum-cost flow problem in which 4 units of flow are sent from s
to t. For each edge, the flow and capacity are written as flow/capacity.
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Minimum-Cost Flow

[Extension of the Maximum Flow Problem]
Minimum-Cost-Flow Problem LA

= Given: directed graph G = (V, E) with capacities ¢ : E — R, pair of
vertices s, t € V, cost function a: E — R, flow demand of d units

= Goal: Findaflow f: V x V — R from s to t with |f| = d while
minimising the total cost 3°, )¢ a(u, v)fu incurrred by the flow.

[Optimal Solution with total cost:

2wnee AU V)fuy = (2:2)+(5-2)+(3-1) +(7-1)+(1-3) = 27

Figure 29.3 (a) An example of a minimum-cost-flow problem. We denote the capacities by ¢ and
the costs by a. Vertex s is the source and vertex ¢ is the sink, and we wish to send 4 units of flow
from s to 7. (b) A solution to the minimum-cost flow problem in which 4 units of flow are sent from s
to t. For each edge, the flow and capacity are written as flow/capacity.
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Minimum-Cost Flow as a LP

Minimum Cost Flow as LP

minimize D wwyee U, V)fu
subject to
fw < c(u,v) foreachu,veV,
Sveviu =2 eyfw = 0 foreachu e V\ {s,t},
Evevfsv - Evevas = d,
fw > 0 for each u,v € V.
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Minimum-Cost Flow as a LP

Minimum Cost Flow as LP

minimize D wwyee U, V)fu
subject to
fw < c(u,v) foreachu,veV,
Sveviu =2 eyfw = 0 foreachu e V\ {s,t},
Zvevfsv - Evevas = d,
fw > 0 foreach u,v € V.

Real power of Linear Programming comes
from the ability to solve new problems!

Ill. Linear Programming Formulating Problems as Linear Programs
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Simplex Algorithm: Introduction

Simplex Algorithm

= classical method for solving linear programs (Dantzig, 1947)
= usually fast in practice although worst-case runtime not polynomial
= iterative procedure somewhat similar to Gaussian elimination

i
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Simplex Algorithm: Introduction

Simplex Algorithm

= classical method for solving linear programs (Dantzig, 1947)
= usually fast in practice although worst-case runtime not polynomial
= iterative procedure somewhat similar to Gaussian elimination

Basic Idea:
= Each iteration corresponds to a “basic solution” of the slack form

= All non-basic variables are 0, and the basic variables are
determined from the equality constraints

= Each iteration converts one slack form into an equivalent one while
the objective value will not decrease

= Conversion (“pivoting”) is achieved by switching the roles of one
basic and one non-basic variable

i
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Simplex Algorithm: Introduction

Simplex Algorithm

= classical method for solving linear programs (Dantzig, 1947)
= usually fast in practice although worst-case runtime not polynomial
= iterative procedure somewhat similar to Gaussian elimination

Basic Idea:
= Each iteration corresponds to a “basic solution” of the slack form

= All non-basic variables are 0, and the basic variables are
determined from the equality constraints

= Each iteration converts one slack form into an equivalent one while
the objective value will not decrease < In that sense, itis a greedy algorithm. |

= Conversion (“pivoting”) is achieved by switching the roles of one
basic and one non-basic variable

Sl
o 5
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Extended Example: Conversion into Slack Form

maximize 3x;  + X + 2Xx3

subject to
X4 + x + 3x < 30
2X4 +  2Xx + 5x3 < 24
4x;  + X + 2x3 < 36
X1, X2, X3 > 0

i
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Extended Example: Conversion into Slack Form

maximize 3x
subject to

Sl
o 5

X1
2X1
4x4

+++

X2 +
X2+
2% +
X2+
X17X27X3
|
|
l
v

2X3

3x3 < 30

5x3 < 24

2X3 < 36
> 0

Conversion into slack form
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Extended Example: Conversion into Slack Form

maximize 3x
subject to

Sl
o 5

X1
2X1
4x4

X4
X5
Xe

30
24
36

2X3

3X3
5X3
2X3

IV IAIAIA

30
24
36

0

Conversion into slack form

3X1

X
2X1
4X1

+

X2
X2
2X2
X2

2X3
3X3
5X3
2X3
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Extended Example:

lteration 1

X4

X5

X6

3x;  +
X1 —
2X: 1 —

4X1 —

X2
X2
2X2

X2

2X3
3X3
5X3

2X3

S
< B Ill. Linear Programming

Simplex Algorithm
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Extended Example:

lteration 1

z = 3x;  + Xo

Xxs = 30 -— Xy = X2

Xxs = 24 — 2x9 — 2X

X6 = 36 — 4x4 - Xo
7

[Basic solution: (x1,X2,...,Xs) = (0,0,0, 30,24, 36) J

o 5

2X3
3X3
5X3

2X3

IIl. Linear Programming

Simplex Algorithm
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Extended Example: Iteration

1

z =
xs = 30
xXs = 24
Xs = 36

3x;  +
X1 —
2X1 —

4X1 —

X2
X2
2X2

X2

[Basic solution: (x1,X2,...,Xs) = (0,0,0, 30,24, 36) J

/1
7|
[This basic solution is feasible]

2X3
3X3
5X3

2X3

o 5, IIl. Linear Programming

Simplex Algorithm
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Extended Example: Iteration 1
z = 3 4+ X 2X3
X2 = 30 -— X1 - Xo 3x3
Xxs = 24 — 2x1 — 2X 5x3
X6 = 36 — 4x4 - Xo 2X3
7

[Basic solution: (x1,X2,...,Xs) = (0,0,0, 30,24, 36) ]
N

N
/1

[This basic solution is feasible] [Objective value is O.]

o 5, IIl. Linear Programming

Simplex Algorithm
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Extended Example: Iteration 1

[Increasing the value of x; would increase the objective value.]

v
z = 3x;  + X2 + 2X3
X4 = 30 — X1 — X2 — 3X3
Xs = 24 — 2x1 — 2Xx2 — 5x3
X6 = 36 — 4x4 — X2 — 2X3

A
[Basic solution: (x1,X2,...,Xs) = (0,0,0, 30,24, 36) ]
N

/1
vd)
[This basic solution is feasible] [Objective value is O.]
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Extended Example: Iteration 1

[Increasing the value of x; would increase the objective value.]

v
z = 3x;  + X2 + 2X3
X2 = 30 -— Xy - X2 — 3X3
Xs = 24 — 2x1 — 2Xx2 — 5x3
X6 = 36 — 4x4 - Xo — 2X3

N
[The third constraint is the tightest and limits how much we can increase x; ]
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Extended Example: Iteration 1

[Increasing the value of x; would increase the objective value.]

v
z = 3x;  + X2 + 2X3
X4 = 30 — X1 — X2 — 3X3
Xs = 24 — 2x1 — 2Xx2 — 5x3
X6 = 36 — 4x4 — X2 — 2X3
N
[The third constraint is the tightest and limits how much we can increase x; ]
A\
( A
Switch roles of x; and xs:
(& J
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Extended Example: Iteration 1

[Increasing the value of x; would increase the objective value.]

v
z = 3x;  + X2 + 2X3
X4 = 30 — X1 — X2 — 3X3
Xs = 24 — 2x1 — 2Xx2 — 5x3
X6 = 36 — 4x4 — X2 — 2X3
N
[The third constraint is the tightest and limits how much we can increase x; ]
A\
( A
Switch roles of x; and xs:
= Solving for x; yields:
o9 X X X
4 2 4
(& J
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Extended Example: Iteration 1

[Increasing the value of x; would increase the objective value.]

v
z = 3x;  + X2 + 2X3
X4 = 30 — X1 — X2 — 3X3
Xs = 24 — 2x1 — 2Xx2 — 5x3
X6 = 36 — 4x4 — X2 — 2X3
N
[The third constraint is the tightest and limits how much we can increase x; ]
A\
( A
Switch roles of x; and xs:
= Solving for x; yields:
o9t X%
4 2 4
= Substitute this into x; in the other three equations
(& J

o 5, IIl. Linear Programming Simplex Algorithm
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Extended Example: Iteration 2

z 27+%+%7%
xS—G—%—4xS+%
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Extended Example: Iteration 2

_ X X _ 3%
z = 27 + 2 + > Z
= _ X2 _ X3 _ Xs
o= 9 2 2 )
_ _ 3 _ 5 Xo
X = 2 ) > T3
X5 = 6 - % - 4x3 + %
N

[Basic solution: (X1, X2,...,X) = (9,0,0,21,6,0) with objective value 27}
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Extended Example: Iteration 2

[Increasing the value of x3 would increase the objective value.]

N
z = 271 + 2 + %,%
XSZG—%_4XS+%

N
[Basic solution: (X1, X2,...,Xs) = (9,0, 0, 21,6, 0) with objective value 27]
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Extended Example: Iteration 2

[Increasing the value of x3 would increase the objective value.]

N
z = 271 + 2 + %,%
XSZG—%_4XS+%
N

[The third constraint is the tightest and limits how much we can increase X3‘]
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Extended Example: Iteration 2

[Increasing the value of x3 would increase the objective value.]

S 3
_ X2 X3 _  SXs
z = 27 + 2 + > Z
_ _ X _ X3 _ Xe
o= 9 4 2 4
_ _ 3 _ 5 Xe
X = 21 4 2 T 7
X5 = 6 - % - 4x3 + %
N
[The third constraint is the tightest and limits how much we can increase x3.]
A\
( N\
Switch roles of x; and xs:
(. J
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Extended Example: Iteration 2

[Increasing the value of x3 would increase the objective value.]

S 3
— X2 X3 _  SXs
z = 27 + 2 + > Z
_ _ X _ X3 _ Xe
o= 9 2 2 )
_ _ 3 _ 5 Xe
X = 2 4 2 T 7
X5 = 6 - % - 4x3 + %
N
[The third constraint is the tightest and limits how much we can increase x3.]
A\
( N\
Switch roles of x; and xs:
= Solving for x3 yields:
3 3X2 X5 X6
3=—m — — — — — —
2 8 4 8
(. J
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Extended Example: Iteration 2

[Increasing the value of x3 would increase the objective value.]

S 3
— X2 X3 _  SXs
z = 27 + 2 + > Z
_ _ X _ X3 _ Xe
o= 9 2 2 )
_ _ 3 _ 5 Xe
X = 2 4 2 T 7
X5 = 6 - % - 4x3 + %
N
[The third constraint is the tightest and limits how much we can increase x3.]
A\
( N\
Switch roles of x; and xs:
= Solving for x3 yields:
3 3X2 X5 X6
X3=—— — — — —
2 8 4 8
= Substitute this into x3 in the other three equations
(. J
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Extended Example: Iteration 3

X4

X3

Xa

—_
—_
—_

B o RS L|

o
i HNE
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Extended Example: Iteration 3

N

[Basic solution: (X1, Xz, ..., %) = (£,0,%,%,0,0) with objective value ! = 27.75]
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Extended Example: Iteration 3

[Increasing the value of x» would increase the objective value.]

N
z %4»;(_%7)%571:]1_6)(6
X1 %ff—é+’é5751_)€(56
N

[Basic solution: (X1, Xz, ..., %) = (£,0,%,%,0,0) with objective value ! = 27.75]
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Extended Example: Iteration 3

[Increasing the value of x» would increase the objective value.]

N

[The second constraint is the tightest and limits how much we can increase Xg.]

Y
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Extended Example: Iteration 3

[Increasing the value of x» would increase the objective value.]

3 11
111 X X5 Xe
zZ = x * 718 8 16
_ 38 _ x X5 5Xs
o=y 6 ' 8 16
Xa = 3 _ 3 X5 X6
3 2 8 4 8
_ 89 3x2 5x5 X
X = T T 35 T 3 16

[

The second constraint is the tightest and limits how much we can increase xo.

N

)

Y

\

-

P
Switch roles of x> and x3:

~
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Extended Example: Iteration 3

[Increasing the value of x» would increase the objective value.]

N

[The second constraint is the tightest and limits how much we can increase Xg.j

\
P
Switch roles of x> and x3:

~

= Solving for x; yields:

- J
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Extended Example: Iteration 3

[Increasing the value of x» would increase the objective value.]

N

[

N

The second constraint is the tightest and limits how much we can increase xo.

)

\

P
Switch roles of x> and x3:
= Solving for x; yields:

= Substitute this into xz in the other three equations

-

~

J
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Extended Example: Iteration 4

X1

X2

X4

28 %
8 + T +
18 — %jt

IIl. Linear Programming

Simplex Algorithm
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Extended Example: Iteration 4

2:287%7%72:);6
x1:8+%+%—%
w = 18 - 2 4+ X

N

[Basic solution: (X1, Xz, ...,Xs) = (8,4,0,18,0,0) with objective value 28 ]
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Extended Example: Iteration 4

[AII coefficients are negative, and hence this basic solution is optimal!]

N
2:287%7%7%
x4:18—%+%

N

[Basic solution: (X1, Xz, ...,Xs) = (8,4,0,18,0,0) with objective value 28 ]

o 5, IIl. Linear Programming Simplex Algorithm



Extended Example: Visualization of SIMPLEX

X3
X2

(0,12,0)

(0,0,4.8) @
(0,0; ® (8,4,0)
(8.25,0,1.5) @
Xi
(9,0,0)

Ill. Linear Programming Simplex Algorithm
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|

Extended Example: Visualization of SIMPLEX

X3
X2
(0,12,0)
12
(0,0,4.8) @
9.6
e (8,4,0)
(8.25,0,1.5) @ 28
27.75
X1
(9,0,0)
27

Exercise: How many basic solutions (including non-feasible ones) are there?]

£
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Extended Example: Visualization of SIMPLEX

X3
X2
(0,12,0)
12
(0,0,4.8) @
9.6
e (8,4,0)
(8.25,0,1.5) @ 28
27.75
X1
(9,0,0)
27

Exercise: How many basic solutions (including non-feasible ones) are there?]

S

S IIl. Linear Programming Simplex Algorithm 31



Extended Example: Visualization of SIMPLEX

X3
X2
(0,12,0)
12
(0,0,4.8) @
9.6
(0,0; ‘ e (8,4,0)
0 (8.25,0,1.5) @ 28
27.75
Xi
(0.0.0)
27

Exercise: How many basic solutions (including non-feasible ones) are there?]

S
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Extended Example:

Alternative Runs (1/2)

Sl
SR

X4
X5

Xe

= 30
= 24
= 36

3+ X2

Xq — Xo
2Xq — 2Xo
4X1 — X2

2X3
3x3
5x3

2X3

IIl. Linear Programming

Simplex Algorithm
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Extended Example: Alternative Runs (1/2)

z = 3x + X2 + 2x3
X4 = 30 — X4 — Xo — 3x3
X5 = 24 — 2Xq — 2Xo — 5x3
X = 36 — 4x — Xo — 2X3

|
} Switch roles of x> and xs
\4

i
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Extended Example:

Alternative Runs (1/2)

X4
X5

Xe

X2

X4

X

= 30
= 24
= 36

3x

X1
2Xq
4x4

|
} Switch roles of

A\

2X1
X1
X2

3x1

+

X2
X2
2Xo

X2

+  2x3
—  3x3
— 5x3

— 2X3

Xo and X5

S5
5 B Ill. Linear Programming

Simplex Algorithm

32



Extended Example: Alternative Runs (1/2)

z = 3x + X2 + 2x3
X4 = 30 — X4 — Xo — 3x3
X5 = 24 — 2Xq — 2Xo — 5x3
X = 36 — 4x — Xo — 2X3

|
} Switch roles of x> and xs

z = 12 + :x1 — % — %
X = 12 - Xq — 5—;3 — %
Xy = 18 - X2 = % + %
X = 24 - % + 2 + 2
i Switch roles of x; and xg
A\

i
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Extended Example: Alternative Runs (1/2)

Sl
o 5

Xa
X5

Xe

X2

X4

X

X1

X2

X4

30
24
36

18

3x

X1
2Xq
4x4

+

X2
X2
2Xo

X2

2X3
3x3
5x3

2X3

|
} Switch roles of x> and xs

A\

2X1
X1
X2

3x1

+

X3
2
5x3
2
X3
2
X3
2

+

+

|
| Switch roles of x; and xg
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Extended Example:

Alternative Runs (2/2)

Sl
SR

X4
X5

X

= 30
= 24
= 36

3X4 + X2

X1 — X2
2X1 — 2Xo
4x4 — X2

2X3
3x3
5x3
2X3

IIl. Linear Programming
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Extended Example: Alternative Runs (2/2)

z = 3xq + Xo + 2X3
X4 = 30 - X1 - X2 — 3x3
X5 = 24 — 2xq — 2Xo — 5x3
X = 36 — 4x4 — Xo — 2X3

|
1 Switch roles of x3 and x5
\4

i
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Extended Example:

Alternative Runs (2/2)

X4
X5

X

Xa

X3

Xe

= 3x1 + X2
= 30 - Xy - X2
= 24 — 2xq — 2Xo
= 36 — 4x — X2
l
|
\4
_ 48 11x4
= 3 + 5
- I8 X
= 5 + 5 +
- 24 _ 2a
5 5
- 132 16x
5 5

+ 2X3
- 3x3
—  5x3
— 2X3

Switch roles of x3 and xs

X 2
5 5
Xo 3X5
5 T 5
2 X%
5 5
X 2x3
5 T 5
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Extended Example: Alternative Runs (2/2)

z = 3xq + Xo
X4 = 30 - X1 — X2
X5 = 24 — 2X1 — 2Xo
X5 = 36 — 4x — Xo

!
v

+ 2X3
- 3x3
—  5x3
— 2X3

Switch roles of x3 and xs

_ 48 11x4 Xo _ 2Xs
Z = % t 5 *t 75 5
X3 = 24 _ 24 2 _ X5
s 5 5 5 5
T S [ A 2
¥ = 5 5 5 T 5
Switch roles of x; and x5 _ -~~~
P
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Extended Example:

Alternative Runs (2/2)

Xy =
X5 =

X6 =

Xy =

X3 =

X6 =

Switch roles of x; and xg

-
11 X %
T v 76 3
8 . X X
4 T B
3 x
2 8 2
s T T8 T

30
24

11xs

fe2]

5xg
16
X

|

Xe
16

3X4 + X2

X1 — X2
2X1 — 2Xo
4x4 — X2

!
v

11x4
T +
X1
5 +
2X4
I
16X1
=t _

+ 2X3
- 3x3
—  5x3
— 2X3

Switch roles of x3 and xs

X 2
5 5
Xo 3X5
5 T 5
2 X%
5 5
X 2x3
5 T 5
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Extended Example:

Alternative Runs (2/2)

X4 =
X5 =

Xe =

X4 =

X3 =

X6 =

Switch roles of x; and xg

-
11 X2 X
T v 76 3
3 _ Xo X5
4 T B
3 _ 3x2 _ X5
2 8 2
69 3 5x5
s T T8 T

30
24

11xs

fe2]

5xg
16
Xe

o)

X
16

3X4 + X+

X1 — X2 —
2X1 — 2Xo —
4x4 — X2 —

!
v

1 1X1
= +
X1
5 +
2X4
5
16X1
5 —

"~~~ _ Switch roles of x; and x

X2
5
X2
5
2Xo
5
X2

5

N

2X3
3x3
5x3
2X3

Switch roles of x3 and xs

+

. Linear Programming
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Extended Example:

Alternative Runs (2/2)

z = 3xq + Xo + 2X3
X4 = 30 — X1 X2 — 3x3
X5 = 24 — 2xq — 2Xo — 5x3
X = 36 — 4x X2 =  2x3
|
1 Switch roles of x3 and x5
\4
= 48 X X _ 2%
z = % * 3 5 5
78 X1 X2 3x5
X, = jra=) - =y e}
4 5 " 5 5 T3
A 24 _ 2x 2 _ X5
= 5 5 5 5
132 164 Xo 2X3
Xe = —_== - _— = =
s 5 5 5 T 5
Switch roles of x4 and Xo_ _--~ - T~ Switch roles of x, and x3
47 T
11 X2 X _ 11X _ X3 X5 2xp
T T 76 3 76 z = 28 - 2 - 2 =
3 _ X2 X Sxg - X3 X5 X6
4 T B 16 . o= 8 + F + 3 3
3 3% X5 X _ 83 2% Xe
2 -~ @8 ~ 7 * ) e = 4 - 3 3 3
69 3 S _ X = 18 - 2 )
S T6 x 2z T2
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The Pivot Step Formally

PIvOT(N, B, A,b,c,v,l,e)
1 // Compute the coefficients of the equation for new basic variable x,.
2 let A be anew m x n matrix
3 be = bl/ale
4 foreach j € N — {e}
5 Zie/’ = ajj / Ale
6 do =1/

7 // Compute the coefficients of the remaining constraints.

8 foreachi € B—{l}

9 by = b; —aicb.

10 for each j € N —{e}
11 Zi,-j = a,-,- —a,-e('iej
12 Aj1 = —0jelel

13 // Compute the objective function.

14 vV=v+ CEZ;E

15 foreach j € N — {e}

16 Cj = ¢j — Cellej

17 61 = —Ceael

18  // Compute new sets of basic and nonbasic variables.
19 N=N-{e}u{l}

20 B=B—{l}U{e}

21 return (IVE/TZ;Zﬁ)
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The Pivot Step Formally

PIvOT(N, B, A,b,c,v,l,e)
1 // Compute the coefficients of the equation for new basic variable x,.
let A be a new m x n matrix

be = bijaye o .
for each j € N — {e} Rewrite “tight” equation

Ao = 1/ay,

// Compute the coefficients of the remaining constraints.
for eachi € B —{/}
9 b,’ = b,‘ - aiebe

2
3
4
5 dej = aij/ase for enterring variable Xe.
6
7
8

10 for each j € N — {e}
11 Zi,-/- = a,-/- —a,-eiiej
12 Aj1 = —0jelel

13 // Compute the objective function.

14 vV=v+ CEZ;E

15 foreach j € N — {e}

16 Cj = ¢j — Cellej

17 El = —Ceael

18  // Compute new sets of basic and nonbasic variables.
19 N=N-{e}u{l}

20 B=B—{l}U{e}

21 return (/\AIE/TI;Zﬁ)

i
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The Pivot Step Formally

PIvOT(N, B, A,b,c,v,l,e)

Sl
Sl

// Compute the coefficients of the equation for new basic variable x,.
let A be a new m X n matrix

be = bi/a. o .
for each j € N — {e} Rewrite “tight” equation

dej = aij/are for enterring variable Xe.
ael = l/ale

// Compute the coefficients of the remaining constraints.
for eachi € B —{/}
bi = b —aiebe Substituting xe into

for cach j € N — e} other equations.
atj - alj aieaej

ll = _azeael

// Compute the objective function.
v =v+ CEZ;E
fOI‘edChj eN —{e,

Lj = c, —c ue,
6'\l = _Ceael
// Compute new sets of basic and nonbasic variables.
N =N—{e}u{l}
B=B—{l}U{e}
return (/\7, B, A, }?, c,7)
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The Pivot Step Formally

PIvOT(N, B, A,b,c,v,l,e)

1 // Compute the coefficients of the equation for new basic variable x,.

2 let A be anew m x n matrix

3 be = bl/ale . . .

4 foreach j € N — {e} Rewrite “tight” equation
5 dej = aij/ase for enterring variable Xe.
6 do =1/

7  // Compute the coefficients of the remaining constraints.

8 foreachi € B—{l} ~N

9 bi = bi —ajcbe Substituting xe into

10 for cach j € N — e} other equations.

11 Ll,/ = Ll,/ Ajelej J
12 ll = _azeael

13 // Compute the objective function.

14 YV =v+che . . )
15 for each j € N — {e} Substituting xe into

16 & = ¢ — Celley objective function.

17 El = —ceael J

18 // Compute new sets of basic and nonbasic variables.
19 N=N-{e}u{l}

20 B=B—{l}U{e}

21 return (/\7, B, A, E c,7)

i
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The Pivot Step Formally

PIvOT(N, B, A,b,c,v,l,e)

1 // Compute the coefficients of the equation for new basic variable x,.

2 let A be anew m x n matrix

3 b, = bl/ale . . .

4 foreach j € N — {e} Rewrite “tight” equation
5 Aoy = aij/as. for enterring variable Xe.
6 do =1/

7  // Compute the coefficients of the remaining constraints.

8 foreachi € B—{l} N

9 bi = bi —ajcbe Substituting xe into

10 for cach j € N — {e} other equations.

11 Ll,/ = Ll,/ Ajelej J
12 ll = _azeael

13 // Compute the objective function.

14 YV =v+che . . h
15 foreach j € N — {e} Substituting xe into

16 & = ¢ — Celley objective function.

17 E] = —Cellel J
18  // Compute new sets of basic and nonbasic variables. ~N

19 N=N-{guil} Update non-basic
20 B=B-{ljUle} and basic variables
21 return (N,B,A,b,C,7) J/

i
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The Pivot Step Formally

PIvOT(N, B, A,b,c,v,l,e)

1 // Compute the coefficients of the equation for new basic variable x,.
let A be a new m X n matrix

ge = bl/ale

aej = arj/ae for enterring variable xe.
ae = 1/as,

// Compute the coefficients of the remaining constraints.
for eachi € B —{/}

2

3

4 forcach j € N — { Rewrite “tight” equation
M " . , .

6

7

8

PN A
9 bi = bi —ajcbe Substituting xe into
10 for each j € N —{e} other equations.
11 a; = aij — Ajellej y,
12 Il = _azeael
13 // Compute the objective function.
14 YV =v+che . . h
15 foreach j € N — {e} Substituting xe into
16 & = ¢ — Celley objective function.
17 E] = —Cellel J
18  // Compute new sets of basic and nonbasic variables. ~N
19 N=N-{guil} Update non-basic
20 B=B-{ljUle} and basic variables
21 return (N,B,A,b,C,7) J/

i
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Effect of the Pivot Step

Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, I, e) in which ae # 0. Let the
values returned from the call be (N, B, A, b, ¢, V), and let X denote the
basic solution after the call. Then

s
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Effect of the Pivot Step

Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, I, e) in which ae # 0. Let the
values returned from the call be (N, B, A, b, ¢, V), and let X denote the
basic solution after the call. Then

1. X, =0foreachj € N.
2. Xe = b//a/e.
3. X; = by — ajeb, for each i € B\ {e}.
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Effect of the Pivot Step

Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, I, e) in which ae # 0. Let the
values returned from the call be (N, B, A, b, ¢, V), and let X denote the
basic solution after the call. Then

1. X, =0foreachj € N.
2. Xe = b//a/e.
3. X; = by — ajeb, for each i € B\ {e}.

Proof:
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Effect of the Pivot Step

Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, I, e) in which ae # 0. Let the
values returned from the call be (N, B, A, b, ¢, V), and let X denote the
basic solution after the call. Then

1. X, =0foreachj € N.
2. Xe = b//a/e.
3. X; = by — ajeb, for each i € B\ {e}.

Proof:
1. holds since the basic solution always sets all non-basic variables to zero.
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Effect of the Pivot Step

Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, I, e) in which ae # 0. Let the
values returned from the call be (N, B, A, b, ¢, V), and let X denote the
basic solution after the call. Then

1. X, =0foreachj € N.
2. Xe = b//a/e.
3. X; = by — ajeb, for each i € B\ {e}.

Proof:
1. holds since the basic solution always sets all non-basic variables to zero.
2. When we set each non-basic variable to 0 in a constraint

X =bi—> ax,

jeN

i
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Effect of the Pivot Step

Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, I, e) in which ae # 0. Let the

values returned from the call be (N, B,A b,¢, V), and let X denote the
basic solution after the call. Then

1. X, =0foreachj € N.
2. Xe = b//a/e.

3. X; = by — ajeb, for each i € B\ {e}.

Proof:

1. holds since the basic solution always sets all non-basic variables to zero.
2. When we set each non-basic variable to 0 in a constraint

Xi = bi — Zé,,x,,
jeN
we have x; = b; foreach i € B.
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Effect of the Pivot Step

Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, I, e) in which ae # 0. Let the

values returned from the call be (N, B,A b,¢, V), and let X denote the
basic solution after the call. Then

1. X, =0foreachj € N.
2. Xe = b//a/e.

3. X; = by — ajeb, for each i € B\ {e}.

Proof:

1. holds since the basic solution always sets all non-basic variables to zero.
2. When we set each non-basic variable to 0 in a constraint

Xi = bi — E ajjX;,
jeN

we have x; = b; for each i € B. Hence Xe = bs = b/ aje.
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Effect of the Pivot Step

Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, I, e) in which ae # 0. Let the

values returned from the call be (N, B,A b,¢, V), and let X denote the
basic solution after the call. Then

1. X; = O for eachj € N.
2. Xe = b//a/e.

3. X; = by — ajeb, for each i € B\ {e}.

Proof:

1. holds since the basic solution always sets all non-basic variables to zero.
2. When we set each non-basic variable to 0 in a constraint
Xi = bi — Zé,,x,,
jeN
we have X, = b; for each i € B. Hence Xe = b, = b/ ase.

3. After the substituting in the other constraints, we have
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Effect of the Pivot Step

Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, I, e) in which ae # 0. Let the

values returned from the call be (N, B,A b,¢, V), and let X denote the
basic solution after the call. Then

1. X;=0foreachj e N.
2. Xe = b//a/e.

3. X; = by — ajeb, for each i € B\ {e}.

Proof:

1. holds since the basic solution always sets all non-basic variables to zero.
2. When we set each non-basic variable to 0 in a constraint

Xi = bi — E ajjX;,
jeN

we have x; = b; for each i € B. Hence Xe = bs = b/ aje.

3. After the substituting in the other constraints, we have

Xi = B,' = b,‘ — a,—eBe.
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Effect of the Pivot Step

Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, I, e) in which ae # 0. Let the

values returned from the call be (N, B,A b,¢, V), and let X denote the
basic solution after the call. Then

1. X;=0foreachj e N.
2. Xe = b//a/e.

3. X; = by — ajeb, for each i € B\ {e}.

Proof:

1. holds since the basic solution always sets all non-basic variables to zero.
2. When we set each non-basic variable to 0 in a constraint

Xi = bi — E ajjX;,
jeN

we have x; = b; for each i € B. Hence Xe = bs = b/ aje.

3. After the substituting in the other constraints, we have

Xi = B,' = b,‘ — a,—eBe. O
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Formalizing the Simplex Algorithm: Questions

Questions:
= How do we determine whether a linear program is feasible?

= What do we do if the linear program is feasible, but the initial basic
solution is not feasible?

= How do we determine whether a linear program is unbounded?
= How do we choose the entering and leaving variables?

i
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Formalizing the Simplex Algorithm: Questions

Questions:
= How do we determine whether a linear program is feasible?

= What do we do if the linear program is feasible, but the initial basic
solution is not feasible?

= How do we determine whether a linear program is unbounded?

= How do we choose the entering and leaving variables?
N\

[ Example before was a particularly nice one! ]

S IIl. Linear Programming Simplex Algorithm

36



The formal procedure SIMPLEX

SIMPLEX (A, b, ¢)

(N,B,A,b,c,v) = INITIALIZE-SIMPLEX (4, b, ¢)
let A be a new vector of length n
while some index j € N hasc; >0
choose an index e € N for which ¢, > 0
for each index i € B
ifa;, >0
A; = bi/ai.
else A; = o0
choose an index / € B that minimizes A;
if A; ==o00
return “unbounded”
else (N, B, A,b,c,v) = PIVOT(N, B, A,b,c,v,l,e)
fori = 1ton

ifi € B
X,‘ = b,‘
else x;, =0
return (X, X5,...,X,)
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The formal procedure SIMPLEX

SIMPLEX (A, b, ¢)

(N, B, A,b,c,v) = INITIALIZE-SIMPLEX (4, b, ¢) {feasible basic solution (if it exists)

let A be a new vector of length n

Returns a slack form with a

]

while some index j € N hasc; >0
choose an index e € N for which ¢, > 0
for each index i € B
ifa;, >0
A; = bi/ai.
else A; = o0
choose an index / € B that minimizes A;
if A; ==o00
return “unbounded”
else (N, B, A,b,c,v) = PIVOT(N, B, A,b,c,v,l,e)
fori = 1ton
ifi € B
X,‘ = b,‘
else x;, =0
return (X, X5,...,X,)
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The formal procedure SIMPLEX

SIMPLEX (A, b, ¢)

(N, B, A,b,c,v) = INITIALIZE-SIMPLEX (4, b, ¢) {feasible basic solution (if it exists)

, while some index j € N has ;>0

Returns a slack form with a

choose an index e € N for which ¢, > 0

for each index i € B

ifa;, >0

A; = bi/ai.

else A; = o0
choose an index / € B that minimizes A;

if A;==00

return “unbounded”
else (N, B, A,b,c,v) = PIVOT(N, B, A,b,c,v,l,e)

ifi e B
X,':b,‘
else x;, =0

return (X, X5, ...

+Xn)

]
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The formal procedure SIMPLEX

SIMPLEX (A, b, ¢)

i
Sl

(N, B, A,b,c,v) = INITIALIZE-SIMPLEX (4, b, ¢) {feasible basic solution (if it exists)

, while some index j € N has ;>0

Returns a slack form with a

]

choose an index e € N for which ¢, > 0
for each index i € B

ifa;, >0

A; = bi/ai.
else A; = c©
choose an index / € B that minimizes A;

if A;==00

return “unbounded”
else (N, B, A,b,c,v) = PIVOT(N, B, A,b,c,v,l,e)

ifi e B
X,‘ = b,‘
else x;, =0

return (X, X5, ...

+Xn)

(Main Loop:
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The formal procedure SIMPLEX

SIMPLEX (A, b, ¢)
(N.B.,A.b,c,v) = INITIALIZE-SIMPLEX (4, b, ¢) feasible basic solution (if it exists)

Sl
o 5

, while some index j € N has ;>0

Returns a slack form with a ]

choose an index e € N for which ¢, > 0
for each index i € B

ifa;, >0

A; = bi/ai.
else A; = c©
choose an index / € B that minimizes A;

if A;==00

return “unbounded”
else (N, B, A,b,c,v) = PIVOT(N, B, A,b,c,v,l,e)

ifi e B
X,‘ = b,‘
else x;, =0

return (X, X,, ...

+Xn)

/N

(I\/Iain Loop:

= terminates if all coefficients in
objective function are negative

Line 4 picks enterring variable
Xe With negative coefficient

= Lines 6 — 9 pick the tightest
constraint, associated with x;

Line 11 returns “unbounded” if
there are no constraints

Line 12 calls PIvoT, switching
roles of x; and xe

J
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The formal procedure SIMPLEX

SIMPLEX (A, b, ¢)

Sl
o 5

, while some index j € N has ;>0

Returns a slack form with a
(N, B, A,b,c,v) = INITIALIZE-SIMPLEX (A4, b, ¢) feasible basic solution (if it exists)

choose an index e € N for which ¢, > 0

for each index i € B
ifa;, >0
A; = bi/ai.
else A; = o0

choose an index / € B that minimizes A;

if A; ==o00
return “unbounded”

else (N, B, A,b,c,v) = PIVOT(N, B, A,b,c,v,l,e)

ifi e B
X,‘ = b,‘
else x;, =0

.

(I\/Iain Loop:

= terminates if all coefficients in
objective function are negative

Line 4 picks enterring variable
Xe With negative coefficient

= Lines 6 — 9 pick the tightest
constraint, associated with x;

Line 11 returns “unbounded” if
there are no constraints

Line 12 calls PIvoT, switching
roles of x; and xe

J

return (¥, %o, ..., %) ﬁ Return corresponding solution. ]
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The formal procedure SIMPLEX

SIMPLEX (4, b, ¢) Returns a slack form with a
1 (N.B,A.b,c,v) = INITIALIZE-SIMPLEX (4. b.¢) & feasible basic solution (if it exists)

3, while some index j € N has ¢; > 0

1

41 choose an index e € N for which ¢, > 0 :
5 : for each index i € B :
6 : ifa;, >0 1
7 A; = bi/ai. :
8 : else A; = o0 1
9, choose an index / € B that minimizes A; :
10 : if A; ==o00 1
11, return “unbounded” X
12! else (N, B, A,b,c,v) = PIVOT(N, B, A,b,c,v,l,e) 1
13 fori =1ton ~~~~ "~~~ """ """ TTTTT
14 ifi € B
15 X,‘ = b,‘
16 else x;, =0
17 return (X, X5, ...,X,)

Lemma 29.2

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.

]
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The formal procedure SIMPLEX

1 (N.B,A.b,c.v) = INITIALIZE-SIMPLEX (4. b, ) feasible basic solution (if it exists)

SIMPLEX(A. b, ¢) { Returns a slack form with a ]

2

3 while some index j € N has c; >0 '
41 choose an index e € N for which ¢, > 0 |
5 : for each index i € B :
6 : ifa;, >0 1
7 A; = bi/ai. :
8 : else A; = o0 1
' I
! 1
! 1

=]

choose an index / € B that minimizes A;
if Aj ==oc0
retnrn “nnbonnded”

Proof is based on the following three-part loop invariant:

Lemma 29.2 (’//

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.
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The formal procedure SIMPLEX

SIMPLEX (4, b, ¢) Returns a slack form with a
1 (N.B,A.b,c,v) = INITIALIZE-SIMPLEX (4, b, ¢) & feasible basic solution (if it exists)

2

3 while some index j € N has c; >0 '
41 choose an index e € N for which ¢, > 0 |
5 : for each index i € B :
6 : ifa;, >0 1
7 A; = bi/ai. :
8 : else A; = o0 1
9, choose an index / € B that minimizes A; :
: if A; ==o00 :

11 retnrn “nnbonnded”

J

Proof is based on the following three-part loop invariant:

1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,

2. foreach i € B, we have b; > 0,
3. the basic solution associated with the (current) slack form is feasible.

Lemma 29.2 1/

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.
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SIMPLEX (4, b, ¢) Returns a slack form with a
1 (N.B,A.b,c,v) = INITIALIZE-SIMPLEX (4, b, ¢) & feasible basic solution (if it exists)

2
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The formal procedure SIMPLEX

SIMPLEX(A. b, ¢) { Returns a slack form with a ]

1 (N.B,A.b,c,v) = INITIALIZE-SIMPLEX (4, b, ¢) feasible basic solution (if it exists)
let A be a new vector of length n
while some index j € N hasc; >0
choose an index e € N for which ¢, > 0
for each index i € B
ifa;, >0
A; = bi/ai.
else A; = o0
9 choose an index / € B that minimizes A;
10 if A; ==o00

11 retnrn “nnbonnded”

0 ~J N N AW

Proof is based on the following three-part loop invariant:

1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,
2. foreach i € B, we have b; > 0,

3. the basic solution associated with the (current) slack form is feasible.

Lemma 29.2 1/

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.
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Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.
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Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

z = Xt + X + X3
Xx = 8 — X1 - X
X5 = X2 — X3
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Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

i

Xa

X5

X1+ X + X3
Xq — Xo
Xo — X3

i Pivot with x4 entering and x4 leaving
\4
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Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

i

z = X1+ X + X3
Xs, = 8 — X3 - X
X5 = X2 — X3

i Pivot with x4 entering and x4 leaving
\4

z = 8 + X3 — X4
XY = 8 - X - X4
X5 = X2 — X3
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Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

i

X4

X5

X4

X5

X1+ X + X3
X1 — Xo
X2 — X3
i Pivot with x4 entering and x4 leaving
A\
+ X3 — X4
Xo — X4
X2 — X3

!
I Pivot with x3 entering and xs leaving
A
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Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

X4

X5

X4

X5

X4

X3

IIl. Linear Programming

X1+ X + X3
X1 — Xo
X2 — X3
i Pivot with x4 entering and x4 leaving
A\
+ X3 — X4
Xo — X4
X2 — X3
i Pivot with x3 entering and xs leaving
A\
Xo — X4 — X5
Xo — X4
X2 - X5
Simplex Algorithm 38




Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

X4

X5

V4
X4

X5

X1+ X + X3
8 — x5 - X
X2 — X3
i Pivot with x4 entering and x4 leaving
A\
+ X3 — X4
— Xo — X4

X2 — X3

[

|
Cycling: If additionally slack at two iterations I Pivot with x3 entering and xs leaving
are identical, SIMPLEX fails to terminate! v

i
Sl

z = 8 4+ X - X2 - X
Xq = 8 — Xo — X4
X3 = Xo — X5
IIl. Linear Programming Simplex Algorithm 38




Termination and Running Time

i

i
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Cycling: SIMPLEX may fail to terminate.
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(It is theoretically possible, but very rare in practice.]
NJ
Cycling: SIMPLEX may fail to terminate.
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Termination and Running Time

(It is theoretically possible, but very rare in practice.]
NJ
Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies
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Termination and Running Time

(It is theoretically possible, but very rare in practice.]
NJ
Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies

1. Bland’s rule: Choose entering variable with smallest index
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(It is theoretically possible, but very rare in practice.]
NJ
Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies

1. Bland’s rule: Choose entering variable with smallest index
2. Random rule: Choose entering variable uniformly at random
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Termination and Running Time

(It is theoretically possible, but very rare in practice.]
NJ
Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies

1. Bland’s rule: Choose entering variable with smallest index
2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have
two solutions with the same objective value
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Termination and Running Time

(It is theoretically possible, but very rare in practice.]
NJ
Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies

1. Bland’s rule: Choose entering variable with smallest index
2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have

two solutions with the same objective value
S

LRepIace each b; by b; = b; + €;, where ¢; > €1 are all smaII.J
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Termination and Running Time

(It is theoretically possible, but very rare in practice.]
NJ
Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies

1. Bland’s rule: Choose entering variable with smallest index
2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have

two solutions with the same objective value
S

LRepIace each b; by b; = b; + €;, where ¢; > ¢;,1 are all smaII.J

Lemma 29.7

Assuming INITIALIZE-SIMPLEX returns a slack form for which the ba-
sic solution is feasible, SIMPLEX either reports that the program is un-

bounded or returns a feasible solution in at most (") iterations.
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Termination and Running Time

(It is theoretically possible, but very rare in practice.]

NJ
Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies

1. Bland’s rule: Choose entering variable with smallest index
2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have

two solutions with the same objective value
S

LRepIace each b; by b = bi + €, where ¢; > ¢;,1 are all smaII.J

Lemma 29.7

Assuming INITIALIZE-SIMPLEX returns a slack form for which the ba-
sic solution is feasible, SIMPLEX either reports that the program is un-
bounded or returns a feasible solution in at most (") iterations.

n+m
m

form, and there are at most (

Every set B of basic variables uniquely determines a slack

) unique slack forms.
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Outline

Finding an Initial Solution

i
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Finding an Initial Solution

maximize 2xy - Xo
subject to
2X1 — Xo
X1 — 5xo
X1, X2

IV AN IA

S5
5l Ill. Linear Programming
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Finding an Initial Solution

maximize 2xy - Xo
subject to
2X1 — Xo < 2
X1 — 5xo < —4
X1, X2 > 0

!

! . .

1 Conversion into slack form
|

A4

sn i
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Finding an Initial Solution

maximize 2xy - Xo
subject to
2X1 — Xo < 2
X4 - 5% < -4
X1, X2 > 0
|
i Conversion into slack form
v
z = 22Xy  — Xo
X3 = 2 — 2x + Xo
X4 = -4 - Xy + 5%
N

[Basic solution (x4, X2, X3, X4) = (0, 0,2, —4) is not feasible!]

€5 IIl. Linear Programming Finding an Initial Solution 41



Geometric lllustration

2X1 Xo

maximize
subject to

42
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Geometric lllustration

2X1 Xo

maximize
subject to
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Geometric lllustration

maximize 2X1
subject to

2X1

X4

— Xo

— 5X2

VAN IA

2

—4 | Questions:

0 = How to determine whether
there is any feasible solution?

= |f there is one, how to determine

/ Ly an initial basic solution?

5 IIl. Linear Programming
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Formulating an Auxiliary Linear Program

- n
maximize > i1 X
subject to
n
>ojo1 @i
Xj

IV IA

b fori=1,2,...
0 forj=1,2,...

i
IIl. Linear Programming Finding an Initial Solution

43



Formulating an Auxiliary Linear Program

maximize Y7, ¢x

subject to

b fori=1,2,...,m,
0 forj=1,2,...,n

n
>ojo1 @i
Xj

IV IA

i{ Formulating an Auxiliary Linear Program
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Formulating an Auxiliary Linear Program

maximize Y7, ¢x

subject to
Siiap < b fori=1,2,...,m,
X > 0 forj=1,2,...,n
i{ Formulating an Auxiliary Linear Program
maximize —Xo
subject to

b fori=1,2,...,m,
0 forj=0,1,...,n

n
2t @jX = Xo
Xj

IV IA

i
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Formulating an Auxiliary Linear Program

maximize Y7, ¢x

subject to
Siiap < b fori=1,2,...,m,
X > 0 forj=1,2,...,n
i{ Formulating an Auxiliary Linear Program
maximize —Xo
subject to
STiapx—x < b fori=1,2...m,
X > 0 forj=0,1,...,n
Lemma 29.11

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Ly is 0.
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Formulating an Auxiliary Linear Program

maximize Y7, ¢x

subject to
Siiap < b fori=1,2,...,m,
X > 0 forj=1,2,...,n
i{ Formulating an Auxiliary Linear Program
maximize —Xo
subject to
STiapx—x < b fori=1,2...m,
X > 0 forj=0,1,...,n
Lemma 29.11

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Ly is 0.

Proof.
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Formulating an Auxiliary Linear Program

maximize Y7, ¢x

subject to
Siiap < b fori=1,2,...,m,
X > 0 forj=1,2,...,n
i{ Formulating an Auxiliary Linear Program
maximize —Xo
subject to
STiapx—x < b fori=1,2...m,
X > 0 forj=0,1,...,n
Lemma 29.11

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Ly is 0.

Proof.
= “=": Suppose L has a feasible solution X = (X1, X2,...,Xn)
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Formulating an Auxiliary Linear Program

maximize Y7, ¢x

subject to
Siiap < b fori=1,2,...,m,
X > 0 forj=1,2,...,n
i{ Formulating an Auxiliary Linear Program
maximize —Xo
subject to
Yiiaixi—x < b fori=1,2,....m,
X > 0 forj=0,1,...,n
Lemma 29.11

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Ly is 0.

Proof.
= “=": Suppose L has a feasible solution X = (X1, X2,...,Xn)
= Xo = 0 combined with X is a feasible solution to Laux with objective value 0.
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Formulating an Auxiliary Linear Program

maximize Y7, ¢x

subject to
Siiap < b fori=1,2,...,m,
X > 0 forj=1,2,...,n
i{ Formulating an Auxiliary Linear Program
maximize —Xo
subject to
Yiiaixi—x < b fori=1,2,....m,
X > 0 forj=0,1,...,n
Lemma 29.11

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Ly is 0.

Proof.
= “=": Suppose L has a feasible solution X = (X1, X2,...,Xn)

= Xo = 0 combined with X is a feasible solution to Laux with objective value 0.
= Since Xp > 0 and the objective is to maximize —xg, this is optimal for Laux
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Formulating an Auxiliary Linear Program

maximize Y7, ¢x

subject to
Siiap < b fori=1,2,...,m,
X > 0 forj=1,2,...,n
i{ Formulating an Auxiliary Linear Program
maximize —Xo
subject to
Yiiaixi—x < b fori=1,2,....m,
X > 0 forj=0,1,...,n
Lemma 29.11

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Ly is 0.

Proof.
= “=": Suppose L has a feasible solution X = (X1, X2,...,Xn)

= Xo = 0 combined with X is a feasible solution to Laux with objective value 0.
= Since Xp > 0 and the objective is to maximize —xg, this is optimal for Laux

= “<": Suppose that the optimal objective value of Laux is 0
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Formulating an Auxiliary Linear Program

maximize Y7, ¢x

subject to
Siiap < b fori=1,2,...,m,
X > 0 forj=1,2,...,n
i{ Formulating an Auxiliary Linear Program
maximize —Xo
subject to
Yiiaixi—x < b fori=1,2,....m,
X > 0 forj=0,1,...,n
Lemma 29.11

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Ly is 0.

Proof.
= “=": Suppose L has a feasible solution X = (X1, X2,...,Xn)

= Xo = 0 combined with X is a feasible solution to Laux with objective value 0.
= Since Xp > 0 and the objective is to maximize —xg, this is optimal for Laux

= “<": Suppose that the optimal objective value of Laux is 0
= Then Xy = 0, and the remaining solution values (X1, X2, . .., Xp) satisfy L.
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Formulating an Auxiliary Linear Program

maximize Y7, ¢x

subject to
Siiap < b fori=1,2,...,m,
X > 0 forj=1,2,...,n
i{ Formulating an Auxiliary Linear Program
maximize —Xo
subject to
Yiiaixi—x < b fori=1,2,....m,
X > 0 forj=0,1,...,n
Lemma 29.11

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Ly is 0.

Proof.
= “=": Suppose L has a feasible solution X = (X1, X2,...,Xn)

= Xo = 0 combined with X is a feasible solution to Laux with objective value 0.
= Since Xp > 0 and the objective is to maximize —xg, this is optimal for Laux

= “<": Suppose that the optimal objective value of Laux is 0
= Then Xy = 0, and the remaining solution values (X1, X2, ..., Xp) satisfy L. O
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INITIALIZE-SIMPLEX

INITIALIZE-SIMPLEX (A4, b, ¢)

1
2
3
4

let k be the index of the minimum b;
ifb, >0 // is the initial basic solution feasible?
return ({1,2,....n} , {n+1,n+2,..., n+m}y, A b, c,0)
form L, by adding —x to the left-hand side of each constraint
and setting the objective function to —x,
let (N, B, A, b, c,v) be the resulting slack form for L,
l=n+k
// L, has n + 1 nonbasic variables and m basic variables.
(N,B,A,b,c,v) = PIVOT(N, B, A,b,c,v,1,0)
// The basic solution is now feasible for L .
iterate the while loop of lines 3—12 of SIMPLEX until an optimal solution
to Ly is found
if the optimal solution to L,,, sets X, to 0
if X, is basic
perform one (degenerate) pivot to make it nonbasic
from the final slack form of L, remove x, from the constraints and
restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint
return the modified final slack form
else return “infeasible”
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INITIALIZE-SIMPLEX

Test solution with N = {1,2,...,n}, B={n+1,n+

INITIALIZE-SIMPLEX (4, b, ¢) 2,...,n+m}, X = b for i € B, X; = 0 otherwise.
1 let k be the index of the minimum b; =
2 ifb >0 // is the initial basic solution feasible?
3 return ({1,2,....n},{n+1,n+2,..., n+m},A b, c,0)
4 form L, by adding —x, to the left-hand side of each constraint

and setting the objective function to —x,

5 let(N, B, A,b,c,v) be the resulting slack form for L,

6 I =n+k

7 /] L, hasn + 1 nonbasic variables and m basic variables.

8 (N,B.A.b,c,v) = PIVOT(N, B, A,b,c,v,1,0)

9 // The basic solution is now feasible for L .

0 iterate the while loop of lines 3—12 of SIMPLEX until an optimal solution
to Ly is found

11  if the optimal solution to L, sets Xy to O

12 if X is basic
13 perform one (degenerate) pivot to make it nonbasic
14 from the final slack form of L, remove x, from the constraints and

restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint

15 return the modified final slack form

16 else return “infeasible”
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INITIALIZE-SIMPLEX

Test solution with N = {1,2,...,n}, B={n+1,n+

INITIALIZE-SIMPLEX (4, b, ¢) 2,...,n+m}, X = b for i € B, X; = 0 otherwise.
1 let k be the index of the minimum b; =
2 ifb >0 // is the initial basic solution feasible?
3 return ({1,2,....n},{n+1,n+2,..., n+m},A b, c,0)
4 form L, by adding —x, to the left-hand side of each constraint

and setting the objective function to —x, m o v abl
let (N, B, A, b, c,v) be the resulting slack form for L, £ will be the eaving variable so
l=n+k that x, has the most negative value.

5

6

7 /] L, hasn + 1 nonbasic variables and m basic variables.

8 (N,B.A.b,c,v) = PIVOT(N, B, A,b,c,v,1,0)

9 // The basic solution is now feasible for L .

0 iterate the while loop of lines 3—12 of SIMPLEX until an optimal solution
to Ly is found

11  if the optimal solution to L, sets Xy to O

12 if X is basic
13 perform one (degenerate) pivot to make it nonbasic
14 from the final slack form of L, remove x, from the constraints and

restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint

15 return the modified final slack form

16 else return “infeasible”
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INITIALIZE-SIMPLEX

INITIALIZE-SIMPLEX (4, b, ¢) 2,...,n+m}, X = b for i € B, X; = 0 otherwise.
1 let k be the index of the minimum b; =
2 ifb >0 // is the initial basic solution feasible?
3 return ({1,2,....n},{n+1,n+2,..., n+m},A b, c,0)
4 form L, by adding —x, to the left-hand side of each constraint
and setting the objective function to —x, - n -
5 let(N, B, A,b,c,v) be the resulting slack form for L, £ will be the leaving variable so
6 Il =n+k that x, has the most negative value.
7 /] L, hasn + 1 nonbasic variables and m basic variables.
8 (N,B.Ab.c.v) =PIVOT(N, B, A,b.c.v.1.0) ‘( Pivot step with x, leaving and xp entering. ]
9 // The basic solution is now feasible for L .
10 iterate the while loop of lines 3—12 of SIMPLEX until an optimal solution
to Ly is found
11  if the optimal solution to L, sets Xy to O
12 if X is basic
13 perform one (degenerate) pivot to make it nonbasic
14 from the final slack form of L., remove x, from the constraints and
restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint
15 return the modified final slack form
16 else return “infeasible”

Test solution with N = {1,2,...,n}, B={n+1,n+
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INITIALIZE-SIMPLEX

INITIALIZE-SIMPLEX (4, b, ¢) 2,...,n+m}, X = b for i € B, X; = 0 otherwise.
1 let k be the index of the minimum b; =
2 ifb >0 // is the initial basic solution feasible?
3 return ({1,2,....n},{n+1,n+2,..., n+m},A b, c,0)
4 form L, by adding —x, to the left-hand side of each constraint
and setting the objective function to —x, - n -
5 let(N, B, A,b,c,v) be the resulting slack form for L, £ will be the leaving variable so
6 Il =n+k that x, has the most negative value.
7 /] L, hasn + 1 nonbasic variables and m basic variables.
8 (N,B.Ab.c.v) =PIVOT(N, B, A,b.c.v.1.0) ‘( Pivot step with x, leaving and xp entering. ]
9 // The basic solution is now feasible for L .
10 iterate the while loop of lines 3—12 of SIMPLEX until an optimal solution
to Ly is found
11 if the optimal solution to L,,, sets Xo to O This pivot step does not change
12 if o is basic ) ) . the value of any variable.
13 perform one (degenerate) pivot to make it nonbasic
14 from the final slack form of L., remove x, from the constraints and
restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint
15 return the modified final slack form
16 else return “infeasible”

Test solution with N = {1,2,...,n}, B={n+1,n+
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Example of INITIALIZE-SIMPLEX (1/3)

maximize 2x;  — Xo
subject to
2X1 — Xo < 2
X1 — 5X2 < —4
X1, X2 > 0

i
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maximize 2x;  — Xo
subject to
2X1 — Xo
X1 — 5X2
X1, X2
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Example of INITIALIZE-SIMPLEX (1/3)

maximize
subject to

maximize
subject to

2X1

2X1
Xq

2X1
Xi

_ Xo
— X2 < 2
— 5x2 < —4
X1, X2 > 0
I
I
l
|
Y
- X2 — X
— 5X2 — X0
X1, X2, Xo

IV IAIA
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Example of INITIALIZE-SIMPLEX (1/3)

maximize
subject to

maximize
subject to

2X1

2X1
X1

— Xo
— Xo < 2
— 5X2 < —4
X1, X2 > 0
|
| . o .
! Formulating the auxiliary linear program
v
— Xo
— X2 — Xo < 2
— 5X2 — X0 < -4
X1, X2, Xo 2 0
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Example of INITIALIZE-SIMPLEX (1/3)

maximize
subject to

maximize
subject to

Z =
X3 =
X4 =

2X1 — Xo
2X1 — Xo < 2
X1 — 5X2 < —4
X1, X2 2 0

2xy — X2 — Xo < 2
X1 — 5X2 — X0 < -4
X1, X2, Xo 2 o
|
| . .
' Converting into slack form
\%
2 — 2 4+ X 4+ X
-4 - x1 + X + X
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Example of INITIALIZE-SIMPLEX (1/3)

maximize 2x;  — Xo
subject to
2X1 — Xo < 2
X1 — 5X2 < —4
X1, X2 > 0

maximize - X
subject to
2x1  — X — X < 2
Xy — 5% - X < -4
X1, X2, Xo 2 0
Basic solution ‘
(0,0,0,2, —4) not feasible! | Converting into slack form
N v
z = - X
X3 = 2 -  2Xx + X2 + Xo
Xx = -4 — X + 5% + X

R IIl. Linear Programming Finding an Initial Solution
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Example of INITIALIZE-SIMPLEX (2/3)

Z =
X3 = 2 2xy  + Xo
X4 = —4 — X1 + 5X2

+
+

Xo
Xo
Xo

i
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Example of INITIALIZE-SIMPLEX (2/3)

z
X3
X4

_ Xo
- 2Xx4 + X2 + Xo
- xx + 5% + X

|
i Pivot with xo entering and x4 leaving
|
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Example of INITIALIZE-SIMPLEX (2/3)

z = — Xo
X3 = 2 — 24 4+ X 4+ X
X2 = -4 - X1+ 5% 4+ X

|
i Pivot with xo entering and x4 leaving
|

A\
z = -4 — x5 4+ 5 - x
Xo = 4 + x4 — bx +  Xa
X3 = 6 — X1 — 4X2 + X4

sl
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Example of INITIALIZE-SIMPLEX (2/3)

A

z
X3
X4

z
Xo
X3

4
6

[Basic solution (4,0,0,6,0) is feasible!]

— Xo

- 21 4+ X + X

— XX + 5 + X

|

1 Pivot with xo entering and x4 leaving
v

- X1 + 5% - X

+ X - 5% + X

- x1 = 4 + X

Sl
o 5
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Example of INITIALIZE-SIMPLEX (2/3)

A

z

z
Xo
X3

= 2 —  2Xx -+ X2
= —4 — X1 + 5X2

Xo
Xo
Xo

|
i Pivot with xo entering and x4 leaving
|

A\
= —4 — X1 + 5xo
= 4 -+ X1 — 5x>
= 6 — X1 — 4X2

[Basic solution (4,0,0,6,0) is feasible!] i Pivot with X, entering and x, leaving

z
X2

X3

v

.
_ 4 _ X X1
= 5 5 T 3
Y S S
= 5 5 5

X4
5
X4
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Example of INITIALIZE-SIMPLEX (2/3)

z = — Xo
X3 = 2 — 2X1 -+ X2 + Xo
X2 = -4 - X1+ 5% 4+ X
|
I Pivot with xo entering and x4 leaving
v
z = 4 — X3 4+ b - x4
Xo = 4 -+ X1 — 5x> -+ X4
X3 = 6 — X1 — 4X2 + X4
” |
[Basic solution (4,0,0,6,0) is feasible!] | Pivot with X, entering and x, leaving
v
V4 — X0
s = 5 5 5 5
N

[Optimal solution has xo = 0, hence the initial problem was feasible!j

Sl
o 5
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Example of INITIALIZE-SIMPLEX (3/3)

V4
X2

X3

ST

Xo
2+
4Xo

5

o

oo

IIl. Linear Programming

Finding an Initial Solution

47



Example of INITIALIZE-SIMPLEX (3/3)

z = — X
_ 14 4 M Xa
X375+5 5+5

Set xo = 0 and express objective function
by non-basic variables

S5
IIl. Linear Programming Finding an Initial Solution 47



Example of INITIALIZE-SIMPLEX (3/3)

V4 = — Xo
— 4 _ Xo Xt X4
X = 3 5 - 5 T 3
3 = 14 . 4 % 00X
3 5 5 5 5

Set xo = 0 and express objective function
by non-basic variables

X4

)
(44444

[2X1—2X2=2X1—(%—%0+%+5
N, 4, m ox
3 X 2
X =  + T + T
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Example of INITIALIZE-SIMPLEX (3/3)

V4 = — Xo
4 Xo Xi X4
X = 5 - v t T t 7
w = 14 . A 9% X
S 5 5 5

Set xo = 0 and express objective function

|
|
| . .
[2x1 o= ox - (A ?)] . by non-basic variables
N, 4, o ox
3 X 2
_ 4 X Xa
e 1451 ' 9)? ' X.
— a4 24 24
¥ = 5 5
e

[Basic solution (0, 2, ¥, 0), which is feasible!]
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Example of INITIALIZE-SIMPLEX (3/3)

z = — Xo
4 Xo Xi X4
Y S
- 14 A0 0 9 24
X = 5 T 3 5 T 35

Set xo = 0 and express objective function

|
|
| . .
[2x1 o= ox - (A ?)] . by non-basic variables
N, 4, o ox
3 X 2
_ 4 X Xa
e 1451 ' 9)? ' X.
— a4 24 24
¥ = 5 5
e

[Basic solution (0, 2, ¥, 0), which is feasible!]

Lemma 29.12
If a linear program L has no feasible solution, then INITIALIZE-SIMPLEX
returns “infeasible”. Otherwise, it returns a valid slack form for which the
basic solution is feasible.
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Fundamental Theorem of Linear Programming

Theorem 29.13 (Fundamental Theorem of Linear Programming)
Any linear program L, given in standard form, either
1. has an optimal solution with a finite objective value,
2. is infeasible, or

3. is unbounded.

N
\

If L is infeasible, SIMPLEX returns ‘“infeasible”. If L is unbounded, SIMPLEX returns
“unbounded”. Otherwise, SIMPLEX returns an optimal solution with a finite objective value.
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Fundamental Theorem of Linear Programming

Theorem 29.13 (Fundamental Theorem of Linear Programming)
Any linear program L, given in standard form, either
1. has an optimal solution with a finite objective value,
2. is infeasible, or
3. is unbounded.

2\
If L is infeasible, SIMPLEX returns ‘“infeasible”. If L is unbounded, SIMPLEX returns
“unbounded”. Otherwise, SIMPLEX returns an optimal solution with a finite objective value.

Proof requires the concept of duality, which is not covered
in this course (for details see CLRS3, Chapter 29.4)
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Workflow for Solving Linear Programs

[Linear Program (in any form)]

|

( Standard Form ]

( Slack Form ]

INITIALIZE-SIMPLEX terminates INITIALIZE-SIMPLEX calls SIMPLEX

-

LP unbounded LP bounded
SIMPLEX terminates SIMPLEX returns optimum

[ No Feasible Solution ] [ Feasible Basic Solution ]
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Linear Programming and Simplex: Summary and Outlook

Linear Programming
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Linear Programming and Simplex: Summary and Outlook

Linear Programming

= extremely versatile tool for modelling problems of all kinds
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Linear Programming

= extremely versatile tool for modelling problems of all kinds
= basis of Integer Programming, to be discussed in later lectures
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Linear Programming and Simplex: Summary and Outlook

Linear Programming

= extremely versatile tool for modelling problems of all kinds
= basis of Integer Programming, to be discussed in later lectures

~——— Simplex Algorithm X3

= |In practice: usually terminates in X2
polynomial time, i.e., O(m + n)
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Linear Programming and Simplex: Summary and Outlook

Linear Programming

= extremely versatile tool for modelling problems of all kinds
= basis of Integer Programming, to be discussed in later lectures

~——— Simplex Algorithm

X3
= |In practice: usually terminates in X2
polynomial time, i.e., O(m + n)

= In theory: even with anti-cycling may
need exponential time :
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.-,.E:,. IIl. Linear Programming Finding an Initial Solution 50



Linear Programming and Simplex: Summary and Outlook

Linear Programming

= extremely versatile tool for modelling problems of all kinds
= basis of Integer Programming, to be discussed in later lectures

~——— Simplex Algorithm X3
= |In practice: usually terminates in X2
polynomial time, i.e., O(m + n)

= In theory: even with anti-cycling may

[

need exponential time o
o~ .\))(1
Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

i
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Linear Programming and Simplex: Summary and Outlook

Linear Programming

= extremely versatile tool for modelling problems of all kinds
= basis of Integer Programming, to be discussed in later lectures

~——— Simplex Algorithm X3
= |In practice: usually terminates in X2
polynomial time, i.e., O(m + n)

= In theory: even with anti-cycling may

[

need exponential time o
o~ .\))(1
Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

Polynomial-Time Algorithms

i
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Linear Programming and Simplex: Summary and Outlook

Linear Programming

= extremely versatile tool for modelling problems of all kinds
= basis of Integer Programming, to be discussed in later lectures

~——— Simplex Algorithm X3
= |In practice: usually terminates in X2
polynomial time, i.e., O(m + n)
= In theory: even with anti-cycling may
need exponential time o
o

[

—,
Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

Polynomial-Time Algorithms X3
= |nterior-Point Methods: traverses the X2
interior of the feasible set of solutions
(not just vertices!)

X
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Linear Programming and Simplex: Summary and Outlook

Linear Programming

= extremely versatile tool for modelling problems of all kinds
= basis of Integer Programming, to be discussed in later lectures

~——— Simplex Algorithm X3

= |In practice: usually terminates in X2
polynomial time, i.e., O(m + n)

= In theory: even with anti-cycling may

[

need exponential time o
o~ .\))(1
Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

Polynomial-Time Algorithms X3
= |nterior-Point Methods: traverses the X2
interior of the feasible set of solutions
(not just vertices!)
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